Allenbv commited on
Commit
e8c371e
·
verified ·
1 Parent(s): b4a6a67

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,422 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:91044
8
+ - loss:CosineSimilarityLoss
9
+ base_model: hiiamsid/sentence_similarity_spanish_es
10
+ widget:
11
+ - source_sentence: ¿Cuánto debo pagar por la llave con código VA34P?
12
+ sentences:
13
+ - ¿La llave HY5P pertenece a qué marca?
14
+ - ¿Cuál es el valor actual de VA34P JMA?
15
+ - ¿Cuánto cuesta la llave ME4P?
16
+ - source_sentence: ¿Me puedes decir cuánto vale TOYOTA (TOY43) 2 BOTONES HILUX TOYO04?
17
+ sentences:
18
+ - ¿Cuánto debo pagar por la llave con código CAB?
19
+ - ¿Qué llave tiene el código TOYO04?
20
+ - ¿Qué código tiene la LETRA D?
21
+ - source_sentence: ¿Tienen disponible la NISSAN DER LOGO?
22
+ sentences:
23
+ - ¿Cuál es el valor actual de NISSAN DER LOGO?
24
+ - ¿La llave MZ13A pertenece a qué marca?
25
+ - ¿CARRIAGE TENSION SPRING 017-24 tiene un precio accesible?
26
+ - source_sentence: ¿Qué código tiene la GLOBE DER PEQ MKS?
27
+ sentences:
28
+ - ¿Qué llave tiene el código YM021?
29
+ - ¿Qué llave tiene el código MER03?
30
+ - ¿Cuánto cuesta la llave VP095?
31
+ - source_sentence: ¿Qué modelo corresponde al código YP107?
32
+ sentences:
33
+ - ¿La llave TE4 pertenece a qué marca?
34
+ - ¿Me puedes decir cuánto vale FANAL?
35
+ - ¿Cuánto cuesta la llave P123VE?
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ ---
39
+
40
+ # SentenceTransformer based on hiiamsid/sentence_similarity_spanish_es
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [hiiamsid/sentence_similarity_spanish_es](https://huggingface.co/hiiamsid/sentence_similarity_spanish_es). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [hiiamsid/sentence_similarity_spanish_es](https://huggingface.co/hiiamsid/sentence_similarity_spanish_es) <!-- at revision 66ab46adac3910bb6ea6085b962a25e49513b981 -->
49
+ - **Maximum Sequence Length:** 512 tokens
50
+ - **Output Dimensionality:** 768 dimensions
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ )
69
+ ```
70
+
71
+ ## Usage
72
+
73
+ ### Direct Usage (Sentence Transformers)
74
+
75
+ First install the Sentence Transformers library:
76
+
77
+ ```bash
78
+ pip install -U sentence-transformers
79
+ ```
80
+
81
+ Then you can load this model and run inference.
82
+ ```python
83
+ from sentence_transformers import SentenceTransformer
84
+
85
+ # Download from the 🤗 Hub
86
+ model = SentenceTransformer("sd-dreambooth-library/mks-similarity")
87
+ # Run inference
88
+ sentences = [
89
+ '¿Qué modelo corresponde al código YP107?',
90
+ '¿Cuánto cuesta la llave P123VE?',
91
+ '¿La llave TE4 pertenece a qué marca?',
92
+ ]
93
+ embeddings = model.encode(sentences)
94
+ print(embeddings.shape)
95
+ # [3, 768]
96
+
97
+ # Get the similarity scores for the embeddings
98
+ similarities = model.similarity(embeddings, embeddings)
99
+ print(similarities.shape)
100
+ # [3, 3]
101
+ ```
102
+
103
+ <!--
104
+ ### Direct Usage (Transformers)
105
+
106
+ <details><summary>Click to see the direct usage in Transformers</summary>
107
+
108
+ </details>
109
+ -->
110
+
111
+ <!--
112
+ ### Downstream Usage (Sentence Transformers)
113
+
114
+ You can finetune this model on your own dataset.
