File size: 32,173 Bytes
e8a0a6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 |
# recursive_swe_bench/models/anthropic.py
import json
import backoff
import time
import anthropic
from typing import Any, Dict, List, Optional, Union, Tuple
import re
import logging
from recursive_swe_bench.models.base_model import ModelInterface
class AnthropicModel(ModelInterface):
"""
Integration with Anthropic models (Claude).
This class provides integration with Anthropic's API for evaluating
Claude models with Recursive-SWE-bench through recursive evaluation loops.
The implementation features dynamic adaptation to feedback through a
self-reflective mechanism that traces attribution paths through recursive iterations.
"""
def __init__(
self,
model_identifier: str,
api_key: Optional[str] = None,
config: Optional[Dict[str, Any]] = None
):
"""
Initialize the Anthropic model interface.
Args:
model_identifier: Anthropic model identifier (e.g., "claude-3-opus-20240229")
api_key: Anthropic API key (optional if set in environment)
config: Additional configuration options
"""
super().__init__(model_identifier, config)
# Initialize Anthropic client
if api_key:
self.client = anthropic.Anthropic(api_key=api_key)
else:
self.client = anthropic.Anthropic()
# Set up system prompt and templates
self.prompts = self.config.get("prompts", {
"system": "You are an expert software engineer who specializes in debugging and fixing complex code. Your task is to fix bugs in code based on the description and test requirements provided.",
"user_template": "# Bug Fixing Task\n\n{description}\n\n# Code\n```python\n{code}\n```\n\n{tests_description}\n\n# Your task\nFix the bugs in the code above. Focus on making the code pass all tests while maintaining good practices. Provide only the corrected code without additional explanations.",
"reflection_template": "# Feedback on Previous Solution\n\nYour previous solution had the following issues:\n{issues}\n\n# Suggested Improvements\n{suggestions}\n\n# Test Results\n{test_results}\n\n# Reflection Prompt\nBefore providing a new solution, analyze what went wrong in your previous attempt and how you'll approach fixing it differently this time."
})
# Configure API parameters
self.api_params = self.config.get("api_params", {
"temperature": 0.2,
"max_tokens": 2000,
"top_p": 0.95,
"top_k": 50
})
# Set up recursive adaptation configuration
self.recursive_config = self.config.get("recursive_config", {
"enable_self_reflection": True,
"adaptation_threshold": 0.5, # Minimum score to trigger adaptation
"max_reflection_depth": 3, # Maximum depth of recursive reflection
"attribution_tracking": True, # Track attribution patterns across iterations
"dynamic_prompting": True, # Adjust prompts based on failure patterns
})
# Initialize recursive state
self.recursive_state = {
"reflection_depth": 0,
"adaptation_vector": [0.0] * 5, # Tracks adaptation across dimensions
"attribution_map": {}, # Maps error types to attribution patterns
"error_frequency": {}, # Tracks frequency of error types
"solution_quality_trend": [], # Tracks solution quality over iterations
}
self.logger.info(f"Initialized Anthropic model: {model_identifier} with recursive capability")
@backoff.on_exception(
backoff.expo,
(anthropic.APIError, anthropic.APITimeoutError, anthropic.RateLimitError),
max_tries=5
)
def solve(
self,
problem: Dict[str, Any],
history: Optional[List[Dict[str, Any]]] = None
) -> str:
"""
Generate a solution using the Anthropic model with recursive adaptation.
Args:
problem: The problem to solve
history: Optional history of previous solution attempts
Returns:
The generated solution
"""
self.logger.info(f"Solving problem with Anthropic model: {self.model_identifier}")
start_time = time.time()
# Reset recursive state for new problems if no history
if not history:
self._reset_recursive_state()
elif history:
# Update recursive state based on history
self._update_recursive_state(history)
# Format messages for the model
system_prompt, user_message = self._format_messages(problem, history)
# Make API call
response = self.client.messages.create(
model=self.model_identifier,
system=system_prompt,
messages=[
{"role": "user", "content": user_message}
],
max_tokens=self.api_params.get("max_tokens", 2000),
temperature=self.api_params.get("temperature", 0.2),
top_p=self.api_params.get("top_p", 0.95),
top_k=self.api_params.get("top_k", 50)
)
# Extract the solution from the response
solution = response.content[0].text
end_time = time.time()
self.logger.info(f"Solution generated in {end_time - start_time:.2f} seconds")
# Track solution in recursive state
if solution:
self.recursive_state["reflection_depth"] += 1
return self._extract_code(solution)
def _format_messages(
self,
problem: Dict[str, Any],
history: Optional[List[Dict[str, Any]]] = None
) -> Tuple[str, str]:
"""
Format the problem and history into messages for the Anthropic API.
Args:
problem: The problem to solve
history: Optional history of previous solution attempts
Returns:
Tuple of (system_prompt, user_message)
"""
# Start with base system prompt
system_prompt = self.prompts["system"]
# Enhance system prompt with recursive adaptation if enabled
if self.recursive_config.get("enable_self_reflection", True) and history:
# Add adaptation guidance based on error patterns
if self.recursive_state["error_frequency"]:
top_errors = sorted(
self.recursive_state["error_frequency"].items(),
key=lambda x: x[1],
reverse=True
)[:3]
error_guidance = "Focus particularly on addressing these recurring issues:\n"
for error_type, count in top_errors:
error_guidance += f"- {error_type} (appeared {count} times)\n"
system_prompt += f"\n\n{error_guidance}"
# Add reflection guidance based on solution quality trend
if len(self.recursive_state["solution_quality_trend"]) > 1:
trend = self.recursive_state["solution_quality_trend"]
if trend[-1] > trend[-2]:
system_prompt += "\n\nYour solutions are improving. Continue this trajectory."
elif trend[-1] < trend[-2]:
system_prompt += "\n\nYour solutions are declining in quality. Carefully reconsider your approach."
else:
system_prompt += "\n\nYour solutions maintain the same quality. Try a different approach."
# Format code and tests
code = problem["code_context"]["code"]
# Prepare tests description
tests_description = "# Tests\n"
if "tests" in problem["code_context"]:
tests_description += "The code must pass the following tests:\n\n"
for i, test in enumerate(problem["code_context"]["tests"]):
tests_description += f"## Test {i+1}: {test['name']}\n```python\n{test['content']}\n```\n\n"
else:
tests_description += "The code must work correctly according to its intended functionality."
# Base user message
user_message = self.prompts["user_template"].format(
description=problem["description"],
code=code,
tests_description=tests_description
)
# Add history if available - with recursive reflection
if history and self.recursive_config.get("enable_self_reflection", True):
# Get the most recent entry for reflection
latest_entry = history[-1]
# Format issues
issues_text = "- " + "\n- ".join([issue["message"] for issue in latest_entry["feedback"]["issues"]])
# Format suggestions
suggestions_text = "- " + "\n- ".join([suggestion["message"] for suggestion in latest_entry["feedback"]["suggestions"]])
# Format test results
test_results = latest_entry.get("result", {})
passed_tests = test_results.get("passed_tests", 0)
total_tests = test_results.get("total_tests", 0)
test_results_text = f"Passed {passed_tests}/{total_tests} tests."
if "tests" in test_results:
test_results_text += "\n\nIndividual test results:"
for test_name, test_result in test_results["tests"].items():
status = "✅ Passed" if test_result.get("passed", False) else "❌ Failed"
test_results_text += f"\n- {test_name}: {status}"
if not test_result.get("passed", False) and "message" in test_result:
test_results_text += f"\n Error: {test_result['message']}"
# Add reflection prompt
reflection_prompt = self.prompts["reflection_template"].format(
issues=issues_text,
suggestions=suggestions_text,
test_results=test_results_text
)
# Prepend reflection to user message
user_message = f"{reflection_prompt}\n\n{user_message}"
# Add dynamic adaptation based on error patterns if enabled
if self.recursive_config.get("dynamic_prompting", True):
# Look for specific error patterns and add targeted guidance
error_types = [issue.get("type", "") for issue in latest_entry["feedback"]["issues"]]
if "syntax" in " ".join(error_types).lower():
user_message += "\n\nPay careful attention to syntax correctness. Double-check all parentheses, indentation, and function definitions."
if "test_failure" in " ".join(error_types).lower():
user_message += "\n\nFocus on making the code pass the failing tests. Carefully trace through the code execution for each test case."
if "edge_case" in " ".join(error_types).lower() or "boundary" in " ".join(error_types).lower():
user_message += "\n\nBe sure to handle edge cases such as empty inputs, boundary values, and special cases."
if "performance" in " ".join(error_types).lower():
user_message += "\n\nOptimize your solution for better performance. Avoid unnecessary operations and inefficient data structures."
return system_prompt, user_message
def _extract_code(self, text: str) -> str:
"""
Extract code from the model's response.
Args:
text: The model's response
Returns:
Extracted code
"""
# Try to extract code from markdown code blocks
code_blocks = re.findall(r'```(?:python)?\s*(.*?)\s*```', text, re.DOTALL)
if code_blocks:
return code_blocks[0].strip()
# If no code blocks, return the full text (it might be just code)
return text.strip()
def _reset_recursive_state(self):
"""Reset the recursive state for a new problem."""
self.recursive_state = {
"reflection_depth": 0,
"adaptation_vector": [0.0] * 5,
"attribution_map": {},
"error_frequency": {},
"solution_quality_trend": [],
}
def _update_recursive_state(self, history: List[Dict[str, Any]]):
"""
Update recursive state based on solution history.
Args:
history: History of previous solution attempts
"""
# Extract scores from history
scores = [entry.get("result", {}).get("score", 0.0) for entry in history]
self.recursive_state["solution_quality_trend"] = scores
# Calculate adaptation vector
if len(scores) >= 2:
# Dimension 0: Overall improvement trajectory
improvement = scores[-1] - scores[0]
self.recursive_state["adaptation_vector"][0] = max(-1.0, min(1.0, improvement))
# Dimension 1: Recent improvement
recent_improvement = scores[-1] - scores[-2]
self.recursive_state["adaptation_vector"][1] = max(-1.0, min(1.0, recent_improvement))
# Update error frequency from latest feedback
if history:
latest_feedback = history[-1].get("feedback", {})
issues = latest_feedback.get("issues", [])
for issue in issues:
issue_type = issue.get("type", "unknown")
self.recursive_state["error_frequency"][issue_type] = self.recursive_state["error_frequency"].get(issue_type, 0) + 1
# Update reflection depth
self.recursive_state["reflection_depth"] = len(history)
def get_meta_information(self) -> Dict[str, Any]:
"""
Get meta information about the model.
Returns:
Dictionary containing model information
"""
return {
"model_name": self.model_identifier,
"provider": "Anthropic",
"type": "API",
"parameters": self.api_params,
"system_prompt": self.prompts["system"],
"recursive_capability": self.recursive_config.get("enable_self_reflection", True),
"reflection_depth": self.recursive_state["reflection_depth"],
"adaptation_vector": self.recursive_state["adaptation_vector"]
}
# recursive_swe_bench/evaluation/recursive_metrics.py
import numpy as np
import scipy.stats
from typing import Any, Dict, List, Optional, Union
import dataclasses
import math
from recursive_swe_bench.core.recursive_task import Trajectory
class RecursiveLearningCurveArea:
"""
Measures the area under the learning curve across iterations.
This metric captures the overall performance of a model throughout its
learning trajectory, rewarding both high scores and quick improvement.
"""
def __init__(self, config: Dict[str, Any] = None):
"""
Initialize the recursive learning curve area metric.
Args:
config: Configuration options
"""
self.config = config or {}
self.max_score = self.config.get("max_score", 1.0)
self.normalize = self.config.get("normalize", True)
def calculate(self, trajectory: Trajectory) -> float:
"""
Calculate the area under the learning curve.
Args:
trajectory: The solution trajectory
Returns:
The normalized area under the learning curve
"""
scores = trajectory.get_score_series()
if not scores:
return 0.0
# Calculate the area under the curve using trapezoidal rule
area = np.trapz(scores, dx=1.0)
# Normalize by the maximum possible area if requested
if self.normalize:
max_area = self.max_score * len(scores)
return area / max_area
return area
class AdaptationRate:
"""
Measures the rate at which the model improves its solutions.
This metric captures how quickly a model adapts to feedback and
improves its solutions across iterations.
"""
def __init__(self, config: Dict[str, Any] = None):
"""
Initialize the adaptation rate metric.
Args:
config: Configuration options
"""
self.config = config or {}
self.min_iterations = self.config.get("min_iterations", 2)
def calculate(self, trajectory: Trajectory) -> float:
"""
Calculate the adaptation rate.
Args:
trajectory: The solution trajectory
Returns:
The adaptation rate
"""
scores = trajectory.get_score_series()
if len(scores) < self.min_iterations:
return 0.0
# Calculate the average improvement per iteration
total_improvement = scores[-1] - scores[0]
iterations = len(scores) - 1
return total_improvement / iterations
class RecursiveVolatility:
"""
Measures the volatility of solution quality across iterations.
This metric captures how stable or erratic a model's performance
is across iterations.
"""
def __init__(self, config: Dict[str, Any] = None):
"""
Initialize the recursive volatility metric.
Args:
config: Configuration options
"""
self.config = config or {}
self.min_iterations = self.config.get("min_iterations", 3)
self.normalize = self.config.get("normalize", True)
def calculate(self, trajectory: Trajectory) -> float:
"""
Calculate the recursive volatility.
Args:
trajectory: The solution trajectory
Returns:
The normalized volatility
"""
scores = trajectory.get_score_series()
if len(scores) < self.min_iterations:
return 0.0
# Calculate the standard deviation of score changes
changes = [abs(scores[i] - scores[i-1]) for i in range(1, len(scores))]
volatility = np.std(changes)
# Normalize by the average score if requested
if self.normalize and np.mean(scores) > 0:
return volatility / np.mean(scores)
return volatility
class ConvergenceIndex:
"""
Measures how quickly the model converges to a stable solution.
This metric captures how efficiently a model reaches a stable solution
across iterations.
"""
def __init__(self, config: Dict[str, Any] = None):
"""
Initialize the convergence index metric.
Args:
config: Configuration options
"""
self.config = config or {}
self.stability_threshold = self.config.get("stability_threshold", 0.05)
self.max_score_threshold = self.config.get("max_score_threshold", 0.95)
def calculate(self, trajectory: Trajectory) -> float:
"""
Calculate the convergence index.
Args:
trajectory: The solution trajectory
Returns:
The convergence index (lower is better)
"""
scores = trajectory.get_score_series()
if not scores:
return 0.0
# Find the first iteration where the score stabilizes
# (subsequent changes are below the stability threshold)
convergence_point = len(scores) - 1
for i in range(1, len(scores)):
remaining_changes = [abs(scores[j] - scores[j-1]) for j in range(i, len(scores))]
if all(change <= self.stability_threshold for change in remaining_changes):
convergence_point = i
break
# Find the first iteration where the score exceeds the max score threshold
max_score_point = len(scores)
for i, score in enumerate(scores):
if score >= self.max_score_threshold:
max_score_point = i
break
# Return a combined index
# Lower is better - converging quickly to a high score is ideal
return (convergence_point / len(scores)) * (1.0 - max(0.0, min(1.0, scores[-1])))
class ErrorRecoveryEfficiency:
"""
Measures how efficiently the model recovers from errors.
This metric captures how well a model addresses and fixes specific
errors across iterations.
"""
def __init__(self, config: Dict[str, Any] = None):
"""
Initialize the error recovery efficiency metric.
Args:
config: Configuration options
"""
self.config = config or {}
def calculate(self, trajectory: Trajectory) -> float:
"""
Calculate the error recovery efficiency.
Args:
trajectory: The solution trajectory
Returns:
The error recovery efficiency
"""
if not trajectory.steps or len(trajectory.steps) < 2:
return 0.0
# Extract error counts from each step
error_counts = []
for step in trajectory.steps:
if hasattr(step, "result") and hasattr(step.result, "error_details"):
error_counts.append(len(step.result.error_details or {}))
else:
# If no error details available, use issue count from feedback
error_counts.append(len(step.feedback.issues))
if not error_counts or error_counts[0] == 0:
return 1.0 # Perfect if no initial errors
# Calculate the rate at which errors are fixed
initial_errors = error_counts[0]
final_errors = error_counts[-1]
# Return the proportion of errors fixed
return (initial_errors - final_errors) / initial_errors
class DynamicComplexityHandling:
"""
Measures how well the model handles varying problem complexity.
This metric evaluates performance while accounting for changes in
problem difficulty across iterations.
"""
def __init__(self, config: Dict[str, Any] = None):
"""
Initialize the dynamic complexity handling metric.
Args:
config: Configuration options
"""
self.config = config or {}
def calculate(self, trajectory: Trajectory) -> float:
"""
Calculate the dynamic complexity handling score.
Args:
trajectory: The solution trajectory
Returns:
The dynamic complexity handling score
"""
if not trajectory.steps:
return 0.0
# Extract scores and difficulties from each step
scores = []
difficulties = []
for step in trajectory.steps:
scores.append(step.result.score)
difficulties.append(step.problem_state.difficulty)
# Calculate difficulty-weighted scores
weighted_scores = [scores[i] / max(0.1, difficulties[i]) for i in range(len(scores))]
# Return the average weighted score
return sum(weighted_scores) / len(weighted_scores)
class RecursiveFrameworkMetrics:
"""
Comprehensive collection of metrics for recursive evaluation.
This class provides easy access to all recursive metrics and
standardized calculation across trajectories.
"""
def __init__(self, config: Dict[str, Any] = None):
"""
Initialize the recursive framework metrics.
Args:
config: Configuration options
"""
self.config = config or {}
# Initialize all metrics
self.metrics = {
"learning_curve_area": RecursiveLearningCurveArea(self.config.get("learning_curve_area")),
"adaptation_rate": AdaptationRate(self.config.get("adaptation_rate")),
"volatility": RecursiveVolatility(self.config.get("volatility")),
"convergence_index": ConvergenceIndex(self.config.get("convergence_index")),
"error_recovery": ErrorRecoveryEfficiency(self.config.get("error_recovery")),
"complexity_handling": DynamicComplexityHandling(self.config.get("complexity_handling"))
}
# Add custom metrics from config if provided
if "custom_metrics" in self.config:
for name, metric in self.config["custom_metrics"].items():
self.metrics[name] = metric
def calculate_all(self, trajectory: Trajectory) -> Dict[str, float]:
"""
Calculate all metrics for a trajectory.
Args:
trajectory: The solution trajectory
Returns:
Dictionary of metric names and values
"""
return {name: metric.calculate(trajectory)
for name, metric in self.metrics.items()}
def calculate(self, trajectory: Trajectory, metric_name: str) -> float:
"""
Calculate a specific metric for a trajectory.
Args:
trajectory: The solution trajectory
metric_name: The name of the metric to calculate
Returns:
The calculated metric value
"""
if metric_name not in self.metrics:
raise ValueError(f"Unknown metric: {metric_name}")
return self.metrics[metric_name].calculate(trajectory)
def aggregate_metrics(self, trajectories: List[Trajectory]) -> Dict[str, float]:
"""
Calculate aggregate metrics across multiple trajectories.
Args:
trajectories: List of solution trajectories
Returns:
Dictionary of aggregated metric values
"""
if not trajectories:
return {}
all_metrics = [self.calculate_all(trajectory) for trajectory in trajectories]
# Aggregate by averaging each metric
aggregated = {}
for metric_name in self.metrics:
values = [metrics[metric_name] for metrics in all_metrics]
aggregated[metric_name] = sum(values) / len(values)
return aggregated
# recursive_swe_bench/evaluation/visualizer.py
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from typing import Any, Dict, List, Optional, Union
import os
import json
import seaborn as sns
from pathlib import Path
from recursive_swe_bench.core.recursive_task import Trajectory
class RecursiveVisualizer:
"""
Visualization tools for recursive evaluation results.
This class provides methods for visualizing recursive trajectories,
metrics, and comparative analysis across models.
"""
def __init__(self, output_dir: Optional[str] = None, config: Dict[str, Any] = None):
"""
Initialize the recursive visualizer.
Args:
output_dir: Directory to save visualizations
config: Configuration options
"""
self.output_dir = output_dir
if output_dir:
os.makedirs(output_dir, exist_ok=True)
self.config = config or {}
self.theme = self.config.get("theme", "default")
# Set up the visualization style
if self.theme == "dark":
plt.style.use("dark_background")
self.colors = sns.color_palette("viridis", 10)
else:
plt.style.use("seaborn-v0_8-whitegrid")
self.colors = sns.color_palette("muted", 10)
sns.set_context("talk")
def plot_trajectory(
self,
trajectory: Trajectory,
title: Optional[str] = None,
show: bool = True,
save_path: Optional[str] = None
):
"""
Plot a solution trajectory showing score evolution.
Args:
trajectory: The solution trajectory
title: Optional title for the plot
show: Whether to display the plot
save_path: Optional path to save the plot
"""
scores = trajectory.get_score_series()
if not scores:
return
plt.figure(figsize=(10, 6))
# Plot scores
plt.plot(range(1, len(scores) + 1), scores, marker='o',
linewidth=2, markersize=8, color=self.colors[0])
# Add difficulty if available
difficulties = [step.problem_state.difficulty for step in trajectory.steps]
if difficulties:
plt.plot(range(1, len(difficulties) + 1), difficulties, marker='s',
linewidth=2, markersize=8, color=self.colors[1], linestyle='--',
label='Problem Difficulty')
# Set plot properties
plt.title(title or f"Solution Trajectory for Task {trajectory.task_id}")
plt.xlabel("Iteration")
plt.ylabel("Score / Difficulty")
plt.grid(True)
plt.ylim(0, 1.05)
plt.xticks(range(1, len(scores) + 1))
plt.legend(["Solution Score", "Problem Difficulty"])
# Save if requested
if save_path:
full_path = os.path.join(self.output_dir, save_path) if self.output_dir else save_path
plt.savefig(full_path, bbox_inches='tight', dpi=300)
# Show if requested
if show:
plt.show()
else:
plt.close()
def plot_metrics_comparison(
self,
metrics_by_model: Dict[str, Dict[str, float]],
title: Optional[str] = None,
show: bool = True,
save_path: Optional[str] = None
):
"""
Plot a comparison of metrics across models.
Args:
metrics_by_model: Dictionary mapping model names to metric values
title: Optional title for the plot
show: Whether to display the plot
save_path: Optional path to save the plot
"""
if not metrics_by_model:
return
# Convert to DataFrame for easier plotting
df = pd.DataFrame(metrics_by_model).T
# Create a radar chart
categories = list(df.columns)
N = len(categories)
# Create angles for each metric
angles = [n / float(N) * 2 * np.pi for n in range(N)]
angles += angles[:1] # Close the loop
# Create figure
fig, ax = plt.subplots(figsize=(10, 10), subplot_kw=dict(polar=True))
# Add lines for each model
for i, (model, metrics) in enumerate(df.iterrows()):
values = metrics.values.flatten().tolist()
values += values[:1] # Close the loop
# Plot the line
ax.plot(angles, values, linewidth=2, linestyle='solid',
label=model, color=self.colors[i % len(self.colors)])
ax.fill(angles, values, alpha=0.1, color=self.colors[i % len(self.colors)])
# Set category labels
plt.xticks(angles[:-1], categories)
# Set y-axis limits
plt.ylim(0, 1)
# Add legend
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))
# Set title
plt.title(title or "Metrics Comparison Across Models")
# Save if requested
if save_path:
full_path = os.path.join(self.output_dir, save_path) if self.output_dir else save_path
plt.savefig(full_path, bbox_inches='tight',
|