English
medical
brain-data
mri
jesseab commited on
Commit
70d8833
·
1 Parent(s): e9c8ebd

Changes model dims

Browse files
.DS_Store ADDED
Binary file (6.15 kB). View file
 
__pycache__/brlp_lite.cpython-310.pyc DELETED
Binary file (18.2 kB)
 
brlp_lite.py CHANGED
@@ -72,10 +72,11 @@ INPUT_SHAPE_1mm = (182, 218, 182)
72
  INPUT_SHAPE_1p5mm = (122, 146, 122)
73
 
74
  # Adjusting the dimensions to be divisible by 8 (2^3 where 3 are the downsampling layers of the AE)
75
- INPUT_SHAPE_AE = (120, 144, 120)
 
76
 
77
  # Latent shape of the autoencoder
78
- LATENT_SHAPE_AE = (3, 15, 18, 15)
79
 
80
 
81
  def load_if(checkpoints_path: Optional[str], network: nn.Module) -> nn.Module:
@@ -111,7 +112,7 @@ def init_autoencoder(checkpoints_path: Optional[str] = None) -> nn.Module:
111
  autoencoder = AutoencoderKL(spatial_dims=3,
112
  in_channels=1,
113
  out_channels=1,
114
- latent_channels=3,
115
  num_channels=(64, 128, 128, 128),
116
  num_res_blocks=2,
117
  norm_num_groups=32,
 
72
  INPUT_SHAPE_1p5mm = (122, 146, 122)
73
 
74
  # Adjusting the dimensions to be divisible by 8 (2^3 where 3 are the downsampling layers of the AE)
75
+ #INPUT_SHAPE_AE = (120, 144, 120)
76
+ INPUT_SHAPE_AE = (80, 96, 80)
77
 
78
  # Latent shape of the autoencoder
79
+ LATENT_SHAPE_AE = (1, 10, 12, 10)
80
 
81
 
82
  def load_if(checkpoints_path: Optional[str], network: nn.Module) -> nn.Module:
 
112
  autoencoder = AutoencoderKL(spatial_dims=3,
113
  in_channels=1,
114
  out_channels=1,
115
+ latent_channels=1, #3,
116
  num_channels=(64, 128, 128, 128),
117
  num_res_blocks=2,
118
  norm_num_groups=32,
runs/Jan31_14-52-36_SOM-YT7DYVX-DT/events.out.tfevents.1738363956.SOM-YT7DYVX-DT.46314.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7fa2b1c9d0b68193dc5deed1e0f6dc775a2b6a7ae04cd17e0c4268ee4460451
3
+ size 184408