Update README.md
Browse files
README.md
CHANGED
@@ -8,197 +8,124 @@ base_model:
|
|
8 |
- meta-llama/Llama-3.2-1B-Instruct
|
9 |
---
|
10 |
|
11 |
-
# Model Card for Model ID
|
12 |
|
13 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
14 |
|
15 |
|
16 |
|
17 |
-
## Model Details
|
18 |
-
|
19 |
-
### Model Description
|
20 |
-
|
21 |
-
<!-- Provide a longer summary of what this model is. -->
|
22 |
-
|
23 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
24 |
-
|
25 |
-
- **Developed by:** [More Information Needed]
|
26 |
-
- **Funded by [optional]:** [More Information Needed]
|
27 |
-
- **Shared by [optional]:** [More Information Needed]
|
28 |
-
- **Model type:** [More Information Needed]
|
29 |
-
- **Language(s) (NLP):** [More Information Needed]
|
30 |
-
- **License:** [More Information Needed]
|
31 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
32 |
-
|
33 |
-
### Model Sources [optional]
|
34 |
-
|
35 |
-
<!-- Provide the basic links for the model. -->
|
36 |
-
|
37 |
-
- **Repository:** [More Information Needed]
|
38 |
-
- **Paper [optional]:** [More Information Needed]
|
39 |
-
- **Demo [optional]:** [More Information Needed]
|
40 |
-
|
41 |
-
## Uses
|
42 |
-
|
43 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
44 |
-
|
45 |
-
### Direct Use
|
46 |
-
|
47 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
48 |
-
|
49 |
-
[More Information Needed]
|
50 |
-
|
51 |
-
### Downstream Use [optional]
|
52 |
-
|
53 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
54 |
-
|
55 |
-
[More Information Needed]
|
56 |
-
|
57 |
-
### Out-of-Scope Use
|
58 |
-
|
59 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
60 |
-
|
61 |
-
[More Information Needed]
|
62 |
-
|
63 |
-
## Bias, Risks, and Limitations
|
64 |
-
|
65 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
66 |
-
|
67 |
-
[More Information Needed]
|
68 |
-
|
69 |
-
### Recommendations
|
70 |
-
|
71 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
72 |
-
|
73 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
74 |
-
|
75 |
-
## How to Get Started with the Model
|
76 |
-
|
77 |
-
Use the code below to get started with the model.
|
78 |
-
|
79 |
-
[More Information Needed]
|
80 |
-
|
81 |
-
## Training Details
|
82 |
-
|
83 |
-
### Training Data
|
84 |
-
|
85 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
86 |
-
|
87 |
-
[More Information Needed]
|
88 |
-
|
89 |
-
### Training Procedure
|
90 |
-
|
91 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
92 |
-
|
93 |
-
#### Preprocessing [optional]
|
94 |
-
|
95 |
-
[More Information Needed]
|
96 |
-
|
97 |
-
|
98 |
-
#### Training Hyperparameters
|
99 |
-
|
100 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
101 |
-
|
102 |
-
#### Speeds, Sizes, Times [optional]
|
103 |
-
|
104 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
105 |
-
|
106 |
-
[More Information Needed]
|
107 |
-
|
108 |
-
## Evaluation
|
109 |
-
|
110 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
111 |
|
112 |
-
### Testing Data, Factors & Metrics
|
113 |
|
114 |
-
#### Testing Data
|
115 |
|
116 |
-
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
- meta-llama/Llama-3.2-1B-Instruct
|
9 |
---
|
10 |
|
|
|
11 |
|
|
|
12 |
|
13 |
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
|
|
16 |
|
|
|
17 |
|
18 |
+
# Text-to-SQL Model Usage
|
19 |
|
20 |
+
## Model Details
|
21 |
+
- Base Model: `meta-llama/Llama-3.2-1B-Instruct`
|
22 |
+
- Fine-tuned Model: `pavan-naik/Llama-3.2-1B-Instruct-Text-to-SQL`
|
23 |
+
- Task: Text to SQL Query Generation
|
24 |
+
- Framework: PyTorch with 🤗 Transformers and PEFT
|
25 |
+
|
26 |
+
## Installation
|
27 |
+
|
28 |
+
```bash
|
29 |
+
pip install peft transformers bitsandbytes
|
30 |
+
```
|
31 |
+
|
32 |
+
## Required Imports
|
33 |
+
|
34 |
+
```python
|
35 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
36 |
+
from peft import PeftModel
|
37 |
+
import torch
|
38 |
+
```
|
39 |
+
|
40 |
+
## Loading the Model
|
41 |
+
|
42 |
+
### 1. Configure Quantization (Optional)
|
43 |
+
```python
|
44 |
+
bnb_config = BitsAndBytesConfig(
|
45 |
+
load_in_4bit=True,
|
46 |
+
bnb_4bit_use_double_quant=True,
|
47 |
+
bnb_4bit_quant_type="nf4",
|
48 |
+
bnb_4bit_compute_dtype=torch.float16
|
49 |
+
)
|
50 |
+
```
|
51 |
+
|
52 |
+
### 2. Load Base Model and Tokenizer
|
53 |
+
```python
|
54 |
+
# Load base model
|
55 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
56 |
+
"meta-llama/Llama-3.2-1B-Instruct",
|
57 |
+
device_map="auto"
|
58 |
+
)
|
59 |
+
|
60 |
+
# Load tokenizer
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
62 |
+
"pavan-naik/Llama-3.2-1B-Instruct-Text-to-SQL",
|
63 |
+
trust_remote_code=True
|
64 |
+
)
|
65 |
+
tokenizer.pad_token = tokenizer.eos_token
|
66 |
+
```
|
67 |
+
|
68 |
+
### 3. Load PEFT Adapter
|
69 |
+
```python
|
70 |
+
model = PeftModel.from_pretrained(base_model, "pavan-naik/Llama-3.2-1B-Instruct-Text-to-SQL")
|
71 |
+
```
|
72 |
+
|
73 |
+
## Generating SQL Queries
|
74 |
+
|
75 |
+
### Prompt Template
|
76 |
+
```python
|
77 |
+
sql_prompt_template = """You are a database management system expert, proficient in Structured Query Language (SQL).
|
78 |
+
Your job is to write an SQL query that answers the following question, based on the given database schema and any additional information provided. Use SQLite syntax.
|
79 |
+
Please output only SQL (without any explanations).
|
80 |
+
### Question: {question}
|
81 |
+
### Schema: {context}
|
82 |
+
### Completion: """
|
83 |
+
```
|
84 |
+
|
85 |
+
### Generation Function
|
86 |
+
```python
|
87 |
+
def generate_sql(question, context, model, tokenizer, max_length=128):
|
88 |
+
prompt = sql_prompt_template.format(question=question, context=context)
|
89 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=max_length)
|
90 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
91 |
+
|
92 |
+
prompt_length = len(inputs["input_ids"][0])
|
93 |
+
outputs = model.generate(
|
94 |
+
**inputs,
|
95 |
+
max_length=prompt_length + max_length,
|
96 |
+
num_return_sequences=1,
|
97 |
+
temperature=0.7,
|
98 |
+
do_sample=True,
|
99 |
+
)
|
100 |
+
|
101 |
+
sql_answer = tokenizer.decode(outputs[0][prompt_length:], skip_special_tokens=True).strip()
|
102 |
+
return sql_answer
|
103 |
+
```
|
104 |
+
|
105 |
+
## Example Usage
|
106 |
+
|
107 |
+
```python
|
108 |
+
# Define your question and database schema
|
109 |
+
question = "For each continent, show the city with the highest population and what percentage of its country's total population it represents"
|
110 |
+
context = """
|
111 |
+
CREATE TABLE city (city_id INTEGER, name VARCHAR, population INTEGER, country_id INTEGER);
|
112 |
+
CREATE TABLE country (country_id INTEGER, name VARCHAR, continent VARCHAR)
|
113 |
+
"""
|
114 |
+
|
115 |
+
# Generate SQL query
|
116 |
+
sql_query = generate_sql(question, context, model, tokenizer)
|
117 |
+
print(sql_query)
|
118 |
+
```
|
119 |
+
|
120 |
+
## Notes
|
121 |
+
- The model uses SQLite syntax
|
122 |
+
- Adjust `max_length` parameter based on your query complexity
|
123 |
+
- Temperature can be modified to control randomness in generation (0.0 for deterministic output)
|
124 |
+
- The model performs best with clear schema definitions and well-structured questions
|
125 |
+
|
126 |
+
## Requirements
|
127 |
+
- Python 3.7+
|
128 |
+
- PyTorch
|
129 |
+
- Transformers
|
130 |
+
- PEFT (Parameter-Efficient Fine-Tuning)
|
131 |
+
- bitsandbytes (for quantization)
|