Improve model card with paper link and clarify metadata
Browse filesThis PR improves the model card by:
- Adding a link to the paper on the Hugging Face website in the introduction.
- Correcting the metadata section to ensure consistency.
This addresses several issues to improve the overall clarity and completeness of the model card.
README.md
CHANGED
@@ -1,7 +1,13 @@
|
|
1 |
---
|
2 |
-
|
|
|
3 |
datasets:
|
4 |
- remyxai/OpenSpaces
|
|
|
|
|
|
|
|
|
|
|
5 |
tags:
|
6 |
- remyx
|
7 |
- vqasynth
|
@@ -13,13 +19,7 @@ tags:
|
|
13 |
- distance-estimation
|
14 |
- embodied-ai
|
15 |
- quantitative-spatial-reasoning
|
16 |
-
base_model:
|
17 |
-
- Qwen/Qwen2.5-VL-3B-Instruct
|
18 |
-
language:
|
19 |
-
- en
|
20 |
-
pipeline_tag: image-text-to-text
|
21 |
new_version: remyxai/SpaceThinker-Qwen2.5VL-3B
|
22 |
-
library_name: transformers
|
23 |
model-index:
|
24 |
- name: SpaceQwen2.5-VL-3B-Instruct
|
25 |
results:
|
@@ -31,244 +31,52 @@ model-index:
|
|
31 |
type: benchmark
|
32 |
metrics:
|
33 |
- type: success_rate
|
|
|
34 |
name: Overall Success Rate
|
35 |
-
value: 0.5150
|
36 |
-
results_by_subcategory:
|
37 |
-
- name: 3D Positional Relation / Orientation
|
38 |
-
success_rate: 0.4706
|
39 |
-
- name: Object Localization / 3D Localization
|
40 |
-
success_rate: 0.5629
|
41 |
-
- name: Object Properties / Size
|
42 |
-
success_rate: 0.5116
|
43 |
-
|
44 |
-
- task:
|
45 |
-
type: visual-question-answering
|
46 |
-
name: Spatial Reasoning
|
47 |
-
dataset:
|
48 |
-
name: BLINK
|
49 |
-
type: benchmark
|
50 |
-
metrics:
|
51 |
- type: success_rate
|
|
|
52 |
name: Overall Success Rate
|
53 |
-
value: 0.5000
|
54 |
-
results_by_subcategory:
|
55 |
-
- name: 3D Positional Relation / Orientation
|
56 |
-
success_rate: 0.6503
|
57 |
-
- name: Counting / Object Counting
|
58 |
-
success_rate: 0.6083
|
59 |
-
- name: Depth and Distance / Relative
|
60 |
-
success_rate: 0.5161
|
61 |
-
- name: Object Localization / 2D Localization
|
62 |
-
success_rate: 0.4426
|
63 |
-
- name: Point and Object Tracking / Point Correspondence
|
64 |
-
success_rate: 0.2849
|
65 |
-
|
66 |
-
- task:
|
67 |
-
type: visual-question-answering
|
68 |
-
name: Spatial Reasoning
|
69 |
-
dataset:
|
70 |
-
name: MMIU
|
71 |
-
type: benchmark
|
72 |
-
metrics:
|
73 |
- type: success_rate
|
74 |
-
name: Overall Success Rate
|
75 |
value: 0.3045
|
76 |
-
results_by_subcategory:
|
77 |
-
- name: Camera and Image Transformation / 2D Transformation
|
78 |
-
success_rate: 0.245
|
79 |
-
- name: Camera and Image Transformation / 3D Camera Pose
|
80 |
-
success_rate: 0.215
|
81 |
-
- name: Camera and Image Transformation / Camera Motion
|
82 |
-
success_rate: 0.4436
|
83 |
-
- name: Depth and Distance / Absolute
|
84 |
-
success_rate: 0.265
|
85 |
-
- name: Object Localization / 3D Localization
|
86 |
-
success_rate: 0.480
|
87 |
-
- name: Point and Object Tracking / 3D Tracking
|
88 |
-
success_rate: 0.240
|
89 |
-
- name: Point and Object Tracking / Point Correspondence
|
90 |
-
success_rate: 0.280