115
+
116
+ <details><summary>Click to expand</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Out-of-Scope Use
123
+
124
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
125
+ -->
126
+
127
+ <!--
128
+ ## Bias, Risks and Limitations
129
+
130
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
131
+ -->
132
+
133
+ <!--
134
+ ### Recommendations
135
+
136
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
137
+ -->
138
+
139
+ ## Training Details
140
+
141
+ ### Training Dataset
142
+
143
+ #### Unnamed Dataset
144
+
145
+ * Size: 91,044 training samples
146
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
147
+ * Approximate statistics based on the first 1000 samples:
148
+ | | sentence1 | sentence2 | label |
149
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
150
+ | type | string | string | float |
151
+ | details | <ul><li>min: 10 tokens</li><li>mean: 17.16 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 17.26 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.51</li><li>max: 1.0</li></ul> |
152
+ * Samples:
153
+ | sentence1 | sentence2 | label |
154
+ |:-------------------------------------------------------------------|:---------------------------------------------------------------|:-----------------|
155
+ | <code>¿CY1 HELLO KITTY CORAZONES tiene un precio accesible?</code> | <code>¿Cuánto cuesta la llave CY43?</code> | <code>0.0</code> |
156
+ | <code>¿Qué modelo corresponde al código OP12?</code> | <code>¿Me puedes decir cuánto vale CHEVROLET GM29?</code> | <code>0.0</code> |
157
+ | <code>¿YALE PERSONAJE HULK tiene un precio accesible?</code> | <code>¿Cuánto debo pagar por la llave con código YP117?</code> | <code>1.0</code> |
158
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
159
+ ```json
160
+ {
161
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
162
+ }
163
+ ```
164
+
165
+ ### Evaluation Dataset
166
+
167
+ #### Unnamed Dataset
168
+
169
+ * Size: 10,116 evaluation samples
170
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
171
+ * Approximate statistics based on the first 1000 samples:
172
+ | | sentence1 | sentence2 | label |
173
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
174
+ | type | string | string | float |
175
+ | details | <ul><li>min: 10 tokens</li><li>mean: 17.08 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 17.33 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
176
+ * Samples:
177
+ | sentence1 | sentence2 | label |
178
+ |:--------------------------------------------------------------|:-------------------------------------------------------------|:-----------------|
179
+ | <code>¿Cuál es el precio de la AM3 AMERICAN LOCK?</code> | <code>¿Cuánto debo pagar por la llave con código AM3?</code> | <code>1.0</code> |
180
+ | <code>¿Cuánto debo pagar por la llave con código MAS9?</code> | <code>¿La llave MAS9 pertenece a qué marca?</code> | <code>1.0</code> |
181
+ | <code>¿La llave YP113 pertenece a qué marca?</code> | <code>¿Qué llave tiene el código E029?</code> | <code>0.0</code> |
182
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
183
+ ```json
184
+ {
185
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
186
+ }
187
+ ```
188
+
189
+ ### Training Hyperparameters
190
+ #### Non-Default Hyperparameters
191
+
192
+ - `eval_strategy`: steps
193
+ - `per_device_train_batch_size`: 32
194
+ - `per_device_eval_batch_size`: 32
195
+ - `num_train_epochs`: 2
196
+ - `warmup_ratio`: 0.1
197
+ - `fp16`: True
198
+
199
+ #### All Hyperparameters
200
+ <details><summary>Click to expand</summary>
201
+
202
+ - `overwrite_output_dir`: False
203
+ - `do_predict`: False
204
+ - `eval_strategy`: steps
205
+ - `prediction_loss_only`: True
206
+ - `per_device_train_batch_size`: 32
207
+ - `per_device_eval_batch_size`: 32
208
+ - `per_gpu_train_batch_size`: None
209
+ - `per_gpu_eval_batch_size`: None
210
+ - `gradient_accumulation_steps`: 1
211
+ - `eval_accumulation_steps`: None
212
+ - `torch_empty_cache_steps`: None
213
+ - `learning_rate`: 5e-05
214
+ - `weight_decay`: 0.0
215
+ - `adam_beta1`: 0.9
216
+ - `adam_beta2`: 0.999
217
+ - `adam_epsilon`: 1e-08
218
+ - `max_grad_norm`: 1.0
219
+ - `num_train_epochs`: 2
220
+ - `max_steps`: -1
221
+ - `lr_scheduler_type`: linear
222
+ - `lr_scheduler_kwargs`: {}
223
+ - `warmup_ratio`: 0.1
224
+ - `warmup_steps`: 0
225
+ - `log_level`: passive
226
+ - `log_level_replica`: warning
227
+ - `log_on_each_node`: True
228
+ - `logging_nan_inf_filter`: True
229
+ - `save_safetensors`: True
230
+ - `save_on_each_node`: False
231
+ - `save_only_model`: False
232
+ - `restore_callback_states_from_checkpoint`: False
233
+ - `no_cuda`: False
234
+ - `use_cpu`: False
235
+ - `use_mps_device`: False
236
+ - `seed`: 42
237
+ - `data_seed`: None
238
+ - `jit_mode_eval`: False
239
+ - `use_ipex`: False
240
+ - `bf16`: False
241
+ - `fp16`: True
242
+ - `fp16_opt_level`: O1
243
+ - `half_precision_backend`: auto
244
+ - `bf16_full_eval`: False
245
+ - `fp16_full_eval`: False
246
+ - `tf32`: None
247
+ - `local_rank`: 0
248
+ - `ddp_backend`: None
249
+ - `tpu_num_cores`: None
250
+ - `tpu_metrics_debug`: False
251
+ - `debug`: []
252
+ - `dataloader_drop_last`: False
253
+ - `dataloader_num_workers`: 0
254
+ - `dataloader_prefetch_factor`: None
255
+ - `past_index`: -1
256
+ - `disable_tqdm`: False
257
+ - `remove_unused_columns`: True
258
+ - `label_names`: None
259
+ - `load_best_model_at_end`: False
260
+ - `ignore_data_skip`: False
261
+ - `fsdp`: []
262
+ - `fsdp_min_num_params`: 0
263
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
264
+ - `tp_size`: 0
265
+ - `fsdp_transformer_layer_cls_to_wrap`: None
266
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
267
+ - `deepspeed`: None
268
+ - `label_smoothing_factor`: 0.0
269
+ - `optim`: adamw_torch
270
+ - `optim_args`: None
271
+ - `adafactor`: False
272
+ - `group_by_length`: False
273
+ - `length_column_name`: length
274
+ - `ddp_find_unused_parameters`: None
275
+ - `ddp_bucket_cap_mb`: None
276
+ - `ddp_broadcast_buffers`: False
277
+ - `dataloader_pin_memory`: True
278
+ - `dataloader_persistent_workers`: False
279
+ - `skip_memory_metrics`: True
280
+ - `use_legacy_prediction_loop`: False
281
+ - `push_to_hub`: False
282
+ - `resume_from_checkpoint`: None
283
+ - `hub_model_id`: None
284
+ - `hub_strategy`: every_save
285
+ - `hub_private_repo`: None
286
+ - `hub_always_push`: False
287
+ - `gradient_checkpointing`: False
288
+ - `gradient_checkpointing_kwargs`: None
289
+ - `include_inputs_for_metrics`: False
290
+ - `include_for_metrics`: []
291
+ - `eval_do_concat_batches`: True
292
+ - `fp16_backend`: auto
293
+ - `push_to_hub_model_id`: None
294
+ - `push_to_hub_organization`: None
295
+ - `mp_parameters`:
296
+ - `auto_find_batch_size`: False
297
+ - `full_determinism`: False
298
+ - `torchdynamo`: None
299
+ - `ray_scope`: last
300
+ - `ddp_timeout`: 1800
301
+ - `torch_compile`: False
302
+ - `torch_compile_backend`: None
303
+ - `torch_compile_mode`: None
304
+ - `include_tokens_per_second`: False
305
+ - `include_num_input_tokens_seen`: False
306
+ - `neftune_noise_alpha`: None
307
+ - `optim_target_modules`: None
308
+ - `batch_eval_metrics`: False
309
+ - `eval_on_start`: False
310
+ - `use_liger_kernel`: False
311
+ - `eval_use_gather_object`: False
312
+ - `average_tokens_across_devices`: False
313
+ - `prompts`: None
314
+ - `batch_sampler`: batch_sampler
315
+ - `multi_dataset_batch_sampler`: proportional
316
+
317
+ </details>
318
+
319
+ ### Training Logs
320
+ | Epoch | Step | Training Loss | Validation Loss |
321
+ |:------:|:----:|:-------------:|:---------------:|
322
+ | 0.0351 | 100 | 0.1663 | - |
323
+ | 0.0703 | 200 | 0.1023 | - |
324
+ | 0.1054 | 300 | 0.0807 | - |
