selinazarzour commited on
Commit
5c3d02b
·
verified ·
1 Parent(s): ea02aa9

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +146 -0
README.md ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ tags:
6
+ - medical
7
+ - llama
8
+ - finetuned
9
+ - health
10
+ model_type: llama
11
+ base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
12
+ ---
13
+
14
+ # Model Card for HealthGPT-TinyLlama
15
+
16
+ This model is a fine-tuned version of TinyLlama-1.1B-Chat-v1.0 on a custom medical dataset. It was developed to serve as a lightweight, domain-specific assistant capable of answering medical questions fluently and coherently.
17
+
18
+ ## Model Details
19
+
20
+ ### Model Description
21
+
22
+ HealthGPT-TinyLlama is a 1.1B parameter model fine-tuned using LoRA adapters for the task of medical question answering. The base model is TinyLlama, a compact transformer architecture optimized for performance and efficiency.
23
+
24
+ * **Developed by:** Selina Zarzour
25
+ * **Shared by:** selinazarzour
26
+ * **Model type:** Causal Language Model
27
+ * **Language(s):** English
28
+ * **License:** apache-2.0
29
+ * **Finetuned from model:** TinyLlama/TinyLlama-1.1B-Chat-v1.0
30
+
31
+ ### Model Sources
32
+
33
+ * **Repository:** [https://huggingface.co/selinazarzour/healthgpt-tinyllama](https://huggingface.co/selinazarzour/healthgpt-tinyllama)
34
+ * **Demo (local only):** Gradio app tested locally with GPU (not deployed to Spaces due to lack of CPU compatibility)
35
+
36
+ ## Uses
37
+
38
+ ### Direct Use
39
+
40
+ * Designed to answer general medical questions.
41
+ * Intended for educational and experimental use.
42
+
43
+ ### Out-of-Scope Use
44
+
45
+ * Not suitable for clinical decision-making or professional diagnosis.
46
+ * Should not be relied on for life-critical use cases.
47
+
48
+ ## Bias, Risks, and Limitations
49
+
50
+ * The model may hallucinate or provide medically inaccurate information.
51
+ * It has not been validated against real-world clinical data.
52
+ * Biases present in the training dataset may persist.
53
+
54
+ ### Recommendations
55
+
56
+ * Always verify model outputs with qualified professionals.
57
+ * Do not use in scenarios where safety is critical.
58
+
59
+ ## How to Get Started with the Model
60
+
61
+ ```python
62
+ from transformers import AutoTokenizer, AutoModelForCausalLM
63
+
64
+ model = AutoModelForCausalLM.from_pretrained("selinazarzour/healthgpt-tinyllama")
65
+ tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
66
+
67
+ prompt = "### Question:\nWhat are the symptoms of diabetes?\n\n### Answer:\n"
68
+ inputs = tokenizer(prompt, return_tensors="pt")
69
+ outputs = model.generate(**inputs, max_new_tokens=150)
70
+ print(tokenizer.decode(outputs[0]))
71
+ ```
72
+
73
+ ## Training Details
74
+
75
+ ### Training Data
76
+
77
+ * Finetuned on a synthetic dataset composed of medical questions and answers derived from reliable medical knowledge sources.
78
+
79
+ ### Training Procedure
80
+
81
+ * LoRA adapter training using HuggingFace PEFT and `transformers`
82
+ * Model merged with base weights after training
83
+
84
+ #### Training Hyperparameters
85
+
86
+ * Precision: float16 mixed precision
87
+ * Epochs: 3
88
+ * Optimizer: AdamW
89
+ * Batch size: 4
90
+
91
+ ## Evaluation
92
+
93
+ ### Testing Data, Factors & Metrics
94
+
95
+ * Testing done manually by querying the model with unseen questions.
96
+ * Sample outputs evaluated for relevance, grammar, and factual accuracy.
97
+
98
+ ### Results
99
+
100
+ * The model produces relevant and coherent answers in most cases.
101
+ * Model performs best on short, fact-based questions.
102
+
103
+ ## Model Examination
104
+
105
+ Screenshot of local Gradio app interface:
106
+
107
+ **Note:** The model was not deployed publicly due to GPU-only compatibility, but it runs successfully in local environments with GPU access.
108
+
109
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6666f9ad7b3e504d5c14d859/LgPcXfCt7ALzwctwA2iwP.png)
110
+
111
+ ## Environmental Impact
112
+
113
+ * **Hardware Type:** Google Colab GPU (T4/A100)
114
+ * **Hours used:** \~3 hours
115
+ * **Cloud Provider:** Google Cloud via Colab
116
+ * **Compute Region:** US (unknown exact zone)
117
+ * **Carbon Emitted:** Unknown
118
+
119
+ ## Technical Specifications
120
+
121
+ ### Model Architecture and Objective
122
+
123
+ * LlamaForCausalLM with 22 layers, 32 attention heads, 2048 hidden size
124
+ * LoRA finetuning applied to attention layers only
125
+
126
+ ### Compute Infrastructure
127
+
128
+ * **Hardware:** Colab GPU
129
+ * **Software:**
130
+
131
+ * transformers 4.39+
132
+ * peft
133
+ * bitsandbytes (for initial quantized training)
134
+
135
+ ## Citation
136
+
137
+ **APA:**
138
+ Zarzour, S. (2025). HealthGPT-TinyLlama: A fine-tuned 1.1B LLM for medical Q\&A.
139
+
140
+ ## Model Card Contact
141
+
142
+ * **Contact:** Selina Zarzour via Hugging Face (@selinazarzour)
143
+
144
+ ---
145
+
146
+ **Note**: This model is a prototype and not intended for clinical use.