- Late lumping of transformation-based feedback laws for boundary control systems Late-lumping feedback design for infinite-dimensional linear systems with unbounded input operators is considered. The proposed scheme is suitable for the approximation of backstepping and flatness-based designs and relies on a decomposition of the feedback into a bounded and an unbounded part. Approximation applies to the bounded part only, while the unbounded part is assumed to allow for an exact realization. Based on spectral results, the convergence of the closed-loop dynamics to the desired dynamics is established. By duality, similar results apply to the approximation of the observer output-injection gains for systems with boundary observation. The proposed design and approximation steps are demonstrated and illustrated based on a hyperbolic infinite-dimensional system. 2 authors · Nov 2, 2022
- Polynomial Time and Private Learning of Unbounded Gaussian Mixture Models We study the problem of privately estimating the parameters of d-dimensional Gaussian Mixture Models (GMMs) with k components. For this, we develop a technique to reduce the problem to its non-private counterpart. This allows us to privatize existing non-private algorithms in a blackbox manner, while incurring only a small overhead in the sample complexity and running time. As the main application of our framework, we develop an (varepsilon, delta)-differentially private algorithm to learn GMMs using the non-private algorithm of Moitra and Valiant [MV10] as a blackbox. Consequently, this gives the first sample complexity upper bound and first polynomial time algorithm for privately learning GMMs without any boundedness assumptions on the parameters. As part of our analysis, we prove a tight (up to a constant factor) lower bound on the total variation distance of high-dimensional Gaussians which can be of independent interest. 3 authors · Mar 7, 2023
1 Universal Online Learning with Unbounded Losses: Memory Is All You Need We resolve an open problem of Hanneke on the subject of universally consistent online learning with non-i.i.d. processes and unbounded losses. The notion of an optimistically universal learning rule was defined by Hanneke in an effort to study learning theory under minimal assumptions. A given learning rule is said to be optimistically universal if it achieves a low long-run average loss whenever the data generating process makes this goal achievable by some learning rule. Hanneke posed as an open problem whether, for every unbounded loss, the family of processes admitting universal learning are precisely those having a finite number of distinct values almost surely. In this paper, we completely resolve this problem, showing that this is indeed the case. As a consequence, this also offers a dramatically simpler formulation of an optimistically universal learning rule for any unbounded loss: namely, the simple memorization rule already suffices. Our proof relies on constructing random measurable partitions of the instance space and could be of independent interest for solving other open questions. We extend the results to the non-realizable setting thereby providing an optimistically universal Bayes consistent learning rule. 3 authors · Jan 21, 2022
- High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance During recent years the interest of optimization and machine learning communities in high-probability convergence of stochastic optimization methods has been growing. One of the main reasons for this is that high-probability complexity bounds are more accurate and less studied than in-expectation ones. However, SOTA high-probability non-asymptotic convergence results are derived under strong assumptions such as the boundedness of the gradient noise variance or of the objective's gradient itself. In this paper, we propose several algorithms with high-probability convergence results under less restrictive assumptions. In particular, we derive new high-probability convergence results under the assumption that the gradient/operator noise has bounded central alpha-th moment for alpha in (1,2] in the following setups: (i) smooth non-convex / Polyak-Lojasiewicz / convex / strongly convex / quasi-strongly convex minimization problems, (ii) Lipschitz / star-cocoercive and monotone / quasi-strongly monotone variational inequalities. These results justify the usage of the considered methods for solving problems that do not fit standard functional classes studied in stochastic optimization. 8 authors · Feb 2, 2023
19 InstantSplat: Unbounded Sparse-view Pose-free Gaussian Splatting in 40 Seconds While novel view synthesis (NVS) has made substantial progress in 3D computer vision, it typically requires an initial estimation of camera intrinsics and extrinsics from dense viewpoints. This pre-processing is usually conducted via a Structure-from-Motion (SfM) pipeline, a procedure that can be slow and unreliable, particularly in sparse-view scenarios with insufficient matched features for accurate reconstruction. In this work, we integrate the strengths of point-based representations (e.g., 3D Gaussian Splatting, 3D-GS) with end-to-end dense stereo models (DUSt3R) to tackle the complex yet unresolved issues in NVS under unconstrained settings, which encompasses pose-free and sparse view challenges. Our framework, InstantSplat, unifies dense stereo priors with 3D-GS to build 3D Gaussians of large-scale scenes from sparseview & pose-free images in less than 1 minute. Specifically, InstantSplat comprises a Coarse Geometric Initialization (CGI) module that swiftly establishes a preliminary scene structure and camera parameters across all training views, utilizing globally-aligned 3D point maps derived from a pre-trained dense stereo pipeline. This is followed by the Fast 3D-Gaussian Optimization (F-3DGO) module, which jointly optimizes the 3D Gaussian attributes and the initialized poses with pose regularization. Experiments conducted on the large-scale outdoor Tanks & Temples datasets demonstrate that InstantSplat significantly improves SSIM (by 32%) while concurrently reducing Absolute Trajectory Error (ATE) by 80%. These establish InstantSplat as a viable solution for scenarios involving posefree and sparse-view conditions. Project page: instantsplat.github.io. 12 authors · Mar 29, 2024 2
- Non-Vacuous Generalization Bounds for Large Language Models Modern language models can contain billions of parameters, raising the question of whether they can generalize beyond the training data or simply regurgitate their training corpora. We provide the first non-vacuous generalization bounds for pretrained large language models (LLMs), indicating that language models are capable of discovering regularities that generalize to unseen data. In particular, we derive a compression bound that is valid for the unbounded log-likelihood loss using prediction smoothing, and we extend the bound to handle subsampling, accelerating bound computation on massive datasets. To achieve the extreme level of compression required for non-vacuous generalization bounds, we devise SubLoRA, a low-dimensional non-linear parameterization. Using this approach, we find that larger models have better generalization bounds and are more compressible than smaller models. 6 authors · Dec 28, 2023
- HoGS: Unified Near and Far Object Reconstruction via Homogeneous Gaussian Splatting Novel view synthesis has demonstrated impressive progress recently, with 3D Gaussian splatting (3DGS) offering efficient training time and photorealistic real-time rendering. However, reliance on Cartesian coordinates limits 3DGS's performance on distant objects, which is important for reconstructing unbounded outdoor environments. We found that, despite its ultimate simplicity, using homogeneous coordinates, a concept on the projective geometry, for the 3DGS pipeline remarkably improves the rendering accuracies of distant objects. We therefore propose Homogeneous Gaussian Splatting (HoGS) incorporating homogeneous coordinates into the 3DGS framework, providing a unified representation for enhancing near and distant objects. HoGS effectively manages both expansive spatial positions and scales particularly in outdoor unbounded environments by adopting projective geometry principles. Experiments show that HoGS significantly enhances accuracy in reconstructing distant objects while maintaining high-quality rendering of nearby objects, along with fast training speed and real-time rendering capability. Our implementations are available on our project page https://kh129.github.io/hogs/. 4 authors · Mar 24
- Parsed Categoric Encodings with Automunge The Automunge open source python library platform for tabular data pre-processing automates feature engineering data transformations of numerical encoding and missing data infill to received tidy data on bases fit to properties of columns in a designated train set for consistent and efficient application to subsequent data pipelines such as for inference, where transformations may be applied to distinct columns in "family tree" sets with generations and branches of derivations. Included in the library of transformations are methods to extract structure from bounded categorical string sets by way of automated string parsing, in which comparisons between entries in the set of unique values are parsed to identify character subset overlaps which may be encoded by appended columns of boolean overlap detection activations or by replacing string entries with identified overlap partitions. Further string parsing options, which may also be applied to unbounded categoric sets, include extraction of numeric substring partitions from entries or search functions to identify presence of specified substring partitions. The aggregation of these methods into "family tree" sets of transformations are demonstrated for use to automatically extract structure from categoric string compositions in relation to the set of entries in a column, such as may be applied to prepare categoric string set encodings for machine learning without human intervention. 1 authors · Feb 18, 2022
- Transition-Based Dependency Parsing with Stack Long Short-Term Memory We propose a technique for learning representations of parser states in transition-based dependency parsers. Our primary innovation is a new control structure for sequence-to-sequence neural networks---the stack LSTM. Like the conventional stack data structures used in transition-based parsing, elements can be pushed to or popped from the top of the stack in constant time, but, in addition, an LSTM maintains a continuous space embedding of the stack contents. This lets us formulate an efficient parsing model that captures three facets of a parser's state: (i) unbounded look-ahead into the buffer of incoming words, (ii) the complete history of actions taken by the parser, and (iii) the complete contents of the stack of partially built tree fragments, including their internal structures. Standard backpropagation techniques are used for training and yield state-of-the-art parsing performance. 5 authors · May 29, 2015
1 MagicDrive3D: Controllable 3D Generation for Any-View Rendering in Street Scenes While controllable generative models for images and videos have achieved remarkable success, high-quality models for 3D scenes, particularly in unbounded scenarios like autonomous driving, remain underdeveloped due to high data acquisition costs. In this paper, we introduce MagicDrive3D, a novel pipeline for controllable 3D street scene generation that supports multi-condition control, including BEV maps, 3D objects, and text descriptions. Unlike previous methods that reconstruct before training the generative models, MagicDrive3D first trains a video generation model and then reconstructs from the generated data. This innovative approach enables easily controllable generation and static scene acquisition, resulting in high-quality scene reconstruction. To address the minor errors in generated content, we propose deformable Gaussian splatting with monocular depth initialization and appearance modeling to manage exposure discrepancies across viewpoints. Validated on the nuScenes dataset, MagicDrive3D generates diverse, high-quality 3D driving scenes that support any-view rendering and enhance downstream tasks like BEV segmentation. Our results demonstrate the framework's superior performance, showcasing its transformative potential for autonomous driving simulation and beyond. 6 authors · May 23, 2024
38 Unbounded: A Generative Infinite Game of Character Life Simulation We introduce the concept of a generative infinite game, a video game that transcends the traditional boundaries of finite, hard-coded systems by using generative models. Inspired by James P. Carse's distinction between finite and infinite games, we leverage recent advances in generative AI to create Unbounded: a game of character life simulation that is fully encapsulated in generative models. Specifically, Unbounded draws inspiration from sandbox life simulations and allows you to interact with your autonomous virtual character in a virtual world by feeding, playing with and guiding it - with open-ended mechanics generated by an LLM, some of which can be emergent. In order to develop Unbounded, we propose technical innovations in both the LLM and visual generation domains. Specifically, we present: (1) a specialized, distilled large language model (LLM) that dynamically generates game mechanics, narratives, and character interactions in real-time, and (2) a new dynamic regional image prompt Adapter (IP-Adapter) for vision models that ensures consistent yet flexible visual generation of a character across multiple environments. We evaluate our system through both qualitative and quantitative analysis, showing significant improvements in character life simulation, user instruction following, narrative coherence, and visual consistency for both characters and the environments compared to traditional related approaches. 8 authors · Oct 24, 2024 2
1 TrackMania is NP-complete We prove that completing an untimed, unbounded track in TrackMania Nations Forever is NP-complete by using a reduction from 3-SAT and showing that a solution can be checked in polynomial time. 1 authors · Nov 20, 2014