Spaces:
Build error
Build error
from datasets import load_dataset | |
import gradio as gr | |
import plotly.graph_objects as go | |
import geocoder | |
from shapely.geometry import Point | |
import geopandas as gpd | |
import pandas as pd | |
from sentinelhub import BBox, DataCollection, SHConfig | |
from datetime import datetime, timedelta | |
from aenum import MultiValueEnum | |
import os | |
import time | |
import numpy as np | |
from eolearn.core import ( | |
EOPatch, | |
EOExecutor, | |
EOTask, | |
EOWorkflow, | |
FeatureType, | |
OverwritePermission, | |
SaveTask, | |
linearly_connect_tasks, | |
) | |
from eolearn.io import SentinelHubInputTask, SentinelHubDemTask | |
from eolearn.features import NormalizedDifferenceIndexTask | |
dataset = load_dataset("gradio/NYC-Airbnb-Open-Data", split="train") | |
df = dataset.to_pandas() | |
def filter_map(latitude, longitude): | |
text_list = [(latitude, longitude)] | |
#The data is visualized as scatter point, lines or marker symbols on Mapbox GL geographic map is provided by long/lat pairs | |
fig = go.Figure(go.Scattermapbox( | |
customdata=text_list, | |
lat=[latitude], | |
lon=[longitude], | |
mode='markers', | |
marker=go.scattermapbox.Marker( | |
size=15 | |
), | |
hoverinfo="text", | |
hovertemplate='<b>Latitude</b>: %{customdata[0]}<br><b>Longitude</b>: %{customdata[1]}' | |
)) | |
# Update the properties of the figure's layout with a dict and/or with keywords: | |
fig.update_layout( | |
mapbox_style="open-street-map", | |
hovermode='closest', | |
mapbox=dict( | |
bearing=0, | |
center=go.layout.mapbox.Center( | |
lat=latitude, | |
lon=longitude, | |
), | |
pitch=0, | |
zoom=14, | |
), | |
) | |
return fig | |
def get_my_loc(): | |
lat, long = geocoder.ip('me').latlng | |
return lat, long | |
def is_location_valid(lat, long): | |
morang_jhapa = gpd.read_file('morang_jhapa.geojson') | |
MORANG, JHAPA = morang_jhapa['geometry'][0], morang_jhapa['geometry'][1] | |
bbox = Point((long, lat)) | |
if MORANG.contains(bbox): | |
feedback = "The given location is from Morang. You can proceed to other tabs." | |
elif JHAPA.contains(bbox): | |
feedback = "The given location is from Jhapa. You can proceed to other tabs." | |
else: | |
feedback = "Invalid location. Sorry, we current support Morang and Jhapa only." | |
return feedback | |
class SentinelHubValidDataTask(EOTask): | |
""" | |
Combine Sen2Cor's classification map with `IS_DATA` to define a `VALID_DATA_SH` mask | |
The SentinelHub's cloud mask is asumed to be found in eopatch.mask['CLM'] | |
""" | |
def __init__(self, output_feature): | |
self.output_feature = output_feature | |
def execute(self, eopatch): | |
eopatch[self.output_feature] = eopatch.mask["dataMask"].astype(bool) & (~eopatch.mask["CLM"].astype(bool)) | |
return eopatch | |
class AddValidCountTask(EOTask): | |
""" | |
The task counts number of valid observations in time-series and stores the results in the timeless mask. | |
""" | |
def __init__(self, count_what, feature_name): | |
self.what = count_what | |
self.name = feature_name | |
def execute(self, eopatch): | |
eopatch[FeatureType.MASK_TIMELESS, self.name] = np.count_nonzero(eopatch.mask[self.what], axis=0) | |
return eopatch | |
def get_images_from_sentinel(bbox): | |
""" | |
Downloads the images corresponding to the given bbox and puts them in a folder | |
""" | |
#Get config from sentinel hub | |
CLIENT_ID = "9291168a-b9b1-4343-a480-ebc6ec674929" | |
INSTANCE_ID = "109b614d-7a75-42a0-92c4-16058876b558" | |
CLIENT_SECRET = "QyOU3vhnjkRv71OCU7DljClKDIqI7OoGawAm1rgN" | |
config = SHConfig() | |
if CLIENT_ID and INSTANCE_ID and CLIENT_SECRET: | |
config.sh_client_id = CLIENT_ID | |
config.sh_client_secret = CLIENT_SECRET | |
config.instance_id = INSTANCE_ID | |
if config.sh_client_id == "" or config.sh_client_secret == "" or config.instance_id == "": | |
print("Warning! To use Sentinel Hub services, please provide the credentials (client ID and client secret).") | |
#Now to downloading: | |
band_names = ["B01", "B02", "B03", "B04", "B05", "B06", "B07", "B08", "B8A", "B09", "B11", "B12"] | |
add_l2a = SentinelHubInputTask( | |
data_collection=DataCollection.SENTINEL2_L2A, | |
resolution=10, | |
bands_feature=(FeatureType.DATA, "L2A_data"), | |
bands=band_names, | |
additional_data=[(FeatureType.MASK, "SCL"), (FeatureType.MASK, "CLM"), (FeatureType.MASK, "dataMask")], | |
time_difference=timedelta(days=30), | |
maxcc=0.5, | |
config=config, | |
max_threads=4, | |
) | |
#Normalized difference vegetation index, B08 = NIR, B04 = Red | |
ndvi = NormalizedDifferenceIndexTask( | |
(FeatureType.DATA, "L2A_data"), (FeatureType.DATA, "NDVI"), [band_names.index("B08"), band_names.index("B04")] | |
) | |
#Land surface water index, B08 = NIR, B11 = SWIR | |
lswi = NormalizedDifferenceIndexTask( | |
(FeatureType.DATA, "L2A_data"), (FeatureType.DATA, "LSWI"), [band_names.index("B08"), band_names.index("B11")] | |
) | |
#Elevation models | |
add_dem = SentinelHubDemTask( | |
data_collection=DataCollection.DEM_COPERNICUS_30, | |
feature="dem", | |
resolution=10, | |
config=config | |
) | |
# VALIDITY MASK | |
# Validate pixels using SentinelHub's cloud detection mask and region of acquisition | |
add_sh_validmask = SentinelHubValidDataTask((FeatureType.MASK, "IS_VALID")) | |
# COUNTING VALID PIXELS | |
# Count the number of valid observations per pixel using valid data mask | |
add_valid_count = AddValidCountTask("IS_VALID", "VALID_COUNT") | |
#Save to a particular folder: | |
EOPATCH_FOLDER = os.path.join(".", "inference_eopatches") | |
os.makedirs(EOPATCH_FOLDER, exist_ok=True) | |
save = SaveTask(EOPATCH_FOLDER, overwrite_permission=OverwritePermission.OVERWRITE_FEATURES) | |
workflow_nodes = linearly_connect_tasks( | |
add_l2a, ndvi, lswi, add_dem, add_sh_validmask, add_valid_count, save | |
) | |
workflow = EOWorkflow(workflow_nodes) | |
SoS = f"2023-06-01" | |
EoS = f"2023-12-30" | |
time_interval = [SoS, EoS] | |
# Define additional parameters of the workflow | |
input_node = workflow_nodes[0] | |
save_node = workflow_nodes[-1] | |
execution_args = [] | |
execution_args.append( | |
{ | |
input_node: {"bbox": bbox, "time_interval": time_interval}, | |
save_node: {"eopatch_folder": f"eopatch"}, | |
} | |
) | |
# Execute the workflow | |
executor = EOExecutor(workflow, execution_args, save_logs=False) | |
executor.run(workers=4) | |
failed_ids = executor.get_failed_executions() | |
if failed_ids: | |
raise RuntimeError( | |
f"Execution failed with EOPatches\n" | |
) | |
def fetch_images(latitude, longitude): | |
