pavan-naik commited on
Commit
e03ec9a
·
verified ·
1 Parent(s): b55432b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +113 -186
README.md CHANGED
@@ -8,197 +8,124 @@ base_model:
8
  - meta-llama/Llama-3.2-1B-Instruct
9
  ---
10
 
11
- # Model Card for Model ID
12
 
13
- <!-- Provide a quick summary of what the model is/does. -->
14
 
15
 
16
 
17
- ## Model Details
18
-
19
- ### Model Description
20
-
21
- <!-- Provide a longer summary of what this model is. -->
22
-
23
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
24
-
25
- - **Developed by:** [More Information Needed]
26
- - **Funded by [optional]:** [More Information Needed]
27
- - **Shared by [optional]:** [More Information Needed]
28
- - **Model type:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
- - **Finetuned from model [optional]:** [More Information Needed]
32
-
33
- ### Model Sources [optional]
34
-
35
- <!-- Provide the basic links for the model. -->
36
-
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
-
41
- ## Uses
42
-
43
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
-
45
- ### Direct Use
46
-
47
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
-
49
- [More Information Needed]
50
-
51
- ### Downstream Use [optional]
52
-
53
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
-
55
- [More Information Needed]
56
-
57
- ### Out-of-Scope Use
58
-
59
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
-
61
- [More Information Needed]
62
-
63
- ## Bias, Risks, and Limitations
64
-
65
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
-
67
- [More Information Needed]
68
-
69
- ### Recommendations
70
-
71
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
-
73
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
-
75
- ## How to Get Started with the Model
76
-
77
- Use the code below to get started with the model.
78
-
79
- [More Information Needed]
80
-
81
- ## Training Details
82
-
83
- ### Training Data
84
-
85
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
-
87
- [More Information Needed]
88
-
89
- ### Training Procedure
90
-
91
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
-
93
- #### Preprocessing [optional]
94
-
95
- [More Information Needed]
96
-
97
-
98
- #### Training Hyperparameters
99
-
100
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
-
102
- #### Speeds, Sizes, Times [optional]
103
-
104
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
-
106
- [More Information Needed]
107
-
108
- ## Evaluation
109
-
110
- <!-- This section describes the evaluation protocols and provides the results. -->
111
 
112
- ### Testing Data, Factors & Metrics
113
 
114
- #### Testing Data
115
 
116
- <!-- This should link to a Dataset Card if possible. -->
117
 
118
- [More Information Needed]
119
-
120
- #### Factors
121
-
122
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
-
124
- [More Information Needed]
125
-
126
- #### Metrics
127
-
128
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
-
130
- [More Information Needed]
131
-
132
- ### Results
133
-
134
- [More Information Needed]
135
-
136
- #### Summary
137
-
138
-
139
-
140
- ## Model Examination [optional]
141
-
142
- <!-- Relevant interpretability work for the model goes here -->
143
-
144
- [More Information Needed]
145
-
146
- ## Environmental Impact
147
-
148
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
-
150
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
-
152
- - **Hardware Type:** [More Information Needed]
153
- - **Hours used:** [More Information Needed]
154
- - **Cloud Provider:** [More Information Needed]
155
- - **Compute Region:** [More Information Needed]
156
- - **Carbon Emitted:** [More Information Needed]
157
-
158
- ## Technical Specifications [optional]
159
-
160
- ### Model Architecture and Objective
161
-
162
- [More Information Needed]
163
-
164
- ### Compute Infrastructure
165
-
166
- [More Information Needed]
167
-
168
- #### Hardware
169
-
170
- [More Information Needed]
171
-
172
- #### Software
173
-
174
- [More Information Needed]
175
-
176
- ## Citation [optional]
177
-
178
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
-
180
- **BibTeX:**
181
-
182
- [More Information Needed]
183
-
184
- **APA:**
185
-
186
- [More Information Needed]
187
-
188
- ## Glossary [optional]
189
-
190
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
-
192
- [More Information Needed]
193
-
194
- ## More Information [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Authors [optional]
199
-
200
- [More Information Needed]
201
-
202
- ## Model Card Contact
203
-
204
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  - meta-llama/Llama-3.2-1B-Instruct
9
  ---
10
 
 
11
 
 
12
 
13
 
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
 
16
 
 
17
 
18
+ # Text-to-SQL Model Usage
19
 
20
+ ## Model Details
21
+ - Base Model: `meta-llama/Llama-3.2-1B-Instruct`
22
+ - Fine-tuned Model: `pavan-naik/Llama-3.2-1B-Instruct-Text-to-SQL`
23
+ - Task: Text to SQL Query Generation
24
+ - Framework: PyTorch with 🤗 Transformers and PEFT
25
+
26
+ ## Installation
27
+
28
+ ```bash
29
+ pip install peft transformers bitsandbytes
30
+ ```
31
+
32
+ ## Required Imports
33
+
34
+ ```python
35
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
36
+ from peft import PeftModel
37
+ import torch
38
+ ```
39
+
40
+ ## Loading the Model
41
+
42
+ ### 1. Configure Quantization (Optional)
43
+ ```python
44
+ bnb_config = BitsAndBytesConfig(
45
+ load_in_4bit=True,
46
+ bnb_4bit_use_double_quant=True,
47
+ bnb_4bit_quant_type="nf4",
48
+ bnb_4bit_compute_dtype=torch.float16
49
+ )
50
+ ```
51
+
52
+ ### 2. Load Base Model and Tokenizer
53
+ ```python
54
+ # Load base model
55
+ base_model = AutoModelForCausalLM.from_pretrained(
56
+ "meta-llama/Llama-3.2-1B-Instruct",
57
+ device_map="auto"
58
+ )
59
+
60
+ # Load tokenizer
61
+ tokenizer = AutoTokenizer.from_pretrained(
62
+ "pavan-naik/Llama-3.2-1B-Instruct-Text-to-SQL",
63
+ trust_remote_code=True
64
+ )
65
+ tokenizer.pad_token = tokenizer.eos_token
66
+ ```
67
+
68
+ ### 3. Load PEFT Adapter
69
+ ```python
70
+ model = PeftModel.from_pretrained(base_model, "pavan-naik/Llama-3.2-1B-Instruct-Text-to-SQL")
71
+ ```
72
+
73
+ ## Generating SQL Queries
74
+
75
+ ### Prompt Template
76
+ ```python
77
+ sql_prompt_template = """You are a database management system expert, proficient in Structured Query Language (SQL).
78
+ Your job is to write an SQL query that answers the following question, based on the given database schema and any additional information provided. Use SQLite syntax.
79
+ Please output only SQL (without any explanations).
80
+ ### Question: {question}
81
+ ### Schema: {context}
82
+ ### Completion: """
83
+ ```
84
+
85
+ ### Generation Function
86
+ ```python
87
+ def generate_sql(question, context, model, tokenizer, max_length=128):
88
+ prompt = sql_prompt_template.format(question=question, context=context)
89
+ inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=max_length)
90
+ inputs = {k: v.to(model.device) for k, v in inputs.items()}
91
+
92
+ prompt_length = len(inputs["input_ids"][0])
93
+ outputs = model.generate(
94
+ **inputs,
95
+ max_length=prompt_length + max_length,
96
+ num_return_sequences=1,
97
+ temperature=0.7,
98
+ do_sample=True,
99
+ )
100
+
101
+ sql_answer = tokenizer.decode(outputs[0][prompt_length:], skip_special_tokens=True).strip()
102
+ return sql_answer
103
+ ```
104
+
105
+ ## Example Usage
106
+
107
+ ```python
108
+ # Define your question and database schema
109
+ question = "For each continent, show the city with the highest population and what percentage of its country's total population it represents"
110
+ context = """
111
+ CREATE TABLE city (city_id INTEGER, name VARCHAR, population INTEGER, country_id INTEGER);
112
+ CREATE TABLE country (country_id INTEGER, name VARCHAR, continent VARCHAR)
113
+ """
114
+
115
+ # Generate SQL query
116
+ sql_query = generate_sql(question, context, model, tokenizer)
117
+ print(sql_query)
118
+ ```
119
+
120
+ ## Notes
121
+ - The model uses SQLite syntax
122
+ - Adjust `max_length` parameter based on your query complexity
123
+ - Temperature can be modified to control randomness in generation (0.0 for deterministic output)
124
+ - The model performs best with clear schema definitions and well-structured questions
125
+
126
+ ## Requirements
127
+ - Python 3.7+
128
+ - PyTorch
129
+ - Transformers
130
+ - PEFT (Parameter-Efficient Fine-Tuning)
131
+ - bitsandbytes (for quantization)