|
from __future__ import annotations |
|
|
|
from collections import deque |
|
from functools import wraps |
|
from typing import Any, Callable, Dict, Generic, Hashable, Tuple, TypeVar, cast |
|
|
|
__all__ = [ |
|
"SimpleCache", |
|
"FastDictCache", |
|
"memoized", |
|
] |
|
|
|
_T = TypeVar("_T", bound=Hashable) |
|
_U = TypeVar("_U") |
|
|
|
|
|
class SimpleCache(Generic[_T, _U]): |
|
""" |
|
Very simple cache that discards the oldest item when the cache size is |
|
exceeded. |
|
|
|
:param maxsize: Maximum size of the cache. (Don't make it too big.) |
|
""" |
|
|
|
def __init__(self, maxsize: int = 8) -> None: |
|
assert maxsize > 0 |
|
|
|
self._data: dict[_T, _U] = {} |
|
self._keys: deque[_T] = deque() |
|
self.maxsize: int = maxsize |
|
|
|
def get(self, key: _T, getter_func: Callable[[], _U]) -> _U: |
|
""" |
|
Get object from the cache. |
|
If not found, call `getter_func` to resolve it, and put that on the top |
|
of the cache instead. |
|
""" |
|
|
|
try: |
|
return self._data[key] |
|
except KeyError: |
|
|
|
value = getter_func() |
|
self._data[key] = value |
|
self._keys.append(key) |
|
|
|
|
|
if len(self._data) > self.maxsize: |
|
key_to_remove = self._keys.popleft() |
|
if key_to_remove in self._data: |
|
del self._data[key_to_remove] |
|
|
|
return value |
|
|
|
def clear(self) -> None: |
|
"Clear cache." |
|
self._data = {} |
|
self._keys = deque() |
|
|
|
|
|
_K = TypeVar("_K", bound=Tuple[Hashable, ...]) |
|
_V = TypeVar("_V") |
|
|
|
|
|
class FastDictCache(Dict[_K, _V]): |
|
""" |
|
Fast, lightweight cache which keeps at most `size` items. |
|
It will discard the oldest items in the cache first. |
|
|
|
The cache is a dictionary, which doesn't keep track of access counts. |
|
It is perfect to cache little immutable objects which are not expensive to |
|
create, but where a dictionary lookup is still much faster than an object |
|
instantiation. |
|
|
|
:param get_value: Callable that's called in case of a missing key. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, get_value: Callable[..., _V], size: int = 1000000) -> None: |
|
assert size > 0 |
|
|
|
self._keys: deque[_K] = deque() |
|
self.get_value = get_value |
|
self.size = size |
|
|
|
def __missing__(self, key: _K) -> _V: |
|
|
|
if len(self) > self.size: |
|
key_to_remove = self._keys.popleft() |
|
if key_to_remove in self: |
|
del self[key_to_remove] |
|
|
|
result = self.get_value(*key) |
|
self[key] = result |
|
self._keys.append(key) |
|
return result |
|
|
|
|
|
_F = TypeVar("_F", bound=Callable[..., object]) |
|
|
|
|
|
def memoized(maxsize: int = 1024) -> Callable[[_F], _F]: |
|
""" |
|
Memoization decorator for immutable classes and pure functions. |
|
""" |
|
|
|
def decorator(obj: _F) -> _F: |
|
cache: SimpleCache[Hashable, Any] = SimpleCache(maxsize=maxsize) |
|
|
|
@wraps(obj) |
|
def new_callable(*a: Any, **kw: Any) -> Any: |
|
def create_new() -> Any: |
|
return obj(*a, **kw) |
|
|
|
key = (a, tuple(sorted(kw.items()))) |
|
return cache.get(key, create_new) |
|
|
|
return cast(_F, new_callable) |
|
|
|
return decorator |
|
|