--- license: apache-2.0 datasets: - prithivMLmods/Face-Age-10K language: - en base_model: - google/siglip2-base-patch16-512 pipeline_tag: image-classification library_name: transformers tags: - age-detection - SigLIP2 - biology --- ![467.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/LA6do4hgVi-zNarLEhVGR.png) # facial-age-detection > facial-age-detection is a vision-language encoder model fine-tuned from `google/siglip2-base-patch16-512` for **multi-class image classification**. It is trained to detect and classify human faces into **age groups** ranging from early childhood to elderly adults. The model uses the `SiglipForImageClassification` architecture. > \[!note] > SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features > [https://arxiv.org/pdf/2502.14786](https://arxiv.org/pdf/2502.14786) ```py Classification Report: precision recall f1-score support age 01-10 0.9614 0.9669 0.9641 2474 age 11-20 0.8418 0.8467 0.8442 1181 age 21-30 0.8118 0.8326 0.8220 1523 age 31-40 0.6937 0.6683 0.6808 1010 age 41-55 0.7106 0.7528 0.7311 1181 age 56-65 0.6878 0.6646 0.6760 799 age 66-80 0.7949 0.7596 0.7768 653 age 80 + 0.9349 0.8343 0.8817 344 accuracy 0.8225 9165 macro avg 0.8046 0.7907 0.7971 9165 weighted avg 0.8226 0.8225 0.8223 9165 ``` ![download (1).png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/E_8ykSA-ZqEK0_Jtch5dD.png) --- ## Label Space: 8 Classes ``` Class 0: age 01-10 Class 1: age 11-20 Class 2: age 21-30 Class 3: age 31-40 Class 4: age 41-55 Class 5: age 56-65 Class 6: age 66-80 Class 7: age 80 + ``` --- ## Install Dependencies ```bash pip install -q transformers torch pillow gradio hf_xet ``` --- ## Inference Code ```python import gradio as gr from transformers import AutoImageProcessor, SiglipForImageClassification from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/facial-age-detection" # Update with actual model name on Hugging Face model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) # Updated label mapping id2label = { "0": "age 01-10", "1": "age 11-20", "2": "age 21-30", "3": "age 31-40", "4": "age 41-55", "5": "age 56-65", "6": "age 66-80", "7": "age 80 +" } def classify_image(image): image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() prediction = { id2label[str(i)]: round(probs[i], 3) for i in range(len(probs)) } return prediction # Gradio Interface iface = gr.Interface( fn=classify_image, inputs=gr.Image(type="numpy"), outputs=gr.Label(num_top_classes=8, label="Age Group Classification"), title="Facial Age Detection", description="Upload a face image to estimate the age group: 01–10, 11–20, 21–30, 31–40, 41–55, 56–65, 66–80, or 80+." ) if __name__ == "__main__": iface.launch() ``` --- ## Intended Use `facial-age-detection` is designed for: * **Demographic Analytics** – Estimate age distributions in image datasets for research and commercial analysis. * **Access Control & Verification** – Enforce age-based access in digital or physical environments. * **Retail & Marketing** – Understand customer demographics in retail spaces through camera-based analytics. * **Surveillance & Security** – Enhance people classification systems by integrating age detection. * **Human-Computer Interaction** – Adapt experiences and interfaces based on user age.