--- language: - en - fr tags: - translation license: cc-by-4.0 datasets: - quickmt/quickmt-train.en-fr model-index: - name: quickmt-en-fr results: - task: name: Translation fra-eng type: translation args: fra-eng dataset: name: flores101-devtest type: flores_101 args: eng_Latn fra_Latn devtest metrics: - name: CHRF type: chrf value: 71.60 - name: BLEU type: bleu value: 50.79 - name: COMET type: comet value: 87.11 --- # `quickmt-en-fr` Neural Machine Translation Model `quickmt-en-fr` is a reasonably fast and reasonably accurate neural machine translation model for translation from `en` into `fr`. ## Model Information * Trained using [`eole`](https://github.com/eole-nlp/eole) * 185M parameter transformer 'big' with 8 encoder layers and 2 decoder layers * 50k joint Sentencepiece vocabulary * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.fr-en/tree/main See the `eole-config.yaml` model configuration in this repository for further details. ## Usage with `quickmt` You must install the Nvidia cuda toolkit first, if you want to do GPU inference. Next, install the `quickmt` python library and download the model: ```bash git clone https://github.com/quickmt/quickmt.git pip install ./quickmt/ # List available models quickmt-list # Download a model quickmt-model-download quickmt/quickmt-en-fr ./quickmt-en-fr ``` Finally use the model in python: ```python from quickmt import Translator # Auto-detects GPU, set to "cpu" to force CPU inference t = Translator("./quickmt-en-fr/", device="auto") # Translate - set beam size to 5 for higher quality (but slower speed) sample_text = "The Virgo interferometer is a large-scale scientific instrument near Pisa, Italy, for detecting gravitational waves." t(sample_text, beam_size=1) # Get alternative translations by sampling # You can pass any cTranslate2 `translate_batch` arguments t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9) ``` The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`. ## Metrics `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("eng_Latn"->"fra_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate (using `ctranslate2`) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32. | Model | chrf2 | bleu | comet22 | Time (s) | | -------------------------------- | ----- | ------- | ------- | -------- | | quickmt/quickmt-en-fr | 71.60 | 50.79 | 87.11 | 1.28 | | Helsinki-NLP/opus-mt-en-fr | 69.98 | 47.97 | 86.29 | 4.13 | | facebook/m2m100_418M | 63.29 | 39.52 | 82.11 | 22.4 | | facebook/m2m100_1.2B | 68.31 | 45.39 | 86.50 | 44.0 | | facebook/nllb-200-distilled-600M | 70.36 | 48.71 | 87.63 | 27.8 | | facebook/nllb-200-distilled-1.3B | 71.95 | 51.10 | 88.50 | 47.8 | `quickmt-en-fr` is the fastest and is higher quality than `opus-mt-en-fr`, `m2m100_418m`, `m2m100_1.2B`.