File size: 16,621 Bytes
e8a0a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# recursive_swe_bench/core/recursive_task.py

from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
from enum import Enum
import datetime
import uuid
import json
import copy

class TaskStatus(Enum):
    """Status of a recursive task."""
    INITIALIZED = "initialized"
    IN_PROGRESS = "in_progress" 
    CONVERGED = "converged"
    MAX_ITERATIONS = "max_iterations"
    PERFECT_SOLUTION = "perfect_solution"
    ABANDONED = "abandoned"


@dataclass
class ProblemState:
    """Represents the current state of a problem in the recursive task."""
    problem_id: str
    description: str
    code_context: Dict[str, Any]
    requirements: List[Dict[str, Any]]
    difficulty: float  # 0.0 to 1.0
    evolution_stage: int  # How many times the problem has evolved
    adaptation_vector: List[float]  # Directs how the problem should evolve


@dataclass
class EvaluationResult:
    """Results from evaluating a solution."""
    success: bool
    score: float  # 0.0 to 1.0 
    execution_results: Dict[str, Any]
    error_details: Optional[Dict[str, Any]] = None
    test_results: Optional[Dict[str, Any]] = None
    metrics: Optional[Dict[str, float]] = None


@dataclass
class Feedback:
    """Structured feedback on a solution."""
    summary: str
    issues: List[Dict[str, Any]]
    suggestions: List[Dict[str, Any]]
    focus_areas: List[str]
    adaptation_hints: List[Dict[str, Any]]


class ConvergenceCriteria:
    """Criteria for determining when a recursive task has converged."""
    
    def __init__(self, config: Dict[str, Any] = None):
        self.config = config or {}
        self.score_threshold = self.config.get("score_threshold", 0.95)
        self.min_iterations = self.config.get("min_iterations", 1)
        self.max_iterations = self.config.get("max_iterations", 10)
        self.score_delta_threshold = self.config.get("score_delta_threshold", 0.01)
        self.consecutive_plateau_limit = self.config.get("consecutive_plateau_limit", 3)
    
    def has_converged(self, trajectory: "Trajectory") -> bool:
        """Determine if the task has converged based on the trajectory."""
        if len(trajectory.steps) < self.min_iterations:
            return False
            
        if len(trajectory.steps) >= self.max_iterations:
            return True
            
        # Check if we've reached the score threshold
        latest_score = trajectory.steps[-1].result.score
        if latest_score >= self.score_threshold:
            return True
            
        # Check for plateau (little improvement over consecutive iterations)
        if len(trajectory.steps) >= self.consecutive_plateau_limit + 1:
            recent_scores = [step.result.score for step in 
                            trajectory.steps[-self.consecutive_plateau_limit-1:]]
            deltas = [abs(recent_scores[i+1] - recent_scores[i]) 
                     for i in range(len(recent_scores)-1)]
            
            if all(delta < self.score_delta_threshold for delta in deltas):
                return True
                
        return False


@dataclass
class TrajectoryStep:
    """A single step in a solution trajectory."""
    step_id: str
    timestamp: datetime.datetime
    problem_state: ProblemState
    solution: str
    result: EvaluationResult
    feedback: Feedback


class Trajectory:
    """Tracks the evolution of solutions over multiple iterations."""
    
    def __init__(self, task_id: str):
        self.task_id = task_id
        self.steps: List[TrajectoryStep] = []
        self.metadata: Dict[str, Any] = {
            "start_time": datetime.datetime.now(),
            "task_id": task_id
        }
        
    def add_step(self, problem_state: ProblemState, solution: str, 
                result: EvaluationResult, feedback: Feedback) -> None:
        """Add a step to the trajectory."""
        step = TrajectoryStep(
            step_id=str(uuid.uuid4()),
            timestamp=datetime.datetime.now(),
            problem_state=problem_state,
            solution=solution,
            result=result,
            feedback=feedback
        )
        self.steps.append(step)
        
    def get_solution_series(self) -> List[str]:
        """Return the series of solutions."""
        return [step.solution for step in self.steps]
    
    def get_score_series(self) -> List[float]:
        """Return the series of scores."""
        return [step.result.score for step in self.steps]
    
    def get_latest_step(self) -> Optional[TrajectoryStep]:
        """Get the most recent step in the trajectory."""
        if not self.steps:
            return None
        return self.steps[-1]
    
    def calculate_improvement_rate(self) -> float:
        """Calculate the rate of improvement across iterations."""
        scores = self.get_score_series()
        if len(scores) < 2:
            return 0.0
            
        return (scores[-1] - scores[0]) / len(scores)
    
    def calculate_volatility(self) -> float:
        """Calculate the volatility of scores across iterations."""
        scores = self.get_score_series()
        if len(scores) < 2:
            return 0.0
            
        deltas = [abs(scores[i+1] - scores[i]) for i in range(len(scores)-1)]
        return sum(deltas) / len(deltas)
    
    def to_dict(self) -> Dict[str, Any]:
        """Convert the trajectory to a dictionary for serialization."""
        return {
            "task_id": self.task_id,
            "metadata": self.metadata,
            "steps": [
                {
                    "step_id": step.step_id,
                    "timestamp": step.timestamp.isoformat(),
                    "problem_state": {
                        "problem_id": step.problem_state.problem_id,
                        "description": step.problem_state.description,
                        "code_context": step.problem_state.code_context,
                        "requirements": step.problem_state.requirements,
                        "difficulty": step.problem_state.difficulty,
                        "evolution_stage": step.problem_state.evolution_stage,
                        "adaptation_vector": step.problem_state.adaptation_vector
                    },
                    "solution": step.solution,
                    "result": {
                        "success": step.result.success,
                        "score": step.result.score,
                        "execution_results": step.result.execution_results,
                        "error_details": step.result.error_details,
                        "test_results": step.result.test_results,
                        "metrics": step.result.metrics
                    },
                    "feedback": {
                        "summary": step.feedback.summary,
                        "issues": step.feedback.issues,
                        "suggestions": step.feedback.suggestions,
                        "focus_areas": step.feedback.focus_areas,
                        "adaptation_hints": step.feedback.adaptation_hints
                    }
                }
                for step in self.steps
            ]
        }
    
    @classmethod
    def from_dict(cls, data: Dict[str, Any]) -> "Trajectory":
        """Create a trajectory from a dictionary."""
        trajectory = cls(data["task_id"])
        trajectory.metadata = data["metadata"]
        
        for step_data in data["steps"]:
            problem_state = ProblemState(
                problem_id=step_data["problem_state"]["problem_id"],
                description=step_data["problem_state"]["description"],
                code_context=step_data["problem_state"]["code_context"],
                requirements=step_data["problem_state"]["requirements"],
                difficulty=step_data["problem_state"]["difficulty"],
                evolution_stage=step_data["problem_state"]["evolution_stage"],
                adaptation_vector=step_data["problem_state"]["adaptation_vector"]
            )
            
            result = EvaluationResult(
                success=step_data["result"]["success"],
                score=step_data["result"]["score"],
                execution_results=step_data["result"]["execution_results"],
                error_details=step_data["result"]["error_details"],
                test_results=step_data["result"]["test_results"],
                metrics=step_data["result"]["metrics"]
            )
            
            feedback = Feedback(
                summary=step_data["feedback"]["summary"],
                issues=step_data["feedback"]["issues"],
                suggestions=step_data["feedback"]["suggestions"],
                focus_areas=step_data["feedback"]["focus_areas"],
                adaptation_hints=step_data["feedback"]["adaptation_hints"]
            )
            
            trajectory.add_step(
                problem_state=problem_state,
                solution=step_data["solution"],
                result=result,
                feedback=feedback
            )
            
        return trajectory
    
    def save(self, filepath: str) -> None:
        """Save the trajectory to a file."""
        with open(filepath, "w") as f:
            json.dump(self.to_dict(), f, indent=2)
    
    @classmethod
    def load(cls, filepath: str) -> "Trajectory":
        """Load a trajectory from a file."""
        with open(filepath, "r") as f:
            data = json.load(f)
        return cls.from_dict(data)


class RecursiveTask:
    """
    Base class for recursive tasks that evolve based on model solutions.
    
    A recursive task provides a dynamic problem that adapts based on the 
    model's attempted solutions, creating a feedback loop that more accurately
    reflects real-world software engineering challenges.
    """
    
    def __init__(self, 
                 initial_state: ProblemState, 
                 config: Dict[str, Any] = None):
        """
        Initialize the recursive task with an initial problem state.
        
        Args:
            initial_state: The initial state of the problem
            config: Configuration options for the task
        """
        self.task_id = str(uuid.uuid4())
        self.state = initial_state
        self.config = config or {}
        self.trajectory = Trajectory(self.task_id)
        self.status = TaskStatus.INITIALIZED
        self.convergence_criteria = ConvergenceCriteria(
            config.get("convergence_criteria", {}))
        
    def get_current_problem(self) -> Dict[str, Any]:
        """
        Return the current problem description and context.
        
        Returns:
            A dictionary containing the current problem description and context
        """
        return {
            "description": self.state.description,
            "code_context": self.state.code_context,
            "requirements": self.state.requirements,
            "evolution_stage": self.state.evolution_stage
        }
    
    def evaluate_solution(self, solution: str) -> Tuple[EvaluationResult, Feedback]:
        """
        Evaluate a solution and generate feedback.
        
        Args:
            solution: The solution to evaluate
            
        Returns:
            A tuple containing the evaluation result and feedback
        """
        # Run the evaluation logic
        result = self._run_evaluation(solution)
        
        # Generate feedback based on the evaluation
        feedback = self._generate_feedback(solution, result)
        
        return result, feedback
    
    def update_state(self, 
                    solution: str, 
                    result: EvaluationResult, 
                    feedback: Feedback) -> ProblemState:
        """
        Update the problem state based on the solution and feedback.
        
        This method implements the recursive nature of the benchmark by
        evolving the problem based on the model's solution attempt.
        
        Args:
            solution: The attempted solution
            result: The evaluation result
            feedback: The feedback provided
            
        Returns:
            The updated problem state
        """
        # Add the current step to the trajectory
        self.trajectory.add_step(
            problem_state=self.state,
            solution=solution,
            result=result,
            feedback=feedback
        )
        
        # Check if we've converged
        if self.convergence_criteria.has_converged(self.trajectory):
            if self.trajectory.steps[-1].result.score >= self.convergence_criteria.score_threshold:
                self.status = TaskStatus.PERFECT_SOLUTION
            elif len(self.trajectory.steps) >= self.convergence_criteria.max_iterations:
                self.status = TaskStatus.MAX_ITERATIONS
            else:
                self.status = TaskStatus.CONVERGED
            return self.state
        
        # Evolve the problem state based on the solution
        self.state = self._evolve_state(solution, result, feedback)
        
        # Update the status
        self.status = TaskStatus.IN_PROGRESS
        
        return self.state
    
    def _run_evaluation(self, solution: str) -> EvaluationResult:
        """
        Run evaluation logic specific to this task.
        
        Args:
            solution: The solution to evaluate
            
        Returns:
            The evaluation result
        """
        raise NotImplementedError("Subclasses must implement this method")
    
    def _generate_feedback(self, 
                         solution: str, 
                         result: EvaluationResult) -> Feedback:
        """
        Generate structured feedback based on evaluation results.
        
        Args:
            solution: The solution that was evaluated
            result: The evaluation result
            
        Returns:
            Structured feedback
        """
        raise NotImplementedError("Subclasses must implement this method")
    
    def _evolve_state(self, 
                    solution: str, 
                    result: EvaluationResult, 
                    feedback: Feedback) -> ProblemState:
        """
        Evolve the problem state based on the solution and feedback.
        
        This method implements the recursive nature of the benchmark by
        defining how the problem changes in response to solution attempts.
        
        Args:
            solution: The attempted solution
            result: The evaluation result
            feedback: The feedback provided
            
        Returns:
            The evolved problem state
        """
        raise NotImplementedError("Subclasses must implement this method")
    
    def get_trajectory(self) -> Trajectory:
        """
        Get the complete solution trajectory for this task.
        
        Returns:
            The solution trajectory
        """
        return self.trajectory
    
    def to_dict(self) -> Dict[str, Any]:
        """
        Convert the task to a dictionary for serialization.
        
        Returns:
            A dictionary representation of the task
        """
        return {
            "task_id": self.task_id,
            "status": self.status.value,
            "state": {
                "problem_id": self.state.problem_id,
                "description": self.state.description,
                "code_context": self.state.code_context,
                "requirements": self.state.requirements,
                "difficulty": self.state.difficulty,
                "evolution_stage": self.state.evolution_stage,
                "adaptation_vector": self.state.adaptation_vector
            },
            "config": self.config,
            "trajectory": self.trajectory.to_dict()
        }
    
    def save(self, filepath: str) -> None:
        """
        Save the task to a file.
        
        Args:
            filepath: Path to save the task
        """
        with open(filepath, "w") as f:
            json.dump(self.to_dict(), f, indent=2)
    
    @classmethod
    def load(cls, filepath: str) -> "RecursiveTask":
        """
        Load a task from a file.
        
        Args:
            filepath: Path to load the task from
            
        Returns:
            The loaded task
        """
        with open(filepath, "r") as f:
            data = json.load(f)
        
        # This method needs to be implemented by subclasses
        # as they need to implement the abstract methods
        raise NotImplementedError("Subclasses must implement this method")