redmoe-ai-v1 commited on
Commit
aa8408c
·
verified ·
1 Parent(s): 01914a0

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -34,3 +34,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  figures/performance.png filter=lfs diff=lfs merge=lfs -text
 
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  figures/performance.png filter=lfs diff=lfs merge=lfs -text
37
+ figures/new_logo.png filter=lfs diff=lfs merge=lfs -text
38
+ figures/wechat.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,44 +1,67 @@
1
  ---
2
  license: mit
3
- license_link: https://huggingface.co/rednote-hilab/dots.llm1.inst/blob/main/LICENSE
4
  pipeline_tag: text-generation
5
  base_model: rednote-hilab/dots.llm1.base
6
  tags:
7
  - chat
8
  library_name: transformers
9
- language:
10
- - en
11
- - zh
12
  ---
13
 
14
  # dots1
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  ## 1. Introduction
18
 
19
 
20
- `dots.llm1` is a large-scale MoE model that activates 14B parameters out of a total of 142B parameters, delivering performance on par with state-of-the-art models while reducing training and inference costs.
21
- Leveraging our meticulously crafted and efficient data processing pipeline, `dots.llm1` achieves performance comparable to Qwen2.5-72B when trained on 11.2T high-quality tokens without synthetic data. To foster further research, we open-source intermediate training checkpoints at every one trillion tokens, providing valuable insights into the learning dynamics of large language models.
22
 
23
 
24
  <p align="center">
25
  <img width="90%" src="./figures/performance.png">
26
  </p>
27
 
28
-
29
  ## 2. Model Summary
30
 
31
  **This repo contains the base and instruction-tuned `dots.llm1` model**. which has the following features:
32
 
33
- - Type: A 14B/142B MoE model trained on 11.2T tokens.
34
- - Training Stage: Pretraining & Post-training
35
- - Architecture: Multi-head Attention with QK-Norm in Attention Layer, fine-grained MoE utilizing top-6 out of 128 routed experts, plus 2 shared experts.
36
  - Number of Layers: 62
37
  - Number of Attention Heads: 32
 
38
  - Context Length: 32,768 tokens
39
  - License: MIT
40
 
41
- For more details, please refer to our [report](dots1_tech_report.pdf).
 
 
 
 
 
 
42
 
43
  ## 3. Example Usage
44
 
@@ -53,6 +76,42 @@ For more details, please refer to our [report](dots1_tech_report.pdf).
53
 
54
  </div>
55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  ### Inference with huggingface
57
 
58
  #### Text Completion
@@ -106,8 +165,7 @@ python -m sglang.launch_server --model-path dots.llm1.inst --tp 8 --host 0.0.0.0
106
  An OpenAI-compatible API will be available at `http://localhost:8000/v1`.
107
 
108
  ### Inference with vllm
109
- [vLLM](https://github.com/vllm-project/vllm) is a high-throughput and memory-efficient inference and serving engine for LLMs.
110
- `vllm>=***` is recommended.
111
 
