--- license: apache-2.0 language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - sign-language-detection - alphabet --- ![dzfgdf.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/gFcXjzt_OA-46WpFfz-9L.png) # **Alphabet-Sign-Language-Detection** > **Alphabet-Sign-Language-Detection** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify images into **sign language alphabet** categories using the **SiglipForImageClassification** architecture. ```py Classification Report: precision recall f1-score support A 0.9995 1.0000 0.9998 4384 B 1.0000 1.0000 1.0000 4441 C 1.0000 1.0000 1.0000 3993 D 1.0000 0.9998 0.9999 4940 E 1.0000 1.0000 1.0000 4658 F 1.0000 1.0000 1.0000 5750 G 0.9992 0.9996 0.9994 4978 H 1.0000 0.9979 0.9990 4807 I 0.9992 1.0000 0.9996 4856 J 1.0000 0.9996 0.9998 5227 K 0.9972 1.0000 0.9986 5426 L 1.0000 0.9998 0.9999 5089 M 1.0000 0.9964 0.9982 3328 N 0.9955 1.0000 0.9977 2635 O 0.9998 1.0000 0.9999 4564 P 1.0000 0.9993 0.9996 4100 Q 1.0000 1.0000 1.0000 4187 R 0.9998 0.9984 0.9991 5122 S 0.9998 0.9998 0.9998 5147 T 1.0000 1.0000 1.0000 4722 U 0.9984 0.9998 0.9991 5041 V 1.0000 0.9984 0.9992 5116 W 0.9998 1.0000 0.9999 4926 X 1.0000 0.9995 0.9998 4387 Y 1.0000 1.0000 1.0000 5185 Z 0.9996 1.0000 0.9998 4760 accuracy 0.9996 121769 macro avg 0.9995 0.9996 0.9995 121769 weighted avg 0.9996 0.9996 0.9996 121769 ``` ![demo.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/AVpi4xPsVq6PV9NzonHoi.png) The model categorizes images into the following 26 classes: - **Class 0:** "A" - **Class 1:** "B" - **Class 2:** "C" - **Class 3:** "D" - **Class 4:** "E" - **Class 5:** "F" - **Class 6:** "G" - **Class 7:** "H" - **Class 8:** "I" - **Class 9:** "J" - **Class 10:** "K" - **Class 11:** "L" - **Class 12:** "M" - **Class 13:** "N" - **Class 14:** "O" - **Class 15:** "P" - **Class 16:** "Q" - **Class 17:** "R" - **Class 18:** "S" - **Class 19:** "T" - **Class 20:** "U" - **Class 21:** "V" - **Class 22:** "W" - **Class 23:** "X" - **Class 24:** "Y" - **Class 25:** "Z" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Alphabet-Sign-Language-Detection" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def sign_language_classification(image): """Predicts sign language alphabet category for an image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "A", "1": "B", "2": "C", "3": "D", "4": "E", "5": "F", "6": "G", "7": "H", "8": "I", "9": "J", "10": "K", "11": "L", "12": "M", "13": "N", "14": "O", "15": "P", "16": "Q", "17": "R", "18": "S", "19": "T", "20": "U", "21": "V", "22": "W", "23": "X", "24": "Y", "25": "Z" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=sign_language_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Alphabet Sign Language Detection", description="Upload an image to classify it into one of the 26 sign language alphabet categories." ) # Launch the app if __name__ == "__main__": iface.launch() ``` # **Intended Use:** The **Alphabet-Sign-Language-Detection** model is designed for sign language image classification. It helps categorize images of hand signs into predefined alphabet categories. Potential use cases include: - **Sign Language Education:** Assisting learners in recognizing and practicing sign language alphabets. - **Accessibility Enhancement:** Supporting applications that improve communication for the hearing impaired. - **AI Research:** Advancing computer vision models in sign language recognition. - **Gesture Recognition Systems:** Enabling interactive applications with real-time sign language detection.