|
|
|
|
|
""" |
|
inference_brain2vec.py |
|
|
|
Loads a pretrained Brain2vec VAE (AutoencoderKL) model and performs inference |
|
on one or more MRI images, generating reconstructions and latent parameters |
|
(z_mu, z_sigma). |
|
|
|
Example usage: |
|
|
|
# 1) Multiple file paths |
|
python inference_brain2vec.py \ |
|
--checkpoint_path /path/to/autoencoder_checkpoint.pth \ |
|
--input_images /path/to/img1.nii.gz /path/to/img2.nii.gz \ |
|
--output_dir ./vae_inference_outputs \ |
|
--device cuda |
|
|
|
# 2) Use a CSV containing image paths |
|
python inference_brain2vec.py \ |
|
--checkpoint_path /path/to/autoencoder_checkpoint.pth \ |
|
--csv_input /path/to/images.csv \ |
|
--output_dir ./vae_inference_outputs |
|
""" |
|
|
|
import os |
|
import argparse |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from typing import Optional |
|
from monai.transforms import ( |
|
Compose, |
|
CopyItemsD, |
|
LoadImageD, |
|
EnsureChannelFirstD, |
|
SpacingD, |
|
ResizeWithPadOrCropD, |
|
ScaleIntensityD, |
|
) |
|
from generative.networks.nets import AutoencoderKL |
|
import pandas as pd |
|
|
|
|
|
RESOLUTION = 2 |
|
INPUT_SHAPE_AE = (80, 96, 80) |
|
|
|
transforms_fn = Compose([ |
|
CopyItemsD(keys={'image_path'}, names=['image']), |
|
LoadImageD(image_only=True, keys=['image']), |
|
EnsureChannelFirstD(keys=['image']), |
|
SpacingD(pixdim=RESOLUTION, keys=['image']), |
|
ResizeWithPadOrCropD(spatial_size=INPUT_SHAPE_AE, mode='minimum', keys=['image']), |
|
ScaleIntensityD(minv=0, maxv=1, keys=['image']), |
|
]) |
|
|
|
|
|
def preprocess_mri(image_path: str, device: str = "cpu") -> torch.Tensor: |
|
""" |
|
Preprocess an MRI using MONAI transforms to produce |
|
a 5D tensor (batch=1, channel=1, D, H, W) for inference. |
|
|
|
Args: |
|
image_path (str): Path to the MRI (e.g. .nii.gz). |
|
device (str): Device to place the tensor on. |
|
|
|
Returns: |
|
torch.Tensor: Shape (1, 1, D, H, W). |
|
""" |
|
data_dict = {"image_path": image_path} |
|
output_dict = transforms_fn(data_dict) |
|
image_tensor = output_dict["image"] |
|
image_tensor = image_tensor.unsqueeze(0) |
|
return image_tensor.to(device) |
|
|
|
|
|
class Brain2vec(AutoencoderKL): |
|
""" |
|
Subclass of MONAI's AutoencoderKL that includes: |
|
- a from_pretrained(...) for loading a .pth checkpoint |
|
- uses the existing forward(...) that returns (reconstruction, z_mu, z_sigma) |
|
|
|
Usage: |
|
>>> model = Brain2vec.from_pretrained("my_checkpoint.pth", device="cuda") |
|
>>> image_tensor = preprocess_mri("/path/to/mri.nii.gz", device="cuda") |
|
>>> reconstruction, z_mu, z_sigma = model.forward(image_tensor) |
|
""" |
|
|
|
@staticmethod |
|
def from_pretrained( |
|
checkpoint_path: Optional[str] = None, |
|
device: str = "cpu" |
|
) -> nn.Module: |
|
""" |
|
Load a pretrained Brain2vec (AutoencoderKL) if a checkpoint_path is provided. |
|
Otherwise, return an uninitialized model. |
|
|
|
Args: |
|
checkpoint_path (Optional[str]): Path to a .pth checkpoint file. |
|
device (str): "cpu", "cuda", "mps", etc. |
|
|
|
Returns: |
|
nn.Module: The loaded Brain2vec model on the chosen device. |
|
""" |
|
model = Brain2vec( |
|
spatial_dims=3, |
|
in_channels=1, |
|
out_channels=1, |
|
latent_channels=1, |
|
num_channels=(64, 128, 128, 128), |
|
num_res_blocks=2, |
|
norm_num_groups=32, |
|
norm_eps=1e-06, |
|
attention_levels=(False, False, False, False), |
|
with_decoder_nonlocal_attn=False, |
|
with_encoder_nonlocal_attn=False, |
|
) |
|
|
|