|
91 |
-
|
92 |
-
- task:
|
93 |
-
type: visual-question-answering
|
94 |
-
name: Spatial Reasoning
|
95 |
-
dataset:
|
96 |
-
name: MMVP
|
97 |
-
type: benchmark
|
98 |
-
metrics:
|
99 |
-
- type: success_rate
|
100 |
name: Overall Success Rate
|
101 |
-
value: 0.5767
|
102 |
-
results_by_subcategory:
|
103 |
-
- name: Others / Miscellaneous
|
104 |
-
success_rate: 0.5767
|
105 |
-
|
106 |
-
- task:
|
107 |
-
type: visual-question-answering
|
108 |
-
name: Spatial Reasoning
|
109 |
-
dataset:
|
110 |
-
name: QSpatialBench-Plus
|
111 |
-
type: benchmark
|
112 |
-
metrics:
|
113 |
- type: success_rate
|
|
|
114 |
name: Overall Success Rate
|
115 |
-
value: 0.3663
|
116 |
-
results_by_subcategory:
|
117 |
-
- name: Depth and Distance / Absolute
|
118 |
-
success_rate: 0.3663
|
119 |
-
|
120 |
-
- task:
|
121 |
-
type: visual-question-answering
|
122 |
-
name: Spatial Reasoning
|
123 |
-
dataset:
|
124 |
-
name: QSpatialBench-ScanNet
|
125 |
-
type: benchmark
|
126 |
-
metrics:
|
127 |
- type: success_rate
|
|
|
128 |
name: Overall Success Rate
|
129 |
-
value: 0.3300
|
130 |
-
results_by_subcategory:
|
131 |
-
- name: Depth and Distance / Absolute
|
132 |
-
success_rate: 0.2160
|
133 |
-
- name: Object Properties / Size
|
134 |
-
success_rate: 0.4444
|
135 |
-
|
136 |
-
- task:
|
137 |
-
type: visual-question-answering
|
138 |
-
name: Spatial Reasoning
|
139 |
-
dataset:
|
140 |
-
name: RealWorldQA
|
141 |
-
type: benchmark
|
142 |
-
metrics:
|
143 |
- type: success_rate
|
|
|
144 |
name: Overall Success Rate
|
145 |
-
value: 0.4392
|
146 |
-
results_by_subcategory:
|
147 |
-
- name: Others / Miscellaneous
|
148 |
-
success_rate: 0.4392
|
149 |
-
|
150 |
-
- task:
|
151 |
-
type: visual-question-answering
|
152 |
-
name: Spatial Reasoning
|
153 |
-
dataset:
|
154 |
-
name: SpatialSense
|
155 |
-
type: benchmark
|
156 |
-
metrics:
|
157 |
- type: success_rate
|
|
|
158 |
name: Overall Success Rate
|
159 |
-
value: 0.6554
|
160 |
-
results_by_subcategory:
|
161 |
-
- name: 3D Positional Relation / Orientation
|
162 |
-
success_rate: 0.6554
|
163 |
-
|
164 |
-
- task:
|
165 |
-
type: visual-question-answering
|
166 |
-
name: Spatial Reasoning
|
167 |
-
dataset:
|
168 |
-
name: VGBench
|
169 |
-
type: benchmark
|
170 |
-
metrics:
|
171 |
- type: success_rate
|
|
|
172 |
name: Overall Success Rate
|
173 |
-
value: 0.2615
|
174 |
-
results_by_subcategory:
|
175 |
-
- name: Camera and Image Transformation / 2D Transformation
|
176 |
-
success_rate: 0.2277
|
177 |
-
- name: Camera and Image Transformation / 3D Camera Pose
|
178 |
-
success_rate: 0.2438
|
179 |
-
- name: Depth and Distance / Absolute
|
180 |
-
success_rate: 0.2696
|
181 |
-
- name: Depth and Distance / Relative
|
182 |
-
success_rate: 0.1945
|
183 |
-
- name: Object Localization / 3D Localization
|
184 |
-
success_rate: 0.3733
|
185 |
-
- name: Point and Object Tracking / 3D Tracking
|
186 |
-
success_rate: 0.2655
|
187 |
-
|
188 |
-
- task:
|
189 |
-
type: visual-question-answering
|
190 |
-
name: Spatial Reasoning
|
191 |
-
dataset:
|
192 |
-
name: VSI-Bench_8
|
193 |
-
type: benchmark
|
194 |
-
metrics:
|
195 |
- type: success_rate
|
|
|
196 |
name: Overall Success Rate
|
197 |
-
value: 0.2322
|
198 |
-
results_by_subcategory:
|
199 |
-
- name: 3D Positional Relation / Orientation
|
200 |
-
success_rate: 0.3843
|
201 |
-
- name: Counting / Object Counting
|
202 |
-
success_rate: 0.1715
|
203 |
-
- name: Depth and Distance / Absolute
|
204 |
-
success_rate: 0.0299
|
205 |
-
- name: Depth and Distance / Relative
|
206 |
-
success_rate: 0.3521
|
207 |
-
- name: Object Properties / Size
|
208 |
-
success_rate: 0.2323
|
209 |
-
- name: Others / Miscellaneous
|
210 |
-
success_rate: 0.2525
|
211 |
-
|
212 |
-
- task:
|
213 |
-
type: visual-question-answering
|
214 |
-
name: Spatial Reasoning
|
215 |
-
dataset:
|
216 |
-
name: VSR-ZeroShot
|
217 |
-
type: benchmark
|
218 |
-
metrics:
|
219 |
- type: success_rate
|
|
|
220 |
name: Overall Success Rate
|
221 |
-
value: 0.7373
|
222 |
-
results_by_subcategory:
|
223 |
-
- name: 3D Positional Relation / Orientation
|
224 |
-
success_rate: 0.7373
|
225 |
-
|
226 |
-
- task:
|
227 |
-
type: visual-question-answering
|
228 |
-
name: Spatial Reasoning
|
229 |
-
dataset:
|
230 |
-
name: cvbench
|
231 |
-
type: benchmark
|
232 |
-
metrics:
|
233 |
- type: success_rate
|
|
|
234 |
name: Overall Success Rate
|
235 |
-
value: 0.5179
|
236 |
-
results_by_subcategory:
|
237 |
-
- name: Counting / Object Counting
|
238 |
-
success_rate: 0.6168
|
239 |
-
- name: Depth and Distance / Relative
|
240 |
-
success_rate: 0.4925
|
241 |
-
- name: Object Localization / 3D Localization
|
242 |
-
success_rate: 0.4446
|
243 |
-
|
244 |
-
- task:
|
245 |
-
type: visual-question-answering
|
246 |
-
name: Spatial Reasoning
|
247 |
-
dataset:
|
248 |
-
name: spatialbench
|
249 |
-
type: benchmark
|
250 |
-
metrics:
|
251 |
- type: success_rate
|
|
|
252 |
name: Overall Success Rate
|
|
|
253 |
value: 0.4879
|
254 |
-
|
255 |
-
- name: 3D Positional Relation / Orientation
|
256 |
-
success_rate: 0.5294
|
257 |
-
- name: Counting / Object Counting
|
258 |
-
success_rate: 0.7000
|
259 |
-
- name: Object Properties / Existence
|
260 |
-
success_rate: 0.4500
|
261 |
-
- name: Object Properties / Reachability
|
262 |
-
success_rate: 0.5000
|
263 |
-
- name: Object Properties / Size
|
264 |
-
success_rate: 0.2500
|
265 |
-
|
266 |
---
|
267 |
|
268 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/647777304ae93470ffc28913/v4edJliSy46xBA8g5ZXf8.png" width="500"/>
|
269 |
|
270 |
# SpaceQwen2.5-VL-3B-Instruct
|
271 |
|
|
|
|
|
272 |
|
273 |
- **Model Type:** Multimodal, Vision-Language Model
|
274 |
- **Architecture**: `Qwen2.5-VL-3B-Instruct`
|
@@ -279,8 +87,8 @@ model-index:
|
|
279 |
|
280 |
### Model Overview
|
281 |
|
282 |
-
This model uses data synthesis techniques and
|
283 |
-
With a pipeline of expert models, we can infer spatial relationships between objects in a scene to create VQA dataset for spatial reasoning.
|
284 |
|
285 |
|
286 |
## Running SpaceQwen2.5-VL-3B-Instruct
|
@@ -389,7 +197,7 @@ The following chart compares performance between **SpaceQwen** and **SpaceThinke
|
|
389 |
|
390 |
## OmniSpatial
|
391 |
|
392 |
-
**OmniSpatial** is another comprehensive spatial reasoning benchmark assesses dynamic reasoning, complex spatial logic, spatial interaction, and perspective-taking capabilities.
|
393 |

|
394 |
|
395 |
Learn more about [OmniSpatial](https://qizekun.github.io/omnispatial/).
|
|
|
1 |
---
|
2 |
+
base_model:
|
3 |
+
- Qwen/Qwen2.5-VL-3B-Instruct
|
4 |
datasets:
|
5 |
- remyxai/OpenSpaces
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
library_name: transformers
|
9 |
+
license: apache-2.0
|
10 |
+
pipeline_tag: image-text-to-text
|
11 |
tags:
|
12 |
- remyx
|
13 |
- vqasynth
|
|
|
19 |
- distance-estimation
|
20 |
- embodied-ai
|
21 |
- quantitative-spatial-reasoning
|
|
|
|
|
|
|
|
|
|
|
22 |
new_version: remyxai/SpaceThinker-Qwen2.5VL-3B
|
|
|
23 |
model-index:
|
24 |
- name: SpaceQwen2.5-VL-3B-Instruct
|
25 |
results:
|
|
|
31 |
type: benchmark
|
32 |
metrics:
|
33 |
- type: success_rate
|
34 |
+
value: 0.515
|
35 |
name: Overall Success Rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
- type: success_rate
|
37 |
+
value: 0.5
|
38 |
name: Overall Success Rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
- type: success_rate
|
|
|
40 |
value: 0.3045
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
name: Overall Success Rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
- type: success_rate
|
43 |
+
value: 0.5767
|
44 |
name: Overall Success Rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
- type: success_rate
|
46 |
+
value: 0.3663
|
47 |
name: Overall Success Rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
- type: success_rate
|
49 |
+
value: 0.33
|
50 |
name: Overall Success Rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
- type: success_rate
|
52 |
+
value: 0.4392
|
53 |
name: Overall Success Rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
- type: success_rate
|
55 |
+
value: 0.6554
|
56 |
name: Overall Success Rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
- type: success_rate
|
58 |
+
value: 0.2615
|
59 |
name: Overall Success Rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
- type: success_rate
|
61 |
+
value: 0.2322
|
62 |
name: Overall Success Rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
- type: success_rate
|
64 |
+
value: 0.7373
|
65 |
name: Overall Success Rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
- type: success_rate
|
67 |
+
value: 0.5179
|
68 |
name: Overall Success Rate
|
69 |
+
- type: success_rate
|
70 |
value: 0.4879
|
71 |
+
name: Overall Success Rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
---
|
73 |
|
74 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/647777304ae93470ffc28913/v4edJliSy46xBA8g5ZXf8.png" width="500"/>
|
75 |
|
76 |
# SpaceQwen2.5-VL-3B-Instruct
|
77 |
|
78 |
+
The model was presented in the paper [OmniSpatial: Towards Comprehensive Spatial Reasoning Benchmark for Vision Language Models](https://huggingface.co/papers/2506.03135). More information can be found at the [project page](https://qizekun.github.io/omnispatial/).
|
79 |
+
|
80 |
|
81 |
- **Model Type:** Multimodal, Vision-Language Model
|
82 |
- **Architecture**: `Qwen2.5-VL-3B-Instruct`
|
|
|
87 |
|
88 |
### Model Overview
|
89 |
|
90 |
+
This model uses data synthesis techniques and publicly available models to reproduce the work described in SpatialVLM to enhance the spatial reasoning of multimodal models.
|
91 |
+
With a pipeline of expert models, we can infer spatial relationships between objects in a scene to create a VQA dataset for spatial reasoning.
|
92 |
|
93 |
|
94 |
## Running SpaceQwen2.5-VL-3B-Instruct
|
|
|
197 |
|
198 |
## OmniSpatial
|
199 |
|
200 |
+
**OmniSpatial** is another comprehensive spatial reasoning benchmark that assesses dynamic reasoning, complex spatial logic, spatial interaction, and perspective-taking capabilities.
|
201 |

|
202 |
|
203 |
Learn more about [OmniSpatial](https://qizekun.github.io/omnispatial/).
|