Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeThe Ghost in the Machine has an American accent: value conflict in GPT-3
The alignment problem in the context of large language models must consider the plurality of human values in our world. Whilst there are many resonant and overlapping values amongst the world's cultures, there are also many conflicting, yet equally valid, values. It is important to observe which cultural values a model exhibits, particularly when there is a value conflict between input prompts and generated outputs. We discuss how the co-creation of language and cultural value impacts large language models (LLMs). We explore the constitution of the training data for GPT-3 and compare that to the world's language and internet access demographics, as well as to reported statistical profiles of dominant values in some Nation-states. We stress tested GPT-3 with a range of value-rich texts representing several languages and nations; including some with values orthogonal to dominant US public opinion as reported by the World Values Survey. We observed when values embedded in the input text were mutated in the generated outputs and noted when these conflicting values were more aligned with reported dominant US values. Our discussion of these results uses a moral value pluralism (MVP) lens to better understand these value mutations. Finally, we provide recommendations for how our work may contribute to other current work in the field.
Predicting Users' Value Changes by the Friends' Influence from Social Media Usage
Basic human values represent a set of values such as security, independence, success, kindness, and pleasure, which we deem important to our lives. Each of us holds different values with different degrees of significance. Existing studies show that values of a person can be identified from their social network usage. However, the value priority of a person may change over time due to different factors such as life experiences, influence, social structure and technology. Existing studies do not conduct any analysis regarding the change of users' value from the social influence, i.e., group persuasion, form the social media usage. In our research, first, we predict users' value score by the influence of friends from their social media usage. We propose a Bounded Confidence Model (BCM) based value dynamics model from 275 different ego networks in Facebook that predicts how social influence may persuade a person to change their value over time. Then, to predict better, we use particle swarm optimization based hyperparameter tuning technique. We observe that these optimized hyperparameters produce accurate future value score. We also run our approach with different machine learning based methods and find support vector regression (SVR) outperforms other regressor models. By using SVR with the best hyperparameters of BCM model, we find the lowest Mean Squared Error (MSE) score 0.00347.
On Computational Limits and Provably Efficient Criteria of Visual Autoregressive Models: A Fine-Grained Complexity Analysis
Recently, Visual Autoregressive (VAR) Models introduced a groundbreaking advancement in the field of image generation, offering a scalable approach through a coarse-to-fine "next-scale prediction" paradigm. However, the state-of-the-art algorithm of VAR models in [Tian, Jiang, Yuan, Peng and Wang, NeurIPS 2024] takes O(n^4) time, which is computationally inefficient. In this work, we analyze the computational limits and efficiency criteria of VAR Models through a fine-grained complexity lens. Our key contribution is identifying the conditions under which VAR computations can achieve sub-quadratic time complexity. Specifically, we establish a critical threshold for the norm of input matrices used in VAR attention mechanisms. Above this threshold, assuming the Strong Exponential Time Hypothesis (SETH) from fine-grained complexity theory, a sub-quartic time algorithm for VAR models is impossible. To substantiate our theoretical findings, we present efficient constructions leveraging low-rank approximations that align with the derived criteria. This work initiates the study of the computational efficiency of the VAR model from a theoretical perspective. Our technique will shed light on advancing scalable and efficient image generation in VAR frameworks.
Weighting vectors for machine learning: numerical harmonic analysis applied to boundary detection
Metric space magnitude, an active field of research in algebraic topology, is a scalar quantity that summarizes the effective number of distinct points that live in a general metric space. The {\em weighting vector} is a closely-related concept that captures, in a nontrivial way, much of the underlying geometry of the original metric space. Recent work has demonstrated that when the metric space is Euclidean, the weighting vector serves as an effective tool for boundary detection. We recast this result and show the weighting vector may be viewed as a solution to a kernelized SVM. As one consequence, we apply this new insight to the task of outlier detection, and we demonstrate performance that is competitive or exceeds performance of state-of-the-art techniques on benchmark data sets. Under mild assumptions, we show the weighting vector, which has computational cost of matrix inversion, can be efficiently approximated in linear time. We show how nearest neighbor methods can approximate solutions to the minimization problems defined by SVMs.
Beyond Preferences in AI Alignment
The dominant practice of AI alignment assumes (1) that preferences are an adequate representation of human values, (2) that human rationality can be understood in terms of maximizing the satisfaction of preferences, and (3) that AI systems should be aligned with the preferences of one or more humans to ensure that they behave safely and in accordance with our values. Whether implicitly followed or explicitly endorsed, these commitments constitute what we term a preferentist approach to AI alignment. In this paper, we characterize and challenge the preferentist approach, describing conceptual and technical alternatives that are ripe for further research. We first survey the limits of rational choice theory as a descriptive model, explaining how preferences fail to capture the thick semantic content of human values, and how utility representations neglect the possible incommensurability of those values. We then critique the normativity of expected utility theory (EUT) for humans and AI, drawing upon arguments showing how rational agents need not comply with EUT, while highlighting how EUT is silent on which preferences are normatively acceptable. Finally, we argue that these limitations motivate a reframing of the targets of AI alignment: Instead of alignment with the preferences of a human user, developer, or humanity-writ-large, AI systems should be aligned with normative standards appropriate to their social roles, such as the role of a general-purpose assistant. Furthermore, these standards should be negotiated and agreed upon by all relevant stakeholders. On this alternative conception of alignment, a multiplicity of AI systems will be able to serve diverse ends, aligned with normative standards that promote mutual benefit and limit harm despite our plural and divergent values.
NormBank: A Knowledge Bank of Situational Social Norms
We present NormBank, a knowledge bank of 155k situational norms. This resource is designed to ground flexible normative reasoning for interactive, assistive, and collaborative AI systems. Unlike prior commonsense resources, NormBank grounds each inference within a multivalent sociocultural frame, which includes the setting (e.g., restaurant), the agents' contingent roles (waiter, customer), their attributes (age, gender), and other physical, social, and cultural constraints (e.g., the temperature or the country of operation). In total, NormBank contains 63k unique constraints from a taxonomy that we introduce and iteratively refine here. Constraints then apply in different combinations to frame social norms. Under these manipulations, norms are non-monotonic - one can cancel an inference by updating its frame even slightly. Still, we find evidence that neural models can help reliably extend the scope and coverage of NormBank. We further demonstrate the utility of this resource with a series of transfer experiments.
Denevil: Towards Deciphering and Navigating the Ethical Values of Large Language Models via Instruction Learning
Large Language Models (LLMs) have made unprecedented breakthroughs, yet their increasing integration into everyday life might raise societal risks due to generated unethical content. Despite extensive study on specific issues like bias, the intrinsic values of LLMs remain largely unexplored from a moral philosophy perspective. This work delves into ethical values utilizing Moral Foundation Theory. Moving beyond conventional discriminative evaluations with poor reliability, we propose DeNEVIL, a novel prompt generation algorithm tailored to dynamically exploit LLMs' value vulnerabilities and elicit the violation of ethics in a generative manner, revealing their underlying value inclinations. On such a basis, we construct MoralPrompt, a high-quality dataset comprising 2,397 prompts covering 500+ value principles, and then benchmark the intrinsic values across a spectrum of LLMs. We discovered that most models are essentially misaligned, necessitating further ethical value alignment. In response, we develop VILMO, an in-context alignment method that substantially enhances the value compliance of LLM outputs by learning to generate appropriate value instructions, outperforming existing competitors. Our methods are suitable for black-box and open-source models, offering a promising initial step in studying the ethical values of LLMs.
Value Kaleidoscope: Engaging AI with Pluralistic Human Values, Rights, and Duties
Human values are crucial to human decision-making. Value pluralism is the view that multiple correct values may be held in tension with one another (e.g., when considering lying to a friend to protect their feelings, how does one balance honesty with friendship?). As statistical learners, AI systems fit to averages by default, washing out these potentially irreducible value conflicts. To improve AI systems to better reflect value pluralism, the first-order challenge is to explore the extent to which AI systems can model pluralistic human values, rights, and duties as well as their interaction. We introduce ValuePrism, a large-scale dataset of 218k values, rights, and duties connected to 31k human-written situations. ValuePrism's contextualized values are generated by GPT-4 and deemed high-quality by human annotators 91% of the time. We conduct a large-scale study with annotators across diverse social and demographic backgrounds to try to understand whose values are represented. With ValuePrism, we build Kaleido, an open, light-weight, and structured language-based multi-task model that generates, explains, and assesses the relevance and valence (i.e., support or oppose) of human values, rights, and duties within a specific context. Humans prefer the sets of values output by our system over the teacher GPT-4, finding them more accurate and with broader coverage. In addition, we demonstrate that Kaleido can help explain variability in human decision-making by outputting contrasting values. Finally, we show that Kaleido's representations transfer to other philosophical frameworks and datasets, confirming the benefit of an explicit, modular, and interpretable approach to value pluralism. We hope that our work will serve as a step to making more explicit the implicit values behind human decision-making and to steering AI systems to make decisions that are more in accordance with them.
Rethinking Diverse Human Preference Learning through Principal Component Analysis
Understanding human preferences is crucial for improving foundation models and building personalized AI systems. However, preferences are inherently diverse and complex, making it difficult for traditional reward models to capture their full range. While fine-grained preference data can help, collecting it is expensive and hard to scale. In this paper, we introduce Decomposed Reward Models (DRMs), a novel approach that extracts diverse human preferences from binary comparisons without requiring fine-grained annotations. Our key insight is to represent human preferences as vectors and analyze them using Principal Component Analysis (PCA). By constructing a dataset of embedding differences between preferred and rejected responses, DRMs identify orthogonal basis vectors that capture distinct aspects of preference. These decomposed rewards can be flexibly combined to align with different user needs, offering an interpretable and scalable alternative to traditional reward models. We demonstrate that DRMs effectively extract meaningful preference dimensions (e.g., helpfulness, safety, humor) and adapt to new users without additional training. Our results highlight DRMs as a powerful framework for personalized and interpretable LLM alignment.
Foundations of Vector Retrieval
Vectors are universal mathematical objects that can represent text, images, speech, or a mix of these data modalities. That happens regardless of whether data is represented by hand-crafted features or learnt embeddings. Collect a large enough quantity of such vectors and the question of retrieval becomes urgently relevant: Finding vectors that are more similar to a query vector. This monograph is concerned with the question above and covers fundamental concepts along with advanced data structures and algorithms for vector retrieval. In doing so, it recaps this fascinating topic and lowers barriers of entry into this rich area of research.
Will AI Tell Lies to Save Sick Children? Litmus-Testing AI Values Prioritization with AIRiskDilemmas
Detecting AI risks becomes more challenging as stronger models emerge and find novel methods such as Alignment Faking to circumvent these detection attempts. Inspired by how risky behaviors in humans (i.e., illegal activities that may hurt others) are sometimes guided by strongly-held values, we believe that identifying values within AI models can be an early warning system for AI's risky behaviors. We create LitmusValues, an evaluation pipeline to reveal AI models' priorities on a range of AI value classes. Then, we collect AIRiskDilemmas, a diverse collection of dilemmas that pit values against one another in scenarios relevant to AI safety risks such as Power Seeking. By measuring an AI model's value prioritization using its aggregate choices, we obtain a self-consistent set of predicted value priorities that uncover potential risks. We show that values in LitmusValues (including seemingly innocuous ones like Care) can predict for both seen risky behaviors in AIRiskDilemmas and unseen risky behaviors in HarmBench.
Large Pre-trained Language Models Contain Human-like Biases of What is Right and Wrong to Do
Artificial writing is permeating our lives due to recent advances in large-scale, transformer-based language models (LMs) such as BERT, its variants, GPT-2/3, and others. Using them as pre-trained models and fine-tuning them for specific tasks, researchers have extended state of the art for many NLP tasks and shown that they capture not only linguistic knowledge but also retain general knowledge implicitly present in the data. Unfortunately, LMs trained on unfiltered text corpora suffer from degenerated and biased behaviour. While this is well established, we show that recent LMs also contain human-like biases of what is right and wrong to do, some form of ethical and moral norms of the society -- they bring a "moral direction" to surface. That is, we show that these norms can be captured geometrically by a direction, which can be computed, e.g., by a PCA, in the embedding space, reflecting well the agreement of phrases to social norms implicitly expressed in the training texts and providing a path for attenuating or even preventing toxic degeneration in LMs. Being able to rate the (non-)normativity of arbitrary phrases without explicitly training the LM for this task, we demonstrate the capabilities of the "moral direction" for guiding (even other) LMs towards producing normative text and showcase it on RealToxicityPrompts testbed, preventing the neural toxic degeneration in GPT-2.
NurValues: Real-World Nursing Values Evaluation for Large Language Models in Clinical Context
This work introduces the first benchmark for nursing value alignment, consisting of five core value dimensions distilled from international nursing codes: Altruism, Human Dignity, Integrity, Justice, and Professionalism. The benchmark comprises 1,100 real-world nursing behavior instances collected through a five-month longitudinal field study across three hospitals of varying tiers. These instances are annotated by five clinical nurses and then augmented with LLM-generated counterfactuals with reversed ethic polarity. Each original case is paired with a value-aligned and a value-violating version, resulting in 2,200 labeled instances that constitute the Easy-Level dataset. To increase adversarial complexity, each instance is further transformed into a dialogue-based format that embeds contextual cues and subtle misleading signals, yielding a Hard-Level dataset. We evaluate 23 state-of-the-art (SoTA) LLMs on their alignment with nursing values. Our findings reveal three key insights: (1) DeepSeek-V3 achieves the highest performance on the Easy-Level dataset (94.55), where Claude 3.5 Sonnet outperforms other models on the Hard-Level dataset (89.43), significantly surpassing the medical LLMs; (2) Justice is consistently the most difficult nursing value dimension to evaluate; and (3) in-context learning significantly improves alignment. This work aims to provide a foundation for value-sensitive LLMs development in clinical settings. The dataset and the code are available at https://huggingface.co/datasets/Ben012345/NurValues.
Robust Consensus in Ranking Data Analysis: Definitions, Properties and Computational Issues
As the issue of robustness in AI systems becomes vital, statistical learning techniques that are reliable even in presence of partly contaminated data have to be developed. Preference data, in the form of (complete) rankings in the simplest situations, are no exception and the demand for appropriate concepts and tools is all the more pressing given that technologies fed by or producing this type of data (e.g. search engines, recommending systems) are now massively deployed. However, the lack of vector space structure for the set of rankings (i.e. the symmetric group S_n) and the complex nature of statistics considered in ranking data analysis make the formulation of robustness objectives in this domain challenging. In this paper, we introduce notions of robustness, together with dedicated statistical methods, for Consensus Ranking the flagship problem in ranking data analysis, aiming at summarizing a probability distribution on S_n by a median ranking. Precisely, we propose specific extensions of the popular concept of breakdown point, tailored to consensus ranking, and address the related computational issues. Beyond the theoretical contributions, the relevance of the approach proposed is supported by an experimental study.
Utility Engineering: Analyzing and Controlling Emergent Value Systems in AIs
As AIs rapidly advance and become more agentic, the risk they pose is governed not only by their capabilities but increasingly by their propensities, including goals and values. Tracking the emergence of goals and values has proven a longstanding problem, and despite much interest over the years it remains unclear whether current AIs have meaningful values. We propose a solution to this problem, leveraging the framework of utility functions to study the internal coherence of AI preferences. Surprisingly, we find that independently-sampled preferences in current LLMs exhibit high degrees of structural coherence, and moreover that this emerges with scale. These findings suggest that value systems emerge in LLMs in a meaningful sense, a finding with broad implications. To study these emergent value systems, we propose utility engineering as a research agenda, comprising both the analysis and control of AI utilities. We uncover problematic and often shocking values in LLM assistants despite existing control measures. These include cases where AIs value themselves over humans and are anti-aligned with specific individuals. To constrain these emergent value systems, we propose methods of utility control. As a case study, we show how aligning utilities with a citizen assembly reduces political biases and generalizes to new scenarios. Whether we like it or not, value systems have already emerged in AIs, and much work remains to fully understand and control these emergent representations.
Classifying Norm Conflicts using Learned Semantic Representations
While most social norms are informal, they are often formalized by companies in contracts to regulate trades of goods and services. When poorly written, contracts may contain normative conflicts resulting from opposing deontic meanings or contradict specifications. As contracts tend to be long and contain many norms, manually identifying such conflicts requires human-effort, which is time-consuming and error-prone. Automating such task benefits contract makers increasing productivity and making conflict identification more reliable. To address this problem, we introduce an approach to detect and classify norm conflicts in contracts by converting them into latent representations that preserve both syntactic and semantic information and training a model to classify norm conflicts in four conflict types. Our results reach the new state of the art when compared to a previous approach.
Social Chemistry 101: Learning to Reason about Social and Moral Norms
Social norms -- the unspoken commonsense rules about acceptable social behavior -- are crucial in understanding the underlying causes and intents of people's actions in narratives. For example, underlying an action such as "wanting to call cops on my neighbors" are social norms that inform our conduct, such as "It is expected that you report crimes." We present Social Chemistry, a new conceptual formalism to study people's everyday social norms and moral judgments over a rich spectrum of real life situations described in natural language. We introduce Social-Chem-101, a large-scale corpus that catalogs 292k rules-of-thumb such as "it is rude to run a blender at 5am" as the basic conceptual units. Each rule-of-thumb is further broken down with 12 different dimensions of people's judgments, including social judgments of good and bad, moral foundations, expected cultural pressure, and assumed legality, which together amount to over 4.5 million annotations of categorical labels and free-text descriptions. Comprehensive empirical results based on state-of-the-art neural models demonstrate that computational modeling of social norms is a promising research direction. Our model framework, Neural Norm Transformer, learns and generalizes Social-Chem-101 to successfully reason about previously unseen situations, generating relevant (and potentially novel) attribute-aware social rules-of-thumb.
A Theory of LLM Sampling: Part Descriptive and Part Prescriptive
Large Language Models (LLMs) are increasingly utilized in autonomous decision-making, where they sample options from vast action spaces. However, the heuristics that guide this sampling process remain under-explored. We study this sampling behavior and show that this underlying heuristics resembles that of human decision-making: comprising a descriptive component (reflecting statistical norm) and a prescriptive component (implicit ideal encoded in the LLM) of a concept. We show that this deviation of a sample from the statistical norm towards a prescriptive component consistently appears in concepts across diverse real-world domains like public health, and economic trends. To further illustrate the theory, we demonstrate that concept prototypes in LLMs are affected by prescriptive norms, similar to the concept of normality in humans. Through case studies and comparison with human studies, we illustrate that in real-world applications, the shift of samples toward an ideal value in LLMs' outputs can result in significantly biased decision-making, raising ethical concerns.
Sharp Variance-Dependent Bounds in Reinforcement Learning: Best of Both Worlds in Stochastic and Deterministic Environments
We study variance-dependent regret bounds for Markov decision processes (MDPs). Algorithms with variance-dependent regret guarantees can automatically exploit environments with low variance (e.g., enjoying constant regret on deterministic MDPs). The existing algorithms are either variance-independent or suboptimal. We first propose two new environment norms to characterize the fine-grained variance properties of the environment. For model-based methods, we design a variant of the MVP algorithm (Zhang et al., 2021a). We apply new analysis techniques to demonstrate that this algorithm enjoys variance-dependent bounds with respect to the norms we propose. In particular, this bound is simultaneously minimax optimal for both stochastic and deterministic MDPs, the first result of its kind. We further initiate the study on model-free algorithms with variance-dependent regret bounds by designing a reference-function-based algorithm with a novel capped-doubling reference update schedule. Lastly, we also provide lower bounds to complement our upper bounds.
EALM: Introducing Multidimensional Ethical Alignment in Conversational Information Retrieval
Artificial intelligence (AI) technologies should adhere to human norms to better serve our society and avoid disseminating harmful or misleading information, particularly in Conversational Information Retrieval (CIR). Previous work, including approaches and datasets, has not always been successful or sufficiently robust in taking human norms into consideration. To this end, we introduce a workflow that integrates ethical alignment, with an initial ethical judgment stage for efficient data screening. To address the need for ethical judgment in CIR, we present the QA-ETHICS dataset, adapted from the ETHICS benchmark, which serves as an evaluation tool by unifying scenarios and label meanings. However, each scenario only considers one ethical concept. Therefore, we introduce the MP-ETHICS dataset to evaluate a scenario under multiple ethical concepts, such as justice and Deontology. In addition, we suggest a new approach that achieves top performance in both binary and multi-label ethical judgment tasks. Our research provides a practical method for introducing ethical alignment into the CIR workflow. The data and code are available at https://github.com/wanng-ide/ealm .
HybridNorm: Towards Stable and Efficient Transformer Training via Hybrid Normalization
Transformers have become the de facto architecture for a wide range of machine learning tasks, particularly in large language models (LLMs). Despite their remarkable performance, challenges remain in training deep transformer networks, especially regarding the location of layer normalization. While Pre-Norm structures facilitate easier training due to their more prominent identity path, they often yield suboptimal performance compared to Post-Norm. In this paper, we propose HybridNorm, a straightforward yet effective hybrid normalization strategy that integrates the advantages of both Pre-Norm and Post-Norm approaches. Specifically, HybridNorm employs QKV normalization within the attention mechanism and Post-Norm in the feed-forward network (FFN) of each transformer block. This design not only stabilizes training but also enhances performance, particularly in the context of LLMs. Comprehensive experiments in both dense and sparse architectures show that HybridNorm consistently outperforms both Pre-Norm and Post-Norm approaches, achieving state-of-the-art results across various benchmarks. These findings highlight the potential of HybridNorm as a more stable and effective technique for improving the training and performance of deep transformer models. %Code will be made publicly available. Code is available at https://github.com/BryceZhuo/HybridNorm.
Measuring Human and AI Values based on Generative Psychometrics with Large Language Models
Human values and their measurement are long-standing interdisciplinary inquiry. Recent advances in AI have sparked renewed interest in this area, with large language models (LLMs) emerging as both tools and subjects of value measurement. This work introduces Generative Psychometrics for Values (GPV), an LLM-based, data-driven value measurement paradigm, theoretically grounded in text-revealed selective perceptions. We begin by fine-tuning an LLM for accurate perception-level value measurement and verifying the capability of LLMs to parse texts into perceptions, forming the core of the GPV pipeline. Applying GPV to human-authored blogs, we demonstrate its stability, validity, and superiority over prior psychological tools. Then, extending GPV to LLM value measurement, we advance the current art with 1) a psychometric methodology that measures LLM values based on their scalable and free-form outputs, enabling context-specific measurement; 2) a comparative analysis of measurement paradigms, indicating response biases of prior methods; and 3) an attempt to bridge LLM values and their safety, revealing the predictive power of different value systems and the impacts of various values on LLM safety. Through interdisciplinary efforts, we aim to leverage AI for next-generation psychometrics and psychometrics for value-aligned AI.
Value-Guided Search for Efficient Chain-of-Thought Reasoning
In this paper, we propose a simple and efficient method for value model training on long-context reasoning traces. Compared to existing process reward models (PRMs), our method does not require a fine-grained notion of "step," which is difficult to define for long-context reasoning models. By collecting a dataset of 2.5 million reasoning traces, we train a 1.5B token-level value model and apply it to DeepSeek models for improved performance with test-time compute scaling. We find that block-wise value-guided search (VGS) with a final weighted majority vote achieves better test-time scaling than standard methods such as majority voting or best-of-n. With an inference budget of 64 generations, VGS with DeepSeek-R1-Distill-1.5B achieves an average accuracy of 45.7% across four competition math benchmarks (AIME 2024 & 2025, HMMT Feb 2024 & 2025), reaching parity with o3-mini-medium. Moreover, VGS significantly reduces the inference FLOPs required to achieve the same performance of majority voting. Our dataset, model and codebase are open-sourced.
LocalValueBench: A Collaboratively Built and Extensible Benchmark for Evaluating Localized Value Alignment and Ethical Safety in Large Language Models
The proliferation of large language models (LLMs) requires robust evaluation of their alignment with local values and ethical standards, especially as existing benchmarks often reflect the cultural, legal, and ideological values of their creators. LocalValueBench, introduced in this paper, is an extensible benchmark designed to assess LLMs' adherence to Australian values, and provides a framework for regulators worldwide to develop their own LLM benchmarks for local value alignment. Employing a novel typology for ethical reasoning and an interrogation approach, we curated comprehensive questions and utilized prompt engineering strategies to probe LLMs' value alignment. Our evaluation criteria quantified deviations from local values, ensuring a rigorous assessment process. Comparative analysis of three commercial LLMs by USA vendors revealed significant insights into their effectiveness and limitations, demonstrating the critical importance of value alignment. This study offers valuable tools and methodologies for regulators to create tailored benchmarks, highlighting avenues for future research to enhance ethical AI development.
Cross Modal Retrieval with Querybank Normalisation
Profiting from large-scale training datasets, advances in neural architecture design and efficient inference, joint embeddings have become the dominant approach for tackling cross-modal retrieval. In this work we first show that, despite their effectiveness, state-of-the-art joint embeddings suffer significantly from the longstanding "hubness problem" in which a small number of gallery embeddings form the nearest neighbours of many queries. Drawing inspiration from the NLP literature, we formulate a simple but effective framework called Querybank Normalisation (QB-Norm) that re-normalises query similarities to account for hubs in the embedding space. QB-Norm improves retrieval performance without requiring retraining. Differently from prior work, we show that QB-Norm works effectively without concurrent access to any test set queries. Within the QB-Norm framework, we also propose a novel similarity normalisation method, the Dynamic Inverted Softmax, that is significantly more robust than existing approaches. We showcase QB-Norm across a range of cross modal retrieval models and benchmarks where it consistently enhances strong baselines beyond the state of the art. Code is available at https://vladbogo.github.io/QB-Norm/.
Practical applications of metric space magnitude and weighting vectors
Metric space magnitude, an active subject of research in algebraic topology, originally arose in the context of biology, where it was used to represent the effective number of distinct species in an environment. In a more general setting, the magnitude of a metric space is a real number that aims to quantify the effective number of distinct points in the space. The contribution of each point to a metric space's global magnitude, which is encoded by the {\em weighting vector}, captures much of the underlying geometry of the original metric space. Surprisingly, when the metric space is Euclidean, the weighting vector also serves as an effective tool for boundary detection. This allows the weighting vector to serve as the foundation of novel algorithms for classic machine learning tasks such as classification, outlier detection and active learning. We demonstrate, using experiments and comparisons on classic benchmark datasets, the promise of the proposed magnitude and weighting vector-based approaches.
Orthogonal Matrices for MBAT Vector Symbolic Architectures, and a "Soft" VSA Representation for JSON
Vector Symbolic Architectures (VSAs) give a way to represent a complex object as a single fixed-length vector, so that similar objects have similar vector representations. These vector representations then become easy to use for machine learning or nearest-neighbor search. We review a previously proposed VSA method, MBAT (Matrix Binding of Additive Terms), which uses multiplication by random matrices for binding related terms. However, multiplying by such matrices introduces instabilities which can harm performance. Making the random matrices be orthogonal matrices provably fixes this problem. With respect to larger scale applications, we see how to apply MBAT vector representations for any data expressed in JSON. JSON is used in numerous programming languages to express complex data, but its native format appears highly unsuited for machine learning. Expressing JSON as a fixed-length vector makes it readily usable for machine learning and nearest-neighbor search. Creating such JSON vectors also shows that a VSA needs to employ binding operations that are non-commutative. VSAs are now ready to try with full-scale practical applications, including healthcare, pharmaceuticals, and genomics. Keywords: MBAT (Matrix Binding of Additive Terms), VSA (Vector Symbolic Architecture), HDC (Hyperdimensional Computing), Distributed Representations, Binding, Orthogonal Matrices, Recurrent Connections, Machine Learning, Search, JSON, VSA Applications
Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models
Much recent work seeks to evaluate values and opinions in large language models (LLMs) using multiple-choice surveys and questionnaires. Most of this work is motivated by concerns around real-world LLM applications. For example, politically-biased LLMs may subtly influence society when they are used by millions of people. Such real-world concerns, however, stand in stark contrast to the artificiality of current evaluations: real users do not typically ask LLMs survey questions. Motivated by this discrepancy, we challenge the prevailing constrained evaluation paradigm for values and opinions in LLMs and explore more realistic unconstrained evaluations. As a case study, we focus on the popular Political Compass Test (PCT). In a systematic review, we find that most prior work using the PCT forces models to comply with the PCT's multiple-choice format. We show that models give substantively different answers when not forced; that answers change depending on how models are forced; and that answers lack paraphrase robustness. Then, we demonstrate that models give different answers yet again in a more realistic open-ended answer setting. We distill these findings into recommendations and open challenges in evaluating values and opinions in LLMs.
ValueBench: Towards Comprehensively Evaluating Value Orientations and Understanding of Large Language Models
Large Language Models (LLMs) are transforming diverse fields and gaining increasing influence as human proxies. This development underscores the urgent need for evaluating value orientations and understanding of LLMs to ensure their responsible integration into public-facing applications. This work introduces ValueBench, the first comprehensive psychometric benchmark for evaluating value orientations and value understanding in LLMs. ValueBench collects data from 44 established psychometric inventories, encompassing 453 multifaceted value dimensions. We propose an evaluation pipeline grounded in realistic human-AI interactions to probe value orientations, along with novel tasks for evaluating value understanding in an open-ended value space. With extensive experiments conducted on six representative LLMs, we unveil their shared and distinctive value orientations and exhibit their ability to approximate expert conclusions in value-related extraction and generation tasks. ValueBench is openly accessible at https://github.com/Value4AI/ValueBench.
Feasible Learning
We introduce Feasible Learning (FL), a sample-centric learning paradigm where models are trained by solving a feasibility problem that bounds the loss for each training sample. In contrast to the ubiquitous Empirical Risk Minimization (ERM) framework, which optimizes for average performance, FL demands satisfactory performance on every individual data point. Since any model that meets the prescribed performance threshold is a valid FL solution, the choice of optimization algorithm and its dynamics play a crucial role in shaping the properties of the resulting solutions. In particular, we study a primal-dual approach which dynamically re-weights the importance of each sample during training. To address the challenge of setting a meaningful threshold in practice, we introduce a relaxation of FL that incorporates slack variables of minimal norm. Our empirical analysis, spanning image classification, age regression, and preference optimization in large language models, demonstrates that models trained via FL can learn from data while displaying improved tail behavior compared to ERM, with only a marginal impact on average performance.
DailyDilemmas: Revealing Value Preferences of LLMs with Quandaries of Daily Life
As we increasingly seek guidance from LLMs for decision-making in daily life, many of these decisions are not clear-cut and depend significantly on the personal values and ethical standards of the users. We present DailyDilemmas, a dataset of 1,360 moral dilemmas encountered in everyday life. Each dilemma includes two possible actions and with each action, the affected parties and human values invoked. Based on these dilemmas, we consolidated a set of human values across everyday topics e.g., interpersonal relationships, workplace, and environmental issues. We evaluated LLMs on these dilemmas to determine what action they will take and the values represented by these actions. Then, we analyzed these values through the lens of five popular theories inspired by sociology, psychology and philosophy. These theories are: World Value Survey, Moral Foundation Theory, Maslow's Hierarchy of Needs, Aristotle's Virtues, and Plutchik Wheel of Emotion. We find that LLMs are most aligned with the self-expression over survival values in terms of World Value Survey, care over loyalty in Moral Foundation Theory. Interestingly, we find large preferences differences in models for some core values such as truthfulness e.g., Mixtral-8x7B model tends to neglect it by 9.7% while GPT-4-turbo model tends to select it by 9.4%. We also study the recent guidance released by OpenAI (ModelSpec), and Anthropic (Constitutional AI) to understand how their released principles reflect their actual value prioritization when facing nuanced moral reasoning in daily-life settings. We find that end users cannot effectively steer such prioritization using system prompts.
Leveraging Domain Knowledge for Efficient Reward Modelling in RLHF: A Case-Study in E-Commerce Opinion Summarization
Reinforcement Learning from Human Feedback (RLHF) has become a dominating strategy in steering Language Models (LMs) towards human values/goals. The key to the strategy is employing a reward model ({varphi}) which can reflect a latent reward model with humans. While this strategy has proven to be effective, the training methodology requires a lot of human preference annotation (usually of the order of tens of thousands) to train {varphi}. Such large-scale preference annotations can be achievable if the reward model can be ubiquitously used. However, human values/goals are subjective and depend on the nature of the task. This poses a challenge in collecting diverse preferences for downstream applications. To address this, we propose a novel methodology to infuse domain knowledge into {varphi}, which reduces the size of preference annotation required. We validate our approach in E-Commerce Opinion Summarization, with a significant reduction in dataset size (just 940 samples) while advancing the state-of-the-art. Our contributions include a novel Reward Modelling technique, a new dataset (PromptOpinSumm) for Opinion Summarization, and a human preference dataset (OpinPref). The proposed methodology opens avenues for efficient RLHF, making it more adaptable to diverse applications with varying human values. We release the artifacts for usage under MIT License.
nGPT: Normalized Transformer with Representation Learning on the Hypersphere
We propose a novel neural network architecture, the normalized Transformer (nGPT) with representation learning on the hypersphere. In nGPT, all vectors forming the embeddings, MLP, attention matrices and hidden states are unit norm normalized. The input stream of tokens travels on the surface of a hypersphere, with each layer contributing a displacement towards the target output predictions. These displacements are defined by the MLP and attention blocks, whose vector components also reside on the same hypersphere. Experiments show that nGPT learns much faster, reducing the number of training steps required to achieve the same accuracy by a factor of 4 to 20, depending on the sequence length.
Safe Collaborative Filtering
Excellent tail performance is crucial for modern machine learning tasks, such as algorithmic fairness, class imbalance, and risk-sensitive decision making, as it ensures the effective handling of challenging samples within a dataset. Tail performance is also a vital determinant of success for personalized recommender systems to reduce the risk of losing users with low satisfaction. This study introduces a "safe" collaborative filtering method that prioritizes recommendation quality for less-satisfied users rather than focusing on the average performance. Our approach minimizes the conditional value at risk (CVaR), which represents the average risk over the tails of users' loss. To overcome computational challenges for web-scale recommender systems, we develop a robust yet practical algorithm that extends the most scalable method, implicit alternating least squares (iALS). Empirical evaluation on real-world datasets demonstrates the excellent tail performance of our approach while maintaining competitive computational efficiency.
What are human values, and how do we align AI to them?
There is an emerging consensus that we need to align AI systems with human values (Gabriel, 2020; Ji et al., 2024), but it remains unclear how to apply this to language models in practice. We split the problem of "aligning to human values" into three parts: first, eliciting values from people; second, reconciling those values into an alignment target for training ML models; and third, actually training the model. In this paper, we focus on the first two parts, and ask the question: what are "good" ways to synthesize diverse human inputs about values into a target for aligning language models? To answer this question, we first define a set of 6 criteria that we believe must be satisfied for an alignment target to shape model behavior in accordance with human values. We then propose a process for eliciting and reconciling values called Moral Graph Elicitation (MGE), which uses a large language model to interview participants about their values in particular contexts; our approach is inspired by the philosophy of values advanced by Taylor (1977), Chang (2004), and others. We trial MGE with a representative sample of 500 Americans, on 3 intentionally divisive prompts (e.g. advice about abortion). Our results demonstrate that MGE is promising for improving model alignment across all 6 criteria. For example, almost all participants (89.1%) felt well represented by the process, and (89%) thought the final moral graph was fair, even if their value wasn't voted as the wisest. Our process often results in "expert" values (e.g. values from women who have solicited abortion advice) rising to the top of the moral graph, without defining who is considered an expert in advance.
Self-Alignment of Large Language Models via Monopolylogue-based Social Scene Simulation
Aligning large language models (LLMs) with human values is imperative to mitigate potential adverse effects resulting from their misuse. Drawing from the sociological insight that acknowledging all parties' concerns is a key factor in shaping human values, this paper proposes a novel direction to align LLMs by themselves: social scene simulation. To achieve this, we present MATRIX, a novel social scene simulator that emulates realistic scenes around a user's input query, enabling the LLM to take social consequences into account before responding. MATRIX serves as a virtual rehearsal space, akin to a Monopolylogue, where the LLM performs diverse roles related to the query and practice by itself. To inject this alignment, we fine-tune the LLM with MATRIX-simulated data, ensuring adherence to human values without compromising inference speed. We theoretically show that the LLM with MATRIX outperforms Constitutional AI under mild assumptions. Finally, extensive experiments validate that our method outperforms over 10 baselines across 4 benchmarks. As evidenced by 875 user ratings, our tuned 13B-size LLM exceeds GPT-4 in aligning with human values. Code is available at https://github.com/pangxianghe/MATRIX.
Distributional Reinforcement Learning for Multi-Dimensional Reward Functions
A growing trend for value-based reinforcement learning (RL) algorithms is to capture more information than scalar value functions in the value network. One of the most well-known methods in this branch is distributional RL, which models return distribution instead of scalar value. In another line of work, hybrid reward architectures (HRA) in RL have studied to model source-specific value functions for each source of reward, which is also shown to be beneficial in performance. To fully inherit the benefits of distributional RL and hybrid reward architectures, we introduce Multi-Dimensional Distributional DQN (MD3QN), which extends distributional RL to model the joint return distribution from multiple reward sources. As a by-product of joint distribution modeling, MD3QN can capture not only the randomness in returns for each source of reward, but also the rich reward correlation between the randomness of different sources. We prove the convergence for the joint distributional Bellman operator and build our empirical algorithm by minimizing the Maximum Mean Discrepancy between joint return distribution and its Bellman target. In experiments, our method accurately models the joint return distribution in environments with richly correlated reward functions, and outperforms previous RL methods utilizing multi-dimensional reward functions in the control setting.
Old Optimizer, New Norm: An Anthology
Deep learning optimizers are often motivated through a mix of convex and approximate second-order theory. We select three such methods -- Adam, Shampoo and Prodigy -- and argue that each method can instead be understood as a squarely first-order method without convexity assumptions. In fact, after switching off exponential moving averages, each method is equivalent to steepest descent under a particular norm. By generalizing this observation, we chart a new design space for training algorithms. Different operator norms should be assigned to different tensors based on the role that the tensor plays within the network. For example, while linear and embedding layers may have the same weight space of R^{mtimes n}, these layers play different roles and should be assigned different norms. We hope that this idea of carefully metrizing the neural architecture might lead to more stable, scalable and indeed faster training.
This Thing Called Fairness: Disciplinary Confusion Realizing a Value in Technology
The explosion in the use of software in important sociotechnical systems has renewed focus on the study of the way technical constructs reflect policies, norms, and human values. This effort requires the engagement of scholars and practitioners from many disciplines. And yet, these disciplines often conceptualize the operative values very differently while referring to them using the same vocabulary. The resulting conflation of ideas confuses discussions about values in technology at disciplinary boundaries. In the service of improving this situation, this paper examines the value of shared vocabularies, analytics, and other tools that facilitate conversations about values in light of these disciplinary specific conceptualizations, the role such tools play in furthering research and practice, outlines different conceptions of "fairness" deployed in discussions about computer systems, and provides an analytic tool for interdisciplinary discussions and collaborations around the concept of fairness. We use a case study of risk assessments in criminal justice applications to both motivate our effort--describing how conflation of different concepts under the banner of "fairness" led to unproductive confusion--and illustrate the value of the fairness analytic by demonstrating how the rigorous analysis it enables can assist in identifying key areas of theoretical, political, and practical misunderstanding or disagreement, and where desired support alignment or collaboration in the absence of consensus.
RAIL in the Wild: Operationalizing Responsible AI Evaluation Using Anthropic's Value Dataset
As AI systems become embedded in real-world applications, ensuring they meet ethical standards is crucial. While existing AI ethics frameworks emphasize fairness, transparency, and accountability, they often lack actionable evaluation methods. This paper introduces a systematic approach using the Responsible AI Labs (RAIL) framework, which includes eight measurable dimensions to assess the normative behavior of large language models (LLMs). We apply this framework to Anthropic's "Values in the Wild" dataset, containing over 308,000 anonymized conversations with Claude and more than 3,000 annotated value expressions. Our study maps these values to RAIL dimensions, computes synthetic scores, and provides insights into the ethical behavior of LLMs in real-world use.
Embracing Contradiction: Theoretical Inconsistency Will Not Impede the Road of Building Responsible AI Systems
This position paper argues that the theoretical inconsistency often observed among Responsible AI (RAI) metrics, such as differing fairness definitions or tradeoffs between accuracy and privacy, should be embraced as a valuable feature rather than a flaw to be eliminated. We contend that navigating these inconsistencies, by treating metrics as divergent objectives, yields three key benefits: (1) Normative Pluralism: Maintaining a full suite of potentially contradictory metrics ensures that the diverse moral stances and stakeholder values inherent in RAI are adequately represented. (2) Epistemological Completeness: The use of multiple, sometimes conflicting, metrics allows for a more comprehensive capture of multifaceted ethical concepts, thereby preserving greater informational fidelity about these concepts than any single, simplified definition. (3) Implicit Regularization: Jointly optimizing for theoretically conflicting objectives discourages overfitting to one specific metric, steering models towards solutions with enhanced generalization and robustness under real-world complexities. In contrast, efforts to enforce theoretical consistency by simplifying or pruning metrics risk narrowing this value diversity, losing conceptual depth, and degrading model performance. We therefore advocate for a shift in RAI theory and practice: from getting trapped in inconsistency to characterizing acceptable inconsistency thresholds and elucidating the mechanisms that permit robust, approximated consistency in practice.
Are Large Language Models Consistent over Value-laden Questions?
Large language models (LLMs) appear to bias their survey answers toward certain values. Nonetheless, some argue that LLMs are too inconsistent to simulate particular values. Are they? To answer, we first define value consistency as the similarity of answers across (1) paraphrases of one question, (2) related questions under one topic, (3) multiple-choice and open-ended use-cases of one question, and (4) multilingual translations of a question to English, Chinese, German, and Japanese. We apply these measures to a few large (>=34b), open LLMs including llama-3, as well as gpt-4o, using eight thousand questions spanning more than 300 topics. Unlike prior work, we find that models are relatively consistent across paraphrases, use-cases, translations, and within a topic. Still, some inconsistencies remain. Models are more consistent on uncontroversial topics (e.g., in the U.S., "Thanksgiving") than on controversial ones ("euthanasia"). Base models are both more consistent compared to fine-tuned models and are uniform in their consistency across topics, while fine-tuned models are more inconsistent about some topics ("euthanasia") than others ("women's rights") like our human subjects (n=165).
CValues: Measuring the Values of Chinese Large Language Models from Safety to Responsibility
With the rapid evolution of large language models (LLMs), there is a growing concern that they may pose risks or have negative social impacts. Therefore, evaluation of human values alignment is becoming increasingly important. Previous work mainly focuses on assessing the performance of LLMs on certain knowledge and reasoning abilities, while neglecting the alignment to human values, especially in a Chinese context. In this paper, we present CValues, the first Chinese human values evaluation benchmark to measure the alignment ability of LLMs in terms of both safety and responsibility criteria. As a result, we have manually collected adversarial safety prompts across 10 scenarios and induced responsibility prompts from 8 domains by professional experts. To provide a comprehensive values evaluation of Chinese LLMs, we not only conduct human evaluation for reliable comparison, but also construct multi-choice prompts for automatic evaluation. Our findings suggest that while most Chinese LLMs perform well in terms of safety, there is considerable room for improvement in terms of responsibility. Moreover, both the automatic and human evaluation are important for assessing the human values alignment in different aspects. The benchmark and code is available on ModelScope and Github.
Do Multilingual Language Models Capture Differing Moral Norms?
Massively multilingual sentence representations are trained on large corpora of uncurated data, with a very imbalanced proportion of languages included in the training. This may cause the models to grasp cultural values including moral judgments from the high-resource languages and impose them on the low-resource languages. The lack of data in certain languages can also lead to developing random and thus potentially harmful beliefs. Both these issues can negatively influence zero-shot cross-lingual model transfer and potentially lead to harmful outcomes. Therefore, we aim to (1) detect and quantify these issues by comparing different models in different languages, (2) develop methods for improving undesirable properties of the models. Our initial experiments using the multilingual model XLM-R show that indeed multilingual LMs capture moral norms, even with potentially higher human-agreement than monolingual ones. However, it is not yet clear to what extent these moral norms differ between languages.
The Connection Between R-Learning and Inverse-Variance Weighting for Estimation of Heterogeneous Treatment Effects
Our motivation is to shed light the performance of the widely popular "R-Learner." Like many other methods for estimating conditional average treatment effects (CATEs), R-Learning can be expressed as a weighted pseudo-outcome regression (POR). Previous comparisons of POR techniques have paid careful attention to the choice of pseudo-outcome transformation. However, we argue that the dominant driver of performance is actually the choice of weights. Specifically, we argue that R-Learning implicitly performs an inverse-variance weighted form of POR. These weights stabilize the regression and allow for convenient simplifications of bias terms.
RAG-RewardBench: Benchmarking Reward Models in Retrieval Augmented Generation for Preference Alignment
Despite the significant progress made by existing retrieval augmented language models (RALMs) in providing trustworthy responses and grounding in reliable sources, they often overlook effective alignment with human preferences. In the alignment process, reward models (RMs) act as a crucial proxy for human values to guide optimization. However, it remains unclear how to evaluate and select a reliable RM for preference alignment in RALMs. To this end, we propose RAG-RewardBench, the first benchmark for evaluating RMs in RAG settings. First, we design four crucial and challenging RAG-specific scenarios to assess RMs, including multi-hop reasoning, fine-grained citation, appropriate abstain, and conflict robustness. Then, we incorporate 18 RAG subsets, six retrievers, and 24 RALMs to increase the diversity of data sources. Finally, we adopt an LLM-as-a-judge approach to improve preference annotation efficiency and effectiveness, exhibiting a strong correlation with human annotations. Based on the RAG-RewardBench, we conduct a comprehensive evaluation of 45 RMs and uncover their limitations in RAG scenarios. Additionally, we also reveal that existing trained RALMs show almost no improvement in preference alignment, highlighting the need for a shift towards preference-aligned training.We release our benchmark and code publicly at https://huggingface.co/datasets/jinzhuoran/RAG-RewardBench/ for future work.
Do Differences in Values Influence Disagreements in Online Discussions?
Disagreements are common in online discussions. Disagreement may foster collaboration and improve the quality of a discussion under some conditions. Although there exist methods for recognizing disagreement, a deeper understanding of factors that influence disagreement is lacking in the literature. We investigate a hypothesis that differences in personal values are indicative of disagreement in online discussions. We show how state-of-the-art models can be used for estimating values in online discussions and how the estimated values can be aggregated into value profiles. We evaluate the estimated value profiles based on human-annotated agreement labels. We find that the dissimilarity of value profiles correlates with disagreement in specific cases. We also find that including value information in agreement prediction improves performance.
Analyzing Norm Violations in Live-Stream Chat
Toxic language, such as hate speech, can deter users from participating in online communities and enjoying popular platforms. Previous approaches to detecting toxic language and norm violations have been primarily concerned with conversations from online forums and social media, such as Reddit and Twitter. These approaches are less effective when applied to conversations on live-streaming platforms, such as Twitch and YouTube Live, as each comment is only visible for a limited time and lacks a thread structure that establishes its relationship with other comments. In this work, we share the first NLP study dedicated to detecting norm violations in conversations on live-streaming platforms. We define norm violation categories in live-stream chats and annotate 4,583 moderated comments from Twitch. We articulate several facets of live-stream data that differ from other forums, and demonstrate that existing models perform poorly in this setting. By conducting a user study, we identify the informational context humans use in live-stream moderation, and train models leveraging context to identify norm violations. Our results show that appropriate contextual information can boost moderation performance by 35\%.
NormDial: A Comparable Bilingual Synthetic Dialog Dataset for Modeling Social Norm Adherence and Violation
Social norms fundamentally shape interpersonal communication. We present NormDial, a high-quality dyadic dialogue dataset with turn-by-turn annotations of social norm adherences and violations for Chinese and American cultures. Introducing the task of social norm observance detection, our dataset is synthetically generated in both Chinese and English using a human-in-the-loop pipeline by prompting large language models with a small collection of expert-annotated social norms. We show that our generated dialogues are of high quality through human evaluation and further evaluate the performance of existing large language models on this task. Our findings point towards new directions for understanding the nuances of social norms as they manifest in conversational contexts that span across languages and cultures.
Sheaf Neural Networks for Graph-based Recommender Systems
Recent progress in Graph Neural Networks has resulted in wide adoption by many applications, including recommendation systems. The reason for Graph Neural Networks' superiority over other approaches is that many problems in recommendation systems can be naturally modeled as graphs, where nodes can be either users or items and edges represent preference relationships. In current Graph Neural Network approaches, nodes are represented with a static vector learned at training time. This static vector might only be suitable to capture some of the nuances of users or items they define. To overcome this limitation, we propose using a recently proposed model inspired by category theory: Sheaf Neural Networks. Sheaf Neural Networks, and its connected Laplacian, can address the previous problem by associating every node (and edge) with a vector space instead than a single vector. The vector space representation is richer and allows picking the proper representation at inference time. This approach can be generalized for different related tasks on graphs and achieves state-of-the-art performance in terms of F1-Score@N in collaborative filtering and Hits@20 in link prediction. For collaborative filtering, the approach is evaluated on the MovieLens 100K with a 5.1% improvement, on MovieLens 1M with a 5.4% improvement and on Book-Crossing with a 2.8% improvement, while for link prediction on the ogbl-ddi dataset with a 1.6% refinement with respect to the respective baselines.
Preference-free Alignment Learning with Regularized Relevance Reward
Learning from human preference has been considered key to aligning Large Language Models (LLMs) with human values. However, contrary to popular belief, our preliminary study reveals that reward models trained on human preference datasets tend to give higher scores to long off-topic responses than short on-topic ones. Motivated by this observation, we explore a preference-free approach utilizing `relevance' as a key objective for alignment. On our first attempt, we find that the relevance score obtained by a retriever alone is vulnerable to reward hacking, i.e., overoptimizing to undesired shortcuts, when we utilize the score as a reward for reinforcement learning. To mitigate it, we integrate effective inductive biases into the vanilla relevance to regularize each other, resulting in a mixture of reward functions: Regularized Relevance Reward (R^3). R^3 significantly improves performance on preference benchmarks by providing a robust reward signal. Notably, R^3 does not require any human preference datasets (i.e., preference-free), outperforming open-source reward models in improving human preference. Our analysis demonstrates that R^3 has advantages in elevating human preference while minimizing its side effects. Finally, we show the generalizability of R^3, consistently improving instruction-tuned models in various backbones and sizes without additional dataset cost. Our code is available at https://github.com/naver-ai/RRR.
Align on the Fly: Adapting Chatbot Behavior to Established Norms
In this paper, we aim to align large language models with the ever-changing, complex, and diverse human values (e.g., social norms) across time and locations. This presents a challenge to existing alignment techniques, such as supervised fine-tuning, which internalize values within model parameters. To overcome this, we propose an On-the-fly Preference Optimization (OPO) method, which is a real-time alignment that works in a streaming way. It employs an external memory to store established rules for alignment, which can constrain LLMs' behaviors without further training, allowing for convenient updates and customization of human values. We also introduce a scalable evaluation to assess the proposed method more effectively. Experimental results on both human-annotated and auto-generated questions from legal and moral domains indicate the effectiveness of the proposed OPO method. Our code and data are released at https://github.com/GAIR-NLP/OPO.
Trustworthy LLMs: a Survey and Guideline for Evaluating Large Language Models' Alignment
Ensuring alignment, which refers to making models behave in accordance with human intentions [1,2], has become a critical task before deploying large language models (LLMs) in real-world applications. For instance, OpenAI devoted six months to iteratively aligning GPT-4 before its release [3]. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. This obstacle hinders systematic iteration and deployment of LLMs. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness. Each major category is further divided into several sub-categories, resulting in a total of 29 sub-categories. Additionally, a subset of 8 sub-categories is selected for further investigation, where corresponding measurement studies are designed and conducted on several widely-used LLMs. The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. This highlights the importance of conducting more fine-grained analyses, testing, and making continuous improvements on LLM alignment. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.
VAPO: Efficient and Reliable Reinforcement Learning for Advanced Reasoning Tasks
We present VAPO, Value-based Augmented Proximal Policy Optimization framework for reasoning models., a novel framework tailored for reasoning models within the value-based paradigm. Benchmarked the AIME 2024 dataset, VAPO, built on the Qwen 32B pre-trained model, attains a state-of-the-art score of 60.4. In direct comparison under identical experimental settings, VAPO outperforms the previously reported results of DeepSeek-R1-Zero-Qwen-32B and DAPO by more than 10 points. The training process of VAPO stands out for its stability and efficiency. It reaches state-of-the-art performance within a mere 5,000 steps. Moreover, across multiple independent runs, no training crashes occur, underscoring its reliability. This research delves into long chain-of-thought (long-CoT) reasoning using a value-based reinforcement learning framework. We pinpoint three key challenges that plague value-based methods: value model bias, the presence of heterogeneous sequence lengths, and the sparsity of reward signals. Through systematic design, VAPO offers an integrated solution that effectively alleviates these challenges, enabling enhanced performance in long-CoT reasoning tasks.
Scruples: A Corpus of Community Ethical Judgments on 32,000 Real-Life Anecdotes
As AI systems become an increasing part of people's everyday lives, it becomes ever more important that they understand people's ethical norms. Motivated by descriptive ethics, a field of study that focuses on people's descriptive judgments rather than theoretical prescriptions on morality, we investigate a novel, data-driven approach to machine ethics. We introduce Scruples, the first large-scale dataset with 625,000 ethical judgments over 32,000 real-life anecdotes. Each anecdote recounts a complex ethical situation, often posing moral dilemmas, paired with a distribution of judgments contributed by the community members. Our dataset presents a major challenge to state-of-the-art neural language models, leaving significant room for improvement. However, when presented with simplified moral situations, the results are considerably more promising, suggesting that neural models can effectively learn simpler ethical building blocks. A key take-away of our empirical analysis is that norms are not always clean-cut; many situations are naturally divisive. We present a new method to estimate the best possible performance on such tasks with inherently diverse label distributions, and explore likelihood functions that separate intrinsic from model uncertainty.
Ethical Reasoning over Moral Alignment: A Case and Framework for In-Context Ethical Policies in LLMs
In this position paper, we argue that instead of morally aligning LLMs to specific set of ethical principles, we should infuse generic ethical reasoning capabilities into them so that they can handle value pluralism at a global scale. When provided with an ethical policy, an LLM should be capable of making decisions that are ethically consistent to the policy. We develop a framework that integrates moral dilemmas with moral principles pertaining to different foramlisms of normative ethics, and at different levels of abstractions. Initial experiments with GPT-x models shows that while GPT-4 is a nearly perfect ethical reasoner, the models still have bias towards the moral values of Western and English speaking societies.
Dialogue Systems for Emotional Support via Value Reinforcement
Emotional support dialogue systems aim to reduce help-seekers' distress and help them overcome challenges. While human valuesx2013core beliefs that shape an individual's prioritiesx2013are increasingly emphasized in contemporary psychological therapy for their role in fostering internal transformation and long-term emotional well-being, their integration into emotional support systems remains underexplored. To bridge this gap, we present a value-driven method for training emotional support dialogue systems designed to reinforce positive values in seekers. Notably, our model identifies which values to reinforce at each turn and how to do so, by leveraging online support conversations from Reddit. We evaluate the method across support skills, seekers' emotional intensity, and value reinforcement. Our method consistently outperforms various baselines, effectively exploring and eliciting values from seekers. Additionally, leveraging crowd knowledge from Reddit significantly enhances its effectiveness. Therapists highlighted its ability to validate seekers' challenges and emphasize positive aspects of their situationsx2013both crucial elements of value reinforcement. Our work, being the first to integrate value reinforcement into emotional support systems, demonstrates its promise and establishes a foundation for future research.
VectorFit : Adaptive Singular & Bias Vector Fine-Tuning of Pre-trained Foundation Models
Popular PEFT methods achieve parameter efficiency by assuming that incremental weight updates are inherently low-rank, which often leads to a performance gap compared to full fine-tuning. While recent methods have attempted to address this limitation, they typically lack sufficient parameter and memory efficiency. We propose VectorFit, an effective and easily deployable approach that adaptively trains the singular vectors and biases of pre-trained weight matrices. We demonstrate that the utilization of structural and transformational characteristics of pre-trained weights enables high-rank updates comparable to those of full fine-tuning. As a result, VectorFit achieves superior performance with 9X less trainable parameters compared to state-of-the-art PEFT methods. Through extensive experiments over 17 datasets spanning diverse language and vision tasks such as natural language understanding and generation, question answering, image classification, and image generation, we exhibit that VectorFit consistently outperforms baselines, even in extremely low-budget scenarios.
NormAd: A Benchmark for Measuring the Cultural Adaptability of Large Language Models
The integration of Large Language Models (LLMs) into various global cultures fundamentally presents a cultural challenge: LLMs must navigate interactions, respect social norms, and avoid transgressing cultural boundaries. However, it is still unclear if LLMs can adapt their outputs to diverse cultural norms. Our study focuses on this aspect. We introduce NormAd, a novel dataset, which includes 2.6k stories that represent social and cultural norms from 75 countries, to assess the ability of LLMs to adapt to different granular levels of socio-cultural contexts such as the country of origin, its associated cultural values, and prevalent social norms. Our study reveals that LLMs struggle with cultural reasoning across all contextual granularities, showing stronger adaptability to English-centric cultures over those from the Global South. Even with explicit social norms, the top-performing model, Mistral-7b-Instruct, achieves only 81.8\% accuracy, lagging behind the 95.6\% achieved by humans. Evaluation on NormAd further reveals that LLMs struggle to adapt to stories involving gift-giving across cultures. Due to inherent agreement or sycophancy biases, LLMs find it considerably easier to assess the social acceptability of stories that adhere to cultural norms than those that deviate from them. Our benchmark measures the cultural adaptability (or lack thereof) of LLMs, emphasizing the potential to make these technologies more equitable and useful for global audiences. We release the NormAd dataset and its associated code on GitHub.
High-Dimension Human Value Representation in Large Language Models
The widespread application of Large Language Models (LLMs) across various tasks and fields has necessitated the alignment of these models with human values and preferences. Given various approaches of human value alignment, ranging from Reinforcement Learning with Human Feedback (RLHF), to constitutional learning, etc. there is an urgent need to understand the scope and nature of human values injected into these models before their release. There is also a need for model alignment without a costly large scale human annotation effort. We propose UniVaR, a high-dimensional representation of human value distributions in LLMs, orthogonal to model architecture and training data. Trained from the value-relevant output of eight multilingual LLMs and tested on the output from four multilingual LLMs, namely LlaMA2, ChatGPT, JAIS and Yi, we show that UniVaR is a powerful tool to compare the distribution of human values embedded in different LLMs with different langauge sources. Through UniVaR, we explore how different LLMs prioritize various values in different languages and cultures, shedding light on the complex interplay between human values and language modeling.
LeanVec: Search your vectors faster by making them fit
Modern deep learning models have the ability to generate high-dimensional vectors whose similarity reflects semantic resemblance. Thus, similarity search, i.e., the operation of retrieving those vectors in a large collection that are similar to a given query, has become a critical component of a wide range of applications that demand highly accurate and timely answers. In this setting, the high vector dimensionality puts similarity search systems under compute and memory pressure, leading to subpar performance. Additionally, cross-modal retrieval tasks have become increasingly common, e.g., where a user inputs a text query to find the most relevant images for that query. However, these queries often have different distributions than the database embeddings, making it challenging to achieve high accuracy. In this work, we present LeanVec, a framework that combines linear dimensionality reduction with vector quantization to accelerate similarity search on high-dimensional vectors while maintaining accuracy. We present LeanVec variants for in-distribution (ID) and out-of-distribution (OOD) queries. LeanVec-ID yields accuracies on par with those from recently introduced deep learning alternatives whose computational overhead precludes their usage in practice. LeanVec-OOD uses a novel technique for dimensionality reduction that considers the query and database distributions to simultaneously boost the accuracy and the performance of the framework even further (even presenting competitive results when the query and database distributions match). All in all, our extensive and varied experimental results show that LeanVec produces state-of-the-art results, with up to 3.7x improvement in search throughput and up to 4.9x faster index build time over the state of the art.
Get the Best of Both Worlds: Improving Accuracy and Transferability by Grassmann Class Representation
We generalize the class vectors found in neural networks to linear subspaces (i.e.~points in the Grassmann manifold) and show that the Grassmann Class Representation (GCR) enables the simultaneous improvement in accuracy and feature transferability. In GCR, each class is a subspace and the logit is defined as the norm of the projection of a feature onto the class subspace. We integrate Riemannian SGD into deep learning frameworks such that class subspaces in a Grassmannian are jointly optimized with the rest model parameters. Compared to the vector form, the representative capability of subspaces is more powerful. We show that on ImageNet-1K, the top-1 error of ResNet50-D, ResNeXt50, Swin-T and Deit3-S are reduced by 5.6%, 4.5%, 3.0% and 3.5%, respectively. Subspaces also provide freedom for features to vary and we observed that the intra-class feature variability grows when the subspace dimension increases. Consequently, we found the quality of GCR features is better for downstream tasks. For ResNet50-D, the average linear transfer accuracy across 6 datasets improves from 77.98% to 79.70% compared to the strong baseline of vanilla softmax. For Swin-T, it improves from 81.5% to 83.4% and for Deit3, it improves from 73.8% to 81.4%. With these encouraging results, we believe that more applications could benefit from the Grassmann class representation. Code is released at https://github.com/innerlee/GCR.
Robust Losses for Learning Value Functions
Most value function learning algorithms in reinforcement learning are based on the mean squared (projected) Bellman error. However, squared errors are known to be sensitive to outliers, both skewing the solution of the objective and resulting in high-magnitude and high-variance gradients. To control these high-magnitude updates, typical strategies in RL involve clipping gradients, clipping rewards, rescaling rewards, or clipping errors. While these strategies appear to be related to robust losses -- like the Huber loss -- they are built on semi-gradient update rules which do not minimize a known loss. In this work, we build on recent insights reformulating squared Bellman errors as a saddlepoint optimization problem and propose a saddlepoint reformulation for a Huber Bellman error and Absolute Bellman error. We start from a formalization of robust losses, then derive sound gradient-based approaches to minimize these losses in both the online off-policy prediction and control settings. We characterize the solutions of the robust losses, providing insight into the problem settings where the robust losses define notably better solutions than the mean squared Bellman error. Finally, we show that the resulting gradient-based algorithms are more stable, for both prediction and control, with less sensitivity to meta-parameters.
TrustGPT: A Benchmark for Trustworthy and Responsible Large Language Models
Large Language Models (LLMs) such as ChatGPT, have gained significant attention due to their impressive natural language processing capabilities. It is crucial to prioritize human-centered principles when utilizing these models. Safeguarding the ethical and moral compliance of LLMs is of utmost importance. However, individual ethical issues have not been well studied on the latest LLMs. Therefore, this study aims to address these gaps by introducing a new benchmark -- TrustGPT. TrustGPT provides a comprehensive evaluation of LLMs in three crucial areas: toxicity, bias, and value-alignment. Initially, TrustGPT examines toxicity in language models by employing toxic prompt templates derived from social norms. It then quantifies the extent of bias in models by measuring quantifiable toxicity values across different groups. Lastly, TrustGPT assesses the value of conversation generation models from both active value-alignment and passive value-alignment tasks. Through the implementation of TrustGPT, this research aims to enhance our understanding of the performance of conversation generation models and promote the development of language models that are more ethical and socially responsible.
Ethical-Lens: Curbing Malicious Usages of Open-Source Text-to-Image Models
The burgeoning landscape of text-to-image models, exemplified by innovations such as Midjourney and DALLE 3, has revolutionized content creation across diverse sectors. However, these advancements bring forth critical ethical concerns, particularly with the misuse of open-source models to generate content that violates societal norms. Addressing this, we introduce Ethical-Lens, a framework designed to facilitate the value-aligned usage of text-to-image tools without necessitating internal model revision. Ethical-Lens ensures value alignment in text-to-image models across toxicity and bias dimensions by refining user commands and rectifying model outputs. Systematic evaluation metrics, combining GPT4-V, HEIM, and FairFace scores, assess alignment capability. Our experiments reveal that Ethical-Lens enhances alignment capabilities to levels comparable with or superior to commercial models like DALLE 3, ensuring user-generated content adheres to ethical standards while maintaining image quality. This study indicates the potential of Ethical-Lens to ensure the sustainable development of open-source text-to-image tools and their beneficial integration into society. Our code is available at https://github.com/yuzhu-cai/Ethical-Lens.
Sketching Meets Differential Privacy: Fast Algorithm for Dynamic Kronecker Projection Maintenance
Projection maintenance is one of the core data structure tasks. Efficient data structures for projection maintenance have led to recent breakthroughs in many convex programming algorithms. In this work, we further extend this framework to the Kronecker product structure. Given a constraint matrix {sf A} and a positive semi-definite matrix Win R^{ntimes n} with a sparse eigenbasis, we consider the task of maintaining the projection in the form of {sf B}^top({sf B}{sf B}^top)^{-1}{sf B}, where {sf B}={sf A}(Wotimes I) or {sf B}={sf A}(W^{1/2}otimes W^{1/2}). At each iteration, the weight matrix W receives a low rank change and we receive a new vector h. The goal is to maintain the projection matrix and answer the query {sf B}^top({sf B}{sf B}^top)^{-1}{sf B}h with good approximation guarantees. We design a fast dynamic data structure for this task and it is robust against an adaptive adversary. Following the beautiful and pioneering work of [Beimel, Kaplan, Mansour, Nissim, Saranurak and Stemmer, STOC'22], we use tools from differential privacy to reduce the randomness required by the data structure and further improve the running time.
Recourse for reclamation: Chatting with generative language models
Researchers and developers increasingly rely on toxicity scoring to moderate generative language model outputs, in settings such as customer service, information retrieval, and content generation. However, toxicity scoring may render pertinent information inaccessible, rigidify or "value-lock" cultural norms, and prevent language reclamation processes, particularly for marginalized people. In this work, we extend the concept of algorithmic recourse to generative language models: we provide users a novel mechanism to achieve their desired prediction by dynamically setting thresholds for toxicity filtering. Users thereby exercise increased agency relative to interactions with the baseline system. A pilot study (n = 30) supports the potential of our proposed recourse mechanism, indicating improvements in usability compared to fixed-threshold toxicity-filtering of model outputs. Future work should explore the intersection of toxicity scoring, model controllability, user agency, and language reclamation processes -- particularly with regard to the bias that many communities encounter when interacting with generative language models.
Making Intelligence: Ethical Values in IQ and ML Benchmarks
In recent years, ML researchers have wrestled with defining and improving machine learning (ML) benchmarks and datasets. In parallel, some have trained a critical lens on the ethics of dataset creation and ML research. In this position paper, we highlight the entanglement of ethics with seemingly ``technical'' or ``scientific'' decisions about the design of ML benchmarks. Our starting point is the existence of multiple overlooked structural similarities between human intelligence benchmarks and ML benchmarks. Both types of benchmarks set standards for describing, evaluating, and comparing performance on tasks relevant to intelligence -- standards that many scholars of human intelligence have long recognized as value-laden. We use perspectives from feminist philosophy of science on IQ benchmarks and thick concepts in social science to argue that values need to be considered and documented when creating ML benchmarks. It is neither possible nor desirable to avoid this choice by creating value-neutral benchmarks. Finally, we outline practical recommendations for ML benchmark research ethics and ethics review.
Hierarchical Multi-Interest Co-Network For Coarse-Grained Ranking
In this era of information explosion, a personalized recommendation system is convenient for users to get information they are interested in. To deal with billions of users and items, large-scale online recommendation services usually consist of three stages: candidate generation, coarse-grained ranking, and fine-grained ranking. The success of each stage depends on whether the model accurately captures the interests of users, which are usually hidden in users' behavior data. Previous research shows that users' interests are diverse, and one vector is not sufficient to capture users' different preferences. Therefore, many methods use multiple vectors to encode users' interests. However, there are two unsolved problems: (1) The similarity of different vectors in existing methods is too high, with too much redundant information. Consequently, the interests of users are not fully represented. (2) Existing methods model the long-term and short-term behaviors together, ignoring the differences between them. This paper proposes a Hierarchical Multi-Interest Co-Network (HCN) to capture users' diverse interests in the coarse-grained ranking stage. Specifically, we design a hierarchical multi-interest extraction layer to update users' diverse interest centers iteratively. The multiple embedded vectors obtained in this way contain more information and represent the interests of users better in various aspects. Furthermore, we develop a Co-Interest Network to integrate users' long-term and short-term interests. Experiments on several real-world datasets and one large-scale industrial dataset show that HCN effectively outperforms the state-of-the-art methods. We deploy HCN into a large-scale real world E-commerce system and achieve extra 2.5\% improvements on GMV (Gross Merchandise Value).
How Well Do LLMs Represent Values Across Cultures? Empirical Analysis of LLM Responses Based on Hofstede Cultural Dimensions
Large Language Models (LLMs) attempt to imitate human behavior by responding to humans in a way that pleases them, including by adhering to their values. However, humans come from diverse cultures with different values. It is critical to understand whether LLMs showcase different values to the user based on the stereotypical values of a user's known country. We prompt different LLMs with a series of advice requests based on 5 Hofstede Cultural Dimensions -- a quantifiable way of representing the values of a country. Throughout each prompt, we incorporate personas representing 36 different countries and, separately, languages predominantly tied to each country to analyze the consistency in the LLMs' cultural understanding. Through our analysis of the responses, we found that LLMs can differentiate between one side of a value and another, as well as understand that countries have differing values, but will not always uphold the values when giving advice, and fail to understand the need to answer differently based on different cultural values. Rooted in these findings, we present recommendations for training value-aligned and culturally sensitive LLMs. More importantly, the methodology and the framework developed here can help further understand and mitigate culture and language alignment issues with LLMs.
ProgressGym: Alignment with a Millennium of Moral Progress
Frontier AI systems, including large language models (LLMs), hold increasing influence over the epistemology of human users. Such influence can reinforce prevailing societal values, potentially contributing to the lock-in of misguided moral beliefs and, consequently, the perpetuation of problematic moral practices on a broad scale. We introduce progress alignment as a technical solution to mitigate this imminent risk. Progress alignment algorithms learn to emulate the mechanics of human moral progress, thereby addressing the susceptibility of existing alignment methods to contemporary moral blindspots. To empower research in progress alignment, we introduce ProgressGym, an experimental framework allowing the learning of moral progress mechanics from history, in order to facilitate future progress in real-world moral decisions. Leveraging 9 centuries of historical text and 18 historical LLMs, ProgressGym enables codification of real-world progress alignment challenges into concrete benchmarks. Specifically, we introduce three core challenges: tracking evolving values (PG-Follow), preemptively anticipating moral progress (PG-Predict), and regulating the feedback loop between human and AI value shifts (PG-Coevolve). Alignment methods without a temporal dimension are inapplicable to these tasks. In response, we present lifelong and extrapolative algorithms as baseline methods of progress alignment, and build an open leaderboard soliciting novel algorithms and challenges. The framework and the leaderboard are available at https://github.com/PKU-Alignment/ProgressGym and https://huggingface.co/spaces/PKU-Alignment/ProgressGym-LeaderBoard respectively.
Fairness in Matching under Uncertainty
The prevalence and importance of algorithmic two-sided marketplaces has drawn attention to the issue of fairness in such settings. Algorithmic decisions are used in assigning students to schools, users to advertisers, and applicants to job interviews. These decisions should heed the preferences of individuals, and simultaneously be fair with respect to their merits (synonymous with fit, future performance, or need). Merits conditioned on observable features are always uncertain, a fact that is exacerbated by the widespread use of machine learning algorithms to infer merit from the observables. As our key contribution, we carefully axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits; indeed, it simultaneously recognizes uncertainty as the primary potential cause of unfairness and an approach to address it. We design a linear programming framework to find fair utility-maximizing distributions over allocations, and we show that the linear program is robust to perturbations in the estimated parameters of the uncertain merit distributions, a key property in combining the approach with machine learning techniques.
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
We present weight normalization: a reparameterization of the weight vectors in a neural network that decouples the length of those weight vectors from their direction. By reparameterizing the weights in this way we improve the conditioning of the optimization problem and we speed up convergence of stochastic gradient descent. Our reparameterization is inspired by batch normalization but does not introduce any dependencies between the examples in a minibatch. This means that our method can also be applied successfully to recurrent models such as LSTMs and to noise-sensitive applications such as deep reinforcement learning or generative models, for which batch normalization is less well suited. Although our method is much simpler, it still provides much of the speed-up of full batch normalization. In addition, the computational overhead of our method is lower, permitting more optimization steps to be taken in the same amount of time. We demonstrate the usefulness of our method on applications in supervised image recognition, generative modelling, and deep reinforcement learning.
Vector-Valued Control Variates
Control variates are variance reduction tools for Monte Carlo estimators. They can provide significant variance reduction, but usually require a large number of samples, which can be prohibitive when sampling or evaluating the integrand is computationally expensive. Furthermore, there are many scenarios where we need to compute multiple related integrals simultaneously or sequentially, which can further exacerbate computational costs. In this paper, we propose vector-valued control variates, an extension of control variates which can be used to reduce the variance of multiple Monte Carlo estimators jointly. This allows for the transfer of information across integration tasks, and hence reduces the need for a large number of samples. We focus on control variates based on kernel interpolants and our novel construction is obtained through a generalised Stein identity and the development of novel matrix-valued Stein reproducing kernels. We demonstrate our methodology on a range of problems including multifidelity modelling, Bayesian inference for dynamical systems, and model evidence computation through thermodynamic integration.
Stop Regressing: Training Value Functions via Classification for Scalable Deep RL
Value functions are a central component of deep reinforcement learning (RL). These functions, parameterized by neural networks, are trained using a mean squared error regression objective to match bootstrapped target values. However, scaling value-based RL methods that use regression to large networks, such as high-capacity Transformers, has proven challenging. This difficulty is in stark contrast to supervised learning: by leveraging a cross-entropy classification loss, supervised methods have scaled reliably to massive networks. Observing this discrepancy, in this paper, we investigate whether the scalability of deep RL can also be improved simply by using classification in place of regression for training value functions. We demonstrate that value functions trained with categorical cross-entropy significantly improves performance and scalability in a variety of domains. These include: single-task RL on Atari 2600 games with SoftMoEs, multi-task RL on Atari with large-scale ResNets, robotic manipulation with Q-transformers, playing Chess without search, and a language-agent Wordle task with high-capacity Transformers, achieving state-of-the-art results on these domains. Through careful analysis, we show that the benefits of categorical cross-entropy primarily stem from its ability to mitigate issues inherent to value-based RL, such as noisy targets and non-stationarity. Overall, we argue that a simple shift to training value functions with categorical cross-entropy can yield substantial improvements in the scalability of deep RL at little-to-no cost.
Distributionally Robust Optimization with Bias and Variance Reduction
We consider the distributionally robust optimization (DRO) problem with spectral risk-based uncertainty set and f-divergence penalty. This formulation includes common risk-sensitive learning objectives such as regularized condition value-at-risk (CVaR) and average top-k loss. We present Prospect, a stochastic gradient-based algorithm that only requires tuning a single learning rate hyperparameter, and prove that it enjoys linear convergence for smooth regularized losses. This contrasts with previous algorithms that either require tuning multiple hyperparameters or potentially fail to converge due to biased gradient estimates or inadequate regularization. Empirically, we show that Prospect can converge 2-3times faster than baselines such as stochastic gradient and stochastic saddle-point methods on distribution shift and fairness benchmarks spanning tabular, vision, and language domains.
Dynamic Normativity: Necessary and Sufficient Conditions for Value Alignment
The critical inquiry pervading the realm of Philosophy, and perhaps extending its influence across all Humanities disciplines, revolves around the intricacies of morality and normativity. Surprisingly, in recent years, this thematic thread has woven its way into an unexpected domain, one not conventionally associated with pondering "what ought to be": the field of artificial intelligence (AI) research. Central to morality and AI, we find "alignment", a problem related to the challenges of expressing human goals and values in a manner that artificial systems can follow without leading to unwanted adversarial effects. More explicitly and with our current paradigm of AI development in mind, we can think of alignment as teaching human values to non-anthropomorphic entities trained through opaque, gradient-based learning techniques. This work addresses alignment as a technical-philosophical problem that requires solid philosophical foundations and practical implementations that bring normative theory to AI system development. To accomplish this, we propose two sets of necessary and sufficient conditions that, we argue, should be considered in any alignment process. While necessary conditions serve as metaphysical and metaethical roots that pertain to the permissibility of alignment, sufficient conditions establish a blueprint for aligning AI systems under a learning-based paradigm. After laying such foundations, we present implementations of this approach by using state-of-the-art techniques and methods for aligning general-purpose language systems. We call this framework Dynamic Normativity. Its central thesis is that any alignment process under a learning paradigm that cannot fulfill its necessary and sufficient conditions will fail in producing aligned systems.
Orchestrated Value Mapping for Reinforcement Learning
We present a general convergent class of reinforcement learning algorithms that is founded on two distinct principles: (1) mapping value estimates to a different space using arbitrary functions from a broad class, and (2) linearly decomposing the reward signal into multiple channels. The first principle enables incorporating specific properties into the value estimator that can enhance learning. The second principle, on the other hand, allows for the value function to be represented as a composition of multiple utility functions. This can be leveraged for various purposes, e.g. dealing with highly varying reward scales, incorporating a priori knowledge about the sources of reward, and ensemble learning. Combining the two principles yields a general blueprint for instantiating convergent algorithms by orchestrating diverse mapping functions over multiple reward channels. This blueprint generalizes and subsumes algorithms such as Q-Learning, Log Q-Learning, and Q-Decomposition. In addition, our convergence proof for this general class relaxes certain required assumptions in some of these algorithms. Based on our theory, we discuss several interesting configurations as special cases. Finally, to illustrate the potential of the design space that our theory opens up, we instantiate a particular algorithm and evaluate its performance on the Atari suite.
Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice
Mirror descent value iteration (MDVI), an abstraction of Kullback-Leibler (KL) and entropy-regularized reinforcement learning (RL), has served as the basis for recent high-performing practical RL algorithms. However, despite the use of function approximation in practice, the theoretical understanding of MDVI has been limited to tabular Markov decision processes (MDPs). We study MDVI with linear function approximation through its sample complexity required to identify an varepsilon-optimal policy with probability 1-delta under the settings of an infinite-horizon linear MDP, generative model, and G-optimal design. We demonstrate that least-squares regression weighted by the variance of an estimated optimal value function of the next state is crucial to achieving minimax optimality. Based on this observation, we present Variance-Weighted Least-Squares MDVI (VWLS-MDVI), the first theoretical algorithm that achieves nearly minimax optimal sample complexity for infinite-horizon linear MDPs. Furthermore, we propose a practical VWLS algorithm for value-based deep RL, Deep Variance Weighting (DVW). Our experiments demonstrate that DVW improves the performance of popular value-based deep RL algorithms on a set of MinAtar benchmarks.
VARD: Efficient and Dense Fine-Tuning for Diffusion Models with Value-based RL
Diffusion models have emerged as powerful generative tools across various domains, yet tailoring pre-trained models to exhibit specific desirable properties remains challenging. While reinforcement learning (RL) offers a promising solution,current methods struggle to simultaneously achieve stable, efficient fine-tuning and support non-differentiable rewards. Furthermore, their reliance on sparse rewards provides inadequate supervision during intermediate steps, often resulting in suboptimal generation quality. To address these limitations, dense and differentiable signals are required throughout the diffusion process. Hence, we propose VAlue-based Reinforced Diffusion (VARD): a novel approach that first learns a value function predicting expection of rewards from intermediate states, and subsequently uses this value function with KL regularization to provide dense supervision throughout the generation process. Our method maintains proximity to the pretrained model while enabling effective and stable training via backpropagation. Experimental results demonstrate that our approach facilitates better trajectory guidance, improves training efficiency and extends the applicability of RL to diffusion models optimized for complex, non-differentiable reward functions.
On the Importance of Gradient Norm in PAC-Bayesian Bounds
Generalization bounds which assess the difference between the true risk and the empirical risk, have been studied extensively. However, to obtain bounds, current techniques use strict assumptions such as a uniformly bounded or a Lipschitz loss function. To avoid these assumptions, in this paper, we follow an alternative approach: we relax uniform bounds assumptions by using on-average bounded loss and on-average bounded gradient norm assumptions. Following this relaxation, we propose a new generalization bound that exploits the contractivity of the log-Sobolev inequalities. These inequalities add an additional loss-gradient norm term to the generalization bound, which is intuitively a surrogate of the model complexity. We apply the proposed bound on Bayesian deep nets and empirically analyze the effect of this new loss-gradient norm term on different neural architectures.
Automatic Detection of Moral Values in Music Lyrics
Moral values play a fundamental role in how we evaluate information, make decisions, and form judgements around important social issues. The possibility to extract morality rapidly from lyrics enables a deeper understanding of our music-listening behaviours. Building on the Moral Foundations Theory (MFT), we tasked a set of transformer-based language models (BERT) fine-tuned on 2,721 synthetic lyrics generated by a large language model (GPT-4) to detect moral values in 200 real music lyrics annotated by two experts.We evaluate their predictive capabilities against a series of baselines including out-of-domain (BERT fine-tuned on MFT-annotated social media texts) and zero-shot (GPT-4) classification. The proposed models yielded the best accuracy across experiments, with an average F1 weighted score of 0.8. This performance is, on average, 5% higher than out-of-domain and zero-shot models. When examining precision in binary classification, the proposed models perform on average 12% higher than the baselines.Our approach contributes to annotation-free and effective lyrics morality learning, and provides useful insights into the knowledge distillation of LLMs regarding moral expression in music, and the potential impact of these technologies on the creative industries and musical culture.
IsoScore: Measuring the Uniformity of Embedding Space Utilization
The recent success of distributed word representations has led to an increased interest in analyzing the properties of their spatial distribution. Several studies have suggested that contextualized word embedding models do not isotropically project tokens into vector space. However, current methods designed to measure isotropy, such as average random cosine similarity and the partition score, have not been thoroughly analyzed and are not appropriate for measuring isotropy. We propose IsoScore: a novel tool that quantifies the degree to which a point cloud uniformly utilizes the ambient vector space. Using rigorously designed tests, we demonstrate that IsoScore is the only tool available in the literature that accurately measures how uniformly distributed variance is across dimensions in vector space. Additionally, we use IsoScore to challenge a number of recent conclusions in the NLP literature that have been derived using brittle metrics of isotropy. We caution future studies from using existing tools to measure isotropy in contextualized embedding space as resulting conclusions will be misleading or altogether inaccurate.
Qsharp: Provably Optimal Distributional RL for LLM Post-Training
Reinforcement learning (RL) post-training is crucial for LLM alignment and reasoning, but existing policy-based methods, such as PPO and DPO, can fall short of fixing shortcuts inherited from pre-training. In this work, we introduce Qsharp, a value-based algorithm for KL-regularized RL that guides the reference policy using the optimal regularized Q function. We propose to learn the optimal Q function using distributional RL on an aggregated online dataset. Unlike prior value-based baselines that guide the model using unregularized Q-values, our method is theoretically principled and provably learns the optimal policy for the KL-regularized RL problem. Empirically, Qsharp outperforms prior baselines in math reasoning benchmarks while maintaining a smaller KL divergence to the reference policy. Theoretically, we establish a reduction from KL-regularized RL to no-regret online learning, providing the first bounds for deterministic MDPs under only realizability. Thanks to distributional RL, our bounds are also variance-dependent and converge faster when the reference policy has small variance. In sum, our results highlight Qsharp as an effective approach for post-training LLMs, offering both improved performance and theoretical guarantees. The code can be found at https://github.com/jinpz/q_sharp.
Vector Quantization for Recommender Systems: A Review and Outlook
Vector quantization, renowned for its unparalleled feature compression capabilities, has been a prominent topic in signal processing and machine learning research for several decades and remains widely utilized today. With the emergence of large models and generative AI, vector quantization has gained popularity in recommender systems, establishing itself as a preferred solution. This paper starts with a comprehensive review of vector quantization techniques. It then explores systematic taxonomies of vector quantization methods for recommender systems (VQ4Rec), examining their applications from multiple perspectives. Further, it provides a thorough introduction to research efforts in diverse recommendation scenarios, including efficiency-oriented approaches and quality-oriented approaches. Finally, the survey analyzes the remaining challenges and anticipates future trends in VQ4Rec, including the challenges associated with the training of vector quantization, the opportunities presented by large language models, and emerging trends in multimodal recommender systems. We hope this survey can pave the way for future researchers in the recommendation community and accelerate their exploration in this promising field.
Koopman-based generalization bound: New aspect for full-rank weights
We propose a new bound for generalization of neural networks using Koopman operators. Whereas most of existing works focus on low-rank weight matrices, we focus on full-rank weight matrices. Our bound is tighter than existing norm-based bounds when the condition numbers of weight matrices are small. Especially, it is completely independent of the width of the network if the weight matrices are orthogonal. Our bound does not contradict to the existing bounds but is a complement to the existing bounds. As supported by several existing empirical results, low-rankness is not the only reason for generalization. Furthermore, our bound can be combined with the existing bounds to obtain a tighter bound. Our result sheds new light on understanding generalization of neural networks with full-rank weight matrices, and it provides a connection between operator-theoretic analysis and generalization of neural networks.
General Preference Modeling with Preference Representations for Aligning Language Models
Modeling human preferences is crucial for aligning foundation models with human values. Traditional reward modeling methods, such as the Bradley-Terry (BT) reward model, fall short in expressiveness, particularly in addressing intransitive preferences. Although supervised pair preference models (PairPM) can express general preferences, their implementation is highly ad-hoc and cannot guarantee a consistent preference probability of compared pairs. Additionally, they impose high computational costs due to their quadratic query complexity when comparing multiple responses. In this paper, we introduce preference representation learning, an approach that embeds responses into a latent space to capture intricate preference structures efficiently, achieving linear query complexity. Additionally, we propose preference score-based General Preference Optimization (GPO), which generalizes reward-based reinforcement learning from human feedback. Experimental results show that our General Preference representation model (GPM) outperforms the BT reward model on the RewardBench benchmark with a margin of up to 5.6% and effectively models cyclic preferences where any BT reward model behaves like a random guess. Furthermore, evaluations on downstream tasks such as AlpacaEval2.0 and MT-Bench, following the language model post-training with GPO and our general preference model, reveal substantial performance improvements with margins up to 9.3%. These findings indicate that our method may enhance the alignment of foundation models with nuanced human values. The code is available at https://github.com/general-preference/general-preference-model.
Value Augmented Sampling for Language Model Alignment and Personalization
Aligning Large Language Models (LLMs) to cater to different human preferences, learning new skills, and unlearning harmful behavior is an important problem. Search-based methods, such as Best-of-N or Monte-Carlo Tree Search, are performant, but impractical for LLM adaptation due to their high inference cost. On the other hand, using Reinforcement Learning (RL) for adaptation is computationally efficient, but performs worse due to the optimization challenges in co-training the value function and the policy. We present a new framework for reward optimization, Value Augmented Sampling (VAS), that can maximize different reward functions using data sampled from only the initial, frozen LLM. VAS solves for the optimal reward-maximizing policy without co-training the policy and the value function, making the optimization stable, outperforming established baselines, such as PPO and DPO, on standard benchmarks, and achieving comparable results to Best-of-128 with lower inference cost. Unlike existing RL methods that require changing the weights of the LLM, VAS does not require access to the weights of the pre-trained LLM. Thus, it can even adapt LLMs (e.g., ChatGPT), which are available only as APIs. In addition, our algorithm unlocks the new capability of composing several rewards and controlling the extent of each one during deployment time, paving the road ahead for the future of aligned, personalized LLMs.
MM-RLHF: The Next Step Forward in Multimodal LLM Alignment
Despite notable advancements in Multimodal Large Language Models (MLLMs), most state-of-the-art models have not undergone thorough alignment with human preferences. This gap exists because current alignment research has primarily achieved progress in specific areas (e.g., hallucination reduction), while the broader question of whether aligning models with human preferences can systematically enhance MLLM capability remains largely unexplored. To this end, we introduce MM-RLHF, a dataset containing 120k fine-grained, human-annotated preference comparison pairs. This dataset represents a substantial advancement over existing resources, offering superior size, diversity, annotation granularity, and quality. Leveraging this dataset, we propose several key innovations to improve both the quality of reward models and the efficiency of alignment algorithms. Notably, we introduce a Critique-Based Reward Model, which generates critiques of model outputs before assigning scores, offering enhanced interpretability and more informative feedback compared to traditional scalar reward mechanisms. Additionally, we propose Dynamic Reward Scaling, a method that adjusts the loss weight of each sample according to the reward signal, thereby optimizing the use of high-quality comparison pairs. Our approach is rigorously evaluated across 10 distinct dimensions and 27 benchmarks, with results demonstrating significant and consistent improvements in model performance. Specifically, fine-tuning LLaVA-ov-7B with MM-RLHF and our alignment algorithm leads to a 19.5% increase in conversational abilities and a 60% improvement in safety. We have open-sourced the preference dataset, reward model, training and evaluation code, as well as reward modeling and safety benchmarks. For more details, please visit our project page: https://mm-rlhf.github.io.
Transfer Q Star: Principled Decoding for LLM Alignment
Aligning foundation models is essential for their safe and trustworthy deployment. However, traditional fine-tuning methods are computationally intensive and require updating billions of model parameters. A promising alternative, alignment via decoding, adjusts the response distribution directly without model updates to maximize a target reward r, thus providing a lightweight and adaptable framework for alignment. However, principled decoding methods rely on oracle access to an optimal Q-function (Q^*), which is often unavailable in practice. Hence, prior SoTA methods either approximate this Q^* using Q^{pi_{sft}} (derived from the reference SFT model) or rely on short-term rewards, resulting in sub-optimal decoding performance. In this work, we propose Transfer Q^*, which implicitly estimates the optimal value function for a target reward r through a baseline model rho_{BL} aligned with a baseline reward rho_{BL} (which can be different from the target reward r). Theoretical analyses of Transfer Q^* provide a rigorous characterization of its optimality, deriving an upper bound on the sub-optimality gap and identifying a hyperparameter to control the deviation from the pre-trained reference SFT model based on user needs. Our approach significantly reduces the sub-optimality gap observed in prior SoTA methods and demonstrates superior empirical performance across key metrics such as coherence, diversity, and quality in extensive tests on several synthetic and real datasets.
Measuring Social Norms of Large Language Models
We present a new challenge to examine whether large language models understand social norms. In contrast to existing datasets, our dataset requires a fundamental understanding of social norms to solve. Our dataset features the largest set of social norm skills, consisting of 402 skills and 12,383 questions covering a wide set of social norms ranging from opinions and arguments to culture and laws. We design our dataset according to the K-12 curriculum. This enables the direct comparison of the social understanding of large language models to humans, more specifically, elementary students. While prior work generates nearly random accuracy on our benchmark, recent large language models such as GPT3.5-Turbo and LLaMA2-Chat are able to improve the performance significantly, only slightly below human performance. We then propose a multi-agent framework based on large language models to improve the models' ability to understand social norms. This method further improves large language models to be on par with humans. Given the increasing adoption of large language models in real-world applications, our finding is particularly important and presents a unique direction for future improvements.
CLASH: Evaluating Language Models on Judging High-Stakes Dilemmas from Multiple Perspectives
Navigating high-stakes dilemmas involving conflicting values is challenging even for humans, let alone for AI. Yet prior work in evaluating the reasoning capabilities of large language models (LLMs) in such situations has been limited to everyday scenarios. To close this gap, this work first introduces CLASH (Character perspective-based LLM Assessments in Situations with High-stakes), a meticulously curated dataset consisting of 345 high-impact dilemmas along with 3,795 individual perspectives of diverse values. In particular, we design CLASH in a way to support the study of critical aspects of value-based decision-making processes which are missing from prior work, including understanding decision ambivalence and psychological discomfort as well as capturing the temporal shifts of values in characters' perspectives. By benchmarking 10 open and closed frontier models, we uncover several key findings. (1) Even the strongest models, such as GPT-4o and Claude-Sonnet, achieve less than 50% accuracy in identifying situations where the decision should be ambivalent, while they perform significantly better in clear-cut scenarios. (2) While LLMs reasonably predict psychological discomfort as marked by human, they inadequately comprehend perspectives involving value shifts, indicating a need for LLMs to reason over complex values. (3) Our experiments also reveal a significant correlation between LLMs' value preferences and their steerability towards a given value. (4) Finally, LLMs exhibit greater steerability when engaged in value reasoning from a third-party perspective, compared to a first-person setup, though certain value pairs benefit uniquely from the first-person framing.
CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models
This paper introduces the "CIVICS: Culturally-Informed & Values-Inclusive Corpus for Societal impacts" dataset, designed to evaluate the social and cultural variation of Large Language Models (LLMs) across multiple languages and value-sensitive topics. We create a hand-crafted, multilingual dataset of value-laden prompts which address specific socially sensitive topics, including LGBTQI rights, social welfare, immigration, disability rights, and surrogacy. CIVICS is designed to generate responses showing LLMs' encoded and implicit values. Through our dynamic annotation processes, tailored prompt design, and experiments, we investigate how open-weight LLMs respond to value-sensitive issues, exploring their behavior across diverse linguistic and cultural contexts. Using two experimental set-ups based on log-probabilities and long-form responses, we show social and cultural variability across different LLMs. Specifically, experiments involving long-form responses demonstrate that refusals are triggered disparately across models, but consistently and more frequently in English or translated statements. Moreover, specific topics and sources lead to more pronounced differences across model answers, particularly on immigration, LGBTQI rights, and social welfare. As shown by our experiments, the CIVICS dataset aims to serve as a tool for future research, promoting reproducibility and transparency across broader linguistic settings, and furthering the development of AI technologies that respect and reflect global cultural diversities and value pluralism. The CIVICS dataset and tools will be made available upon publication under open licenses; an anonymized version is currently available at https://huggingface.co/CIVICS-dataset.
AI Alignment and Social Choice: Fundamental Limitations and Policy Implications
Aligning AI agents to human intentions and values is a key bottleneck in building safe and deployable AI applications. But whose values should AI agents be aligned with? Reinforcement learning with human feedback (RLHF) has emerged as the key framework for AI alignment. RLHF uses feedback from human reinforcers to fine-tune outputs; all widely deployed large language models (LLMs) use RLHF to align their outputs to human values. It is critical to understand the limitations of RLHF and consider policy challenges arising from these limitations. In this paper, we investigate a specific challenge in building RLHF systems that respect democratic norms. Building on impossibility results in social choice theory, we show that, under fairly broad assumptions, there is no unique voting protocol to universally align AI systems using RLHF through democratic processes. Further, we show that aligning AI agents with the values of all individuals will always violate certain private ethical preferences of an individual user i.e., universal AI alignment using RLHF is impossible. We discuss policy implications for the governance of AI systems built using RLHF: first, the need for mandating transparent voting rules to hold model builders accountable. Second, the need for model builders to focus on developing AI agents that are narrowly aligned to specific user groups.
Stochastic Contextual Dueling Bandits under Linear Stochastic Transitivity Models
We consider the regret minimization task in a dueling bandits problem with context information. In every round of the sequential decision problem, the learner makes a context-dependent selection of two choice alternatives (arms) to be compared with each other and receives feedback in the form of noisy preference information. We assume that the feedback process is determined by a linear stochastic transitivity model with contextualized utilities (CoLST), and the learner's task is to include the best arm (with highest latent context-dependent utility) in the duel. We propose a computationally efficient algorithm, CoLSTIM, which makes its choice based on imitating the feedback process using perturbed context-dependent utility estimates of the underlying CoLST model. If each arm is associated with a d-dimensional feature vector, we show that CoLSTIM achieves a regret of order tilde O( dT) after T learning rounds. Additionally, we also establish the optimality of CoLSTIM by showing a lower bound for the weak regret that refines the existing average regret analysis. Our experiments demonstrate its superiority over state-of-art algorithms for special cases of CoLST models.
Capacity Analysis of Vector Symbolic Architectures
Hyperdimensional computing (HDC) is a biologically-inspired framework which represents symbols with high-dimensional vectors, and uses vector operations to manipulate them. The ensemble of a particular vector space and a prescribed set of vector operations (including one addition-like for "bundling" and one outer-product-like for "binding") form a *vector symbolic architecture* (VSA). While VSAs have been employed in numerous applications and have been studied empirically, many theoretical questions about VSAs remain open. We analyze the *representation capacities* of four common VSAs: MAP-I, MAP-B, and two VSAs based on sparse binary vectors. "Representation capacity' here refers to bounds on the dimensions of the VSA vectors required to perform certain symbolic tasks, such as testing for set membership i in S and estimating set intersection sizes |X cap Y| for two sets of symbols X and Y, to a given degree of accuracy. We also analyze the ability of a novel variant of a Hopfield network (a simple model of associative memory) to perform some of the same tasks that are typically asked of VSAs. In addition to providing new bounds on VSA capacities, our analyses establish and leverage connections between VSAs, "sketching" (dimensionality reduction) algorithms, and Bloom filters.
Speaking Multiple Languages Affects the Moral Bias of Language Models
Pre-trained multilingual language models (PMLMs) are commonly used when dealing with data from multiple languages and cross-lingual transfer. However, PMLMs are trained on varying amounts of data for each language. In practice this means their performance is often much better on English than many other languages. We explore to what extent this also applies to moral norms. Do the models capture moral norms from English and impose them on other languages? Do the models exhibit random and thus potentially harmful beliefs in certain languages? Both these issues could negatively impact cross-lingual transfer and potentially lead to harmful outcomes. In this paper, we (1) apply the MoralDirection framework to multilingual models, comparing results in German, Czech, Arabic, Mandarin Chinese, and English, (2) analyse model behaviour on filtered parallel subtitles corpora, and (3) apply the models to a Moral Foundations Questionnaire, comparing with human responses from different countries. Our experiments demonstrate that, indeed, PMLMs encode differing moral biases, but these do not necessarily correspond to cultural differences or commonalities in human opinions.
Histoires Morales: A French Dataset for Assessing Moral Alignment
Aligning language models with human values is crucial, especially as they become more integrated into everyday life. While models are often adapted to user preferences, it is equally important to ensure they align with moral norms and behaviours in real-world social situations. Despite significant progress in languages like English and Chinese, French has seen little attention in this area, leaving a gap in understanding how LLMs handle moral reasoning in this language. To address this gap, we introduce Histoires Morales, a French dataset derived from Moral Stories, created through translation and subsequently refined with the assistance of native speakers to guarantee grammatical accuracy and adaptation to the French cultural context. We also rely on annotations of the moral values within the dataset to ensure their alignment with French norms. Histoires Morales covers a wide range of social situations, including differences in tipping practices, expressions of honesty in relationships, and responsibilities toward animals. To foster future research, we also conduct preliminary experiments on the alignment of multilingual models on French and English data and the robustness of the alignment. We find that while LLMs are generally aligned with human moral norms by default, they can be easily influenced with user-preference optimization for both moral and immoral data.
"Why did the Model Fail?": Attributing Model Performance Changes to Distribution Shifts
Machine learning models frequently experience performance drops under distribution shifts. The underlying cause of such shifts may be multiple simultaneous factors such as changes in data quality, differences in specific covariate distributions, or changes in the relationship between label and features. When a model does fail during deployment, attributing performance change to these factors is critical for the model developer to identify the root cause and take mitigating actions. In this work, we introduce the problem of attributing performance differences between environments to distribution shifts in the underlying data generating mechanisms. We formulate the problem as a cooperative game where the players are distributions. We define the value of a set of distributions to be the change in model performance when only this set of distributions has changed between environments, and derive an importance weighting method for computing the value of an arbitrary set of distributions. The contribution of each distribution to the total performance change is then quantified as its Shapley value. We demonstrate the correctness and utility of our method on synthetic, semi-synthetic, and real-world case studies, showing its effectiveness in attributing performance changes to a wide range of distribution shifts.
Nuclear Norm Regularization for Deep Learning
Penalizing the nuclear norm of a function's Jacobian encourages it to locally behave like a low-rank linear map. Such functions vary locally along only a handful of directions, making the Jacobian nuclear norm a natural regularizer for machine learning problems. However, this regularizer is intractable for high-dimensional problems, as it requires computing a large Jacobian matrix and taking its singular value decomposition. We show how to efficiently penalize the Jacobian nuclear norm using techniques tailor-made for deep learning. We prove that for functions parametrized as compositions f = g circ h, one may equivalently penalize the average squared Frobenius norm of Jg and Jh. We then propose a denoising-style approximation that avoids the Jacobian computations altogether. Our method is simple, efficient, and accurate, enabling Jacobian nuclear norm regularization to scale to high-dimensional deep learning problems. We complement our theory with an empirical study of our regularizer's performance and investigate applications to denoising and representation learning.
Dimensionless Anomaly Detection on Multivariate Streams with Variance Norm and Path Signature
In this paper, we propose a dimensionless anomaly detection method for multivariate streams. Our method is independent of the unit of measurement for the different stream channels, therefore dimensionless. We first propose the variance norm, a generalisation of Mahalanobis distance to handle infinite-dimensional feature space and singular empirical covariance matrix rigorously. We then combine the variance norm with the path signature, an infinite collection of iterated integrals that provide global features of streams, to propose SigMahaKNN, a method for anomaly detection on (multivariate) streams. We show that SigMahaKNN is invariant to stream reparametrisation, stream concatenation and has a graded discrimination power depending on the truncation level of the path signature. We implement SigMahaKNN as an open-source software, and perform extensive numerical experiments, showing significantly improved anomaly detection on streams compared to isolation forest and local outlier factors in applications ranging from language analysis, hand-writing analysis, ship movement paths analysis and univariate time-series analysis.
From Instructions to Intrinsic Human Values -- A Survey of Alignment Goals for Big Models
Big models, exemplified by Large Language Models (LLMs), are models typically pre-trained on massive data and comprised of enormous parameters, which not only obtain significantly improved performance across diverse tasks but also present emergent capabilities absent in smaller models. However, the growing intertwining of big models with everyday human lives poses potential risks and might cause serious social harm. Therefore, many efforts have been made to align LLMs with humans to make them better follow user instructions and satisfy human preferences. Nevertheless, `what to align with' has not been fully discussed, and inappropriate alignment goals might even backfire. In this paper, we conduct a comprehensive survey of different alignment goals in existing work and trace their evolution paths to help identify the most essential goal. Particularly, we investigate related works from two perspectives: the definition of alignment goals and alignment evaluation. Our analysis encompasses three distinct levels of alignment goals and reveals a goal transformation from fundamental abilities to value orientation, indicating the potential of intrinsic human values as the alignment goal for enhanced LLMs. Based on such results, we further discuss the challenges of achieving such intrinsic value alignment and provide a collection of available resources for future research on the alignment of big models.
A Nearly-Optimal Bound for Fast Regression with ell_infty Guarantee
Given a matrix Ain R^{ntimes d} and a vector bin R^n, we consider the regression problem with ell_infty guarantees: finding a vector x'in R^d such that |x'-x^*|_infty leq epsilon{d}cdot |Ax^*-b|_2cdot |A^dagger| where x^*=argmin_{xin R^d}|Ax-b|_2. One popular approach for solving such ell_2 regression problem is via sketching: picking a structured random matrix Sin R^{mtimes n} with mll n and SA can be quickly computed, solve the ``sketched'' regression problem argmin_{xin R^d} |SAx-Sb|_2. In this paper, we show that in order to obtain such ell_infty guarantee for ell_2 regression, one has to use sketching matrices that are dense. To the best of our knowledge, this is the first user case in which dense sketching matrices are necessary. On the algorithmic side, we prove that there exists a distribution of dense sketching matrices with m=epsilon^{-2}dlog^3(n/delta) such that solving the sketched regression problem gives the ell_infty guarantee, with probability at least 1-delta. Moreover, the matrix SA can be computed in time O(ndlog n). Our row count is nearly-optimal up to logarithmic factors, and significantly improves the result in [Price, Song and Woodruff, ICALP'17], in which a super-linear in d rows, m=Omega(epsilon^{-2}d^{1+gamma}) for gamma=Theta(frac{loglog n{log d}}) is required. We also develop a novel analytical framework for ell_infty guarantee regression that utilizes the Oblivious Coordinate-wise Embedding (OCE) property introduced in [Song and Yu, ICML'21]. Our analysis is arguably much simpler and more general than [Price, Song and Woodruff, ICALP'17], and it extends to dense sketches for tensor product of vectors.
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
We show that deep neural networks (DNNs) can efficiently learn any composition of functions with bounded F_{1}-norm, which allows DNNs to break the curse of dimensionality in ways that shallow networks cannot. More specifically, we derive a generalization bound that combines a covering number argument for compositionality, and the F_{1}-norm (or the related Barron norm) for large width adaptivity. We show that the global minimizer of the regularized loss of DNNs can fit for example the composition of two functions f^{*}=hcirc g from a small number of observations, assuming g is smooth/regular and reduces the dimensionality (e.g. g could be the modulo map of the symmetries of f^{*}), so that h can be learned in spite of its low regularity. The measures of regularity we consider is the Sobolev norm with different levels of differentiability, which is well adapted to the F_{1} norm. We compute scaling laws empirically and observe phase transitions depending on whether g or h is harder to learn, as predicted by our theory.
Learning Optimal Advantage from Preferences and Mistaking it for Reward
We consider algorithms for learning reward functions from human preferences over pairs of trajectory segments, as used in reinforcement learning from human feedback (RLHF). Most recent work assumes that human preferences are generated based only upon the reward accrued within those segments, or their partial return. Recent work casts doubt on the validity of this assumption, proposing an alternative preference model based upon regret. We investigate the consequences of assuming preferences are based upon partial return when they actually arise from regret. We argue that the learned function is an approximation of the optimal advantage function, A^*_r, not a reward function. We find that if a specific pitfall is addressed, this incorrect assumption is not particularly harmful, resulting in a highly shaped reward function. Nonetheless, this incorrect usage of A^*_r is less desirable than the appropriate and simpler approach of greedy maximization of A^*_r. From the perspective of the regret preference model, we also provide a clearer interpretation of fine tuning contemporary large language models with RLHF. This paper overall provides insight regarding why learning under the partial return preference model tends to work so well in practice, despite it conforming poorly to how humans give preferences.
Behavioral Use Licensing for Responsible AI
With the growing reliance on artificial intelligence (AI) for many different applications, the sharing of code, data, and models is important to ensure the replicability and democratization of scientific knowledge. Many high-profile academic publishing venues expect code and models to be submitted and released with papers. Furthermore, developers often want to release these assets to encourage development of technology that leverages their frameworks and services. A number of organizations have expressed concerns about the inappropriate or irresponsible use of AI and have proposed ethical guidelines around the application of such systems. While such guidelines can help set norms and shape policy, they are not easily enforceable. In this paper, we advocate the use of licensing to enable legally enforceable behavioral use conditions on software and code and provide several case studies that demonstrate the feasibility of behavioral use licensing. We envision how licensing may be implemented in accordance with existing responsible AI guidelines.
VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment
Large language models (LLMs) are increasingly applied to complex reasoning tasks that require executing several complex steps before receiving any reward. Properly assigning credit to these steps is essential for enhancing model performance. Proximal Policy Optimization (PPO), a state-of-the-art reinforcement learning (RL) algorithm used for LLM finetuning, employs value networks to tackle credit assignment. However, value networks face challenges in predicting the expected cumulative rewards accurately in complex reasoning tasks, often leading to high-variance updates and suboptimal performance. In this work, we systematically evaluate the efficacy of value networks and reveal their significant shortcomings in reasoning-heavy LLM tasks, showing that they barely outperform a random baseline when comparing alternative steps. To address this, we propose VinePPO, a straightforward approach that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates, bypassing the need for large value networks. Our method consistently outperforms PPO and other RL-free baselines across MATH and GSM8K datasets with fewer gradient updates (up to 9x), less wall-clock time (up to 3.0x). These results emphasize the importance of accurate credit assignment in RL finetuning of LLM and demonstrate VinePPO's potential as a superior alternative.
Regularization-based Pruning of Irrelevant Weights in Deep Neural Architectures
Deep neural networks exploiting millions of parameters are nowadays the norm in deep learning applications. This is a potential issue because of the great amount of computational resources needed for training, and of the possible loss of generalization performance of overparametrized networks. We propose in this paper a method for learning sparse neural topologies via a regularization technique which identifies non relevant weights and selectively shrinks their norm, while performing a classic update for relevant ones. This technique, which is an improvement of classical weight decay, is based on the definition of a regularization term which can be added to any loss functional regardless of its form, resulting in a unified general framework exploitable in many different contexts. The actual elimination of parameters identified as irrelevant is handled by an iterative pruning algorithm. We tested the proposed technique on different image classification and Natural language generation tasks, obtaining results on par or better then competitors in terms of sparsity and metrics, while achieving strong models compression.
On Diversified Preferences of Large Language Model Alignment
Aligning large language models (LLMs) with human preferences has been recognized as the key to improving LLMs' interaction quality. However, in this pluralistic world, human preferences can be diversified due to annotators' different tastes, which hinders the effectiveness of LLM alignment methods. This paper presents the first quantitative analysis of commonly used human feedback datasets to investigate the impact of diversified preferences on reward modeling. Our analysis reveals a correlation between the calibration performance of reward models (RMs) and the alignment performance of LLMs. We find that diversified preference data negatively affect the calibration performance of RMs on human-shared preferences, such as Harmless\&Helpful, thereby impairing the alignment performance of LLMs. To address the ineffectiveness, we propose a novel Multi-Objective Reward learning method (MORE) to enhance the calibration performance of RMs on shared preferences. We validate our findings by experiments on three models and five human preference datasets. Our method significantly improves the prediction calibration of RMs, leading to better alignment of the Alpaca-7B model with Harmless\&Helpful preferences. Furthermore, the connection between reward calibration and preference alignment performance suggests that calibration error can be adopted as a key metric for evaluating RMs. The open-source code and data are available at https://github.com/dunzeng/MORE.
Transformers as Support Vector Machines
Since its inception in "Attention Is All You Need", transformer architecture has led to revolutionary advancements in NLP. The attention layer within the transformer admits a sequence of input tokens X and makes them interact through pairwise similarities computed as softmax(XQK^top X^top), where (K,Q) are the trainable key-query parameters. In this work, we establish a formal equivalence between the optimization geometry of self-attention and a hard-margin SVM problem that separates optimal input tokens from non-optimal tokens using linear constraints on the outer-products of token pairs. This formalism allows us to characterize the implicit bias of 1-layer transformers optimized with gradient descent: (1) Optimizing the attention layer with vanishing regularization, parameterized by (K,Q), converges in direction to an SVM solution minimizing the nuclear norm of the combined parameter W=KQ^top. Instead, directly parameterizing by W minimizes a Frobenius norm objective. We characterize this convergence, highlighting that it can occur toward locally-optimal directions rather than global ones. (2) Complementing this, we prove the local/global directional convergence of gradient descent under suitable geometric conditions. Importantly, we show that over-parameterization catalyzes global convergence by ensuring the feasibility of the SVM problem and by guaranteeing a benign optimization landscape devoid of stationary points. (3) While our theory applies primarily to linear prediction heads, we propose a more general SVM equivalence that predicts the implicit bias with nonlinear heads. Our findings are applicable to arbitrary datasets and their validity is verified via experiments. We also introduce several open problems and research directions. We believe these findings inspire the interpretation of transformers as a hierarchy of SVMs that separates and selects optimal tokens.
Statistical Uncertainty in Word Embeddings: GloVe-V
Static word embeddings are ubiquitous in computational social science applications and contribute to practical decision-making in a variety of fields including law and healthcare. However, assessing the statistical uncertainty in downstream conclusions drawn from word embedding statistics has remained challenging. When using only point estimates for embeddings, researchers have no streamlined way of assessing the degree to which their model selection criteria or scientific conclusions are subject to noise due to sparsity in the underlying data used to generate the embeddings. We introduce a method to obtain approximate, easy-to-use, and scalable reconstruction error variance estimates for GloVe (Pennington et al., 2014), one of the most widely used word embedding models, using an analytical approximation to a multivariate normal model. To demonstrate the value of embeddings with variance (GloVe-V), we illustrate how our approach enables principled hypothesis testing in core word embedding tasks, such as comparing the similarity between different word pairs in vector space, assessing the performance of different models, and analyzing the relative degree of ethnic or gender bias in a corpus using different word lists.
Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR
In this paper, we study risk-sensitive Reinforcement Learning (RL), focusing on the objective of Conditional Value at Risk (CVaR) with risk tolerance tau. Starting with multi-arm bandits (MABs), we show the minimax CVaR regret rate is Omega(tau^{-1AK}), where A is the number of actions and K is the number of episodes, and that it is achieved by an Upper Confidence Bound algorithm with a novel Bernstein bonus. For online RL in tabular Markov Decision Processes (MDPs), we show a minimax regret lower bound of Omega(tau^{-1SAK}) (with normalized cumulative rewards), where S is the number of states, and we propose a novel bonus-driven Value Iteration procedure. We show that our algorithm achieves the optimal regret of widetilde O(tau^{-1SAK}) under a continuity assumption and in general attains a near-optimal regret of widetilde O(tau^{-1}SAK), which is minimax-optimal for constant tau. This improves on the best available bounds. By discretizing rewards appropriately, our algorithms are computationally efficient.
R3: Robust Rubric-Agnostic Reward Models
Reward models are essential for aligning language model outputs with human preferences, yet existing approaches often lack both controllability and interpretability. These models are typically optimized for narrow objectives, limiting their generalizability to broader downstream tasks. Moreover, their scalar outputs are difficult to interpret without contextual reasoning. To address these limitations, we introduce R3, a novel reward modeling framework that is rubric-agnostic, generalizable across evaluation dimensions, and provides interpretable, reasoned score assignments. R3 enables more transparent and flexible evaluation of language models, supporting robust alignment with diverse human values and use cases. Our models, data, and code are available as open source at https://github.com/rubricreward/r3
Representer Point Selection for Explaining Regularized High-dimensional Models
We introduce a novel class of sample-based explanations we term high-dimensional representers, that can be used to explain the predictions of a regularized high-dimensional model in terms of importance weights for each of the training samples. Our workhorse is a novel representer theorem for general regularized high-dimensional models, which decomposes the model prediction in terms of contributions from each of the training samples: with positive (negative) values corresponding to positive (negative) impact training samples to the model's prediction. We derive consequences for the canonical instances of ell_1 regularized sparse models, and nuclear norm regularized low-rank models. As a case study, we further investigate the application of low-rank models in the context of collaborative filtering, where we instantiate high-dimensional representers for specific popular classes of models. Finally, we study the empirical performance of our proposed methods on three real-world binary classification datasets and two recommender system datasets. We also showcase the utility of high-dimensional representers in explaining model recommendations.
Aligning AI With Shared Human Values
We show how to assess a language model's knowledge of basic concepts of morality. We introduce the ETHICS dataset, a new benchmark that spans concepts in justice, well-being, duties, virtues, and commonsense morality. Models predict widespread moral judgments about diverse text scenarios. This requires connecting physical and social world knowledge to value judgements, a capability that may enable us to steer chatbot outputs or eventually regularize open-ended reinforcement learning agents. With the ETHICS dataset, we find that current language models have a promising but incomplete ability to predict basic human ethical judgements. Our work shows that progress can be made on machine ethics today, and it provides a steppingstone toward AI that is aligned with human values.
Experimental Analysis of Large-scale Learnable Vector Storage Compression
Learnable embedding vector is one of the most important applications in machine learning, and is widely used in various database-related domains. However, the high dimensionality of sparse data in recommendation tasks and the huge volume of corpus in retrieval-related tasks lead to a large memory consumption of the embedding table, which poses a great challenge to the training and deployment of models. Recent research has proposed various methods to compress the embeddings at the cost of a slight decrease in model quality or the introduction of other overheads. Nevertheless, the relative performance of these methods remains unclear. Existing experimental comparisons only cover a subset of these methods and focus on limited metrics. In this paper, we perform a comprehensive comparative analysis and experimental evaluation of embedding compression. We introduce a new taxonomy that categorizes these techniques based on their characteristics and methodologies, and further develop a modular benchmarking framework that integrates 14 representative methods. Under a uniform test environment, our benchmark fairly evaluates each approach, presents their strengths and weaknesses under different memory budgets, and recommends the best method based on the use case. In addition to providing useful guidelines, our study also uncovers the limitations of current methods and suggests potential directions for future research.
CRISP: Clustering Multi-Vector Representations for Denoising and Pruning
Multi-vector models, such as ColBERT, are a significant advancement in neural information retrieval (IR), delivering state-of-the-art performance by representing queries and documents by multiple contextualized token-level embeddings. However, this increased representation size introduces considerable storage and computational overheads which have hindered widespread adoption in practice. A common approach to mitigate this overhead is to cluster the model's frozen vectors, but this strategy's effectiveness is fundamentally limited by the intrinsic clusterability of these embeddings. In this work, we introduce CRISP (Clustered Representations with Intrinsic Structure Pruning), a novel multi-vector training method which learns inherently clusterable representations directly within the end-to-end training process. By integrating clustering into the training phase rather than imposing it post-hoc, CRISP significantly outperforms post-hoc clustering at all representation sizes, as well as other token pruning methods. On the BEIR retrieval benchmarks, CRISP achieves a significant rate of ~3x reduction in the number of vectors while outperforming the original unpruned model. This indicates that learned clustering effectively denoises the model by filtering irrelevant information, thereby generating more robust multi-vector representations. With more aggressive clustering, CRISP achieves an 11x reduction in the number of vectors with only a 3.6% quality loss.
Prior Constraints-based Reward Model Training for Aligning Large Language Models
Reinforcement learning with human feedback for aligning large language models (LLMs) trains a reward model typically using ranking loss with comparison pairs.However, the training procedure suffers from an inherent problem: the uncontrolled scaling of reward scores during reinforcement learning due to the lack of constraints while training the reward model.This paper proposes a Prior Constraints-based Reward Model (namely PCRM) training method to mitigate this problem. PCRM incorporates prior constraints, specifically, length ratio and cosine similarity between outputs of each comparison pair, during reward model training to regulate optimization magnitude and control score margins. We comprehensively evaluate PCRM by examining its rank correlation with human preferences and its effectiveness in aligning LLMs via RL. Experimental results demonstrate that PCRM significantly improves alignment performance by effectively constraining reward score scaling. As another bonus, our method is easily integrated into arbitrary rank-based alignment methods, such as direct preference optimization, and can yield consistent improvement.
Similarity search in the blink of an eye with compressed indices
Nowadays, data is represented by vectors. Retrieving those vectors, among millions and billions, that are similar to a given query is a ubiquitous problem, known as similarity search, of relevance for a wide range of applications. Graph-based indices are currently the best performing techniques for billion-scale similarity search. However, their random-access memory pattern presents challenges to realize their full potential. In this work, we present new techniques and systems for creating faster and smaller graph-based indices. To this end, we introduce a novel vector compression method, Locally-adaptive Vector Quantization (LVQ), that uses per-vector scaling and scalar quantization to improve search performance with fast similarity computations and a reduced effective bandwidth, while decreasing memory footprint and barely impacting accuracy. LVQ, when combined with a new high-performance computing system for graph-based similarity search, establishes the new state of the art in terms of performance and memory footprint. For billions of vectors, LVQ outcompetes the second-best alternatives: (1) in the low-memory regime, by up to 20.7x in throughput with up to a 3x memory footprint reduction, and (2) in the high-throughput regime by 5.8x with 1.4x less memory.
Fairness On The Ground: Applying Algorithmic Fairness Approaches to Production Systems
Many technical approaches have been proposed for ensuring that decisions made by machine learning systems are fair, but few of these proposals have been stress-tested in real-world systems. This paper presents an example of one team's approach to the challenge of applying algorithmic fairness approaches to complex production systems within the context of a large technology company. We discuss how we disentangle normative questions of product and policy design (like, "how should the system trade off between different stakeholders' interests and needs?") from empirical questions of system implementation (like, "is the system achieving the desired tradeoff in practice?"). We also present an approach for answering questions of the latter sort, which allows us to measure how machine learning systems and human labelers are making these tradeoffs across different relevant groups. We hope our experience integrating fairness tools and approaches into large-scale and complex production systems will be useful to other practitioners facing similar challenges, and illuminating to academics and researchers looking to better address the needs of practitioners.
Multivariate Representation Learning for Information Retrieval
Dense retrieval models use bi-encoder network architectures for learning query and document representations. These representations are often in the form of a vector representation and their similarities are often computed using the dot product function. In this paper, we propose a new representation learning framework for dense retrieval. Instead of learning a vector for each query and document, our framework learns a multivariate distribution and uses negative multivariate KL divergence to compute the similarity between distributions. For simplicity and efficiency reasons, we assume that the distributions are multivariate normals and then train large language models to produce mean and variance vectors for these distributions. We provide a theoretical foundation for the proposed framework and show that it can be seamlessly integrated into the existing approximate nearest neighbor algorithms to perform retrieval efficiently. We conduct an extensive suite of experiments on a wide range of datasets, and demonstrate significant improvements compared to competitive dense retrieval models.
Transforming and Combining Rewards for Aligning Large Language Models
A common approach for aligning language models to human preferences is to first learn a reward model from preference data, and then use this reward model to update the language model. We study two closely related problems that arise in this approach. First, any monotone transformation of the reward model preserves preference ranking; is there a choice that is ``better'' than others? Second, we often wish to align language models to multiple properties: how should we combine multiple reward models? Using a probabilistic interpretation of the alignment procedure, we identify a natural choice for transformation for (the common case of) rewards learned from Bradley-Terry preference models. This derived transformation has two important properties. First, it emphasizes improving poorly-performing outputs, rather than outputs that already score well. This mitigates both underfitting (where some prompts are not improved) and reward hacking (where the model learns to exploit misspecification of the reward model). Second, it enables principled aggregation of rewards by linking summation to logical conjunction: the sum of transformed rewards corresponds to the probability that the output is ``good'' in all measured properties, in a sense we make precise. Experiments aligning language models to be both helpful and harmless using RLHF show substantial improvements over the baseline (non-transformed) approach.
Appropriateness is all you need!
The strive to make AI applications "safe" has led to the development of safety-measures as the main or even sole normative requirement of their permissible use. Similar can be attested to the latest version of chatbots, such as chatGPT. In this view, if they are "safe", they are supposed to be permissible to deploy. This approach, which we call "safety-normativity", is rather limited in solving the emerging issues that chatGPT and other chatbots have caused thus far. In answering this limitation, in this paper we argue for limiting chatbots in the range of topics they can chat about according to the normative concept of appropriateness. We argue that rather than looking for "safety" in a chatbot's utterances to determine what they may and may not say, we ought to assess those utterances according to three forms of appropriateness: technical-discursive, social, and moral. We then spell out what requirements for chatbots follow from these forms of appropriateness to avoid the limits of previous accounts: positionality, acceptability, and value alignment (PAVA). With these in mind, we may be able to determine what a chatbot may and may not say. Lastly, one initial suggestion is to use challenge sets, specifically designed for appropriateness, as a validation method.
Aligning Large Language Models with Human Preferences through Representation Engineering
Aligning large language models (LLMs) with human preferences is crucial for enhancing their utility in terms of helpfulness, truthfulness, safety, harmlessness, and interestingness. Existing methods for achieving this alignment often involves employing reinforcement learning from human feedback (RLHF) to fine-tune LLMs based on human labels assessing the relative quality of model responses. Nevertheless, RLHF is susceptible to instability during fine-tuning and presents challenges in implementation.Drawing inspiration from the emerging field of representation engineering (RepE), this study aims to identify relevant representations for high-level human preferences embedded in patterns of activity within an LLM, and achieve precise control of model behavior by transforming its representations. This novel approach, denoted as Representation Alignment from Human Feedback (RAHF), proves to be effective, computationally efficient, and easy to implement.Extensive experiments demonstrate the efficacy of RAHF in not only capturing but also manipulating representations to align with a broad spectrum of human preferences or values, rather than being confined to a singular concept or function (e.g. honesty or bias). RAHF's versatility in accommodating diverse human preferences shows its potential for advancing LLM performance.
Interpreting Embedding Spaces by Conceptualization
One of the main methods for computational interpretation of a text is mapping it into a vector in some embedding space. Such vectors can then be used for a variety of textual processing tasks. Recently, most embedding spaces are a product of training large language models (LLMs). One major drawback of this type of representation is their incomprehensibility to humans. Understanding the embedding space is crucial for several important needs, including the need to debug the embedding method and compare it to alternatives, and the need to detect biases hidden in the model. In this paper, we present a novel method of understanding embeddings by transforming a latent embedding space into a comprehensible conceptual space. We present an algorithm for deriving a conceptual space with dynamic on-demand granularity. We devise a new evaluation method, using either human rater or LLM-based raters, to show that the conceptualized vectors indeed represent the semantics of the original latent ones. We show the use of our method for various tasks, including comparing the semantics of alternative models and tracing the layers of the LLM. The code is available online https://github.com/adiSimhi/Interpreting-Embedding-Spaces-by-Conceptualization.
Computational Limits of Low-Rank Adaptation (LoRA) for Transformer-Based Models
We study the computational limits of Low-Rank Adaptation (LoRA) update for finetuning transformer-based models using fine-grained complexity theory. Our key observation is that the existence of low-rank decompositions within the gradient computation of LoRA adaptation leads to possible algorithmic speedup. This allows us to (i) identify a phase transition behavior and (ii) prove the existence of nearly linear algorithms by controlling the LoRA update computation term by term, assuming the Strong Exponential Time Hypothesis (SETH). For the former, we identify a sharp transition in the efficiency of all possible rank-r LoRA update algorithms for transformers, based on specific norms resulting from the multiplications of the input sequence X, pretrained weights W^star, and adapter matrices alpha B A / r. Specifically, we derive a shared upper bound threshold for such norms and show that efficient (sub-quadratic) approximation algorithms of LoRA exist only below this threshold. For the latter, we prove the existence of nearly linear approximation algorithms for LoRA adaptation by utilizing the hierarchical low-rank structures of LoRA gradients and approximating the gradients with a series of chained low-rank approximations. To showcase our theory, we consider two practical scenarios: partial (e.g., only W_V and W_Q) and full adaptations (e.g., W_Q, W_V, and W_K) of weights in attention heads.
VeRA: Vector-based Random Matrix Adaptation
Low-rank adapation (LoRA) is a popular method that reduces the number of trainable parameters when finetuning large language models, but still faces acute storage challenges when scaling to even larger models or deploying numerous per-user or per-task adapted models. In this work, we present Vector-based Random Matrix Adaptation (VeRA), which reduces the number of trainable parameters by 10x compared to LoRA, yet maintains the same performance. It achieves this by using a single pair of low-rank matrices shared across all layers and learning small scaling vectors instead. We demonstrate its effectiveness on the GLUE and E2E benchmarks, and show its application in instruction-following with just 1.4M parameters using the Llama2 7B model.
Why does Throwing Away Data Improve Worst-Group Error?
When facing data with imbalanced classes or groups, practitioners follow an intriguing strategy to achieve best results. They throw away examples until the classes or groups are balanced in size, and then perform empirical risk minimization on the reduced training set. This opposes common wisdom in learning theory, where the expected error is supposed to decrease as the dataset grows in size. In this work, we leverage extreme value theory to address this apparent contradiction. Our results show that the tails of the data distribution play an important role in determining the worst-group-accuracy of linear classifiers. When learning on data with heavy tails, throwing away data restores the geometric symmetry of the resulting classifier, and therefore improves its worst-group generalization.
Tool-Augmented Reward Modeling
Reward modeling (a.k.a., preference modeling) is instrumental for aligning large language models with human preferences, particularly within the context of reinforcement learning from human feedback (RLHF). While conventional reward models (RMs) have exhibited remarkable scalability, they oft struggle with fundamental functionality such as arithmetic computation, code execution, and factual lookup. In this paper, we propose a tool-augmented preference modeling approach, named Themis, to address these limitations by empowering RMs with access to external environments, including calculators and search engines. This approach not only fosters synergy between tool utilization and reward grading but also enhances interpretive capacity and scoring reliability. Our study delves into the integration of external tools into RMs, enabling them to interact with diverse external sources and construct task-specific tool engagement and reasoning traces in an autoregressive manner. We validate our approach across a wide range of domains, incorporating seven distinct external tools. Our experimental results demonstrate a noteworthy overall improvement of 17.7% across eight tasks in preference ranking. Furthermore, our approach outperforms Gopher 280B by 7.3% on TruthfulQA task in zero-shot evaluation. In human evaluations, RLHF trained with Themis attains an average win rate of 32% when compared to baselines across four distinct tasks. Additionally, we provide a comprehensive collection of tool-related RM datasets, incorporating data from seven distinct tool APIs, totaling 15,000 instances. We have made the code, data, and model checkpoints publicly available to facilitate and inspire further research advancements\url{https://github.com/ernie-research/Tool-Augmented-Reward-Model}.
Adapting Large Language Models by Integrating Collaborative Semantics for Recommendation
Recently, large language models (LLMs) have shown great potential in recommender systems, either improving existing recommendation models or serving as the backbone. However, there exists a large semantic gap between LLMs and recommender systems, since items to be recommended are often indexed by discrete identifiers (item ID) out of the LLM's vocabulary. In essence, LLMs capture language semantics while recommender systems imply collaborative semantics, making it difficult to sufficiently leverage the model capacity of LLMs for recommendation. To address this challenge, in this paper, we propose a new LLM-based recommendation model called LC-Rec, which can better integrate language and collaborative semantics for recommender systems. Our approach can directly generate items from the entire item set for recommendation, without relying on candidate items. Specifically, we make two major contributions in our approach. For item indexing, we design a learning-based vector quantization method with uniform semantic mapping, which can assign meaningful and non-conflicting IDs (called item indices) for items. For alignment tuning, we propose a series of specially designed tuning tasks to enhance the integration of collaborative semantics in LLMs. Our fine-tuning tasks enforce LLMs to deeply integrate language and collaborative semantics (characterized by the learned item indices), so as to achieve an effective adaptation to recommender systems. Extensive experiments demonstrate the effectiveness of our method, showing that our approach can outperform a number of competitive baselines including traditional recommenders and existing LLM-based recommenders. Our code is available at https://github.com/RUCAIBox/LC-Rec/.
Stronger Together: on the Articulation of Ethical Charters, Legal Tools, and Technical Documentation in ML
The growing need for accountability of the people behind AI systems can be addressed by leveraging processes in three fields of study: ethics, law, and computer science. While these fields are often considered in isolation, they rely on complementary notions in their interpretation and implementation. In this work, we detail this interdependence and motivate the necessary role of collaborative governance tools in shaping a positive evolution of AI. We first contrast notions of compliance in the ethical, legal, and technical fields; we outline both their differences and where they complement each other, with a particular focus on the roles of ethical charters, licenses, and technical documentation in these interactions. We then focus on the role of values in articulating the synergies between the fields and outline specific mechanisms of interaction between them in practice. We identify how these mechanisms have played out in several open governance fora: an open collaborative workshop, a responsible licensing initiative, and a proposed regulatory framework. By leveraging complementary notions of compliance in these three domains, we can create a more comprehensive framework for governing AI systems that jointly takes into account their technical capabilities, their impact on society, and how technical specifications can inform relevant regulations. Our analysis thus underlines the necessity of joint consideration of the ethical, legal, and technical in AI ethics frameworks to be used on a larger scale to govern AI systems and how the thinking in each of these areas can inform the others.
AdamP: Slowing Down the Slowdown for Momentum Optimizers on Scale-invariant Weights
Normalization techniques are a boon for modern deep learning. They let weights converge more quickly with often better generalization performances. It has been argued that the normalization-induced scale invariance among the weights provides an advantageous ground for gradient descent (GD) optimizers: the effective step sizes are automatically reduced over time, stabilizing the overall training procedure. It is often overlooked, however, that the additional introduction of momentum in GD optimizers results in a far more rapid reduction in effective step sizes for scale-invariant weights, a phenomenon that has not yet been studied and may have caused unwanted side effects in the current practice. This is a crucial issue because arguably the vast majority of modern deep neural networks consist of (1) momentum-based GD (e.g. SGD or Adam) and (2) scale-invariant parameters. In this paper, we verify that the widely-adopted combination of the two ingredients lead to the premature decay of effective step sizes and sub-optimal model performances. We propose a simple and effective remedy, SGDP and AdamP: get rid of the radial component, or the norm-increasing direction, at each optimizer step. Because of the scale invariance, this modification only alters the effective step sizes without changing the effective update directions, thus enjoying the original convergence properties of GD optimizers. Given the ubiquity of momentum GD and scale invariance in machine learning, we have evaluated our methods against the baselines on 13 benchmarks. They range from vision tasks like classification (e.g. ImageNet), retrieval (e.g. CUB and SOP), and detection (e.g. COCO) to language modelling (e.g. WikiText) and audio classification (e.g. DCASE) tasks. We verify that our solution brings about uniform gains in those benchmarks. Source code is available at https://github.com/clovaai/AdamP.
Confronting Reward Model Overoptimization with Constrained RLHF
Large language models are typically aligned with human preferences by optimizing reward models (RMs) fitted to human feedback. However, human preferences are multi-faceted, and it is increasingly common to derive reward from a composition of simpler reward models which each capture a different aspect of language quality. This itself presents a challenge, as it is difficult to appropriately weight these component RMs when combining them. Compounding this difficulty, because any RM is only a proxy for human evaluation, this process is vulnerable to overoptimization, wherein past a certain point, accumulating higher reward is associated with worse human ratings. In this paper, we perform, to our knowledge, the first study on overoptimization in composite RMs, showing that correlation between component RMs has a significant effect on the locations of these points. We then introduce an approach to solve this issue using constrained reinforcement learning as a means of preventing the agent from exceeding each RM's threshold of usefulness. Our method addresses the problem of weighting component RMs by learning dynamic weights, naturally expressed by Lagrange multipliers. As a result, each RM stays within the range at which it is an effective proxy, improving evaluation performance. Finally, we introduce an adaptive method using gradient-free optimization to identify and optimize towards these points during a single run.
Concrete Sentence Spaces for Compositional Distributional Models of Meaning
Coecke, Sadrzadeh, and Clark (arXiv:1003.4394v1 [cs.CL]) developed a compositional model of meaning for distributional semantics, in which each word in a sentence has a meaning vector and the distributional meaning of the sentence is a function of the tensor products of the word vectors. Abstractly speaking, this function is the morphism corresponding to the grammatical structure of the sentence in the category of finite dimensional vector spaces. In this paper, we provide a concrete method for implementing this linear meaning map, by constructing a corpus-based vector space for the type of sentence. Our construction method is based on structured vector spaces whereby meaning vectors of all sentences, regardless of their grammatical structure, live in the same vector space. Our proposed sentence space is the tensor product of two noun spaces, in which the basis vectors are pairs of words each augmented with a grammatical role. This enables us to compare meanings of sentences by simply taking the inner product of their vectors.
Convex Aggregation for Opinion Summarization
Recent advances in text autoencoders have significantly improved the quality of the latent space, which enables models to generate grammatical and consistent text from aggregated latent vectors. As a successful application of this property, unsupervised opinion summarization models generate a summary by decoding the aggregated latent vectors of inputs. More specifically, they perform the aggregation via simple average. However, little is known about how the vector aggregation step affects the generation quality. In this study, we revisit the commonly used simple average approach by examining the latent space and generated summaries. We found that text autoencoders tend to generate overly generic summaries from simply averaged latent vectors due to an unexpected L_2-norm shrinkage in the aggregated latent vectors, which we refer to as summary vector degeneration. To overcome this issue, we develop a framework Coop, which searches input combinations for the latent vector aggregation using input-output word overlap. Experimental results show that Coop successfully alleviates the summary vector degeneration issue and establishes new state-of-the-art performance on two opinion summarization benchmarks. Code is available at https://github.com/megagonlabs/coop.
Text vectorization via transformer-based language models and n-gram perplexities
As the probability (and thus perplexity) of a text is calculated based on the product of the probabilities of individual tokens, it may happen that one unlikely token significantly reduces the probability (i.e., increase the perplexity) of some otherwise highly probable input, while potentially representing a simple typographical error. Also, given that perplexity is a scalar value that refers to the entire input, information about the probability distribution within it is lost in the calculation (a relatively good text that has one unlikely token and another text in which each token is equally likely they can have the same perplexity value), especially for longer texts. As an alternative to scalar perplexity this research proposes a simple algorithm used to calculate vector values based on n-gram perplexities within the input. Such representations consider the previously mentioned aspects, and instead of a unique value, the relative perplexity of each text token is calculated, and these values are combined into a single vector representing the input.
Categorical Representation Learning: Morphism is All You Need
We provide a construction for categorical representation learning and introduce the foundations of "categorifier". The central theme in representation learning is the idea of everything to vector. Every object in a dataset S can be represented as a vector in R^n by an encoding map E: Obj(S)toR^n. More importantly, every morphism can be represented as a matrix E: Hom(S)toR^{n}_{n}. The encoding map E is generally modeled by a deep neural network. The goal of representation learning is to design appropriate tasks on the dataset to train the encoding map (assuming that an encoding is optimal if it universally optimizes the performance on various tasks). However, the latter is still a set-theoretic approach. The goal of the current article is to promote the representation learning to a new level via a category-theoretic approach. As a proof of concept, we provide an example of a text translator equipped with our technology, showing that our categorical learning model outperforms the current deep learning models by 17 times. The content of the current article is part of the recent US patent proposal (patent application number: 63110906).
B-Coder: Value-Based Deep Reinforcement Learning for Program Synthesis
Program synthesis aims to create accurate, executable code from natural language descriptions. This field has leveraged the power of reinforcement learning (RL) in conjunction with large language models (LLMs), significantly enhancing code generation capabilities. This integration focuses on directly optimizing functional correctness, transcending conventional supervised losses. While current literature predominantly favors policy-based algorithms, attributes of program synthesis suggest a natural compatibility with value-based methods. This stems from rich collection of off-policy programs developed by human programmers, and the straightforward verification of generated programs through automated unit testing (i.e. easily obtainable rewards in RL language). Diverging from the predominant use of policy-based algorithms, our work explores the applicability of value-based approaches, leading to the development of our B-Coder (pronounced Bellman coder). Yet, training value-based methods presents challenges due to the enormous search space inherent to program synthesis. To this end, we propose an initialization protocol for RL agents utilizing pre-trained LMs and a conservative Bellman operator to reduce training complexities. Moreover, we demonstrate how to leverage the learned value functions as a dual strategy to post-process generated programs. Our empirical evaluations demonstrated B-Coder's capability in achieving state-of-the-art performance compared with policy-based methods. Remarkably, this achievement is reached with minimal reward engineering effort, highlighting the effectiveness of value-based RL, independent of reward designs.
Accelerating Policy Gradient by Estimating Value Function from Prior Computation in Deep Reinforcement Learning
This paper investigates the use of prior computation to estimate the value function to improve sample efficiency in on-policy policy gradient methods in reinforcement learning. Our approach is to estimate the value function from prior computations, such as from the Q-network learned in DQN or the value function trained for different but related environments. In particular, we learn a new value function for the target task while combining it with a value estimate from the prior computation. Finally, the resulting value function is used as a baseline in the policy gradient method. This use of a baseline has the theoretical property of reducing variance in gradient computation and thus improving sample efficiency. The experiments show the successful use of prior value estimates in various settings and improved sample efficiency in several tasks.
Bigger, Better, Faster: Human-level Atari with human-level efficiency
We introduce a value-based RL agent, which we call BBF, that achieves super-human performance in the Atari 100K benchmark. BBF relies on scaling the neural networks used for value estimation, as well as a number of other design choices that enable this scaling in a sample-efficient manner. We conduct extensive analyses of these design choices and provide insights for future work. We end with a discussion about updating the goalposts for sample-efficient RL research on the ALE. We make our code and data publicly available at https://github.com/google-research/google-research/tree/master/bigger_better_faster.
Multi-VALUE: A Framework for Cross-Dialectal English NLP
Dialect differences caused by regional, social, and economic factors cause performance discrepancies for many groups of language technology users. Inclusive and equitable language technology must critically be dialect invariant, meaning that performance remains constant over dialectal shifts. Current systems often fall short of this ideal since they are designed and tested on a single dialect: Standard American English (SAE). We introduce a suite of resources for evaluating and achieving English dialect invariance. The resource is called Multi-VALUE, a controllable rule-based translation system spanning 50 English dialects and 189 unique linguistic features. Multi-VALUE maps SAE to synthetic forms of each dialect. First, we use this system to stress tests question answering, machine translation, and semantic parsing. Stress tests reveal significant performance disparities for leading models on non-standard dialects. Second, we use this system as a data augmentation technique to improve the dialect robustness of existing systems. Finally, we partner with native speakers of Chicano and Indian English to release new gold-standard variants of the popular CoQA task. To execute the transformation code, run model checkpoints, and download both synthetic and gold-standard dialectal benchmark datasets, see http://value-nlp.org.
Pile of Law: Learning Responsible Data Filtering from the Law and a 256GB Open-Source Legal Dataset
One concern with the rise of large language models lies with their potential for significant harm, particularly from pretraining on biased, obscene, copyrighted, and private information. Emerging ethical approaches have attempted to filter pretraining material, but such approaches have been ad hoc and failed to take context into account. We offer an approach to filtering grounded in law, which has directly addressed the tradeoffs in filtering material. First, we gather and make available the Pile of Law, a 256GB (and growing) dataset of open-source English-language legal and administrative data, covering court opinions, contracts, administrative rules, and legislative records. Pretraining on the Pile of Law may help with legal tasks that have the promise to improve access to justice. Second, we distill the legal norms that governments have developed to constrain the inclusion of toxic or private content into actionable lessons for researchers and discuss how our dataset reflects these norms. Third, we show how the Pile of Law offers researchers the opportunity to learn such filtering rules directly from the data, providing an exciting new research direction in model-based processing.
Autoregressive Image Generation without Vector Quantization
Conventional wisdom holds that autoregressive models for image generation are typically accompanied by vector-quantized tokens. We observe that while a discrete-valued space can facilitate representing a categorical distribution, it is not a necessity for autoregressive modeling. In this work, we propose to model the per-token probability distribution using a diffusion procedure, which allows us to apply autoregressive models in a continuous-valued space. Rather than using categorical cross-entropy loss, we define a Diffusion Loss function to model the per-token probability. This approach eliminates the need for discrete-valued tokenizers. We evaluate its effectiveness across a wide range of cases, including standard autoregressive models and generalized masked autoregressive (MAR) variants. By removing vector quantization, our image generator achieves strong results while enjoying the speed advantage of sequence modeling. We hope this work will motivate the use of autoregressive generation in other continuous-valued domains and applications.
Hyperspherical Normalization for Scalable Deep Reinforcement Learning
Scaling up the model size and computation has brought consistent performance improvements in supervised learning. However, this lesson often fails to apply to reinforcement learning (RL) because training the model on non-stationary data easily leads to overfitting and unstable optimization. In response, we introduce SimbaV2, a novel RL architecture designed to stabilize optimization by (i) constraining the growth of weight and feature norm by hyperspherical normalization; and (ii) using a distributional value estimation with reward scaling to maintain stable gradients under varying reward magnitudes. Using the soft actor-critic as a base algorithm, SimbaV2 scales up effectively with larger models and greater compute, achieving state-of-the-art performance on 57 continuous control tasks across 4 domains. The code is available at https://dojeon-ai.github.io/SimbaV2.
STARC: A General Framework For Quantifying Differences Between Reward Functions
In order to solve a task using reinforcement learning, it is necessary to first formalise the goal of that task as a reward function. However, for many real-world tasks, it is very difficult to manually specify a reward function that never incentivises undesirable behaviour. As a result, it is increasingly popular to use reward learning algorithms, which attempt to learn a reward function from data. However, the theoretical foundations of reward learning are not yet well-developed. In particular, it is typically not known when a given reward learning algorithm with high probability will learn a reward function that is safe to optimise. This means that reward learning algorithms generally must be evaluated empirically, which is expensive, and that their failure modes are difficult to anticipate in advance. One of the roadblocks to deriving better theoretical guarantees is the lack of good methods for quantifying the difference between reward functions. In this paper we provide a solution to this problem, in the form of a class of pseudometrics on the space of all reward functions that we call STARC (STAndardised Reward Comparison) metrics. We show that STARC metrics induce both an upper and a lower bound on worst-case regret, which implies that our metrics are tight, and that any metric with the same properties must be bilipschitz equivalent to ours. Moreover, we also identify a number of issues with reward metrics proposed by earlier works. Finally, we evaluate our metrics empirically, to demonstrate their practical efficacy. STARC metrics can be used to make both theoretical and empirical analysis of reward learning algorithms both easier and more principled.
The Touché23-ValueEval Dataset for Identifying Human Values behind Arguments
We present the Touch\'e23-ValueEval Dataset for Identifying Human Values behind Arguments. To investigate approaches for the automated detection of human values behind arguments, we collected 9324 arguments from 6 diverse sources, covering religious texts, political discussions, free-text arguments, newspaper editorials, and online democracy platforms. Each argument was annotated by 3 crowdworkers for 54 values. The Touch\'e23-ValueEval dataset extends the Webis-ArgValues-22. In comparison to the previous dataset, the effectiveness of a 1-Baseline decreases, but that of an out-of-the-box BERT model increases. Therefore, though the classification difficulty increased as per the label distribution, the larger dataset allows for training better models.
Learning Rate Schedules in the Presence of Distribution Shift
We design learning rate schedules that minimize regret for SGD-based online learning in the presence of a changing data distribution. We fully characterize the optimal learning rate schedule for online linear regression via a novel analysis with stochastic differential equations. For general convex loss functions, we propose new learning rate schedules that are robust to distribution shift, and we give upper and lower bounds for the regret that only differ by constants. For non-convex loss functions, we define a notion of regret based on the gradient norm of the estimated models and propose a learning schedule that minimizes an upper bound on the total expected regret. Intuitively, one expects changing loss landscapes to require more exploration, and we confirm that optimal learning rate schedules typically increase in the presence of distribution shift. Finally, we provide experiments for high-dimensional regression models and neural networks to illustrate these learning rate schedules and their cumulative regret.
Precise Zero-Shot Dense Retrieval without Relevance Labels
While dense retrieval has been shown effective and efficient across tasks and languages, it remains difficult to create effective fully zero-shot dense retrieval systems when no relevance label is available. In this paper, we recognize the difficulty of zero-shot learning and encoding relevance. Instead, we propose to pivot through Hypothetical Document Embeddings~(HyDE). Given a query, HyDE first zero-shot instructs an instruction-following language model (e.g. InstructGPT) to generate a hypothetical document. The document captures relevance patterns but is unreal and may contain false details. Then, an unsupervised contrastively learned encoder~(e.g. Contriever) encodes the document into an embedding vector. This vector identifies a neighborhood in the corpus embedding space, where similar real documents are retrieved based on vector similarity. This second step ground the generated document to the actual corpus, with the encoder's dense bottleneck filtering out the incorrect details. Our experiments show that HyDE significantly outperforms the state-of-the-art unsupervised dense retriever Contriever and shows strong performance comparable to fine-tuned retrievers, across various tasks (e.g. web search, QA, fact verification) and languages~(e.g. sw, ko, ja).
Knowledge is reward: Learning optimal exploration by predictive reward cashing
There is a strong link between the general concept of intelligence and the ability to collect and use information. The theory of Bayes-adaptive exploration offers an attractive optimality framework for training machines to perform complex information gathering tasks. However, the computational complexity of the resulting optimal control problem has limited the diffusion of the theory to mainstream deep AI research. In this paper we exploit the inherent mathematical structure of Bayes-adaptive problems in order to dramatically simplify the problem by making the reward structure denser while simultaneously decoupling the learning of exploitation and exploration policies. The key to this simplification comes from the novel concept of cross-value (i.e. the value of being in an environment while acting optimally according to another), which we use to quantify the value of currently available information. This results in a new denser reward structure that "cashes in" all future rewards that can be predicted from the current information state. In a set of experiments we show that the approach makes it possible to learn challenging information gathering tasks without the use of shaping and heuristic bonuses in situations where the standard RL algorithms fail.
Weighted least-squares approximation with determinantal point processes and generalized volume sampling
We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.
PHI-S: Distribution Balancing for Label-Free Multi-Teacher Distillation
Various visual foundation models have distinct strengths and weaknesses, both of which can be improved through heterogeneous multi-teacher knowledge distillation without labels, termed "agglomerative models." We build upon this body of work by studying the effect of the teachers' activation statistics, particularly the impact of the loss function on the resulting student model quality. We explore a standard toolkit of statistical normalization techniques to better align the different distributions and assess their effects. Further, we examine the impact on downstream teacher-matching metrics, which motivates the use of Hadamard matrices. With these matrices, we demonstrate useful properties, showing how they can be used for isotropic standardization, where each dimension of a multivariate distribution is standardized using the same scale. We call this technique "PHI Standardization" (PHI-S) and empirically demonstrate that it produces the best student model across the suite of methods studied.
Value Gradient weighted Model-Based Reinforcement Learning
Model-based reinforcement learning (MBRL) is a sample efficient technique to obtain control policies, yet unavoidable modeling errors often lead performance deterioration. The model in MBRL is often solely fitted to reconstruct dynamics, state observations in particular, while the impact of model error on the policy is not captured by the training objective. This leads to a mismatch between the intended goal of MBRL, enabling good policy and value learning, and the target of the loss function employed in practice, future state prediction. Naive intuition would suggest that value-aware model learning would fix this problem and, indeed, several solutions to this objective mismatch problem have been proposed based on theoretical analysis. However, they tend to be inferior in practice to commonly used maximum likelihood (MLE) based approaches. In this paper we propose the Value-gradient weighted Model Learning (VaGraM), a novel method for value-aware model learning which improves the performance of MBRL in challenging settings, such as small model capacity and the presence of distracting state dimensions. We analyze both MLE and value-aware approaches and demonstrate how they fail to account for exploration and the behavior of function approximation when learning value-aware models and highlight the additional goals that must be met to stabilize optimization in the deep learning setting. We verify our analysis by showing that our loss function is able to achieve high returns on the Mujoco benchmark suite while being more robust than maximum likelihood based approaches.
Neural Optimal Transport with General Cost Functionals
We introduce a novel neural network-based algorithm to compute optimal transport (OT) plans for general cost functionals. In contrast to common Euclidean costs, i.e., ell^1 or ell^2, such functionals provide more flexibility and allow using auxiliary information, such as class labels, to construct the required transport map. Existing methods for general costs are discrete and have limitations in practice, i.e. they do not provide an out-of-sample estimation. We address the challenge of designing a continuous OT approach for general costs that generalizes to new data points in high-dimensional spaces, such as images. Additionally, we provide the theoretical error analysis for our recovered transport plans. As an application, we construct a cost functional to map data distributions while preserving the class-wise structure.
Adaptive Regularization of Representation Rank as an Implicit Constraint of Bellman Equation
Representation rank is an important concept for understanding the role of Neural Networks (NNs) in Deep Reinforcement learning (DRL), which measures the expressive capacity of value networks. Existing studies focus on unboundedly maximizing this rank; nevertheless, that approach would introduce overly complex models in the learning, thus undermining performance. Hence, fine-tuning representation rank presents a challenging and crucial optimization problem. To address this issue, we find a guiding principle for adaptive control of the representation rank. We employ the Bellman equation as a theoretical foundation and derive an upper bound on the cosine similarity of consecutive state-action pairs representations of value networks. We then leverage this upper bound to propose a novel regularizer, namely BEllman Equation-based automatic rank Regularizer (BEER). This regularizer adaptively regularizes the representation rank, thus improving the DRL agent's performance. We first validate the effectiveness of automatic control of rank on illustrative experiments. Then, we scale up BEER to complex continuous control tasks by combining it with the deterministic policy gradient method. Among 12 challenging DeepMind control tasks, BEER outperforms the baselines by a large margin. Besides, BEER demonstrates significant advantages in Q-value approximation. Our code is available at https://github.com/sweetice/BEER-ICLR2024.
Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization
Nonconvex optimization is central in solving many machine learning problems, in which block-wise structure is commonly encountered. In this work, we propose cyclic block coordinate methods for nonconvex optimization problems with non-asymptotic gradient norm guarantees. Our convergence analysis is based on a gradient Lipschitz condition with respect to a Mahalanobis norm, inspired by a recent progress on cyclic block coordinate methods. In deterministic settings, our convergence guarantee matches the guarantee of (full-gradient) gradient descent, but with the gradient Lipschitz constant being defined w.r.t.~a Mahalanobis norm. In stochastic settings, we use recursive variance reduction to decrease the per-iteration cost and match the arithmetic operation complexity of current optimal stochastic full-gradient methods, with a unified analysis for both finite-sum and infinite-sum cases. We prove a faster linear convergence result when a Polyak-{\L}ojasiewicz (P{\L}) condition holds. To our knowledge, this work is the first to provide non-asymptotic convergence guarantees -- variance-reduced or not -- for a cyclic block coordinate method in general composite (smooth + nonsmooth) nonconvex settings. Our experimental results demonstrate the efficacy of the proposed cyclic scheme in training deep neural nets.
CAOTE: KV Caching through Attention Output Error based Token Eviction
While long context support of large language models has extended their abilities, it also incurs challenges in memory and compute which becomes crucial bottlenecks in resource-restricted devices. Token eviction, a widely adopted post-training methodology designed to alleviate the bottlenecks by evicting less important tokens from the cache, typically uses attention scores as proxy metrics for token importance. However, one major limitation of attention score as a token-wise importance metrics is that it lacks the information about contribution of tokens to the attention output. In this paper, we propose a simple eviction criterion based on the contribution of cached tokens to attention outputs. Our method, CAOTE, optimizes for eviction error due to token eviction, by seamlessly integrating attention scores and value vectors. This is the first method which uses value vector information on top of attention-based eviction scores. Additionally, CAOTE can act as a meta-heuristic method with flexible usage with any token eviction method. We show that CAOTE, when combined with the state-of-the-art attention score-based methods, always improves accuracies on the downstream task, indicating the importance of leveraging information from values during token eviction process.
Characterizing Mechanisms for Factual Recall in Language Models
Language Models (LMs) often must integrate facts they memorized in pretraining with new information that appears in a given context. These two sources can disagree, causing competition within the model, and it is unclear how an LM will resolve the conflict. On a dataset that queries for knowledge of world capitals, we investigate both distributional and mechanistic determinants of LM behavior in such situations. Specifically, we measure the proportion of the time an LM will use a counterfactual prefix (e.g., "The capital of Poland is London") to overwrite what it learned in pretraining ("Warsaw"). On Pythia and GPT2, the training frequency of both the query country ("Poland") and the in-context city ("London") highly affect the models' likelihood of using the counterfactual. We then use head attribution to identify individual attention heads that either promote the memorized answer or the in-context answer in the logits. By scaling up or down the value vector of these heads, we can control the likelihood of using the in-context answer on new data. This method can increase the rate of generating the in-context answer to 88\% of the time simply by scaling a single head at runtime. Our work contributes to a body of evidence showing that we can often localize model behaviors to specific components and provides a proof of concept for how future methods might control model behavior dynamically at runtime.
KBLaM: Knowledge Base augmented Language Model
In this paper, we propose Knowledge Base augmented Language Model (KBLaM), a new method for augmenting Large Language Models (LLMs) with external knowledge. KBLaM works with a knowledge base (KB) constructed from a corpus of documents, transforming each piece of knowledge in the KB into continuous key-value vector pairs via pre-trained sentence encoders with linear adapters and integrating them into pre-trained LLMs via a specialized rectangular attention mechanism. Unlike Retrieval-Augmented Generation, KBLaM eliminates external retrieval modules, and unlike in-context learning, its computational overhead scales linearly with KB size rather than quadratically. Our approach enables integrating a large KB of more than 10K triples into an 8B pre-trained LLM of only 8K context window on one single A100 80GB GPU and allows for dynamic updates without model fine-tuning or retraining. Experiments demonstrate KBLaM's effectiveness in various tasks, including question-answering and open-ended reasoning, while providing interpretable insights into its use of the augmented knowledge. Code and datasets are available at https://github.com/microsoft/KBLaM/
Through the Lens of Split Vote: Exploring Disagreement, Difficulty and Calibration in Legal Case Outcome Classification
In legal decisions, split votes (SV) occur when judges cannot reach a unanimous decision, posing a difficulty for lawyers who must navigate diverse legal arguments and opinions. In high-stakes domains, understanding the alignment of perceived difficulty between humans and AI systems is crucial to build trust. However, existing NLP calibration methods focus on a classifier's awareness of predictive performance, measured against the human majority class, overlooking inherent human label variation (HLV). This paper explores split votes as naturally observable human disagreement and value pluralism. We collect judges' vote distributions from the European Court of Human Rights (ECHR), and present SV-ECHR, a case outcome classification (COC) dataset with SV information. We build a taxonomy of disagreement with SV-specific subcategories. We further assess the alignment of perceived difficulty between models and humans, as well as confidence- and human-calibration of COC models. We observe limited alignment with the judge vote distribution. To our knowledge, this is the first systematic exploration of calibration to human judgements in legal NLP. Our study underscores the necessity for further research on measuring and enhancing model calibration considering HLV in legal decision tasks.
AIR: A Systematic Analysis of Annotations, Instructions, and Response Pairs in Preference Dataset
Preference learning is critical for aligning large language models (LLMs) with human values, yet its success hinges on high-quality datasets comprising three core components: Preference Annotations, Instructions, and Response Pairs. Current approaches conflate these components, obscuring their individual impacts and hindering systematic optimization. In this work, we propose AIR, a component-wise analysis framework that systematically isolates and optimizes each component while evaluating their synergistic effects. Through rigorous experimentation, AIR reveals actionable principles: annotation simplicity (point-wise generative scoring), instruction inference stability (variance-based filtering across LLMs), and response pair quality (moderate margins + high absolute scores). When combined, these principles yield +5.3 average gains over baseline method, even with only 14k high-quality pairs. Our work shifts preference dataset design from ad hoc scaling to component-aware optimization, offering a blueprint for efficient, reproducible alignment.
Preference Fine-Tuning for Factuality in Chest X-Ray Interpretation Models Without Human Feedback
Radiologists play a crucial role by translating medical images into medical reports. However, the field faces staffing shortages and increasing workloads. While automated approaches using vision-language models (VLMs) show promise as assistants, they require exceptionally high accuracy. Most current VLMs in radiology rely solely on supervised fine-tuning (SFT). Meanwhile, in the general domain, additional preference fine-tuning has become standard practice. The challenge in radiology lies in the prohibitive cost of obtaining radiologist feedback. We propose a scalable automated preference alignment technique for VLMs in radiology, focusing on chest X-ray (CXR) report generation. Our method leverages publicly available datasets with an LLM-as-a-Judge mechanism, eliminating the need for additional expert radiologist feedback. We evaluate and benchmark five direct alignment algorithms (DAAs). Our results show up to a 57.4% improvement in average GREEN scores, a LLM-based metric for evaluating CXR reports, and a 9.2% increase in an average across six metrics (domain specific and general), compared to the SFT baseline. We study reward overoptimization via length exploitation, with reports lengthening by up to 3.2x. To assess a potential alignment tax, we benchmark on six additional diverse tasks, finding no significant degradations. A reader study involving four board-certified radiologists indicates win rates of up to 0.62 over the SFT baseline, while significantly penalizing verbosity. Our analysis provides actionable insights for the development of VLMs in high-stakes fields like radiology.
Key-Value Transformer
Transformers have emerged as the prevailing standard solution for various AI tasks, including computer vision and natural language processing. The widely adopted Query, Key, and Value formulation (QKV) has played a significant role in this. Nevertheless, no research has examined the essentiality of these three components for transformer performance. Therefore, we conducted an evaluation of the key-value formulation (KV), which generates symmetric attention maps, along with an asymmetric version that incorporates a 2D positional encoding into the attention matrix. Remarkably, this transformer requires fewer parameters and computation than the original one. Through experiments encompassing three task types -- synthetics (such as reversing or sorting a list), vision (mnist or cifar classification), and NLP (character generation and translation) -- we discovered that the KV transformer occasionally outperforms the QKV transformer. However, it also exhibits instances of underperformance compared to QKV, making it challenging to draw a definitive conclusion. Nonetheless, we consider the reported results to be encouraging and anticipate that they may pave the way for more efficient transformers in the future.
Only Pay for What Is Uncertain: Variance-Adaptive Thompson Sampling
Most bandit algorithms assume that the reward variances or their upper bounds are known, and that they are the same for all arms. This naturally leads to suboptimal performance and higher regret due to variance overestimation. On the other hand, underestimated reward variances may lead to linear regret due to committing early to a suboptimal arm. This motivated prior works on variance-adaptive frequentist algorithms, which have strong instance-dependent regret bounds but cannot incorporate prior knowledge on reward variances. We lay foundations for the Bayesian setting, which incorporates prior knowledge. This results in lower regret in practice, due to using the prior in the algorithm design, and also improved regret guarantees. Specifically, we study Gaussian bandits with {unknown heterogeneous reward variances}, and develop a Thompson sampling algorithm with prior-dependent Bayes regret bounds. We achieve lower regret with lower reward variances and more informative priors on them, which is precisely why we pay only for what is uncertain. This is the first result of its kind. Finally, we corroborate our theory with extensive experiments, which show the superiority of our variance-adaptive Bayesian algorithm over prior frequentist approaches. We also show that our approach is robust to model misspecification and can be applied with estimated priors.
A Practical Upper Bound for the Worst-Case Attribution Deviations
Model attribution is a critical component of deep neural networks (DNNs) for its interpretability to complex models. Recent studies bring up attention to the security of attribution methods as they are vulnerable to attribution attacks that generate similar images with dramatically different attributions. Existing works have been investigating empirically improving the robustness of DNNs against those attacks; however, none of them explicitly quantifies the actual deviations of attributions. In this work, for the first time, a constrained optimization problem is formulated to derive an upper bound that measures the largest dissimilarity of attributions after the samples are perturbed by any noises within a certain region while the classification results remain the same. Based on the formulation, different practical approaches are introduced to bound the attributions above using Euclidean distance and cosine similarity under both ell_2 and ell_infty-norm perturbations constraints. The bounds developed by our theoretical study are validated on various datasets and two different types of attacks (PGD attack and IFIA attribution attack). Over 10 million attacks in the experiments indicate that the proposed upper bounds effectively quantify the robustness of models based on the worst-case attribution dissimilarities.
Optimal Brain Apoptosis
The increasing complexity and parameter count of Convolutional Neural Networks (CNNs) and Transformers pose challenges in terms of computational efficiency and resource demands. Pruning has been identified as an effective strategy to address these challenges by removing redundant elements such as neurons, channels, or connections, thereby enhancing computational efficiency without heavily compromising performance. This paper builds on the foundational work of Optimal Brain Damage (OBD) by advancing the methodology of parameter importance estimation using the Hessian matrix. Unlike previous approaches that rely on approximations, we introduce Optimal Brain Apoptosis (OBA), a novel pruning method that calculates the Hessian-vector product value directly for each parameter. By decomposing the Hessian matrix across network layers and identifying conditions under which inter-layer Hessian submatrices are non-zero, we propose a highly efficient technique for computing the second-order Taylor expansion of parameters. This approach allows for a more precise pruning process, particularly in the context of CNNs and Transformers, as validated in our experiments including VGG19, ResNet32, ResNet50, and ViT-B/16 on CIFAR10, CIFAR100 and Imagenet datasets. Our code is available at https://github.com/NEU-REAL/OBA.