rishanthrajendhran commited on
Commit
fd686a5
·
verified ·
1 Parent(s): b890aee

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -94
README.md CHANGED
@@ -1,12 +1,16 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
11
 
12
  ## Model Details
@@ -14,24 +18,20 @@ tags: []
14
  ### Model Description
15
 
16
  <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
@@ -40,65 +40,77 @@ This is the model card of a 🤗 transformers model that has been pushed on the
40
  ### Direct Use
41
 
42
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
 
48
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
  <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
  <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
 
 
 
 
 
73
 
74
- [More Information Needed]
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
 
 
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
  <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
@@ -109,34 +121,32 @@ Use the code below to get started with the model.
109
  #### Testing Data
110
 
111
  <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
  <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
-
129
- [More Information Needed]
 
 
 
 
130
 
131
  #### Summary
 
132
 
133
 
134
 
135
- ## Model Examination [optional]
136
 
137
  <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
@@ -144,56 +154,28 @@ Use the code below to get started with the model.
144
 
145
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
 
171
  ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
+ base_model:
7
+ - meta-llama/Llama-3.1-8B-Instruct
8
  ---
9
 
10
  # Model Card for Model ID
11
 
12
  <!-- Provide a quick summary of what the model is/does. -->
13
+ VeriFastScore is a factuality evaluation model designed for long-form LLM outputs. It jointly extracts and verifies factual claims in a single model pass, providing a faster alternative to pipeline-based evaluators like VeriScore.
14
 
15
 
16
  ## Model Details
 
18
  ### Model Description
19
 
20
  <!-- Provide a longer summary of what this model is. -->
21
+ This is a fine-tuned LLaMA 3.1 8B Instruct model trained to extract and verify factual claims in long-form text, given associated retrieved evidence. The model is designed to reduce inference latency and cost while maintaining high agreement with more expensive pipeline-based factuality metrics.
22
 
23
+ - **Developed by:** NGRAM at UMD, Lambda Labs
24
+ - **Model type:** Factuality evaluation model (joint claim extraction and verification) (Causal LM)
25
+ - **Language(s) (NLP):** English
26
+ - **License:** Apache 2.0
27
+ - **Finetuned from model:** meta-llama/Llama-3.1-8B-Instruct
 
 
 
 
28
 
29
+ ### Model Sources
30
 
31
  <!-- Provide the basic links for the model. -->
32
 
33
+ - **Repository:** <a href="https://github.com/RishanthRajendhran/VeriFastScore">github.com/RishanthRajendhran/VeriFastScore</a>
34
+ - **Paper:** <a href="https://arxiv.org/abs/2505.16973">arxiv.org/abs/2505.16973</a>
 
35
 
36
  ## Uses
37
 
 
40
  ### Direct Use
41
 
42
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+ The model takes as input a generated long-form response and a consolidated set of retrieved evidence sentences. It outputs a list of verifiable claims and corresponding factuality labels (Supported or Unsupported).
44
 
45
+ ### Downstream Use
 
 
46
 
47
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+ Can be used to score factuality in evaluation pipelines (e.g., RLHF supervision), dataset filtering, or system-level benchmarking of LLM factuality.
 
49
 
50
  ### Out-of-Scope Use
51
 
52
  <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
53
+ - Not intended for use without retrieved evidence.
 
54
 
55
  ## Bias, Risks, and Limitations
56
 
57
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
58
+ The model inherits potential biases from its teacher supervision (VeriScore) and the base language model. It may underperform on ambiguous claims, noisy evidence, or non-English text.
 
59
 
60
  ### Recommendations
61
 
62
  <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
63
 
64
+ Use caution in high-stakes domains and supplement with human review if used for system-level feedback or alignment. Avoid use cases without explicit, relevant evidence input.
65
 
66
  ## How to Get Started with the Model
67
 
68
  Use the code below to get started with the model.
69
+ ```python
70
+ from transformers import AutoTokenizer, AutoModelForCausalLM
71
+
72
+ tokenizer = AutoTokenizer.from_pretrained("rishanthrajendhran/VeriFastScore")
73
+ model = AutoModelForCausalLM.from_pretrained("rishanthrajendhran/VeriFastScore")
74
 
75
+ prompt = "<your prompt with evidence and response>"
76
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
77
+ outputs = model.generate(**inputs, max_new_tokens=512)
78
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
79
+ ```
80
 
81
  ## Training Details
82
 
83
  ### Training Data
84
 
85
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+ Synthetic (response, evidence, claim, label) examples generated via VeriScore applied to long-form prompts from datasets like Tulu3-Personas. See <a href="https://arxiv.org/abs/2505.16973" style="color:black;">paper</a> for more details.
 
