--- library_name: transformers datasets: - b-mc2/sql-create-context language: - en base_model: - meta-llama/Llama-3.2-1B-Instruct --- # Text-to-SQL Model Usage ## Model Details - Base Model: `meta-llama/Llama-3.2-1B-Instruct` - Fine-tuned Model: `pavan-naik/Llama-3.2-1B-Instruct-Text-to-SQL` - Task: Text to SQL Query Generation - Framework: PyTorch with 🤗 Transformers and PEFT ## Installation ```bash pip install peft transformers bitsandbytes ``` ## Required Imports ```python from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig from peft import PeftModel import torch ``` ## Loading the Model ### 1. Configure Quantization (Optional) ```python bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16 ) ``` ### 2. Load Base Model and Tokenizer ```python # Load base model base_model = AutoModelForCausalLM.from_pretrained( "meta-llama/Llama-3.2-1B-Instruct", device_map="auto" ) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained( "pavan-naik/Llama-3.2-1B-Instruct-Text-to-SQL", trust_remote_code=True ) tokenizer.pad_token = tokenizer.eos_token ``` ### 3. Load PEFT Adapter ```python model = PeftModel.from_pretrained(base_model, "pavan-naik/Llama-3.2-1B-Instruct-Text-to-SQL") ``` ## Generating SQL Queries ### Prompt Template ```python sql_prompt_template = """You are a database management system expert, proficient in Structured Query Language (SQL). Your job is to write an SQL query that answers the following question, based on the given database schema and any additional information provided. Use SQLite syntax. Please output only SQL (without any explanations). ### Question: {question} ### Schema: {context} ### Completion: """ ``` ### Generation Function ```python def generate_sql(question, context, model, tokenizer, max_length=128): prompt = sql_prompt_template.format(question=question, context=context) inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=max_length) inputs = {k: v.to(model.device) for k, v in inputs.items()} prompt_length = len(inputs["input_ids"][0]) outputs = model.generate( **inputs, max_length=prompt_length + max_length, num_return_sequences=1, temperature=0.7, do_sample=True, ) sql_answer = tokenizer.decode(outputs[0][prompt_length:], skip_special_tokens=True).strip() return sql_answer ``` ## Example Usage ```python # Define your question and database schema question = "For each continent, show the city with the highest population and what percentage of its country's total population it represents" context = """ CREATE TABLE city (city_id INTEGER, name VARCHAR, population INTEGER, country_id INTEGER); CREATE TABLE country (country_id INTEGER, name VARCHAR, continent VARCHAR) """ # Generate SQL query sql_query = generate_sql(question, context, model, tokenizer) print(sql_query) ``` ## Notes - The model uses SQLite syntax - Adjust `max_length` parameter based on your query complexity - Temperature can be modified to control randomness in generation (0.0 for deterministic output) - The model performs best with clear schema definitions and well-structured questions ## Requirements - Python 3.7+ - PyTorch - Transformers - PEFT (Parameter-Efficient Fine-Tuning) - bitsandbytes (for quantization)