112
  ```shell
113
  vllm serve dots.llm1.inst --port 8000 --tensor-parallel-size 8
@@ -116,7 +174,7 @@ An OpenAI-compatible API will be available at `http://localhost:8000/v1`.
116
 
117
  ## 4. Evaluation Results
118
 
119
- Detailed evaluation results are reported in this [📑 report](dots1_tech_report.pdf).
120
 
121
  ## Citation
122
 
 
1
  ---
2
  license: mit
3
+ license_link: https://huggingface.co/rednote-hilab/dots.llm1.base/blob/main/LICENSE
4
  pipeline_tag: text-generation
5
  base_model: rednote-hilab/dots.llm1.base
6
  tags:
7
  - chat
8
  library_name: transformers
 
 
 
9
  ---
10
 
11
  # dots1
12
 
13
+ <p align="center">
14
+ <img src="figures/new_logo.png" width="200"/>
15
+ <p>
16
+
17
+ <p align="center">
18
+ &nbsp&nbsp🤗 <a href="https://huggingface.co/rednote-hilab">Hugging Face</a>&nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://github.com/rednote-hilab/dots.llm1/blob/main/dots1_tech_report.pdf">Paper</a> &nbsp&nbsp
19
+ <br>
20
+ 🖥️ <a href="https://huggingface.co/spaces/rednote-hilab/dots-demo">Demo</a>&nbsp&nbsp | &nbsp&nbsp💬 <a href="figures/wechat.png">WeChat (微信)</a>&nbsp&nbsp | &nbsp&nbsp📕 <a href="https://www.xiaohongshu.com/user/profile/683ffe42000000001d021a4c">rednote</a>&nbsp&nbsp
21
+ </p>
22
+
23
+
24
+
25
+
26
+ Visit our Hugging Face (click links above), search checkpoints with names starting with `dots.llm1` or visit the [dots1 collection](https://huggingface.co/collections/rednote-hilab/dotsllm1-68246aaaaba3363374a8aa7c), and you will find all you need! Enjoy!
27
+
28
+
29
+ ## News
30
+
31
+ - 2025.06.06: We released the `dots.llm1` series. Check our [report](https://github.com/rednote-hilab/dots.llm1/blob/main/dots1_tech_report.pdf) for more details!
32
+
33
 
34
  ## 1. Introduction
35
 
36
 
37
+ The `dots.llm1` model is a large-scale MoE model that activates 14B parameters out of a total of 142B parameters, delivering performance on par with state-of-the-art models.
38
+ Leveraging our meticulously crafted and efficient data processing pipeline, `dots.llm1` achieves performance comparable to Qwen2.5-72B after pretrained on 11.2T high-quality tokens without synthetic data. To foster further research, we open-source intermediate training checkpoints at every one trillion tokens, providing valuable insights into the learning dynamics of large language models.
39
 
40
 
41
  <p align="center">
42
  <img width="90%" src="./figures/performance.png">
43
  </p>
44
 
 
45
  ## 2. Model Summary
46
 
47
  **This repo contains the base and instruction-tuned `dots.llm1` model**. which has the following features:
48
 
49
+ - Type: A MoE model with 14B activated and 142B total parameters trained on 11.2T tokens.
50
+ - Training Stages: Pretraining and SFT.
51
+ - Architecture: Multi-head Attention with QK-Norm in attention Layer, fine-grained MoE utilizing top-6 out of 128 routed experts, plus 2 shared experts.
52
  - Number of Layers: 62
53
  - Number of Attention Heads: 32
54
+ - Supported Languages: English, Chinese
55
  - Context Length: 32,768 tokens
56
  - License: MIT
57
 
58
+ The highlights from `dots.llm1` include:
59
+
60
+ - **Enhanced Data Processing**: We propose a scalable and fine-grained *three-stage* data processing framework designed to generate large-scale, high-quality and diverse data for pretraining.
61
+ - **No Synthetic Data during Pretraining**: *11.2 trillion* high-quality non-synthetic tokens was used in base model pretraining.
62
+ - **Performance and Cost Efficiency**: `dots.llm1` is an open-source model that activates only *14B* parameters at inference, delivering both comprehensive capabilities and high computational efficiency.
63
+ - **Infrastructure**: We introduce an innovative MoE all-to-all communication and computation overlapping recipe based on interleaved 1F1B pipeline scheduling and an efficient grouped GEMM implementation to boost computational efficiency.
64
+ - **Open Accessibility to Model Dynamics**: Intermediate model checkpoints for *every 1T tokens* trained are released, facilitating future research into the learning dynamics of large language models.
65
 
66
  ## 3. Example Usage
67
 
 
76
 
77
  </div>
78
 
79
+ ### Docker (recommended)
80
+
81
+
82
+ The docker images are available on [Docker Hub](https://hub.docker.com/repository/docker/rednotehilab/dots1/tags), based on the official images.
83
+
84
+ You can start a server via vllm.
85
+
86
+ ```shell
87
+ docker run --gpus all \
88
+ -v ~/.cache/huggingface:/root/.cache/huggingface \
89
+ -p 8000:8000 \
90
+ --ipc=host \
91
+ rednotehilab/dots1:vllm-openai-v0.9.0.1 \
92
+ --model rednote-hilab/dots.llm1.inst \
93
+ --tensor-parallel-size 8 \
94
+ --trust-remote-code \
95
+ --served-model-name dots1
96
+ ```
97
+
98
+ Then you can verify whether the model is running successfully in the following way.
99
+
100
+ ```shell
101
+ curl http://localhost:8000/v1/chat/completions \
102
+ -H "Content-Type: application/json" \
103
+ -d '{
104
+ "model": "dots1",
105
+ "messages": [
106
+ {"role": "system", "content": "You are a helpful assistant."},
107
+ {"role": "user", "content": "Who won the world series in 2020?"}
108
+ ],
109
+ "max_tokens": 32,
110
+ "temperature": 0
111
+ }'
112
+ ```
113
+
114
+
115
  ### Inference with huggingface
116
 
117
  #### Text Completion
 
165
  An OpenAI-compatible API will be available at `http://localhost:8000/v1`.
166
 
167
  ### Inference with vllm
168
+ [vLLM](https://github.com/vllm-project/vllm) is a high-throughput and memory-efficient inference and serving engine for LLMs. `vllm>=***` is recommended.
 
169
 
170
  ```shell
171
  vllm serve dots.llm1.inst --port 8000 --tensor-parallel-size 8
 
174
 
175
  ## 4. Evaluation Results
176
 
177
+ Detailed evaluation results are reported in this [📑 report](https://github.com/rednote-hilab/dots.llm1/blob/main/dots1_tech_report.pdf).
178
 
179
  ## Citation
180
 
config.json CHANGED
@@ -28,7 +28,6 @@
28
  "rope_theta": 10000000,
29
  "routed_scaling_factor": 2.5,
30
  "sliding_window": null,
31
- "scoring_func": "noaux_tc",
32
  "tie_word_embeddings": false,
33
  "torch_dtype": "bfloat16",
34
  "transformers_version": "4.46.3",
 
28
  "rope_theta": 10000000,
29
  "routed_scaling_factor": 2.5,
30
  "sliding_window": null,
 
31
  "tie_word_embeddings": false,
32
  "torch_dtype": "bfloat16",
33
  "transformers_version": "4.46.3",
figures/XHSlong750px.png ADDED
figures/new_logo.png ADDED

Git LFS Details

  • SHA256: 2e5808698bcd60df90869af469743248a4560d0ffb2232eceb74cd9c0a7df763
  • Pointer size: 131 Bytes
  • Size of remote file: 101 kB
figures/performance.png ADDED

Git LFS Details

  • SHA256: ca42a057f65c1ea12c303e41938dbe38fc285769002272af767b76605cf8ea98
  • Pointer size: 131 Bytes
  • Size of remote file: 139 kB
figures/wechat.png ADDED

Git LFS Details

  • SHA256: e6f386b64bd313bd998bf0f25e9f1b32c0fbbfe7d972a60227c22fdc044da885
  • Pointer size: 131 Bytes
  • Size of remote file: 118 kB