|
import streamlit as st |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
|
|
MODEL_NAME_OR_PATH = "flax-community/t5-recipe-generation" |
|
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True) |
|
model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME_OR_PATH) |
|
|
|
def generate_recipe(input_items): |
|
prefix = "items: " |
|
input_text = prefix + input_items |
|
input_ids = tokenizer.encode(input_text, return_tensors="pt") |
|
output_ids = model.generate(input_ids) |
|
generated_recipe = tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
return generated_recipe |
|
|
|
def main(): |
|
st.title("Recipe Generation") |
|
input_items = st.text_area("Enter the recipe instructions:") |
|
if st.button("Generate Recipe"): |
|
generated_recipe = generate_recipe(input_items) |
|
st.subheader("Generated Recipe:") |
|
st.text(generated_recipe) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|