Update mltechnicalscanner.py
Browse filesOption added : "--compare" to read the results.txt file and compare to current prices <=> to check if the predictions were ok.
- mltechnicalscanner.py +155 -26
mltechnicalscanner.py
CHANGED
@@ -11,6 +11,7 @@ from sklearn.model_selection import train_test_split
|
|
11 |
from sklearn.metrics import accuracy_score
|
12 |
import pickle
|
13 |
import warnings
|
|
|
14 |
|
15 |
# Suppress warnings
|
16 |
warnings.filterwarnings('ignore')
|
@@ -26,6 +27,7 @@ class MLTechnicalScanner:
|
|
26 |
self.model = None
|
27 |
self.model_file = "technical_ml_model.pkl"
|
28 |
self.training_data_file = "training_data.csv"
|
|
|
29 |
self.min_training_samples = 100
|
30 |
self.load_ml_model()
|
31 |
|
@@ -48,33 +50,58 @@ class MLTechnicalScanner:
|
|
48 |
|
49 |
# Training data collection
|
50 |
self.training_data = pd.DataFrame(columns=self.feature_columns + ['target'])
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def load_ml_model(self):
|
53 |
"""Load trained ML model if exists"""
|
54 |
if os.path.exists(self.model_file):
|
55 |
with open(self.model_file, 'rb') as f:
|
56 |
self.model = pickle.load(f)
|
57 |
-
|
|
|
|
|
58 |
else:
|
59 |
-
|
|
|
|
|
60 |
self.model = RandomForestClassifier(n_estimators=100, random_state=42)
|
61 |
|
62 |
def save_ml_model(self):
|
63 |
"""Save trained ML model"""
|
64 |
with open(self.model_file, 'wb') as f:
|
65 |
pickle.dump(self.model, f)
|
66 |
-
|
|
|
|
|
67 |
|
68 |
def load_training_data(self):
|
69 |
"""Load existing training data if available"""
|
70 |
if os.path.exists(self.training_data_file):
|
71 |
self.training_data = pd.read_csv(self.training_data_file)
|
72 |
-
|
|
|
|
|
73 |
|
74 |
def save_training_data(self):
|
75 |
"""Save training data to file"""
|
76 |
self.training_data.to_csv(self.training_data_file, index=False)
|
77 |
-
|
|
|
|
|
78 |
|
79 |
def calculate_features(self, df):
|
80 |
"""Calculate technical indicators"""
|
@@ -103,7 +130,9 @@ class MLTechnicalScanner:
|
|
103 |
|
104 |
return df
|
105 |
except Exception as e:
|
106 |
-
|
|
|
|
|
107 |
return None
|
108 |
|
109 |
def train_initial_model(self):
|
@@ -123,12 +152,16 @@ class MLTechnicalScanner:
|
|
123 |
# Evaluate model
|
124 |
preds = self.model.predict(X_test)
|
125 |
accuracy = accuracy_score(y_test, preds)
|
126 |
-
|
|
|
|
|
127 |
|
128 |
self.save_ml_model()
|
129 |
return True
|
130 |
else:
|
131 |
-
|
|
|
|
|
132 |
return False
|
133 |
|
134 |
def predict_direction(self, features):
|
@@ -140,7 +173,9 @@ class MLTechnicalScanner:
|
|
140 |
features = features[self.feature_columns].values.reshape(1, -1)
|
141 |
return self.model.predict(features)[0]
|
142 |
except Exception as e:
|
143 |
-
|
|
|
|
|
144 |
return 0
|
145 |
|
146 |
def collect_training_sample(self, symbol, exchange, timeframe='1h'):
|
@@ -166,13 +201,17 @@ class MLTechnicalScanner:
|
|
166 |
|
167 |
new_row = pd.DataFrame([features])
|
168 |
self.training_data = pd.concat([self.training_data, new_row], ignore_index=True)
|
169 |
-
|
|
|
|
|
170 |
|
171 |
if len(self.training_data) % 10 == 0:
|
172 |
self.save_training_data()
|
173 |
|
174 |
except Exception as e:
|
175 |
-
|
|
|
|
|
176 |
|
177 |
def scan_symbol(self, symbol, exchange, timeframes):
|
178 |
"""Scan symbol for trading opportunities"""
|
@@ -214,33 +253,106 @@ class MLTechnicalScanner:
|
|
214 |
self.alert(symbol, "DOWNTREND", timeframes, price)
|
215 |
|
216 |
except Exception as e:
|
217 |
-
|
|
|
|
|
218 |
|
219 |
def alert(self, symbol, trend_type, timeframes, current_price):
|
220 |
"""Generate alert for detected trend"""
|
221 |
-
|
|
|
222 |
print(message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
# Main execution
|
225 |
if __name__ == "__main__":
|
226 |
parser = argparse.ArgumentParser()
|
227 |
-
parser.add_argument("-e", "--exchange", help="Exchange name", required=
|
228 |
-
parser.add_argument("-f", "--filter", help="Asset filter", required=
|
229 |
-
parser.add_argument("-tf", "--timeframes", help="Timeframes to scan (comma separated)", required=
|
230 |
parser.add_argument("--train", help="Run in training mode", action="store_true")
|
|
|
231 |
args = parser.parse_args()
|
232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
scanner = MLTechnicalScanner(training_mode=args.train)
|
234 |
|
|
|
|
|
|
|
235 |
exchange = scanner.exchanges.get(args.exchange.lower())
|
236 |
if not exchange:
|
237 |
-
|
|
|
|
|
238 |
sys.exit(1)
|
239 |
|
240 |
try:
|
241 |
markets = exchange.fetch_markets()
|
242 |
except Exception as e:
|
243 |
-
|
|
|
|
|
244 |
sys.exit(1)
|
245 |
|
246 |
symbols = [
|
@@ -249,25 +361,42 @@ if __name__ == "__main__":
|
|
249 |
]
|
250 |
|
251 |
if not symbols:
|
252 |
-
|
|
|
|
|
253 |
sys.exit(1)
|
254 |
|
255 |
if args.train:
|
256 |
-
|
|
|
|
|
257 |
for symbol in symbols:
|
258 |
scanner.collect_training_sample(symbol, exchange)
|
259 |
|
260 |
if scanner.train_initial_model():
|
261 |
-
|
|
|
|
|
262 |
else:
|
263 |
-
|
|
|
|
|
264 |
sys.exit(0)
|
265 |
|
266 |
if not hasattr(scanner.model, 'classes_'):
|
267 |
-
|
|
|
|
|
268 |
|
269 |
timeframes = args.timeframes.split(',')
|
270 |
-
|
|
|
|
|
271 |
|
272 |
for symbol in symbols:
|
273 |
-
scanner.scan_symbol(symbol, exchange, timeframes)
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from sklearn.metrics import accuracy_score
|
12 |
import pickle
|
13 |
import warnings
|
14 |
+
import re
|
15 |
|
16 |
# Suppress warnings
|
17 |
warnings.filterwarnings('ignore')
|
|
|
27 |
self.model = None
|
28 |
self.model_file = "technical_ml_model.pkl"
|
29 |
self.training_data_file = "training_data.csv"
|
30 |
+
self.results_file = "results.txt"
|
31 |
self.min_training_samples = 100
|
32 |
self.load_ml_model()
|
33 |
|
|
|
50 |
|
51 |
# Training data collection
|
52 |
self.training_data = pd.DataFrame(columns=self.feature_columns + ['target'])
|
53 |
+
|
54 |
+
def init_results_file(self):
|
55 |
+
"""Initialize results file only when starting a new scan"""
|
56 |
+
with open(self.results_file, 'w') as f:
|
57 |
+
f.write("Scan Results Log\n")
|
58 |
+
f.write("="*50 + "\n")
|
59 |
+
f.write(f"Scan started at {datetime.now()}\n\n")
|
60 |
+
|
61 |
+
def log_result(self, message):
|
62 |
+
"""Log message to results file"""
|
63 |
+
try:
|
64 |
+
with open(self.results_file, 'a') as f:
|
65 |
+
f.write(message + '\n')
|
66 |
+
except Exception as e:
|
67 |
+
print(f"Error writing to results file: {str(e)}")
|
68 |
+
|
69 |
def load_ml_model(self):
|
70 |
"""Load trained ML model if exists"""
|
71 |
if os.path.exists(self.model_file):
|
72 |
with open(self.model_file, 'rb') as f:
|
73 |
self.model = pickle.load(f)
|
74 |
+
msg = "Loaded trained model from file"
|
75 |
+
print(msg)
|
76 |
+
self.log_result(msg)
|
77 |
else:
|
78 |
+
msg = "Initializing new model"
|
79 |
+
print(msg)
|
80 |
+
self.log_result(msg)
|
81 |
self.model = RandomForestClassifier(n_estimators=100, random_state=42)
|
82 |
|
83 |
def save_ml_model(self):
|
84 |
"""Save trained ML model"""
|
85 |
with open(self.model_file, 'wb') as f:
|
86 |
pickle.dump(self.model, f)
|
87 |
+
msg = "Saved model to file"
|
88 |
+
print(msg)
|
89 |
+
self.log_result(msg)
|
90 |
|
91 |
def load_training_data(self):
|
92 |
"""Load existing training data if available"""
|
93 |
if os.path.exists(self.training_data_file):
|
94 |
self.training_data = pd.read_csv(self.training_data_file)
|
95 |
+
msg = f"Loaded {len(self.training_data)} training samples"
|
96 |
+
print(msg)
|
97 |
+
self.log_result(msg)
|
98 |
|
99 |
def save_training_data(self):
|
100 |
"""Save training data to file"""
|
101 |
self.training_data.to_csv(self.training_data_file, index=False)
|
102 |
+
msg = f"Saved {len(self.training_data)} training samples"
|
103 |
+
print(msg)
|
104 |
+
self.log_result(msg)
|
105 |
|
106 |
def calculate_features(self, df):
|
107 |
"""Calculate technical indicators"""
|
|
|
130 |
|
131 |
return df
|
132 |
except Exception as e:
|
133 |
+
error_msg = f"Error calculating features: {str(e)}"
|
134 |
+
print(error_msg)
|
135 |
+
self.log_result(error_msg)
|
136 |
return None
|
137 |
|
138 |
def train_initial_model(self):
|
|
|
152 |
# Evaluate model
|
153 |
preds = self.model.predict(X_test)
|
154 |
accuracy = accuracy_score(y_test, preds)
|
155 |
+
msg = f"Initial model trained with accuracy: {accuracy:.2f}"
|
156 |
+
print(msg)
|
157 |
+
self.log_result(msg)
|
158 |
|
159 |
self.save_ml_model()
|
160 |
return True
|
161 |
else:
|
162 |
+
msg = f"Not enough training data ({len(self.training_data)} samples). Need at least {self.min_training_samples}."
|
163 |
+
print(msg)
|
164 |
+
self.log_result(msg)
|
165 |
return False
|
166 |
|
167 |
def predict_direction(self, features):
|
|
|
173 |
features = features[self.feature_columns].values.reshape(1, -1)
|
174 |
return self.model.predict(features)[0]
|
175 |
except Exception as e:
|
176 |
+
error_msg = f"Prediction error: {str(e)}"
|
177 |
+
print(error_msg)
|
178 |
+
self.log_result(error_msg)
|
179 |
return 0
|
180 |
|
181 |
def collect_training_sample(self, symbol, exchange, timeframe='1h'):
|
|
|
201 |
|
202 |
new_row = pd.DataFrame([features])
|
203 |
self.training_data = pd.concat([self.training_data, new_row], ignore_index=True)
|
204 |
+
msg = f"Collected training sample for {symbol}"
|
205 |
+
print(msg)
|
206 |
+
self.log_result(msg)
|
207 |
|
208 |
if len(self.training_data) % 10 == 0:
|
209 |
self.save_training_data()
|
210 |
|
211 |
except Exception as e:
|
212 |
+
error_msg = f"Error collecting training sample: {str(e)}"
|
213 |
+
print(error_msg)
|
214 |
+
self.log_result(error_msg)
|
215 |
|
216 |
def scan_symbol(self, symbol, exchange, timeframes):
|
217 |
"""Scan symbol for trading opportunities"""
|
|
|
253 |
self.alert(symbol, "DOWNTREND", timeframes, price)
|
254 |
|
255 |
except Exception as e:
|
256 |
+
error_msg = f"Error scanning {symbol}: {str(e)}"
|
257 |
+
print(error_msg)
|
258 |
+
self.log_result(error_msg)
|
259 |
|
260 |
def alert(self, symbol, trend_type, timeframes, current_price):
|
261 |
"""Generate alert for detected trend"""
|
262 |
+
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
263 |
+
message = f"({trend_type}) detected for {symbol} at price {current_price} on {timeframes} at {timestamp}"
|
264 |
print(message)
|
265 |
+
self.log_result(message)
|
266 |
+
|
267 |
+
def compare_results(self, exchange_name):
|
268 |
+
"""Compare previous results with current prices"""
|
269 |
+
try:
|
270 |
+
if not os.path.exists(self.results_file):
|
271 |
+
print("No results file found to compare")
|
272 |
+
return
|
273 |
+
|
274 |
+
exchange = self.exchanges.get(exchange_name.lower())
|
275 |
+
if not exchange:
|
276 |
+
print(f"Exchange {exchange_name} not supported")
|
277 |
+
return
|
278 |
+
|
279 |
+
# Pattern to extract symbol and price from log entries
|
280 |
+
pattern = r"\((.*?)\) detected for (.*?) at price ([\d.]+) on"
|
281 |
+
|
282 |
+
with open(self.results_file, 'r') as f:
|
283 |
+
lines = f.readlines()
|
284 |
+
|
285 |
+
print("\n=== Price Comparison Report ===")
|
286 |
+
print(f"Generated at: {datetime.now()}\n")
|
287 |
+
|
288 |
+
for line in lines:
|
289 |
+
match = re.search(pattern, line)
|
290 |
+
if match:
|
291 |
+
trend_type = match.group(1)
|
292 |
+
symbol = match.group(2)
|
293 |
+
old_price = float(match.group(3))
|
294 |
+
timestamp = line.split(' at ')[-1].strip()
|
295 |
+
|
296 |
+
try:
|
297 |
+
ticker = exchange.fetch_ticker(symbol)
|
298 |
+
current_price = ticker['last']
|
299 |
+
price_change = current_price - old_price
|
300 |
+
percent_change = (price_change / old_price) * 100
|
301 |
+
|
302 |
+
print(f"Symbol: {symbol}")
|
303 |
+
print(f"Previous: {trend_type} at {old_price} ({timestamp})")
|
304 |
+
print(f"Current: {current_price} ({datetime.now().strftime('%Y-%m-%d %H:%M:%S')})")
|
305 |
+
print(f"Change: {price_change:.4f} ({percent_change:.2f}%)")
|
306 |
+
print("-" * 50)
|
307 |
+
except Exception as e:
|
308 |
+
print(f"Error fetching current price for {symbol}: {str(e)}")
|
309 |
+
continue
|
310 |
+
|
311 |
