FaceRecognition / my_face_recognition /f_face_recognition.py
13nishit's picture
Upload 25 files
aa77e96
import face_recognition
import numpy as np
def detect_face(image):
'''
Input: imagen numpy.ndarray, shape=(W,H,3)
Output: [(y0,x1,y1,x0),(y0,x1,y1,x0),...,(y0,x1,y1,x0)] ,cada tupla representa un rostro detectado
si no se detecta nada --> Output: []
'''
Output = face_recognition.face_locations(image)
return Output
def get_features(img,box):
'''
Input:
-img:imagen numpy.ndarray, shape=(W,H,3)
-box: [(y0,x1,y1,x0),(y0,x1,y1,x0),...,(y0,x1,y1,x0)] ,cada tupla representa un rostro detectado
Output:
-features: [array,array,...,array] , cada array representa las caracteristicas de un rostro
'''
features = face_recognition.face_encodings(img,box)
return features
def compare_faces(face_encodings,db_features,db_names):
'''
Input:
db_features = [array,array,...,array] , cada array representa las caracteristicas de un rostro
db_names = array(array,array,...,array) cada array representa las caracteriticas de un usuario
Output:
-match_name: ['name', 'unknow'] lista con los nombres que hizo match
si no hace match pero hay una persona devuelve 'unknow'
'''
match_name = []
names_temp = db_names
Feats_temp = db_features
for face_encoding in face_encodings:
try:
dist = face_recognition.face_distance(Feats_temp,face_encoding)
except:
dist = face_recognition.face_distance([Feats_temp],face_encoding)
index = np.argmin(dist)
if dist[index] <= 0.6:
match_name = match_name + [names_temp[index]]
else:
match_name = match_name + ["unknow"]
return match_name