87
 
88
  ### Training Procedure
89
 
90
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
91
+ Two-stage fine-tuning:
92
+
93
+ - Stage 1: Supervision with claim-level evidence.
94
+ - Stage 2: Supervision with a mixture of claim- and sentence-level evidence.
95
 
96
+ #### Preprocessing
97
 
98
+ In the original VeriFastScore pipeline, evidence is aggregated at the sentence level per response, tokenized, and paired with output claims using a structured prompt template. However, the \VeriFastScore model is agnostic to the provenance of the provided evidence.
99
 
100
 
101
  #### Training Hyperparameters
102
 
103
+ - **Training regime:** : bf16 mixed precision
104
+ - **Optimizer**: AdamW
105
+ - **Scheduler**: Cosine decay (optional placeholder)
106
+ - **Batch size**: 8 (effective)
107
+ - **Epochs**: 10 (5+5)
108
 
109
+ #### Speeds, Sizes, Times
110
 
111
  <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
112
+ - Training Time: ~24*4 GPU hours (roughly 2 sec per training instance)
113
+ - Model Size: 8B parameters
114
 
115
  ## Evaluation
116
 
 
121
  #### Testing Data
122
 
123
  <!-- This should link to a Dataset Card if possible. -->
124
+ - ~9k test instances using both claim-level and sentence-level evidence
125
+ - Model rankings: 100 prompts from the Tulu3-Personas test set with responses from 12 LLMs
 
 
 
 
 
 
126
 
127
  #### Metrics
128
 
129
  <!-- These are the evaluation metrics being used, ideally with a description of why. -->
130
+ - Claim-level accuracy, precision, recall (automatic judgements using GPT-4o-mini)
131
+ - Pearson correlation with factuality scores from VeriScore
132
 
133
  ### Results
134
+ - (Claim-level evidence) Pearson r with VeriScore: 0.86, p<0.001
135
+ - (Sentence-level evidence) Pearson r with VeriScore: 0.80, p<0.001
136
+ - Model rankings:
137
+ - System-level Pearson r: 0.94, p<0.001
138
+ - Speedup: 6.6× (9.9× if excluding retrieval)
139
+ See paper for more details.
140
 
141
  #### Summary
142
+ VeriFastScore delivers fast, interpretable factuality scores that closely track a strong multi-step baseline, while reducing cost and latency for large-scale evaluation.
143
 
144
 
145
 
146
+ ## Model Examination
147
 
148
  <!-- Relevant interpretability work for the model goes here -->
149
+ Future work could explore explainability or rationale generation via mode-switching techniques or chain-of-thought prompting.
 
150
 
151
  ## Environmental Impact
152
 
 
154
 
155
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
156
 
157
+ - **Hardware Type:** A100 (Training), GH200 (Evaluation, Testing)
158
+ - **Hours used:** 96 (Training)
159
+ - **Cloud Provider:** Lambda Labs
160
+ - **Compute Region:** us-central1
161
+ - **Carbon Emitted:** 10.37 (Training)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
 
163
  ## Citation [optional]
164
 
 
 
165
  **BibTeX:**
166
 
167
+ <pre>
168
+ @misc{rajendhran2025verifastscorespeedinglongformfactuality,
169
+ title={VeriFastScore: Speeding up long-form factuality evaluation},
170
+ author={Rishanth Rajendhran and Amir Zadeh and Matthew Sarte and Chuan Li and Mohit Iyyer},
171
+ year={2025},
172
+ eprint={2505.16973},
173
+ archivePrefix={arXiv},
174
+ primaryClass={cs.CL},
175
+ url={https://arxiv.org/abs/2505.16973},
176
+ }
177
+ </pre>
 
 
 
 
 
 
 
 
178
 
179
  ## Model Card Contact
180
 
181
+ rishanth@umd.edu