import streamlit as st from transformers import T5Tokenizer, T5ForConditionalGeneration MODEL_NAME_OR_PATH = "flax-community/t5-recipe-generation" tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True) model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME_OR_PATH) def generate_recipe(input_items): prefix = "items: " input_text = prefix + input_items input_ids = tokenizer.encode(input_text, return_tensors="pt") output_ids = model.generate(input_ids) generated_recipe = tokenizer.decode(output_ids[0], skip_special_tokens=True) return generated_recipe def main(): st.title("Recipe Generation") input_items = st.text_area("Enter the recipe instructions:") if st.button("Generate Recipe"): generated_recipe = generate_recipe(input_items) st.subheader("Generated Recipe:") st.text(generated_recipe) if __name__ == "__main__": main()