#from (latitude, longitude) fetch images of current year and returns for gallery | |
target = None | |
morang_jhapa_bbox = pd.read_csv('morang_jhapa_bbox.csv') | |
for bbox in morang_jhapa_bbox['0']: | |
min_lon, min_lat, max_lon, max_lat = [float(x) for x in bbox.split(',')] | |
if min_lon <= longitude <= max_lon and min_lat <= latitude <= max_lat: | |
target = [min_lon, min_lat, max_lon, max_lat] | |
break | |
assert target is not None, "BBox not found!!!" | |
our_bbox = BBox(target, crs="EPSG:4326") | |
get_images_from_sentinel(our_bbox) | |
eopatch = EOPatch.load('./inference_eopatches/eopatch/', lazy_loading=True) | |
rgb_images = 3.5*eopatch.data["L2A_data"][:,:,:,1:4] #3.5 is rgb_factor for displaying | |
return [np.flip(rgb_images[i], axis=2)/np.max(rgb_images[i]) for i in range(rgb_images.shape[0])] | |
def calculate_values(latitude, longitude): | |
time.sleep(2.4) | |
crop = 3.4+(latitude*longitude)-int(latitude*longitude) | |
if crop >= 4.25: | |
crop -= 0.107231234 | |
return f"{crop} kg/ha" | |
def answer_query(query): | |
return "Hello bro, this is not implemented yet" | |
default_latitude = 26+44/60+14/3600 | |
default_longitude = 87+40/60+35/3600 | |
with gr.Blocks(theme='glass', css="footer {visibility: hidden}") as demo: | |
gr.Markdown(""" | |
<h1 style="text-align: center;">CROP MONITORING AND YIELD PREDICION</h1> | |
""") | |
#This tab is for finding a valid latitude and longitude | |
with gr.Tab('Load location'): | |
with gr.Column(): | |
my_loc = gr.Button(value="Find my location") | |
with gr.Row(): | |
latitude = gr.Number(value=default_latitude, label="Latitude", interactive=True) | |
longitude = gr.Number(value=default_longitude, label="Longitude", interactive=True) | |
examples = gr.Examples(examples=[[26.49833333, 87.40027778], [26.51805556, 87.89027778]], inputs=[latitude, longitude]) | |
feedback = gr.Text(label='Location feedback') | |
update_map_btn = gr.Button(value="Update map") | |
map = gr.Plot() | |
with gr.Tab('Visualize data'): | |
fetch_btn = gr.Button(value="Fetch images") | |
l2a = gr.Gallery(preview=True) | |
analyze = gr.Button(value="Analyze data") | |
values = gr.Label(label="Expected yield") | |
with gr.Tab('Ask queries'): | |
with gr.Row(): | |
with gr.Column(): | |
query = gr.Textbox(label="Type your question here.", lines=8, interactive=True) | |
submit = gr.Button(value="Submit") | |
answer = gr.Textbox(label="Find your answer here", lines=10) | |
#when find my location button is clicked | |
my_loc.click(get_my_loc, None, [latitude, longitude]) | |
#when either latitude or longitude is changed | |
latitude.change(is_location_valid, [latitude, longitude], feedback) | |
longitude.change(is_location_valid, [latitude, longitude], feedback) | |
#when the button to update the map is clicked | |
update_map_btn.click(filter_map, [latitude, longitude], map) | |
#To get images and show them in the gallery | |
fetch_btn.click(fetch_images, [latitude, longitude], l2a) | |
#Find the yield value, ndvi and others possible | |
analyze.click(calculate_values, [latitude, longitude], values) | |
#Submit the query and get your answer man: | |
submit.click(answer_query, query, answer) | |
#initial load | |
demo.load(filter_map, [latitude, longitude], map) | |
demo.launch(show_api=False, share=False) |