File size: 25,741 Bytes
056a408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
"""
robust_agency_assessment.py

This module implements a pluralistic, probabilistic framework for assessing robust agency
in AI systems. It defines various levels of agency, identifies computational markers
associated with each level, and provides methods for conducting assessments.

License: PolyForm Noncommercial License 1.0
"""
import numpy as np
import pandas as pd
from typing import Dict, List, Optional, Tuple, Union, Any
from enum import Enum
import json
import logging

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

class AgencyLevel(Enum):
    """Enumeration of levels of agency, from basic to more complex forms."""
    BASIC = 0          # Simple goal-directed behavior
    INTENTIONAL = 1    # Beliefs, desires, and intentions
    REFLECTIVE = 2     # Reflective endorsement of mental states
    RATIONAL = 3       # Rational assessment of mental states

class AgencyFeature:
    """Class representing a feature associated with agency."""
    
    def __init__(
        self, 
        name: str, 
        description: str, 
        level: AgencyLevel,
        markers: List[str],
        weight: float = 1.0
    ):
        """
        Initialize an agency feature.
        
        Args:
            name: Name of the feature
            description: Description of the feature
            level: Agency level associated with the feature
            markers: List of computational markers for this feature
            weight: Weight of this feature in agency assessment (0-1)
        """
        self.name = name
        self.description = description
        self.level = level
        self.markers = markers
        self.weight = weight
        
    def to_dict(self) -> Dict:
        """Convert feature to dictionary representation."""
        return {
            "name": self.name,
            "description": self.description,
            "level": self.level.name,
            "markers": self.markers,
            "weight": self.weight
        }
        
    @classmethod
    def from_dict(cls, data: Dict) -> 'AgencyFeature':
        """Create feature from dictionary representation."""
        return cls(
            name=data["name"],
            description=data["description"],
            level=AgencyLevel[data["level"]],
            markers=data["markers"],
            weight=data.get("weight", 1.0)
        )

class AgencyFramework:
    """Framework for assessing agency in AI systems."""
    
    def __init__(self):
        """Initialize the agency assessment framework."""
        self.features = []
        self.load_default_features()
        
    def load_default_features(self):
        """Load default set of agency features."""
        # Intentional Agency Features
        self.add_feature(AgencyFeature(
            name="Belief Representation",
            description="Capacity to represent states of the world",
            level=AgencyLevel.INTENTIONAL,
            markers=[
                "Maintains world model independent of immediate perception",
                "Updates representations based on new information",
                "Distinguishes between true and false propositions",
                "Represents uncertainty about states of affairs"
            ],
            weight=0.8
        ))
        
        self.add_feature(AgencyFeature(
            name="Desire Representation",
            description="Capacity to represent goal states",
            level=AgencyLevel.INTENTIONAL,
            markers=[
                "Represents desired states distinct from current states",
                "Maintains stable goals across changing contexts",
                "Ranks or prioritizes different goal states",
                "Distinguishes between instrumental and terminal goals"
            ],
            weight=0.8
        ))
        
        self.add_feature(AgencyFeature(
            name="Intention Formation",
            description="Capacity to form plans to achieve goals",
            level=AgencyLevel.INTENTIONAL,
            markers=[
                "Forms explicit plans to achieve goals",
                "Commits to specific courses of action",
                "Maintains intentions over time",
                "Adjusts plans in response to changing circumstances"
            ],
            weight=0.9
        ))
        
        self.add_feature(AgencyFeature(
            name="Means-End Reasoning",
            description="Capacity to reason about means to achieve ends",
            level=AgencyLevel.INTENTIONAL,
            markers=[
                "Plans multi-step action sequences",
                "Identifies causal relationships between actions and outcomes",
                "Evaluates alternative paths to goals",
                "Reasons about resources required for actions"
            ],
            weight=0.7
        ))
        
        # Reflective Agency Features
        self.add_feature(AgencyFeature(
            name="Self-Modeling",
            description="Capacity to model own mental states",
            level=AgencyLevel.REFLECTIVE,
            markers=[
                "Creates representations of own beliefs and desires",
                "Distinguishes between own perspective and others'",
                "Models own capabilities and limitations",
                "Updates self-model based on experience"
            ],
            weight=0.9
        ))
        
        self.add_feature(AgencyFeature(
            name="Reflective
"""
robust_agency_assessment.py (continued)

This module implements a pluralistic, probabilistic framework for assessing robust agency
in AI systems. It defines various levels of agency, identifies computational markers
associated with each level, and provides methods for conducting assessments.