if checkpoint_path is not None: |
|
if not os.path.exists(checkpoint_path): |
|
raise FileNotFoundError(f"Checkpoint {checkpoint_path} not found.") |
|
state_dict = torch.load(checkpoint_path, map_location=device) |
|
model.load_state_dict(state_dict) |
|
|
|
model.to(device) |
|
model.eval() |
|
return model |
|
|
|
|
|
def main() -> None: |
|
""" |
|
Main function to parse command-line arguments and run inference |
|
with a pretrained Brain2vec model. |
|
""" |
|
parser = argparse.ArgumentParser( |
|
description="Inference script for a Brain2vec (VAE) model." |
|
) |
|
parser.add_argument( |
|
"--checkpoint_path", type=str, required=True, |
|
help="Path to the .pth checkpoint of the pretrained Brain2vec model." |
|
) |
|
parser.add_argument( |
|
"--output_dir", type=str, default="./vae_inference_outputs", |
|
help="Directory to save reconstructions and latent parameters." |
|
) |
|
|
|
parser.add_argument( |
|
"--input_images", type=str, nargs="*", |
|
help="One or more MRI file paths (e.g. .nii.gz)." |
|
) |
|
parser.add_argument( |
|
"--csv_input", type=str, |
|
help="Path to a CSV file with an 'image_path' column." |
|
) |
|
parser.add_argument( |
|
"--embeddings_filename", |
|
type=str, |
|
required=True, |
|
help="Filename (in output_dir) to save the stacked z_mu embeddings (e.g. 'all_z_mu.npy')." |
|
) |
|
parser.add_argument( |
|
"--save_recons", |
|
action="store_true", |
|
help="If set, saves each reconstruction as .npy. Default is not to save." |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
model = Brain2vec.from_pretrained( |
|
checkpoint_path=args.checkpoint_path, |
|
device=device |
|
) |
|
|
|
|
|
if args.csv_input: |
|
df = pd.read_csv(args.csv_input) |
|
if "image_path" not in df.columns: |
|
raise ValueError("CSV must contain a column named 'image_path'.") |
|
image_paths = df["image_path"].tolist() |
|
else: |
|
if not args.input_images: |
|
raise ValueError("Must provide either --csv_input or --input_images.") |
|
image_paths = args.input_images |
|
|
|
|
|
all_z_mu = [] |
|
all_z_sigma = [] |
|
|
|
|
|
for i, img_path in enumerate(image_paths): |
|
if not os.path.exists(img_path): |
|
raise FileNotFoundError(f"Image not found: {img_path}") |
|
|
|
print(f"[INFO] Processing image {i}: {img_path}") |
|
img_tensor = preprocess_mri(img_path, device=device) |
|
|
|
with torch.no_grad(): |
|
recon, z_mu, z_sigma = model.forward(img_tensor) |
|
|
|
|
|
recon_np = recon.detach().cpu().numpy() |
|
z_mu_np = z_mu.detach().cpu().numpy() |
|
z_sigma_np = z_sigma.detach().cpu().numpy() |
|
|
|
|
|
if args.save_recons: |
|
recon_path = os.path.join(args.output_dir, f"reconstruction_{i}.npy") |
|
np.save(recon_path, recon_np) |
|
print(f"[INFO] Saved reconstruction to {recon_path}") |
|
|
|
|
|
all_z_mu.append(z_mu_np) |
|
all_z_sigma.append(z_sigma_np) |
|
|
|
|
|
stacked_mu = np.concatenate(all_z_mu, axis=0) |
|
stacked_sigma = np.concatenate(all_z_sigma, axis=0) |
|
|
|
mu_filename = args.embeddings_filename |
|
if not mu_filename.lower().endswith(".npy"): |
|
mu_filename += ".npy" |
|
|
|
mu_path = os.path.join(args.output_dir, mu_filename) |
|
sigma_path = os.path.join(args.output_dir, "all_z_sigma.npy") |
|
|
|
np.save(mu_path, stacked_mu) |
|
np.save(sigma_path, stacked_sigma) |
|
|
|
print(f"[INFO] Saved z_mu of shape {stacked_mu.shape} to {mu_path}") |
|
print(f"[INFO] Saved z_sigma of shape {stacked_sigma.shape} to {sigma_path}") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |