Delete randomforestML.py
Browse files- randomforestML.py +0 -86
randomforestML.py
DELETED
@@ -1,86 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
from datetime import datetime, timedelta
|
5 |
-
from binance.client import Client
|
6 |
-
from sklearn.model_selection import train_test_split
|
7 |
-
from sklearn.ensemble import RandomForestClassifier
|
8 |
-
from sklearn.metrics import classification_report
|
9 |
-
import ta
|
10 |
-
|
11 |
-
# Connect to Binance (Fill your own API keys if live)
|
12 |
-
# client = Client(api_key, api_secret)
|
13 |
-
client = Client()
|
14 |
-
|
15 |
-
# File to store the historical data
|
16 |
-
DATA_FILE = "btc_data.csv"
|
17 |
-
symbol = "BTCUSDT"
|
18 |
-
interval = Client.KLINE_INTERVAL_4HOUR
|
19 |
-
|
20 |
-
# Load existing data or download fresh
|
21 |
-
if os.path.exists(DATA_FILE):
|
22 |
-
print("Loading existing data...")
|
23 |
-
df = pd.read_csv(DATA_FILE, index_col=0, parse_dates=True)
|
24 |
-
last_timestamp = df.index[-1]
|
25 |
-
# Binance gives data in 15min intervals, so move forward
|
26 |
-
start_time = last_timestamp + timedelta(minutes=15)
|
27 |
-
start_str = start_time.strftime("%d %B %Y %H:%M:%S")
|
28 |
-
|
29 |
-
print(f"Downloading new data from {start_str}...")
|
30 |
-
new_klines = client.get_historical_klines(symbol, interval, start_str)
|
31 |
-
if new_klines:
|
32 |
-
new_df = pd.DataFrame(new_klines, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume',
|
33 |
-
'close_time', 'quote_av', 'trades', 'tb_base_av', 'tb_quote_av', 'ignore'])
|
34 |
-
new_df = new_df[['timestamp', 'open', 'high', 'low', 'close', 'volume']]
|
35 |
-
new_df[['open', 'high', 'low', 'close', 'volume']] = new_df[['open', 'high', 'low', 'close', 'volume']].astype(float)
|
36 |
-
new_df['timestamp'] = pd.to_datetime(new_df['timestamp'], unit='ms')
|
37 |
-
new_df = new_df.set_index('timestamp')
|
38 |
-
|
39 |
-
# Append and remove any duplicates (just in case)
|
40 |
-
df = pd.concat([df, new_df])
|
41 |
-
df = df[~df.index.duplicated(keep='first')]
|
42 |
-
df.to_csv(DATA_FILE)
|
43 |
-
else:
|
44 |
-
print("Downloading all data from scratch...")
|
45 |
-
klinesT = client.get_historical_klines(symbol, interval, "01 December 2021")
|
46 |
-
df = pd.DataFrame(klinesT, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume',
|
47 |
-
'close_time', 'quote_av', 'trades', 'tb_base_av', 'tb_quote_av', 'ignore'])
|
48 |
-
df = df[['timestamp', 'open', 'high', 'low', 'close', 'volume']]
|
49 |
-
df[['open', 'high', 'low', 'close', 'volume']] = df[['open', 'high', 'low', 'close', 'volume']].astype(float)
|
50 |
-
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms')
|
51 |
-
df = df.set_index('timestamp')
|
52 |
-
df.to_csv(DATA_FILE)
|
53 |
-
|
54 |
-
# Feature Engineering: Add technical indicators
|
55 |
-
df['rsi'] = ta.momentum.RSIIndicator(df['close'], window=14).rsi()
|
56 |
-
df['sma_fast'] = df['close'].rolling(window=5).mean()
|
57 |
-
df['sma_slow'] = df['close'].rolling(window=20).mean()
|
58 |
-
df['macd'] = ta.trend.MACD(df['close']).macd()
|
59 |
-
df['ema'] = df['close'].ewm(span=10, adjust=False).mean()
|
60 |
-
|
61 |
-
# Create target: 1 if next close > current close, else 0
|
62 |
-
df['target'] = np.where(df['close'].shift(-1) > df['close'], 1, 0)
|
63 |
-
|
64 |
-
# Drop rows with NaN values
|
65 |
-
df = df.dropna()
|
66 |
-
|
67 |
-
# Features and Target
|
68 |
-
features = ['rsi', 'sma_fast', 'sma_slow', 'macd', 'ema']
|
69 |
-
X = df[features]
|
70 |
-
y = df['target']
|
71 |
-
|
72 |
-
# Train/Test split
|
73 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)
|
74 |
-
|
75 |
-
# Train Random Forest
|
76 |
-
model = RandomForestClassifier(n_estimators=100, random_state=42)
|
77 |
-
model.fit(X_train, y_train)
|
78 |
-
|
79 |
-
# Evaluate
|
80 |
-
y_pred = model.predict(X_test)
|
81 |
-
print(classification_report(y_test, y_pred))
|
82 |
-
|
83 |
-
# Predict next movement
|
84 |
-
latest_features = X.iloc[-1].values.reshape(1, -1)
|
85 |
-
predicted_direction = model.predict(latest_features)
|
86 |
-
print(f"Predicted next movement: {'UP' if predicted_direction[0] == 1 else 'DOWN'}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|