ai-bot-test
/
venv
/lib
/python3.11
/site-packages
/huggingface_hub
/inference
/_providers
/nebius.py
import base64 | |
from typing import Any, Dict, Optional, Union | |
from huggingface_hub.hf_api import InferenceProviderMapping | |
from huggingface_hub.inference._common import RequestParameters, _as_dict | |
from huggingface_hub.inference._providers._common import ( | |
BaseConversationalTask, | |
BaseTextGenerationTask, | |
TaskProviderHelper, | |
filter_none, | |
) | |
class NebiusTextGenerationTask(BaseTextGenerationTask): | |
def __init__(self): | |
super().__init__(provider="nebius", base_url="https://api.studio.nebius.ai") | |
def get_response(self, response: Union[bytes, Dict], request_params: Optional[RequestParameters] = None) -> Any: | |
output = _as_dict(response)["choices"][0] | |
return { | |
"generated_text": output["text"], | |
"details": { | |
"finish_reason": output.get("finish_reason"), | |
"seed": output.get("seed"), | |
}, | |
} | |
class NebiusConversationalTask(BaseConversationalTask): | |
def __init__(self): | |
super().__init__(provider="nebius", base_url="https://api.studio.nebius.ai") | |
class NebiusTextToImageTask(TaskProviderHelper): | |
def __init__(self): | |
super().__init__(task="text-to-image", provider="nebius", base_url="https://api.studio.nebius.ai") | |
def _prepare_route(self, mapped_model: str, api_key: str) -> str: | |
return "/v1/images/generations" | |
def _prepare_payload_as_dict( | |
self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping | |
) -> Optional[Dict]: | |
mapped_model = provider_mapping_info.provider_id | |
parameters = filter_none(parameters) | |
if "guidance_scale" in parameters: | |
parameters.pop("guidance_scale") | |
if parameters.get("response_format") not in ("b64_json", "url"): | |
parameters["response_format"] = "b64_json" | |
return {"prompt": inputs, **parameters, "model": mapped_model} | |
def get_response(self, response: Union[bytes, Dict], request_params: Optional[RequestParameters] = None) -> Any: | |
response_dict = _as_dict(response) | |
return base64.b64decode(response_dict["data"][0]["b64_json"]) | |