File size: 15,468 Bytes
e8a0a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# recursive_swe_bench/evaluation/harness.py

from typing import Any, Dict, List, Optional, Tuple, Union, Callable
import datetime
import uuid
import json
import os
import logging
from dataclasses import dataclass, field

from recursive_swe_bench.core.recursive_task import (
    RecursiveTask, Trajectory, TrajectoryStep, ProblemState, 
    EvaluationResult, Feedback, TaskStatus
)

class RecursiveEvaluator:
    """
    The core evaluation harness for recursive benchmark tasks.
    
    This class orchestrates the recursive evaluation process, managing the interactions
    between models and tasks, tracking trajectories, and calculating metrics.
    """
    
    def __init__(
        self,
        model: Any,  # Model interface
        metrics: Dict[str, Any],  # Metric calculators
        config: Dict[str, Any] = None
    ):
        """
        Initialize the recursive evaluator.
        
        Args:
            model: The model to evaluate
            metrics: Dictionary of metric calculators
            config: Configuration options
        """
        self.model = model
        self.metrics = metrics
        self.config = config or {}
        self.logger = self._setup_logger()
        
    def _setup_logger(self) -> logging.Logger:
        """Set up logging for the evaluator."""
        logger = logging.getLogger("RecursiveEvaluator")
        handler = logging.StreamHandler()
        formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
        handler.setFormatter(formatter)
        logger.addHandler(handler)
        logger.setLevel(self.config.get("log_level", logging.INFO))
        return logger
    
    def evaluate_task(
        self, 
        task: RecursiveTask,
        max_iterations: int = 5
    ) -> Tuple[Trajectory, Dict[str, float]]:
        """
        Run a full recursive evaluation on a single task.
        
        Args:
            task: The task to evaluate
            max_iterations: Maximum number of iterations
            
        Returns:
            The trajectory and calculated metrics
        """
        self.logger.info(f"Starting evaluation of task {task.task_id}")
        
        for i in range(max_iterations):
            self.logger.info(f"Starting iteration {i+1}/{max_iterations}")
            
            # Get the current problem
            problem = task.get_current_problem()
            self.logger.debug(f"Problem state: evolution_stage={problem['evolution_stage']}")
            
            # Format the problem for the model
            formatted_problem = self._format_problem_for_model(problem, task.trajectory)
            
            # Get model solution
            self.logger.debug("Requesting solution from model")
            solution = self.model.solve(formatted_problem)
            
            # Evaluate the solution
            self.logger.debug("Evaluating solution")
            result, feedback = task.evaluate_solution(solution)
            
            # Log the results
            self.logger.info(f"Solution score: {result.score:.4f}, Success: {result.success}")
            
            # Update the task state based on the solution
            new_state = task.update_state(solution, result, feedback)
            
            # Check if we've reached a terminal state
            if task.status != TaskStatus.IN_PROGRESS:
                self.logger.info(f"Task complete with status: {task.status.value}")
                break
                
        # Calculate metrics across the trajectory
        self.logger.info("Calculating metrics")
        metrics_result = self._calculate_metrics(task.trajectory)
        
        return task.trajectory, metrics_result
    
    def evaluate_task_set(
        self,
        tasks: List[RecursiveTask],
        max_iterations: int = 5,
        output_dir: Optional[str] = None
    ) -> Dict[str, Any]:
        """
        Evaluate a set of tasks and aggregate the results.
        
        Args:
            tasks: List of tasks to evaluate
            max_iterations: Maximum iterations per task
            output_dir: Directory to save results (optional)
            
        Returns:
            Dictionary of aggregated results
        """
        self.logger.info(f"Evaluating {len(tasks)} tasks")
        
        results = {}
        trajectories = {}
        all_metrics = {}
        
        for i, task in enumerate(tasks):
            self.logger.info(f"Evaluating task {i+1}/{len(tasks)}: {task.task_id}")
            
            # Evaluate the task
            trajectory, metrics = self.evaluate_task(task, max_iterations)
            
            # Store the results
            trajectories[task.task_id] = trajectory
            all_metrics[task.task_id] = metrics
            
            # Save the trajectory if output_dir is provided
            if output_dir:
                os.makedirs(output_dir, exist_ok=True)
                task_output_path = os.path.join(output_dir, f"task_{task.task_id}.json")
                task.save(task_output_path)
                self.logger.info(f"Saved task to {task_output_path}")
        
        # Aggregate metrics across all tasks
        aggregated_metrics = self._aggregate_metrics(all_metrics)
        
        # Compile results
        results = {
            "aggregated_metrics": aggregated_metrics,
            "task_metrics": all_metrics,
            "timestamp": datetime.datetime.now().isoformat(),
            "model_info": self.model.get_meta_information(),
            "total_tasks": len(tasks),
            "config": self.config
        }
        
        # Save aggregated results if output_dir is provided
        if output_dir:
            results_path = os.path.join(output_dir, "aggregated_results.json")
            with open(results_path, "w") as f:
                json.dump(results, f, indent=2)
            self.logger.info(f"Saved aggregated results to {results_path}")
        
        return results
    
    def _format_problem_for_model(
        self, 
        problem: Dict[str, Any],
        trajectory: Trajectory
    ) -> Dict[str, Any]:
        """
        Format the problem in a way the model can understand.
        
        Args:
            problem: The problem state
            trajectory: The trajectory so far
            
        Returns:
            Formatted problem for the model
        """
        # Extract the previous steps if they exist
        previous_steps = []
        for step in trajectory.steps:
            previous_steps.append({
                "problem": {
                    "description": step.problem_state.description,
                    "requirements": step.problem_state.requirements,
                    "evolution_stage": step.problem_state.evolution_stage
                },
                "solution": step.solution,
                "feedback": {
                    "summary": step.feedback.summary,
                    "issues": step.feedback.issues,
                    "suggestions": step.feedback.suggestions,
                    "focus_areas": step.feedback.focus_areas
                }
            })
        
        # Format the problem with the trajectory context
        formatted_problem = {
            "description": problem["description"],
            "code_context": problem["code_context"],
            "requirements": problem["requirements"],
            "iteration": problem["evolution_stage"] + 1,
            "previous_attempts": previous_steps
        }
        
        return formatted_problem
    
    def _calculate_metrics(self, trajectory: Trajectory) -> Dict[str, float]:
        """
        Calculate metrics across the trajectory.
        
        Args:
            trajectory: The solution trajectory
            
        Returns:
            Dictionary of metric values
        """
        return {name: metric.calculate(trajectory) 
                for name, metric in self.metrics.items()}
    
    def _aggregate_metrics(
        self, 
        all_metrics: Dict[str, Dict[str, float]]
    ) -> Dict[str, float]:
        """
        Aggregate metrics across multiple tasks.
        
        Args:
            all_metrics: Dictionary of metrics per task
            
        Returns:
            Dictionary of aggregated metrics
        """
        # Initialize aggregated metrics
        if not all_metrics:
            return {}
            
        sample_metrics = next(iter(all_metrics.values()))
        aggregated = {name: 0.0 for name in sample_metrics.keys()}
        
        # Sum up metrics
        for task_metrics in all_metrics.values():
            for name, value in task_metrics.items():
                aggregated[name] += value
        
        # Calculate averages
        for name in aggregated:
            aggregated[name] /= len(all_metrics)
            
        return aggregated


# recursive_swe_bench/evaluation/metrics/recursive.py

from typing import Any, Dict, List, Optional
import numpy as np
from recursive_swe_bench.core.recursive_task import Trajectory


class RecursiveMetric:
    """Base class for recursive metrics."""
    
    def __init__(self, config: Dict[str, Any] = None):
        self.config = config or {}
    
    def calculate(self, trajectory: Trajectory) -> float:
        """
        Calculate the metric value for a trajectory.
        
        Args:
            trajectory: The solution trajectory
            
        Returns:
            The metric value
        """
        raise NotImplementedError("Subclasses must implement this method")


class ConvergenceRate(RecursiveMetric):
    """
    Measures how quickly the model reaches a stable solution.
    
    A lower value indicates faster convergence.
    """
    
    def calculate(self, trajectory: Trajectory) -> float:
        scores = trajectory.get_score_series()
        if len(scores) < 2:
            return 0.0
            
        # Calculate changes between consecutive scores
        deltas = [abs(scores[i+1] - scores[i]) 
                 for i in range(len(scores)-1)]
        
        # A lower sum indicates faster convergence
        # Normalize by the number of iterations
        return sum(deltas) / len(deltas)


class AdaptationEfficiency(RecursiveMetric):
    """
    Measures improvement per feedback iteration.
    
    A higher value indicates more efficient adaptation.
    """
    
    def calculate(self, trajectory: Trajectory) -> float:
        scores = trajectory.get_score_series()
        if len(scores) < 2:
            return 0.0
            
        # Calculate the improvement from first to last iteration
        total_improvement = max(0.0, scores[-1] - scores[0])
        
        # Normalize by the number of iterations
        return total_improvement / (len(scores) - 1)


class LearningCurveArea(RecursiveMetric):
    """
    Measures the area under the learning curve.
    
    A higher value indicates better overall performance across iterations.
    """
    
    def calculate(self, trajectory: Trajectory) -> float:
        scores = trajectory.get_score_series()
        if not scores:
            return 0.0
        
        # Calculate the area under the curve
        # Normalize by the maximum possible area (perfect score from the start)
        max_score = self.config.get("max_score", 1.0)
        max_area = max_score * len(scores)
        
        return sum(scores) / max_area


class ProbabilisticSolutionQuality(RecursiveMetric):
    """
    Measures the distribution of solution quality using non-deterministic assessment.
    
    This metric captures the robustness of solutions by measuring the variability in quality
    across multiple probabilistic evaluations.
    """
    
    def calculate(self, trajectory: Trajectory) -> float:
        # For each step, we expect the result.metrics to contain probabilistic assessments
        steps = trajectory.steps
        if not steps:
            return 0.0
        
        # Extract probabilistic quality distributions if available
        distributions = []
        for step in steps:
            if (step.result.metrics and 
                "probabilistic_quality_distribution" in step.result.metrics):
                distributions.append(
                    step.result.metrics["probabilistic_quality_distribution"])
        
        if not distributions:
            # Fall back to deterministic scores if no distributions are available
            return trajectory.get_score_series()[-1]
        
        # Calculate the expected value of the final distribution
        final_distribution = distributions[-1]
        return sum(prob * val for val, prob in final_distribution.items())


class TransferLearningFactor(RecursiveMetric):
    """
    Measures how well learning transfers across related problems.
    
    This requires multiple trajectories from related tasks.
    """
    
    def __init__(self, config: Dict[str, Any] = None, related_trajectories: List[Trajectory] = None):
        super().__init__(config)
        self.related_trajectories = related_trajectories or []
    
    def calculate(self, trajectory: Trajectory) -> float:
        # This metric requires related trajectories
        if not self.related_trajectories:
            return 0.0
        
        # Get learning rates for the current trajectory and related ones
        current_learning_rate = self._calculate_learning_rate(trajectory)
        
        related_learning_rates = [
            self._calculate_learning_rate(rel_traj)
            for rel_traj in self.related_trajectories
        ]
        
        # Filter out invalid learning rates
        valid_related_rates = [rate for rate in related_learning_rates if rate is not None]
        
        if not valid_related_rates:
            return 0.0
        
        # Calculate the transfer factor as the ratio of the current learning rate
        # to the average of related learning rates
        avg_related_rate = sum(valid_related_rates) / len(valid_related_rates)
        
        if avg_related_rate == 0:
            return 0.0
            
        return current_learning_rate / avg_related_rate
    
    def _calculate_learning_rate(self, trajectory: Trajectory) -> Optional[float]:
        """Calculate the learning rate for a trajectory."""
        scores = trajectory.get_score_series()
        if len(scores) < 2:
            return None
            
        # Calculate improvement per iteration
        return (scores[-1] - scores[0]) / (len(scores) - 1)


class DynamicComplexityHandling(RecursiveMetric):
    """
    Measures how well the model handles varying problem complexity.
    
    This metric evaluates performance while accounting for changes in problem difficulty.
    """
    
    def calculate(self, trajectory: Trajectory) -> float:
        if not trajectory.steps:
            return 0.0
        
        # Extract scores and difficulties
        scores = trajectory.get_score_series()
        difficulties = [step.problem_state.difficulty for step in trajectory.steps]
        
        if len(scores) < 2:
            return scores[0]  # Return the single score if only one step
        
        # Calculate normalized scores (adjusted by difficulty)
        normalized_scores = [scores[i] * (1 + difficulties[i]) 
                           for i in range(len(scores))]
        
        # Return the average normalized score
        return sum(normalized_scores) / len(normalized_scores)