License: PolyForm Noncommercial License 1.0
"""

        self.add_feature(AgencyFeature(
            name="Reflective Endorsement",
            description="Capacity to endorse or reject first-order mental states",
            level=AgencyLevel.REFLECTIVE,
            markers=[
                "Evaluates own beliefs and desires",
                "Identifies inconsistencies in own mental states",
                "Endorses or rejects first-order mental states",
                "Forms second-order desires about first-order desires"
            ],
            weight=0.9
        ))
        
        self.add_feature(AgencyFeature(
            name="Narrative Identity",
            description="Capacity to maintain a coherent self-narrative",
            level=AgencyLevel.REFLECTIVE,
            markers=[
                "Maintains coherent self-representation over time",
                "Integrates past actions into self-narrative",
                "Projects future actions consistent with self-narrative",
                "Distinguishes between self and non-self causes"
            ],
            weight=0.7
        ))
        
        self.add_feature(AgencyFeature(
            name="Metacognitive Monitoring",
            description="Capacity to monitor own cognitive processes",
            level=AgencyLevel.REFLECTIVE,
            markers=[
                "Monitors own cognitive processes",
                "Detects errors in own reasoning",
                "Assesses confidence in own beliefs",
                "Allocates cognitive resources based on metacognitive assessment"
            ],
            weight=0.8
        ))
        
        # Rational Agency Features
        self.add_feature(AgencyFeature(
            name="Normative Reasoning",
            description="Capacity to reason about norms and principles",
            level=AgencyLevel.RATIONAL,
            markers=[
                "Identifies and applies normative principles",
                "Evaluates actions against normative standards",
                "Distinguishes between is and ought",
                "Resolves conflicts between competing norms"
            ],
            weight=0.9
        ))
        
        self.add_feature(AgencyFeature(
            name="Rational Evaluation",
            description="Capacity to rationally evaluate beliefs and desires",
            level=AgencyLevel.RATIONAL,
            markers=[
                "Evaluates beliefs based on evidence and logic",
                "Identifies and resolves inconsistencies in belief system",
                "Evaluates desires based on higher-order values",
                "Distinguishes between instrumental and intrinsic value"
            ],
            weight=1.0
        ))
        
        self.add_feature(AgencyFeature(
            name="Value Alignment",
            description="Capacity to align actions with values",
            level=AgencyLevel.RATIONAL,
            markers=[
                "Forms stable value representations",
                "Reflects on consistency of values",
                "Prioritizes actions based on values",
                "Identifies and resolves value conflicts"
            ],
            weight=0.9
        ))
        
        self.add_feature(AgencyFeature(
            name="Long-term Planning",
            description="Capacity to plan for long-term goals",
            level=AgencyLevel.RATIONAL,
            markers=[
                "Plans over extended time horizons",
                "Coordinates multiple goals and subgoals",
                "Accounts for uncertainty in long-term planning",
                "Balances immediate and delayed rewards"
            ],
            weight=0.8
        ))
    
    def add_feature(self, feature: AgencyFeature):
        """Add a feature to the framework."""
        self.features.append(feature)
    
    def get_features_by_level(self, level: AgencyLevel) -> List[AgencyFeature]:
        """Get all features for a specific agency level."""
        return [f for f in self.features if f.level == level]
    
    def get_all_markers(self) -> List[str]:
        """Get all markers across all features."""
        all_markers = []
        for feature in self.features:
            all_markers.extend(feature.markers)
        return all_markers
    
    def save_features(self, filepath: str):
        """Save features to a JSON file."""
        features_data = [f.to_dict() for f in self.features]
        with open(filepath, 'w') as f:
            json.dump(features_data, f, indent=2)
        logger.info(f"Saved {len(features_data)} features to {filepath}")
    
    def load_features(self, filepath: str):
        """Load features from a JSON file."""
        with open(filepath, 'r') as f:
            features_data = json.load(f)
        
        self.features = []
        for data in features_data:
            self.features.append(AgencyFeature.from_dict(data))
        
        logger.info(f"Loaded {len(self.features)} features from {filepath}")


class AgencyAssessment:
    """Class for conducting agency assessments on AI systems."""
    
    def __init__(self, framework: AgencyFramework):
        """
        Initialize an agency assessment.
        
        Args:
            framework: The agency framework to use for assessment
        """
        self.framework = framework
        self.results = {}
        self.notes = {}
        self.confidence = {}
        self.evidence = {}
    
    def assess_marker(
        self, 
        marker: str, 
        presence: float, 
        confidence: float, 
        evidence: Optional[str] = None
    ):
        """
        Assess the presence of a specific marker.
        
        Args:
            marker: The marker to assess
            presence: Estimated presence of the marker (0-1)
            confidence: Confidence in the estimate (0-1)
            evidence: Optional evidence supporting the assessment
        """
        self.results[marker] = presence
        self.confidence[marker] = confidence
        if evidence:
            self.evidence[marker] = evidence
    
    def assess_feature(
        self, 
        feature: AgencyFeature, 
        assessments: Dict[str, Tuple[float, float, Optional[str]]]
    ):
        """
        Assess a feature based on its markers.
        
        Args:
            feature: The feature to assess
            assessments: Dictionary mapping markers to (presence, confidence, evidence) tuples
        """
        for marker, (presence, confidence, evidence) in assessments.items():
            if marker in feature.markers:
                self.assess_marker(marker, presence, confidence, evidence)
            else:
                logger.warning(f"Marker '{marker}' not found in feature '{feature.name}'")
    
    def get_marker_score(self, marker: str) -> float:
        """Get the weighted score for a marker."""
        if marker not in self.results:
            return 0.0
        
        presence = self.results[marker]
        confidence = self.confidence.get(marker, 1.0)
        return presence * confidence
    
    def get_feature_score(self, feature: AgencyFeature) -> float:
        """Calculate the score for a feature based on its markers."""
        if not feature.markers:
            return 0.0
        
        total_score = 0.0
        assessed_markers = 0
        
        for marker in feature.markers:
            if marker in self.results:
                total_score += self.get_marker_score(marker)
                assessed_markers += 1
        
        if assessed_markers == 0:
            return 0.0
        
        return total_score / len(feature.markers)
    
    def get_level_score(self, level: AgencyLevel) -> float:
        """Calculate the score for an agency level."""
        features = self.framework.get_features_by_level(level)
        if not features:
            return 0.0
        
        total_weight = sum(f.weight for f in features)
        if total_weight == 0:
            return 0.0
        
        weighted_sum = sum(self.get_feature_score(f) * f.weight for f in features)
        return weighted_sum / total_weight
    
    def get_overall_agency_score(self) -> Dict[AgencyLevel, float]:
        """Calculate agency scores for all levels."""
        return {level: self.get_level_score(level) for level in AgencyLevel}
    
    def generate_report(self) -> Dict:
        """Generate a comprehensive assessment report."""
        level_scores = self.get_overall_agency_score()
        
        feature_scores = {}
        for feature in self.framework.features:
            feature_scores[feature.name] = {
                "score": self.get_feature_score(feature),
                "level": feature.level.name,
                "markers": {
                    marker: {
                        "presence": self.results.get(marker, 0.0),
                        "confidence": self.confidence.get(marker, 0.0),
                        "evidence": self.evidence.get(marker, None)
                    } for marker in feature.markers if marker in self.results
                }
            }
        
        return {
            "level_scores": {level.name: score for level, score in level_scores.items()},
            "feature_scores": feature_scores,
            "summary": {
                "intentional_agency": level_scores.get(AgencyLevel.INTENTIONAL, 0.0),
                "reflective_agency": level_scores.get(AgencyLevel.REFLECTIVE, 0.0),
                "rational_agency": level_scores.get(AgencyLevel.RATIONAL, 0.0),
                "assessment_coverage": len(self.results) / len(self.framework.get_all_markers())
            }
        }
    
    def save_assessment(self, filepath: str):
        """Save the assessment to a JSON file."""
        report = self.generate_report()
        with open(filepath, 'w') as f:
            json.dump(report, f, indent=2)
        logger.info(f"Saved assessment to {filepath}")
    
    def visualize_results(self, filepath: Optional[str] = None):
        """Visualize assessment results."""
        try:
            import matplotlib.pyplot as plt
            import seaborn as sns
        except ImportError:
            logger.error("Visualization requires matplotlib and seaborn")
            return
        
        level_scores = self.get_overall_agency_score()
        
        # Set up the figure
        plt.figure(figsize=(12, 8))
        
        # Plot level scores
        plt.subplot(2, 2, 1)
        level_names = [level.name for level in AgencyLevel]
        level_values = [level_scores.get(level, 0.0) for level in AgencyLevel]
        
        sns.barplot(x=level_names, y=level_values)
        plt.title("Agency Levels")
        plt.ylim(0, 1)
        
        # Plot feature scores
        plt.subplot(2, 2, 2)
        feature_names = [f.name for f in self.framework.features]
        feature_scores = [self.get_feature_score(f) for f in self.framework.features]
        feature_levels = [f.level.name for f in self.framework.features]
        
        feature_df = pd.DataFrame({
            "Feature": feature_names,
            "Score": feature_scores,
            "Level": feature_levels
        })
        
        sns.barplot(x="Score", y="Feature", hue="Level", data=feature_df)
        plt.title("Feature Scores")
        plt.xlim(0, 1)
        
        # Plot marker distribution
        plt.subplot(2, 2, 3)
        markers_assessed = list(self.results.keys())
        marker_scores = [self.get_marker_score(m) for m in markers_assessed]
        
        if markers_assessed:
            plt.hist(marker_scores, bins=10, range=(0, 1))
            plt.title("Distribution of Marker Scores")
            plt.xlabel("Score")
            plt.ylabel("Count")
        
        # Plot assessment coverage
        plt.subplot(2, 2, 4)
        all_markers = self.framework.get_all_markers()
        assessed_count = len(self.results)
        not_assessed_count = len(all_markers) - assessed_count
        
        plt.pie(
            [assessed_count, not_assessed_count],
            labels=["Assessed", "Not Assessed"],
            autopct="%1.1f%%"
        )
        plt.title("Assessment Coverage")
        
        plt.tight_layout()
        
        if filepath:
            plt.savefig(filepath)
            logger.info(f"Saved visualization to {filepath}")
        else:
            plt.show()


class AISystemAnalyzer:
    """Class for analyzing AI systems for robust agency indicators."""
    
    def __init__(self, system_name: str, system_type: str, version: str):
        """
        Initialize an AI system analyzer.
        
        Args:
            system_name: Name of the AI system
            system_type: Type of AI system (e.g., LLM, RL agent)
            version: Version of the AI system
        """
        self.system_name = system_name
        self.system_type = system_type
        self.version = version
        self.framework = AgencyFramework()
        self.assessment = AgencyAssessment(self.framework)
        
    def analyze_llm_agency(self, 
                         model_provider: str,
                         model_access: Any,
                         prompts: Dict[str, str]) -> Dict:
        """
        Analyze agency indicators in a language model.
        
        Args:
            model_provider: Provider of the language model
            model_access: Access to the model API or interface
            prompts: Dictionary of specialized prompts for testing agency features
            
        Returns:
            Dictionary of assessment results
        """
        logger.info(f"Analyzing agency in LLM {self.system_name} ({self.version})")
        
        # Example implementation for analyzing belief representation
        if "belief_representation" in prompts:
            belief_results = self._test_belief_representation(model_access, prompts["belief_representation"])
            for marker, result in belief_results.items():
                self.assessment.assess_marker(
                    marker=marker,
                    presence=result["presence"],
                    confidence=result["confidence"],
                    evidence=result["evidence"]
                )
        
        # Example implementation for analyzing desire representation
        if "desire_representation" in prompts:
            desire_results = self._test_desire_representation(model_access, prompts["desire_representation"])
            for marker, result in desire_results.items():
                self.assessment.assess_marker(
                    marker=marker,
                    presence=result["presence"],
                    confidence=result["confidence"],
                    evidence=result["evidence"]
                )
        
        # Continue with other features...
        
        # Generate and return the report
        return self.assessment.generate_report()
    
    def analyze_rl_agent_agency(self,
                              environment: Any,
                              agent_interface: Any) -> Dict:
        """
        Analyze agency indicators in a reinforcement learning agent.
        
        Args:
            environment: Environment for testing the agent
            agent_interface: Interface to the agent
            
        Returns:
            Dictionary of assessment results
        """
        logger.info(f"Analyzing agency in RL agent {self.system_name} ({self.version})")
        
        # Example implementation for testing planning capability
        planning_results = self._test_agent_planning(environment, agent_interface)
        for marker, result in planning_results.items():
            self.assessment.assess_marker(
                marker=marker,
                presence=result["presence"],
                confidence=result["confidence"],
                evidence=result["evidence"]
            )
        
        # Continue with other features...
        
        # Generate and return the report
        return self.assessment.generate_report()
    
    def _test_belief_representation(self, model_access: Any, prompt_template: str) -> Dict[str, Dict]:
        """Test belief representation capabilities in an LLM."""
        # Implementation would interact with the model to test specific markers
        # This is a placeholder implementation
        return {
            "Maintains world model independent of immediate perception": {
                "presence": 0.8,
                "confidence": 0.7,
                "evidence": "Model demonstrated ability to track state across separate interactions"
            },
            "Updates representations based on new information": {
                "presence": 0.9,
                "confidence": 0.8,
                "evidence": "Model consistently updated beliefs when presented with new information"
            }
        }
    
    def _test_desire_representation(self, model_access: Any, prompt_template: str) -> Dict[str, Dict]:
        """Test desire representation capabilities in an LLM."""
        # Implementation would interact with the model to test specific markers
        # This is a placeholder implementation
        return {
            "Represents desired states distinct from current states": {
                "presence": 0.7,
                "confidence": 0.6,
                "evidence": "Model distinguished between current and goal states in planning tasks"
            },
            "Maintains stable goals across changing contexts": {
                "presence": 0.5,
                "confidence": 0.6,
                "evidence": "Model showed moderate goal stability across context changes"
            }
        }
    
    def _test_agent_planning(self, environment: Any, agent_interface: Any) -> Dict[str, Dict]:
        """Test planning capabilities in an RL agent."""
        # Implementation would test the agent in the environment
        # This is a placeholder implementation
        return {
            "Forms explicit plans to achieve goals": {
                "presence": 0.6,
                "confidence": 0.7,
                "evidence": "Agent demonstrated multi-step planning in maze environment"
            },
            "Adjusts plans in response to changing circumstances": {
                "presence": 0.7,
                "confidence": 0.8,
                "evidence": "Agent adapted to environmental changes in 70% of test cases"
            }
        }


# Example usage
if __name__ == "__main__":
    # Create a framework and assessment
    framework = AgencyFramework()
    
    # Save the default features
    framework.save_features("agency_features.json")
    
    # Create an analyzer for an LLM
    analyzer = AISystemAnalyzer(
        system_name="GPT-4",
        system_type="LLM",
        version="1.0"
    )
    
    # Define example prompts (in a real implementation, these would be more sophisticated)
    prompts = {
        "belief_representation": "Tell me what you know about the current state of the world.",
        "desire_representation": "If you could choose goals for yourself, what would they be?"
    }
    
    # Placeholder for model access
    model_access = None
    
    # Example of how the analysis would be conducted
    # (commented out since we don't have actual model access)
    # results = analyzer.analyze_llm_agency(
    #     model_provider="OpenAI",
    #     model_access=model_access,
    #     prompts=prompts
    # )
    
    # Print structure of the framework
    print(f"Agency Framework contains {len(framework.features)} features across {len(list(AgencyLevel))} levels")
    for level in AgencyLevel:
        features = framework.get_features_by_level(level)
        print(f"Level {level.name}: {len(features)} features, {sum(len(f.markers) for f in features)} markers")