+
print("\n=== End of Report ===")
|
312 |
+
|
313 |
+
except Exception as e:
|
314 |
+
print(f"Error comparing results: {str(e)}")
|
315 |
|
316 |
# Main execution
|
317 |
if __name__ == "__main__":
|
318 |
parser = argparse.ArgumentParser()
|
319 |
+
parser.add_argument("-e", "--exchange", help="Exchange name", required=False)
|
320 |
+
parser.add_argument("-f", "--filter", help="Asset filter", required=False)
|
321 |
+
parser.add_argument("-tf", "--timeframes", help="Timeframes to scan (comma separated)", required=False)
|
322 |
parser.add_argument("--train", help="Run in training mode", action="store_true")
|
323 |
+
parser.add_argument("--compare", help="Compare previous results with current prices", action="store_true")
|
324 |
args = parser.parse_args()
|
325 |
|
326 |
+
if args.compare:
|
327 |
+
scanner = MLTechnicalScanner()
|
328 |
+
if args.exchange:
|
329 |
+
scanner.compare_results(args.exchange)
|
330 |
+
else:
|
331 |
+
print("Please specify an exchange with -e/--exchange when using --compare")
|
332 |
+
sys.exit(0)
|
333 |
+
|
334 |
+
if not all([args.exchange, args.filter, args.timeframes]):
|
335 |
+
print("Error: --exchange, --filter, and --timeframes are required when not using --compare")
|
336 |
+
sys.exit(1)
|
337 |
+
|
338 |
scanner = MLTechnicalScanner(training_mode=args.train)
|
339 |
|
340 |
+
# Initialize results file only for actual scans, not comparisons
|
341 |
+
scanner.init_results_file()
|
342 |
+
|
343 |
exchange = scanner.exchanges.get(args.exchange.lower())
|
344 |
if not exchange:
|
345 |
+
error_msg = f"Exchange {args.exchange} not supported"
|
346 |
+
print(error_msg)
|
347 |
+
scanner.log_result(error_msg)
|
348 |
sys.exit(1)
|
349 |
|
350 |
try:
|
351 |
markets = exchange.fetch_markets()
|
352 |
except Exception as e:
|
353 |
+
error_msg = f"Error fetching markets: {str(e)}"
|
354 |
+
print(error_msg)
|
355 |
+
scanner.log_result(error_msg)
|
356 |
sys.exit(1)
|
357 |
|
358 |
symbols = [
|
|
|
361 |
]
|
362 |
|
363 |
if not symbols:
|
364 |
+
error_msg = f"No symbols found matching filter {args.filter}"
|
365 |
+
print(error_msg)
|
366 |
+
scanner.log_result(error_msg)
|
367 |
sys.exit(1)
|
368 |
|
369 |
if args.train:
|
370 |
+
train_msg = f"Running in training mode for {len(symbols)} symbols"
|
371 |
+
print(train_msg)
|
372 |
+
scanner.log_result(train_msg)
|
373 |
for symbol in symbols:
|
374 |
scanner.collect_training_sample(symbol, exchange)
|
375 |
|
376 |
if scanner.train_initial_model():
|
377 |
+
success_msg = "Training completed successfully"
|
378 |
+
print(success_msg)
|
379 |
+
scanner.log_result(success_msg)
|
380 |
else:
|
381 |
+
fail_msg = "Not enough data collected for training"
|
382 |
+
print(fail_msg)
|
383 |
+
scanner.log_result(fail_msg)
|
384 |
sys.exit(0)
|
385 |
|
386 |
if not hasattr(scanner.model, 'classes_'):
|
387 |
+
warn_msg = "Warning: No trained model available. Running with basic scanning only."
|
388 |
+
print(warn_msg)
|
389 |
+
scanner.log_result(warn_msg)
|
390 |
|
391 |
timeframes = args.timeframes.split(',')
|
392 |
+
scan_msg = f"Scanning {len(symbols)} symbols on timeframes {timeframes}"
|
393 |
+
print(scan_msg)
|
394 |
+
scanner.log_result(scan_msg)
|
395 |
|
396 |
for symbol in symbols:
|
397 |
+
scanner.scan_symbol(symbol, exchange, timeframes)
|
398 |
+
|
399 |
+
# Add final summary
|
400 |
+
end_msg = f"\nScan completed at {datetime.now()}"
|
401 |
+
print(end_msg)
|
402 |
+
scanner.log_result(end_msg)
|