File size: 10,295 Bytes
eabe53d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import sys
import os
import ccxt
import pandas as pd
import numpy as np
from datetime import datetime
import ta
import argparse
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import pickle
import warnings
# Suppress warnings
warnings.filterwarnings('ignore')
# Configuration
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.expand_frame_repr', True)
class MLTechnicalScanner:
def __init__(self, training_mode=False):
self.training_mode = training_mode
self.model = None
self.model_file = "technical_ml_model.pkl"
self.training_data_file = "training_data.csv"
self.min_training_samples = 100
self.load_ml_model()
# Initialize exchanges
self.exchanges = {}
for id in ccxt.exchanges:
exchange = getattr(ccxt, id)
self.exchanges[id] = exchange()
# ML features configuration
self.feature_columns = [
'rsi', 'macd', 'bollinger_upper', 'bollinger_lower',
'volume_ma', 'ema_20', 'ema_50', 'adx'
]
# Performance tracking
self.performance_history = pd.DataFrame(columns=[
'timestamp', 'symbol', 'prediction', 'actual', 'profit'
])
# Training data collection
self.training_data = pd.DataFrame(columns=self.feature_columns + ['target'])
def load_ml_model(self):
"""Load trained ML model if exists"""
if os.path.exists(self.model_file):
with open(self.model_file, 'rb') as f:
self.model = pickle.load(f)
print("Loaded trained model from file")
else:
print("Initializing new model")
self.model = RandomForestClassifier(n_estimators=100, random_state=42)
def save_ml_model(self):
"""Save trained ML model"""
with open(self.model_file, 'wb') as f:
pickle.dump(self.model, f)
print("Saved model to file")
def load_training_data(self):
"""Load existing training data if available"""
if os.path.exists(self.training_data_file):
self.training_data = pd.read_csv(self.training_data_file)
print(f"Loaded {len(self.training_data)} training samples")
def save_training_data(self):
"""Save training data to file"""
self.training_data.to_csv(self.training_data_file, index=False)
print(f"Saved {len(self.training_data)} training samples")
def calculate_features(self, df):
"""Calculate technical indicators"""
try:
close = df['close'].astype(float)
high = df['high'].astype(float)
low = df['low'].astype(float)
volume = df['volume'].astype(float)
# Momentum Indicators
df['rsi'] = ta.momentum.rsi(close, window=14)
df['macd'] = ta.trend.macd_diff(close)
# Volatility Indicators
bollinger = ta.volatility.BollingerBands(close)
df['bollinger_upper'] = bollinger.bollinger_hband()
df['bollinger_lower'] = bollinger.bollinger_lband()
# Volume Indicators
df['volume_ma'] = volume.rolling(window=20).mean()
# Trend Indicators
df['ema_20'] = ta.trend.ema_indicator(close, window=20)
df['ema_50'] = ta.trend.ema_indicator(close, window=50)
df['adx'] = ta.trend.adx(high, low, close, window=14)
return df
except Exception as e:
print(f"Error calculating features: {str(e)}")
return None
def train_initial_model(self):
"""Train initial model if we have enough data"""
self.load_training_data()
if len(self.training_data) >= self.min_training_samples:
X = self.training_data[self.feature_columns]
y = self.training_data['target']
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
self.model.fit(X_train, y_train)
# Evaluate model
preds = self.model.predict(X_test)
accuracy = accuracy_score(y_test, preds)
print(f"Initial model trained with accuracy: {accuracy:.2f}")
self.save_ml_model()
return True
else:
print(f"Not enough training data ({len(self.training_data)} samples). Need at least {self.min_training_samples}.")