325
+ | 0.1405 | 400 | 0.0723 | - |
326
+ | 0.1757 | 500 | 0.0614 | 0.0535 |
327
+ | 0.2108 | 600 | 0.0569 | - |
328
+ | 0.2460 | 700 | 0.052 | - |
329
+ | 0.2811 | 800 | 0.0382 | - |
330
+ | 0.3162 | 900 | 0.0408 | - |
331
+ | 0.3514 | 1000 | 0.0358 | 0.0329 |
332
+ | 0.3865 | 1100 | 0.0353 | - |
333
+ | 0.4216 | 1200 | 0.032 | - |
334
+ | 0.4568 | 1300 | 0.0303 | - |
335
+ | 0.4919 | 1400 | 0.0275 | - |
336
+ | 0.5271 | 1500 | 0.0263 | 0.0223 |
337
+ | 0.5622 | 1600 | 0.0237 | - |
338
+ | 0.5973 | 1700 | 0.0215 | - |
339
+ | 0.6325 | 1800 | 0.0233 | - |
340
+ | 0.6676 | 1900 | 0.0198 | - |
341
+ | 0.7027 | 2000 | 0.022 | 0.0163 |
342
+ | 0.7379 | 2100 | 0.0185 | - |
343
+ | 0.7730 | 2200 | 0.0178 | - |
344
+ | 0.8082 | 2300 | 0.0168 | - |
345
+ | 0.8433 | 2400 | 0.018 | - |
346
+ | 0.8784 | 2500 | 0.0158 | 0.0127 |
347
+ | 0.9136 | 2600 | 0.0141 | - |
348
+ | 0.9487 | 2700 | 0.015 | - |
349
+ | 0.9838 | 2800 | 0.0131 | - |
350
+ | 1.0190 | 2900 | 0.0117 | - |
351
+ | 1.0541 | 3000 | 0.0106 | 0.0100 |
352
+ | 1.0892 | 3100 | 0.0082 | - |
353
+ | 1.1244 | 3200 | 0.0088 | - |
354
+ | 1.1595 | 3300 | 0.0084 | - |
355
+ | 1.1947 | 3400 | 0.0087 | - |
356
+ | 1.2298 | 3500 | 0.0093 | 0.0079 |
357
+ | 1.2649 | 3600 | 0.0106 | - |
358
+ | 1.3001 | 3700 | 0.0097 | - |
359
+ | 1.3352 | 3800 | 0.0074 | - |
360
+ | 1.3703 | 3900 | 0.0072 | - |
361
+ | 1.4055 | 4000 | 0.0094 | 0.0067 |
362
+ | 1.4406 | 4100 | 0.0062 | - |
363
+ | 1.4758 | 4200 | 0.0072 | - |
364
+ | 1.5109 | 4300 | 0.0081 | - |
365
+ | 1.5460 | 4400 | 0.0075 | - |
366
+ | 1.5812 | 4500 | 0.0071 | 0.0059 |
367
+ | 1.6163 | 4600 | 0.0049 | - |
368
+ | 1.6514 | 4700 | 0.0064 | - |
369
+ | 1.6866 | 4800 | 0.0072 | - |
370
+ | 1.7217 | 4900 | 0.0075 | - |
371
+ | 1.7569 | 5000 | 0.0062 | 0.0052 |
372
+ | 1.7920 | 5100 | 0.0061 | - |
373
+ | 1.8271 | 5200 | 0.0059 | - |
374
+ | 1.8623 | 5300 | 0.0062 | - |
375
+ | 1.8974 | 5400 | 0.005 | - |
376
+ | 1.9325 | 5500 | 0.0068 | 0.0048 |
377
+ | 1.9677 | 5600 | 0.0051 | - |
378
+
379
+
380
+ ### Framework Versions
381
+ - Python: 3.11.12
382
+ - Sentence Transformers: 3.4.1
383
+ - Transformers: 4.51.3
384
+ - PyTorch: 2.6.0+cu124
385
+ - Accelerate: 1.6.0
386
+ - Datasets: 3.5.1
387
+ - Tokenizers: 0.21.1
388
+
389
+ ## Citation
390
+
391
+ ### BibTeX
392
+
393
+ #### Sentence Transformers
394
+ ```bibtex
395
+ @inproceedings{reimers-2019-sentence-bert,
396
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
397
+ author = "Reimers, Nils and Gurevych, Iryna",
398
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
399
+ month = "11",
400
+ year = "2019",
401
+ publisher = "Association for Computational Linguistics",
402
+ url = "https://arxiv.org/abs/1908.10084",
403
+ }
404
+ ```
405
+
406
+ <!--
407
+ ## Glossary
408
+
409
+ *Clearly define terms in order to be accessible across audiences.*
410
+ -->
411
+
412
+ <!--
413
+ ## Model Card Authors
414
+
415
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
416
+ -->
417
+
418
+ <!--
419
+ ## Model Card Contact
420
+
421
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
422
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "output_past": true,
19
+ "pad_token_id": 1,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.51.3",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 31002
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5066705db61cf0c6636f994dc9a3f3acadd9093bb683232253bdb31d85b086ba
3
+ size 439425888
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[MASK]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "3": {
20
+ "content": "[UNK]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "4": {
28
+ "content": "[CLS]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "5": {
36
+ "content": "[SEP]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": false,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff