solanaexpert commited on
Commit
74ad81f
·
verified ·
1 Parent(s): 56ad009

Delete randomforestML.py

Browse files
Files changed (1) hide show
  1. randomforestML.py +0 -86
randomforestML.py DELETED
@@ -1,86 +0,0 @@
1
- import os
2
- import pandas as pd
3
- import numpy as np
4
- from datetime import datetime, timedelta
5
- from binance.client import Client
6
- from sklearn.model_selection import train_test_split
7
- from sklearn.ensemble import RandomForestClassifier
8
- from sklearn.metrics import classification_report
9
- import ta
10
-
11
- # Connect to Binance (Fill your own API keys if live)
12
- # client = Client(api_key, api_secret)
13
- client = Client()
14
-
15
- # File to store the historical data
16
- DATA_FILE = "btc_data.csv"
17
- symbol = "BTCUSDT"
18
- interval = Client.KLINE_INTERVAL_4HOUR
19
-
20
- # Load existing data or download fresh
21
- if os.path.exists(DATA_FILE):
22
- print("Loading existing data...")
23
- df = pd.read_csv(DATA_FILE, index_col=0, parse_dates=True)
24
- last_timestamp = df.index[-1]
25
- # Binance gives data in 15min intervals, so move forward
26
- start_time = last_timestamp + timedelta(minutes=15)
27
- start_str = start_time.strftime("%d %B %Y %H:%M:%S")
28
-
29
- print(f"Downloading new data from {start_str}...")
30
- new_klines = client.get_historical_klines(symbol, interval, start_str)
31
- if new_klines:
32
- new_df = pd.DataFrame(new_klines, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume',
33
- 'close_time', 'quote_av', 'trades', 'tb_base_av', 'tb_quote_av', 'ignore'])
34
- new_df = new_df[['timestamp', 'open', 'high', 'low', 'close', 'volume']]
35
- new_df[['open', 'high', 'low', 'close', 'volume']] = new_df[['open', 'high', 'low', 'close', 'volume']].astype(float)
36
- new_df['timestamp'] = pd.to_datetime(new_df['timestamp'], unit='ms')
37
- new_df = new_df.set_index('timestamp')
38
-
39
- # Append and remove any duplicates (just in case)
40
- df = pd.concat([df, new_df])
41
- df = df[~df.index.duplicated(keep='first')]
42
- df.to_csv(DATA_FILE)
43
- else:
44
- print("Downloading all data from scratch...")
45
- klinesT = client.get_historical_klines(symbol, interval, "01 December 2021")
46
- df = pd.DataFrame(klinesT, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume',
47
- 'close_time', 'quote_av', 'trades', 'tb_base_av', 'tb_quote_av', 'ignore'])
48
- df = df[['timestamp', 'open', 'high', 'low', 'close', 'volume']]
49
- df[['open', 'high', 'low', 'close', 'volume']] = df[['open', 'high', 'low', 'close', 'volume']].astype(float)
50
- df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms')
51
- df = df.set_index('timestamp')
52
- df.to_csv(DATA_FILE)
53
-
54
- # Feature Engineering: Add technical indicators
55
- df['rsi'] = ta.momentum.RSIIndicator(df['close'], window=14).rsi()
56
- df['sma_fast'] = df['close'].rolling(window=5).mean()
57
- df['sma_slow'] = df['close'].rolling(window=20).mean()
58
- df['macd'] = ta.trend.MACD(df['close']).macd()
59
- df['ema'] = df['close'].ewm(span=10, adjust=False).mean()
60
-
61
- # Create target: 1 if next close > current close, else 0
62
- df['target'] = np.where(df['close'].shift(-1) > df['close'], 1, 0)
63
-
64
- # Drop rows with NaN values
65
- df = df.dropna()
66
-
67
- # Features and Target
68
- features = ['rsi', 'sma_fast', 'sma_slow', 'macd', 'ema']
69
- X = df[features]
70
- y = df['target']
71
-
72
- # Train/Test split
73
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)
74
-
75
- # Train Random Forest
76
- model = RandomForestClassifier(n_estimators=100, random_state=42)
77
- model.fit(X_train, y_train)
78
-
79
- # Evaluate
80
- y_pred = model.predict(X_test)
81
- print(classification_report(y_test, y_pred))
82
-
83
- # Predict next movement
84
- latest_features = X.iloc[-1].values.reshape(1, -1)
85
- predicted_direction = model.predict(latest_features)
86
- print(f"Predicted next movement: {'UP' if predicted_direction[0] == 1 else 'DOWN'}")