return False
def predict_direction(self, features):
"""Predict price direction using ML model"""
try:
if self.model is None or not hasattr(self.model, 'classes_'):
return 0 # Neutral if no model
features = features[self.feature_columns].values.reshape(1, -1)
return self.model.predict(features)[0]
except Exception as e:
print(f"Prediction error: {str(e)}")
return 0
def collect_training_sample(self, symbol, exchange, timeframe='1h'):
"""Collect data sample for training"""
try:
ohlcv = exchange.fetch_ohlcv(symbol, timeframe, limit=100)
if len(ohlcv) < 50:
return
df = pd.DataFrame(ohlcv, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
df = self.calculate_features(df)
if df is None:
return
current_price = df['close'].iloc[-1]
future_price = df['close'].iloc[-1] # Should be forward-looking in production
price_change = future_price - current_price
target = 1 if price_change > 0 else (-1 if price_change < 0 else 0)
features = df.iloc[-2].copy()
features['target'] = target
new_row = pd.DataFrame([features])
self.training_data = pd.concat([self.training_data, new_row], ignore_index=True)
print(f"Collected training sample for {symbol}")
if len(self.training_data) % 10 == 0:
self.save_training_data()
except Exception as e:
print(f"Error collecting training sample: {str(e)}")
def scan_symbol(self, symbol, exchange, timeframes):
"""Scan symbol for trading opportunities"""
try:
primary_tf = timeframes[0]
ohlcv = exchange.fetch_ohlcv(symbol, primary_tf, limit=100)
if len(ohlcv) < 50:
return
df = pd.DataFrame(ohlcv, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
df = self.calculate_features(df)
if df is None:
return
latest = df.iloc[-1].copy()
features = pd.DataFrame([latest[self.feature_columns]])
if self.training_mode:
self.collect_training_sample(symbol, exchange, primary_tf)
return
prediction = self.predict_direction(features)
# Simplified trend detection using EMA crossover
ema_20 = df['ema_20'].iloc[-1]
ema_50 = df['ema_50'].iloc[-1]
price = df['close'].iloc[-1]
uptrend = (ema_20 > ema_50) and (price > ema_20)
downtrend = (ema_20 < ema_50) and (price < ema_20)
if uptrend and prediction == 1:
self.alert(symbol, "STRONG UPTREND", timeframes)
elif downtrend and prediction == -1:
self.alert(symbol, "STRONG DOWNTREND", timeframes)
elif uptrend:
self.alert(symbol, "UPTREND", timeframes)
elif downtrend:
self.alert(symbol, "DOWNTREND", timeframes)
except Exception as e:
print(f"Error scanning {symbol}: {str(e)}")
def alert(self, symbol, trend_type, timeframes):
"""Generate alert for detected trend"""
message = f"({trend_type}) detected for {symbol} on {timeframes} at {datetime.now()}"
print(message)
# Main execution
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-e", "--exchange", help="Exchange name", required=True)
parser.add_argument("-f", "--filter", help="Asset filter", required=True)
parser.add_argument("-tf", "--timeframes", help="Timeframes to scan (comma separated)", required=True)
parser.add_argument("--train", help="Run in training mode", action="store_true")
args = parser.parse_args()
scanner = MLTechnicalScanner(training_mode=args.train)
exchange = scanner.exchanges.get(args.exchange.lower())
if not exchange:
print(f"Exchange {args.exchange} not supported")
sys.exit(1)
try:
markets = exchange.fetch_markets()
except Exception as e:
print(f"Error fetching markets: {str(e)}")
sys.exit(1)
symbols = [
m['id'] for m in markets
if m['active'] and args.filter in m['id']
]
if not symbols:
print(f"No symbols found matching filter {args.filter}")
sys.exit(1)
if args.train:
print(f"Running in training mode for {len(symbols)} symbols")
for symbol in symbols:
scanner.collect_training_sample(symbol, exchange)
if scanner.train_initial_model():
print("Training completed successfully")
else:
print("Not enough data collected for training")
sys.exit(0)
if not hasattr(scanner.model, 'classes_'):
print("Warning: No trained model available. Running with basic scanning only.")
timeframes = args.timeframes.split(',')
print(f"Scanning {len(symbols)} symbols on timeframes {timeframes}")
for symbol in symbols:
scanner.scan_symbol(symbol, exchange, timeframes) |