Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSoS1: O1 and R1-Like Reasoning LLMs are Sum-of-Square Solvers
Large Language Models (LLMs) have achieved human-level proficiency across diverse tasks, but their ability to perform rigorous mathematical problem solving remains an open challenge. In this work, we investigate a fundamental yet computationally intractable problem: determining whether a given multivariate polynomial is nonnegative. This problem, closely related to Hilbert's Seventeenth Problem, plays a crucial role in global polynomial optimization and has applications in various fields. First, we introduce SoS-1K, a meticulously curated dataset of approximately 1,000 polynomials, along with expert-designed reasoning instructions based on five progressively challenging criteria. Evaluating multiple state-of-the-art LLMs, we find that without structured guidance, all models perform only slightly above the random guess baseline 50%. However, high-quality reasoning instructions significantly improve accuracy, boosting performance up to 81%. Furthermore, our 7B model, SoS-7B, fine-tuned on SoS-1K for just 4 hours, outperforms the 671B DeepSeek-V3 and GPT-4o-mini in accuracy while only requiring 1.8% and 5% of the computation time needed for letters, respectively. Our findings highlight the potential of LLMs to push the boundaries of mathematical reasoning and tackle NP-hard problems.
On Computational Limits and Provably Efficient Criteria of Visual Autoregressive Models: A Fine-Grained Complexity Analysis
Recently, Visual Autoregressive (VAR) Models introduced a groundbreaking advancement in the field of image generation, offering a scalable approach through a coarse-to-fine "next-scale prediction" paradigm. However, the state-of-the-art algorithm of VAR models in [Tian, Jiang, Yuan, Peng and Wang, NeurIPS 2024] takes O(n^4) time, which is computationally inefficient. In this work, we analyze the computational limits and efficiency criteria of VAR Models through a fine-grained complexity lens. Our key contribution is identifying the conditions under which VAR computations can achieve sub-quadratic time complexity. Specifically, we establish a critical threshold for the norm of input matrices used in VAR attention mechanisms. Above this threshold, assuming the Strong Exponential Time Hypothesis (SETH) from fine-grained complexity theory, a sub-quartic time algorithm for VAR models is impossible. To substantiate our theoretical findings, we present efficient constructions leveraging low-rank approximations that align with the derived criteria. This work initiates the study of the computational efficiency of the VAR model from a theoretical perspective. Our technique will shed light on advancing scalable and efficient image generation in VAR frameworks.
Generalized Convolution and Efficient Language Recognition
Convolution is a broadly useful operation with applications including signal processing, machine learning, probability, optics, polynomial multiplication, and efficient parsing. Usually, however, this operation is understood and implemented in more specialized forms, hiding commonalities and limiting usefulness. This paper formulates convolution in the common algebraic framework of semirings and semimodules and populates that framework with various representation types. One of those types is the grand abstract template and itself generalizes to the free semimodule monad. Other representations serve varied uses and performance trade-offs, with implementations calculated from simple and regular specifications. Of particular interest is Brzozowski's method for regular expression matching. Uncovering the method's essence frees it from syntactic manipulations, while generalizing from boolean to weighted membership (such as multisets and probability distributions) and from sets to n-ary relations. The classic trie data structure then provides an elegant and efficient alternative to syntax. Pleasantly, polynomial arithmetic requires no additional implementation effort, works correctly with a variety of representations, and handles multivariate polynomials and power series with ease. Image convolution also falls out as a special case.
Polynomial Preconditioning for Gradient Methods
We study first-order methods with preconditioning for solving structured nonlinear convex optimization problems. We propose a new family of preconditioners generated by symmetric polynomials. They provide first-order optimization methods with a provable improvement of the condition number, cutting the gaps between highest eigenvalues, without explicit knowledge of the actual spectrum. We give a stochastic interpretation of this preconditioning in terms of coordinate volume sampling and compare it with other classical approaches, including the Chebyshev polynomials. We show how to incorporate a polynomial preconditioning into the Gradient and Fast Gradient Methods and establish the corresponding global complexity bounds. Finally, we propose a simple adaptive search procedure that automatically chooses the best possible polynomial preconditioning for the Gradient Method, minimizing the objective along a low-dimensional Krylov subspace. Numerical experiments confirm the efficiency of our preconditioning strategies for solving various machine learning problems.
Efficient List-Decodable Regression using Batches
We begin the study of list-decodable linear regression using batches. In this setting only an alpha in (0,1] fraction of the batches are genuine. Each genuine batch contains ge n i.i.d. samples from a common unknown distribution and the remaining batches may contain arbitrary or even adversarial samples. We derive a polynomial time algorithm that for any nge tilde Omega(1/alpha) returns a list of size mathcal O(1/alpha^2) such that one of the items in the list is close to the true regression parameter. The algorithm requires only mathcal{O}(d/alpha^2) genuine batches and works under fairly general assumptions on the distribution. The results demonstrate the utility of batch structure, which allows for the first polynomial time algorithm for list-decodable regression, which may be impossible for the non-batch setting, as suggested by a recent SQ lower bound diakonikolas2021statistical for the non-batch setting.
Exponential speedups for quantum walks in random hierarchical graphs
There are few known exponential speedups for quantum algorithms and these tend to fall into even fewer families. One speedup that has mostly resisted generalization is the use of quantum walks to traverse the welded-tree graph, due to Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman. We show how to generalize this to a large class of hierarchical graphs in which the vertices are grouped into "supervertices" which are arranged according to a d-dimensional lattice. Supervertices can have different sizes, and edges between supervertices correspond to random connections between their constituent vertices. The hitting times of quantum walks on these graphs are related to the localization properties of zero modes in certain disordered tight binding Hamiltonians. The speedups range from superpolynomial to exponential, depending on the underlying dimension and the random graph model. We also provide concrete realizations of these hierarchical graphs, and introduce a general method for constructing graphs with efficient quantum traversal times using graph sparsification.
The Price of Freedom: Exploring Expressivity and Runtime Tradeoffs in Equivariant Tensor Products
E(3)-equivariant neural networks have demonstrated success across a wide range of 3D modelling tasks. A fundamental operation in these networks is the tensor product, which interacts two geometric features in an equivariant manner to create new features. Due to the high computational complexity of the tensor product, significant effort has been invested to optimize the runtime of this operation. For example, Luo et al. (2024) recently proposed the Gaunt tensor product (GTP) which promises a significant speedup. In this work, we provide a careful, systematic analysis of a number of tensor product operations. In particular, we emphasize that different tensor products are not performing the same operation. The reported speedups typically come at the cost of expressivity. We introduce measures of expressivity and interactability to characterize these differences. In addition, we realized the original implementation of GTP can be greatly simplified by directly using a spherical grid at no cost in asymptotic runtime. This spherical grid approach is faster on our benchmarks and in actual training of the MACE interatomic potential by 30%. Finally, we provide the first systematic microbenchmarks of the various tensor product operations. We find that the theoretical runtime guarantees can differ wildly from empirical performance, demonstrating the need for careful application-specific benchmarking. Code is available at https://github.com/atomicarchitects/PriceofFreedom.
Learning Randomized Reductions and Program Properties
The correctness of computations remains a significant challenge in computer science, with traditional approaches relying on automated testing or formal verification. Self-testing/correcting programs introduce an alternative paradigm, allowing a program to verify and correct its own outputs via randomized reductions, a concept that previously required manual derivation. In this paper, we present Bitween, a method and tool for automated learning of randomized (self)-reductions and program properties in numerical programs. Bitween combines symbolic analysis and machine learning, with a surprising finding: polynomial-time linear regression, a basic optimization method, is not only sufficient but also highly effective for deriving complex randomized self-reductions and program invariants, often outperforming sophisticated mixed-integer linear programming solvers. We establish a theoretical framework for learning these reductions and introduce RSR-Bench, a benchmark suite for evaluating Bitween's capabilities on scientific and machine learning functions. Our empirical results show that Bitween surpasses state-of-the-art tools in scalability, stability, and sample efficiency when evaluated on nonlinear invariant benchmarks like NLA-DigBench. Bitween is open-source as a Python package and accessible via a web interface that supports C language programs.
Hardest Monotone Functions for Evolutionary Algorithms
The study of hardest and easiest fitness landscapes is an active area of research. Recently, Kaufmann, Larcher, Lengler and Zou conjectured that for the self-adjusting (1,lambda)-EA, Adversarial Dynamic BinVal (ADBV) is the hardest dynamic monotone function to optimize. We introduce the function Switching Dynamic BinVal (SDBV) which coincides with ADBV whenever the number of remaining zeros in the search point is strictly less than n/2, where n denotes the dimension of the search space. We show, using a combinatorial argument, that for the (1+1)-EA with any mutation rate p in [0,1], SDBV is drift-minimizing among the class of dynamic monotone functions. Our construction provides the first explicit example of an instance of the partially-ordered evolutionary algorithm (PO-EA) model with parameterized pessimism introduced by Colin, Doerr and F\'erey, building on work of Jansen. We further show that the (1+1)-EA optimizes SDBV in Theta(n^{3/2}) generations. Our simulations demonstrate matching runtimes for both static and self-adjusting (1,lambda) and (1+lambda)-EA. We further show, using an example of fixed dimension, that drift-minimization does not equal maximal runtime.
Stochastic Taylor Derivative Estimator: Efficient amortization for arbitrary differential operators
Optimizing neural networks with loss that contain high-dimensional and high-order differential operators is expensive to evaluate with back-propagation due to O(d^{k}) scaling of the derivative tensor size and the O(2^{k-1}L) scaling in the computation graph, where d is the dimension of the domain, L is the number of ops in the forward computation graph, and k is the derivative order. In previous works, the polynomial scaling in d was addressed by amortizing the computation over the optimization process via randomization. Separately, the exponential scaling in k for univariate functions (d=1) was addressed with high-order auto-differentiation (AD). In this work, we show how to efficiently perform arbitrary contraction of the derivative tensor of arbitrary order for multivariate functions, by properly constructing the input tangents to univariate high-order AD, which can be used to efficiently randomize any differential operator. When applied to Physics-Informed Neural Networks (PINNs), our method provides >1000times speed-up and >30times memory reduction over randomization with first-order AD, and we can now solve 1-million-dimensional PDEs in 8 minutes on a single NVIDIA A100 GPU. This work opens the possibility of using high-order differential operators in large-scale problems.
Equivariant Polynomials for Graph Neural Networks
Graph Neural Networks (GNN) are inherently limited in their expressive power. Recent seminal works (Xu et al., 2019; Morris et al., 2019b) introduced the Weisfeiler-Lehman (WL) hierarchy as a measure of expressive power. Although this hierarchy has propelled significant advances in GNN analysis and architecture developments, it suffers from several significant limitations. These include a complex definition that lacks direct guidance for model improvement and a WL hierarchy that is too coarse to study current GNNs. This paper introduces an alternative expressive power hierarchy based on the ability of GNNs to calculate equivariant polynomials of a certain degree. As a first step, we provide a full characterization of all equivariant graph polynomials by introducing a concrete basis, significantly generalizing previous results. Each basis element corresponds to a specific multi-graph, and its computation over some graph data input corresponds to a tensor contraction problem. Second, we propose algorithmic tools for evaluating the expressiveness of GNNs using tensor contraction sequences, and calculate the expressive power of popular GNNs. Finally, we enhance the expressivity of common GNN architectures by adding polynomial features or additional operations / aggregations inspired by our theory. These enhanced GNNs demonstrate state-of-the-art results in experiments across multiple graph learning benchmarks.
Efficient Algorithms for Recognizing Weighted Tree-Adjoining Languages
The class of tree-adjoining languages can be characterized by various two-level formalisms, consisting of a context-free grammar (CFG) or pushdown automaton (PDA) controlling another CFG or PDA. These four formalisms are equivalent to tree-adjoining grammars (TAG), linear indexed grammars (LIG), pushdown-adjoining automata (PAA), and embedded pushdown automata (EPDA). We define semiring-weighted versions of the above two-level formalisms, and we design new algorithms for computing their stringsums (the weight of all derivations of a string) and allsums (the weight of all derivations). From these, we also immediately obtain stringsum and allsum algorithms for TAG, LIG, PAA, and EPDA. For LIG, our algorithm is more time-efficient by a factor of O(n|N|) (where n is the string length and |N| is the size of the nonterminal set) and more space-efficient by a factor of O(|Gamma|) (where |Gamma| is the size of the stack alphabet) than the algorithm of Vijay-Shanker and Weir (1989). For EPDA, our algorithm is both more space-efficient and time-efficient than the algorithm of Alonso et al. (2001) by factors of O(|Gamma|^2) and O(|Gamma|^3), respectively. Finally, we give the first PAA stringsum and allsum algorithms.
Accelerated Infeasibility Detection of Constrained Optimization and Fixed-Point Iterations
As first-order optimization methods become the method of choice for solving large-scale optimization problems, optimization solvers based on first-order algorithms are being built. Such general-purpose solvers must robustly detect infeasible or misspecified problem instances, but the computational complexity of first-order methods for doing so has yet to be formally studied. In this work, we characterize the optimal accelerated rate of infeasibility detection. We show that the standard fixed-point iteration achieves a O(1/k^2) and O(1/k) rates, respectively, on the normalized iterates and the fixed-point residual converging to the infimal displacement vector, while the accelerated fixed-point iteration achieves O(1/k^2) and mathcal{O}(1/k^2) rates. We then provide a matching complexity lower bound to establish that Theta(1/k^2) is indeed the optimal accelerated rate.
From ChebNet to ChebGibbsNet
Recent advancements in Spectral Graph Convolutional Networks (SpecGCNs) have led to state-of-the-art performance in various graph representation learning tasks. To exploit the potential of SpecGCNs, we analyze corresponding graph filters via polynomial interpolation, the cornerstone of graph signal processing. Different polynomial bases, such as Bernstein, Chebyshev, and monomial basis, have various convergence rates that will affect the error in polynomial interpolation. Although adopting Chebyshev basis for interpolation can minimize maximum error, the performance of ChebNet is still weaker than GPR-GNN and BernNet. We point out it is caused by the Gibbs phenomenon, which occurs when the graph frequency response function approximates the target function. It reduces the approximation ability of a truncated polynomial interpolation. In order to mitigate the Gibbs phenomenon, we propose to add the Gibbs damping factor with each term of Chebyshev polynomials on ChebNet. As a result, our lightweight approach leads to a significant performance boost. Afterwards, we reorganize ChebNet via decoupling feature propagation and transformation. We name this variant as ChebGibbsNet. Our experiments indicate that ChebGibbsNet is superior to other advanced SpecGCNs, such as GPR-GNN and BernNet, in both homogeneous graphs and heterogeneous graphs.
Less Quantum, More Advantage: An End-to-End Quantum Algorithm for the Jones Polynomial
We present an end-to-end reconfigurable algorithmic pipeline for solving a famous problem in knot theory using a noisy digital quantum computer, namely computing the value of the Jones polynomial at the fifth root of unity within additive error for any input link, i.e. a closed braid. This problem is DQC1-complete for Markov-closed braids and BQP-complete for Plat-closed braids, and we accommodate both versions of the problem. Even though it is widely believed that DQC1 is strictly contained in BQP, and so is 'less quantum', the resource requirements of classical algorithms for the DQC1 version are at least as high as for the BQP version, and so we potentially gain 'more advantage' by focusing on Markov-closed braids in our exposition. We demonstrate our quantum algorithm on Quantinuum's H2-2 quantum computer and show the effect of problem-tailored error-mitigation techniques. Further, leveraging that the Jones polynomial is a link invariant, we construct an efficiently verifiable benchmark to characterise the effect of noise present in a given quantum processor. In parallel, we implement and benchmark the state-of-the-art tensor-network-based classical algorithms for computing the Jones polynomial. The practical tools provided in this work allow for precise resource estimation to identify near-term quantum advantage for a meaningful quantum-native problem in knot theory.
BFS-Prover: Scalable Best-First Tree Search for LLM-based Automatic Theorem Proving
Recent advancements in large language models (LLMs) have spurred growing interest in automatic theorem proving using Lean4, where effective tree search methods are crucial for navigating proof search spaces. While the existing approaches primarily rely on value functions and Monte Carlo Tree Search (MCTS), the potential of simpler methods like Best-First Search (BFS) remains underexplored. This paper investigates whether BFS can achieve competitive performance in large-scale theorem proving tasks. We present BFS-Prover, a scalable expert iteration framework, featuring three key innovations. First, we implement strategic data filtering at each expert iteration round, excluding problems solvable via beam search node expansion to focus on harder cases. Second, we improve the sample efficiency of BFS through Direct Preference Optimization (DPO) applied to state-tactic pairs automatically annotated with compiler error feedback, refining the LLM's policy to prioritize productive expansions. Third, we employ length normalization in BFS to encourage exploration of deeper proof paths. BFS-Prover achieves a score of 71.31 on the MiniF2F test set and therefore challenges the perceived necessity of complex tree search methods, demonstrating that BFS can achieve competitive performance when properly scaled.
Dynamic Constrained Submodular Optimization with Polylogarithmic Update Time
Maximizing a monotone submodular function under cardinality constraint k is a core problem in machine learning and database with many basic applications, including video and data summarization, recommendation systems, feature extraction, exemplar clustering, and coverage problems. We study this classic problem in the fully dynamic model where a stream of insertions and deletions of elements of an underlying ground set is given and the goal is to maintain an approximate solution using a fast update time. A recent paper at NeurIPS'20 by Lattanzi, Mitrovic, Norouzi{-}Fard, Tarnawski, Zadimoghaddam claims to obtain a dynamic algorithm for this problem with a 1{2} -epsilon approximation ratio and a query complexity bounded by poly(log(n),log(k),epsilon^{-1}). However, as we explain in this paper, the analysis has some important gaps. Having a dynamic algorithm for the problem with polylogarithmic update time is even more important in light of a recent result by Chen and Peng at STOC'22 who show a matching lower bound for the problem -- any randomized algorithm with a 1{2}+epsilon approximation ratio must have an amortized query complexity that is polynomial in n. In this paper, we develop a simpler algorithm for the problem that maintains a (1{2}-epsilon)-approximate solution for submodular maximization under cardinality constraint k using a polylogarithmic amortized update time.
One Tree to Rule Them All: Poly-Logarithmic Universal Steiner Tree
A spanning tree T of graph G is a rho-approximate universal Steiner tree (UST) for root vertex r if, for any subset of vertices S containing r, the cost of the minimal subgraph of T connecting S is within a rho factor of the minimum cost tree connecting S in G. Busch et al. (FOCS 2012) showed that every graph admits 2^{O(log n)}-approximate USTs by showing that USTs are equivalent to strong sparse partition hierarchies (up to poly-logs). Further, they posed poly-logarithmic USTs and strong sparse partition hierarchies as open questions. We settle these open questions by giving polynomial-time algorithms for computing both O(log ^ 7 n)-approximate USTs and poly-logarithmic strong sparse partition hierarchies. For graphs with constant doubling dimension or constant pathwidth we improve this to O(log n)-approximate USTs and O(1) strong sparse partition hierarchies. Our doubling dimension result is tight up to second order terms. We reduce the existence of these objects to the previously studied cluster aggregation problem and what we call dangling nets.
S*: Test Time Scaling for Code Generation
Increasing test-time compute for LLMs shows promise across domains but remains underexplored in code generation, despite extensive study in math. In this paper, we propose S*, the first hybrid test-time scaling framework that substantially improves the coverage and selection accuracy of generated code. S* extends the existing parallel scaling paradigm with sequential scaling to push performance boundaries. It further leverages a novel selection mechanism that adaptively generates distinguishing inputs for pairwise comparison, combined with execution-grounded information to robustly identify correct solutions. We evaluate across 12 Large Language Models and Large Reasoning Model and show: (1) S* consistently improves performance across model families and sizes, enabling a 3B model to outperform GPT-4o-mini; (2) S* enables non-reasoning models to surpass reasoning models - GPT-4o-mini with S* outperforms o1-preview by 3.7% on LiveCodeBench; (3) S* further boosts state-of-the-art reasoning models - DeepSeek-R1-Distill-Qwen-32B with S* achieves 85.7% on LiveCodeBench, approaching o1 (high) at 88.5%. Code will be available under https://github.com/NovaSky-AI/SkyThought.
Quantum Speedups for Zero-Sum Games via Improved Dynamic Gibbs Sampling
We give a quantum algorithm for computing an epsilon-approximate Nash equilibrium of a zero-sum game in a m times n payoff matrix with bounded entries. Given a standard quantum oracle for accessing the payoff matrix our algorithm runs in time O(m + ncdot epsilon^{-2.5} + epsilon^{-3}) and outputs a classical representation of the epsilon-approximate Nash equilibrium. This improves upon the best prior quantum runtime of O(m + n cdot epsilon^{-3}) obtained by [vAG19] and the classic O((m + n) cdot epsilon^{-2}) runtime due to [GK95] whenever epsilon = Omega((m +n)^{-1}). We obtain this result by designing new quantum data structures for efficiently sampling from a slowly-changing Gibbs distribution.
Tropical Attention: Neural Algorithmic Reasoning for Combinatorial Algorithms
Dynamic programming (DP) algorithms for combinatorial optimization problems work with taking maximization, minimization, and classical addition in their recursion algorithms. The associated value functions correspond to convex polyhedra in the max plus semiring. Existing Neural Algorithmic Reasoning models, however, rely on softmax-normalized dot-product attention where the smooth exponential weighting blurs these sharp polyhedral structures and collapses when evaluated on out-of-distribution (OOD) settings. We introduce Tropical attention, a novel attention function that operates natively in the max-plus semiring of tropical geometry. We prove that Tropical attention can approximate tropical circuits of DP-type combinatorial algorithms. We then propose that using Tropical transformers enhances empirical OOD performance in both length generalization and value generalization, on algorithmic reasoning tasks, surpassing softmax baselines while remaining stable under adversarial attacks. We also present adversarial-attack generalization as a third axis for Neural Algorithmic Reasoning benchmarking. Our results demonstrate that Tropical attention restores the sharp, scale-invariant reasoning absent from softmax.
Denotationally Correct, Purely Functional, Efficient Reverse-mode Automatic Differentiation
Reverse-mode differentiation is used for optimization, but it introduces references, which break the purity of the underlying programs, making them notoriously harder to optimize. We present a reverse-mode differentiation on a purely functional language with array operations. It is the first one to deliver a provably efficient, purely functional, and denotationally correct reverse-mode differentiation. We show that our transformation is semantically correct and verifies the cheap gradient principle. Inspired by PROPs and compilation to categories, we introduce a novel intermediate representation that we call 'unary form'. Our reverse-mode transformation is factored as a compilation scheme through this intermediate representation. We obtain provably efficient gradients by performing general partial evaluation optimizations after our reverse-mode transformation, as opposed to manually derived ones. For simple first-order programs, the obtained output programs resemble static-single-assignment (SSA) code. We emphasize the modularity of our approach and show how our language can easily be enriched with more optimized primitives, as required for some speed-ups in practice.
Construction of simplicial complexes with prescribed degree-size sequences
We study the realizability of simplicial complexes with a given pair of integer sequences, representing the node degree distribution and the facet size distribution, respectively. While the s-uniform variant of the problem is NP-complete when s geq 3, we identify two populations of input sequences, most of which can be solved in polynomial time using a recursive algorithm that we contribute. Combining with a sampler for the simplicial configuration model [J.-G. Young et al., Phys. Rev. E 96, 032312 (2017)], we facilitate the efficient sampling of simplicial ensembles from arbitrary degree and size distributions. We find that, contrary to expectations based on dyadic networks, increasing the nodes' degrees reduces the number of loops in simplicial complexes. Our work unveils a fundamental constraint on the degree-size sequences and sheds light on further analysis of higher-order phenomena based on local structures.
HyperTree Proof Search for Neural Theorem Proving
We propose an online training procedure for a transformer-based automated theorem prover. Our approach leverages a new search algorithm, HyperTree Proof Search (HTPS), inspired by the recent success of AlphaZero. Our model learns from previous proof searches through online training, allowing it to generalize to domains far from the training distribution. We report detailed ablations of our pipeline's main components by studying performance on three environments of increasing complexity. In particular, we show that with HTPS alone, a model trained on annotated proofs manages to prove 65.4% of a held-out set of Metamath theorems, significantly outperforming the previous state of the art of 56.5% by GPT-f. Online training on these unproved theorems increases accuracy to 82.6%. With a similar computational budget, we improve the state of the art on the Lean-based miniF2F-curriculum dataset from 31% to 42% proving accuracy.
Learning Hierarchical Polynomials with Three-Layer Neural Networks
We study the problem of learning hierarchical polynomials over the standard Gaussian distribution with three-layer neural networks. We specifically consider target functions of the form h = g circ p where p : R^d rightarrow R is a degree k polynomial and g: R rightarrow R is a degree q polynomial. This function class generalizes the single-index model, which corresponds to k=1, and is a natural class of functions possessing an underlying hierarchical structure. Our main result shows that for a large subclass of degree k polynomials p, a three-layer neural network trained via layerwise gradient descent on the square loss learns the target h up to vanishing test error in mathcal{O}(d^k) samples and polynomial time. This is a strict improvement over kernel methods, which require widetilde Theta(d^{kq}) samples, as well as existing guarantees for two-layer networks, which require the target function to be low-rank. Our result also generalizes prior works on three-layer neural networks, which were restricted to the case of p being a quadratic. When p is indeed a quadratic, we achieve the information-theoretically optimal sample complexity mathcal{O}(d^2), which is an improvement over prior work~nichani2023provable requiring a sample size of widetildeTheta(d^4). Our proof proceeds by showing that during the initial stage of training the network performs feature learning to recover the feature p with mathcal{O}(d^k) samples. This work demonstrates the ability of three-layer neural networks to learn complex features and as a result, learn a broad class of hierarchical functions.
Explicit gate construction of block-encoding for Hamiltonians needed for simulating partial differential equations
Quantum computation is an emerging technology with important potential for solving certain problems pivotal in various scientific and engineering disciplines. This paper introduces an efficient quantum protocol for the explicit construction of the block-encoding for an important class of Hamiltonians. Using the Schrodingerisation technique -- which converts non-conservative PDEs into conservative ones -- this particular class of Hamiltonians is shown to be sufficient for simulating any linear partial differential equations that have coefficients which are polynomial functions. The class of Hamiltonians consist of discretisations of polynomial products and sums of position and momentum operators. This construction is explicit and leverages minimal one- and two-qubit operations. The explicit construction of this block-encoding forms a fundamental building block for constructing the unitary evolution operator for this Hamiltonian. The proposed algorithm exhibits polynomial scaling with respect to the spatial partitioning size, suggesting an exponential speedup over classical finite-difference methods. This work provides an important foundation for building explicit and efficient quantum circuits for solving partial differential equations.
Near-Optimal Quantum Coreset Construction Algorithms for Clustering
k-Clustering in R^d (e.g., k-median and k-means) is a fundamental machine learning problem. While near-linear time approximation algorithms were known in the classical setting for a dataset with cardinality n, it remains open to find sublinear-time quantum algorithms. We give quantum algorithms that find coresets for k-clustering in R^d with O(nkd^{3/2}) query complexity. Our coreset reduces the input size from n to poly(kepsilon^{-1}d), so that existing alpha-approximation algorithms for clustering can run on top of it and yield (1 + epsilon)alpha-approximation. This eventually yields a quadratic speedup for various k-clustering approximation algorithms. We complement our algorithm with a nearly matching lower bound, that any quantum algorithm must make Omega(nk) queries in order to achieve even O(1)-approximation for k-clustering.
Using Sequential Runtime Distributions for the Parallel Speedup Prediction of SAT Local Search
This paper presents a detailed analysis of the scalability and parallelization of local search algorithms for the Satisfiability problem. We propose a framework to estimate the parallel performance of a given algorithm by analyzing the runtime behavior of its sequential version. Indeed, by approximating the runtime distribution of the sequential process with statistical methods, the runtime behavior of the parallel process can be predicted by a model based on order statistics. We apply this approach to study the parallel performance of two SAT local search solvers, namely Sparrow and CCASAT, and compare the predicted performances to the results of an actual experimentation on parallel hardware up to 384 cores. We show that the model is accurate and predicts performance close to the empirical data. Moreover, as we study different types of instances (random and crafted), we observe that the local search solvers exhibit different behaviors and that their runtime distributions can be approximated by two types of distributions: exponential (shifted and non-shifted) and lognormal.
Categories of Differentiable Polynomial Circuits for Machine Learning
Reverse derivative categories (RDCs) have recently been shown to be a suitable semantic framework for studying machine learning algorithms. Whereas emphasis has been put on training methodologies, less attention has been devoted to particular model classes: the concrete categories whose morphisms represent machine learning models. In this paper we study presentations by generators and equations of classes of RDCs. In particular, we propose polynomial circuits as a suitable machine learning model. We give an axiomatisation for these circuits and prove a functional completeness result. Finally, we discuss the use of polynomial circuits over specific semirings to perform machine learning with discrete values.
Fast, Stable and Efficient Approximation of Multi-parameter Persistence Modules with MMA
In this article, we introduce a new parameterized family of topological invariants, taking the form of candidate decompositions, for multi-parameter persistence modules. We prove that our candidate decompositions are controllable approximations: when restricting to modules that can be decomposed into interval summands, we establish theoretical results about the approximation error between our candidate decompositions and the true underlying module in terms of the standard interleaving and bottleneck distances. Moreover, even when the underlying module does not admit such a decomposition, our candidate decompositions are nonetheless stable invariants; small perturbations in the underlying module lead to small perturbations in the candidate decomposition. Then, we introduce MMA (Multipersistence Module Approximation): an algorithm for computing stable instances of such invariants, which is based on fibered barcodes and exact matchings, two constructions that stem from the theory of single-parameter persistence. By design, MMA can handle an arbitrary number of filtrations, and has bounded complexity and running time. Finally, we present empirical evidence validating the generalization capabilities and running time speed-ups of MMA on several data sets.
Speed-Oblivious Online Scheduling: Knowing (Precise) Speeds is not Necessary
We consider online scheduling on unrelated (heterogeneous) machines in a speed-oblivious setting, where an algorithm is unaware of the exact job-dependent processing speeds. We show strong impossibility results for clairvoyant and non-clairvoyant algorithms and overcome them in models inspired by practical settings: (i) we provide competitive learning-augmented algorithms, assuming that (possibly erroneous) predictions on the speeds are given, and (ii) we provide competitive algorithms for the speed-ordered model, where a single global order of machines according to their unknown job-dependent speeds is known. We prove strong theoretical guarantees and evaluate our findings on a representative heterogeneous multi-core processor. These seem to be the first empirical results for scheduling algorithms with predictions that are evaluated in a non-synthetic hardware environment.
Fault-Tolerant Strassen-Like Matrix Multiplication
In this study, we propose a simple method for fault-tolerant Strassen-like matrix multiplications. The proposed method is based on using two distinct Strassen-like algorithms instead of replicating a given one. We have realized that using two different algorithms, new check relations arise resulting in more local computations. These local computations are found using computer aided search. To improve performance, special parity (extra) sub-matrix multiplications (PSMMs) are generated (two of them) at the expense of increasing communication/computation cost of the system. Our preliminary results demonstrate that the proposed method outperforms a Strassen-like algorithm with two copies and secures a very close performance to three copy version using only 2 PSMMs, reducing the total number of compute nodes by around 24\% i.e., from 21 to 16.
Superpipeline: A Universal Approach for Reducing GPU Memory Usage in Large Models
The rapid growth in machine learning models, especially in natural language processing and computer vision, has led to challenges when running these models on hardware with limited resources. This paper introduces Superpipeline, a new framework designed to optimize the execution of large AI models on constrained hardware during both training and inference. Our approach involves dynamically managing model execution by dividing models into individual layers and efficiently transferring these layers between GPU and CPU memory. Superpipeline reduces GPU memory usage by up to 60% in our experiments while maintaining model accuracy and acceptable processing speeds. This allows models that would otherwise exceed available GPU memory to run effectively. Unlike existing solutions that focus mainly on inference or specific model types, Superpipeline can be applied to large language models (LLMs), vision-language models (VLMs), and vision-based models. We tested Superpipeline's performance across various models and hardware setups. The method includes two key parameters that allow fine-tuning the balance between GPU memory use and processing speed. Importantly, Superpipeline does not require retraining or changing model parameters, ensuring that the original model's output remains unchanged. Superpipeline's simplicity and flexibility make it useful for researchers and professionals working with advanced AI models on limited hardware. It enables the use of larger models or bigger batch sizes on existing hardware, potentially speeding up innovation across many machine learning applications. This work marks an important step toward making advanced AI models more accessible and optimizing their deployment in resource-limited environments. The code for Superpipeline is available at https://github.com/abbasiReza/super-pipeline.
Finding extremal periodic orbits with polynomial optimisation, with application to a nine-mode model of shear flow
Tobasco et al. [Physics Letters A, 382:382-386, 2018; see https://doi.org/10.1016/j.physleta.2017.12.023] recently suggested that trajectories of ODE systems that optimize the infinite-time average of a certain observable can be localized using sublevel sets of a function that arise when bounding such averages using so-called auxiliary functions. In this paper we demonstrate that this idea is viable and allows for the computation of extremal unstable periodic orbits (UPOs) for polynomial ODE systems. First, we prove that polynomial optimization is guaranteed to produce auxiliary functions that yield near-sharp bounds on time averages, which is required in order to localize the extremal orbit accurately. Second, we show that points inside the relevant sublevel sets can be computed efficiently through direct nonlinear optimization. Such points provide good initial conditions for UPO computations. As a proof of concept, we then combine these methods with a single-shooting Newton-Raphson algorithm to study extremal UPOs for a nine-dimensional model of sinusoidally forced shear flow. We discover three previously unknown families of UPOs, one of which simultaneously minimizes the mean energy dissipation rate and maximizes the mean perturbation energy relative to the laminar state for Reynolds numbers approximately between 81.24 and 125.
FiniteFieldSolve: Exactly Solving Large Linear Systems in High-Energy Theory
Large linear systems play an important role in high-energy theory, appearing in amplitude bootstraps and during integral reduction. This paper introduces FiniteFieldSolve, a general-purpose toolkit for exactly solving large linear systems over the rationals. The solver interfaces directly with Mathematica, is straightforward to install, and seamlessly replaces Mathematica's native solvers. In testing, FiniteFieldSolve is approximately two orders of magnitude faster than Mathematica and uses an order of magnitude less memory. The package also compares favorably against other public solvers in FiniteFieldSolve's intended use cases. As the name of the package suggests, solutions are obtained via well-known finite field methods. These methods suffer from introducing an inordinate number of modulo (or integer division) operations with respect to different primes. By automatically recompiling itself for each prime, FiniteFieldSolve converts the division operations into much faster combinations of instructions, dramatically improving performance. The technique of compiling the prime can be applied to any finite field solver, where the time savings will be solver dependent. The operation of the package is illustrated through a detailed example of an amplitude bootstrap.
High-performance symbolic-numerics via multiple dispatch
As mathematical computing becomes more democratized in high-level languages, high-performance symbolic-numeric systems are necessary for domain scientists and engineers to get the best performance out of their machine without deep knowledge of code optimization. Naturally, users need different term types either to have different algebraic properties for them, or to use efficient data structures. To this end, we developed Symbolics.jl, an extendable symbolic system which uses dynamic multiple dispatch to change behavior depending on the domain needs. In this work we detail an underlying abstract term interface which allows for speed without sacrificing generality. We show that by formalizing a generic API on actions independent of implementation, we can retroactively add optimized data structures to our system without changing the pre-existing term rewriters. We showcase how this can be used to optimize term construction and give a 113x acceleration on general symbolic transformations. Further, we show that such a generic API allows for complementary term-rewriting implementations. We demonstrate the ability to swap between classical term-rewriting simplifiers and e-graph-based term-rewriting simplifiers. We showcase an e-graph ruleset which minimizes the number of CPU cycles during expression evaluation, and demonstrate how it simplifies a real-world reaction-network simulation to halve the runtime. Additionally, we show a reaction-diffusion partial differential equation solver which is able to be automatically converted into symbolic expressions via multiple dispatch tracing, which is subsequently accelerated and parallelized to give a 157x simulation speedup. Together, this presents Symbolics.jl as a next-generation symbolic-numeric computing environment geared towards modeling and simulation.
Scaling over Scaling: Exploring Test-Time Scaling Pareto in Large Reasoning Models
Large reasoning models (LRMs) have exhibited the capacity of enhancing reasoning performance via internal test-time scaling. Building upon this, a promising direction is to further scale test-time compute to unlock even greater reasoning capabilities. However, as we push these scaling boundaries, systematically understanding the practical limits and achieving optimal resource allocation becomes a critical challenge. In this paper, we investigate the scaling Pareto of test-time scaling and introduce the Test-Time Scaling Performance Model (TTSPM). We theoretically analyze two fundamental paradigms for such extended scaling, parallel scaling and sequential scaling, from a probabilistic modeling perspective. Our primary contribution is the derivation of the saturation point on the scaling budget for both strategies, identifying thresholds beyond which additional computation yields diminishing returns. Remarkably, despite their distinct mechanisms, both paradigms converge to a unified mathematical structure in their upper bounds. We empirically validate our theoretical findings on challenging reasoning benchmarks, including AIME, MATH-500, and GPQA, demonstrating the practical utility of these bounds for test-time resource allocation. We hope that this work provides insights into the cost-benefit trade-offs of test-time scaling, guiding the development of more resource-efficient inference strategies for large reasoning models.
Damped Newton Method with Near-Optimal Global Oleft(k^{-3} right) Convergence Rate
This paper investigates the global convergence of stepsized Newton methods for convex functions. We propose several simple stepsize schedules with fast global convergence guarantees, up to O (k^{-3}), nearly matching lower complexity bounds Omega (k^{-3.5}) of second-order methods. For cases with multiple plausible smoothness parameterizations or an unknown smoothness constant, we introduce a stepsize backtracking procedure that ensures convergence as if the optimal smoothness parameters were known.
Learning to Relax: Setting Solver Parameters Across a Sequence of Linear System Instances
Solving a linear system Ax=b is a fundamental scientific computing primitive for which numerous solvers and preconditioners have been developed. These come with parameters whose optimal values depend on the system being solved and are often impossible or too expensive to identify; thus in practice sub-optimal heuristics are used. We consider the common setting in which many related linear systems need to be solved, e.g. during a single numerical simulation. In this scenario, can we sequentially choose parameters that attain a near-optimal overall number of iterations, without extra matrix computations? We answer in the affirmative for Successive Over-Relaxation (SOR), a standard solver whose parameter omega has a strong impact on its runtime. For this method, we prove that a bandit online learning algorithm--using only the number of iterations as feedback--can select parameters for a sequence of instances such that the overall cost approaches that of the best fixed omega as the sequence length increases. Furthermore, when given additional structural information, we show that a contextual bandit method asymptotically achieves the performance of the instance-optimal policy, which selects the best omega for each instance. Our work provides the first learning-theoretic treatment of high-precision linear system solvers and the first end-to-end guarantees for data-driven scientific computing, demonstrating theoretically the potential to speed up numerical methods using well-understood learning algorithms.
Formalizing Preferences Over Runtime Distributions
When trying to solve a computational problem, we are often faced with a choice between algorithms that are guaranteed to return the right answer but differ in their runtime distributions (e.g., SAT solvers, sorting algorithms). This paper aims to lay theoretical foundations for such choices by formalizing preferences over runtime distributions. It might seem that we should simply prefer the algorithm that minimizes expected runtime. However, such preferences would be driven by exactly how slow our algorithm is on bad inputs, whereas in practice we are typically willing to cut off occasional, sufficiently long runs before they finish. We propose a principled alternative, taking a utility-theoretic approach to characterize the scoring functions that describe preferences over algorithms. These functions depend on the way our value for solving our problem decreases with time and on the distribution from which captimes are drawn. We describe examples of realistic utility functions and show how to leverage a maximum-entropy approach for modeling underspecified captime distributions. Finally, we show how to efficiently estimate an algorithm's expected utility from runtime samples.
Generative Logic: A New Computer Architecture for Deterministic Reasoning and Knowledge Generation
We present Generative Logic (GL), a deterministic architecture that begins from user-supplied axiomatic definitions -- written in a minimalist Mathematical Programming Language (MPL) -- and systematically explores their deductive neighborhood. Definitions are compiled into a distributed grid of simple Logic Blocks (LBs) that exchange messages; any time several expressions unify under an inference rule, a new fact is emitted with full provenance to its sources, yielding replayable, auditable proof graphs. A prototype software implementation instantiates the workflow on first-order Peano arithmetic. Starting only from the Peano axioms, GL enumerates candidate implications, applies normalization and type filters, and automatically reconstructs machine-checkable proofs of foundational arithmetic laws including associativity and commutativity of addition, associativity and commutativity of multiplication, and distributivity. Generated proofs export to navigable HTML so that every inference step can be inspected independently. We outline a hardware-software co-design path toward massively parallel realizations and describe prospective integration with probabilistic models (e.g., Large Language Models (LLMs)) for autoformalization and conjecture seeding. The Python and MPL code to reproduce the Peano experiments, along with the full HTML proof graphs, are available in the project's GitHub repository at https://github.com/Generative-Logic/GL/tree/35a111ea9ba53afe051703d6050be0c3923e9724 and are permanently archived at https://doi.org/10.5281/zenodo.16408441. We invite community feedback and collaboration.
An End-to-End Reinforcement Learning Approach for Job-Shop Scheduling Problems Based on Constraint Programming
Constraint Programming (CP) is a declarative programming paradigm that allows for modeling and solving combinatorial optimization problems, such as the Job-Shop Scheduling Problem (JSSP). While CP solvers manage to find optimal or near-optimal solutions for small instances, they do not scale well to large ones, i.e., they require long computation times or yield low-quality solutions. Therefore, real-world scheduling applications often resort to fast, handcrafted, priority-based dispatching heuristics to find a good initial solution and then refine it using optimization methods. This paper proposes a novel end-to-end approach to solving scheduling problems by means of CP and Reinforcement Learning (RL). In contrast to previous RL methods, tailored for a given problem by including procedural simulation algorithms, complex feature engineering, or handcrafted reward functions, our neural-network architecture and training algorithm merely require a generic CP encoding of some scheduling problem along with a set of small instances. Our approach leverages existing CP solvers to train an agent learning a Priority Dispatching Rule (PDR) that generalizes well to large instances, even from separate datasets. We evaluate our method on seven JSSP datasets from the literature, showing its ability to find higher-quality solutions for very large instances than obtained by static PDRs and by a CP solver within the same time limit.
InfinityMATH: A Scalable Instruction Tuning Dataset in Programmatic Mathematical Reasoning
Recent advancements in Chain-of-Thoughts (CoT) and Program-of-Thoughts (PoT) methods have greatly enhanced language models' mathematical reasoning capabilities, facilitating their integration into instruction tuning datasets with LLMs. However, existing methods for large-scale dataset creation require substantial seed data and high computational costs for data synthesis, posing significant challenges for scalability. We introduce InfinityMATH, a scalable instruction tuning dataset for programmatic mathematical reasoning. The construction pipeline emphasizes decoupling numbers from mathematical problems to synthesize number-independent programs, enabling efficient and flexible scaling while minimizing dependency on specific numerical values. Fine-tuning experiments with open-source language and code models, such as Llama2 and CodeLlama, demonstrate the practical benefits of InfinityMATH. These fine-tuned models, showed significant relative improvements on both in-domain and out-of-domain benchmarks, ranging from 184.7% to 514.3% on average. Additionally, these models exhibited high robustness on the GSM8K+ and MATH+ benchmarks, which are enhanced version of test sets with simply the number variations. InfinityMATH ensures that models are more versatile and effective across a broader range of mathematical problems. The data is available at https://huggingface.co/datasets/flagopen/InfinityMATH.
Superposed Decoding: Multiple Generations from a Single Autoregressive Inference Pass
Many applications today provide users with multiple auto-complete drafts as they type, including GitHub's code completion, Gmail's smart compose, and Apple's messaging auto-suggestions. Under the hood, language models support this by running an autoregressive inference pass to provide a draft. Consequently, providing k drafts to the user requires running an expensive language model k times. To alleviate the computation cost of running k inference passes, we propose Superposed Decoding, a new decoding algorithm that generates k drafts at the computation cost of one autoregressive inference pass. We achieve this by feeding a superposition of the most recent token embeddings from the k drafts as input to the next decoding step of the language model. At every inference step we combine the k drafts with the top-k tokens to get k^2 new drafts and cache the k most likely options, using an n-gram interpolation with minimal compute overhead to filter out incoherent generations. Our experiments show that k drafts from Superposed Decoding are at least as coherent and factual as Nucleus Sampling and Greedy Decoding respectively, while being at least 2.44times faster for kge3. In a compute-normalized setting, user evaluations demonstrably favor text generated by Superposed Decoding over Nucleus Sampling. Code and more examples open-sourced at https://github.com/RAIVNLab/SuperposedDecoding.
Fully Dynamic Submodular Maximization over Matroids
Maximizing monotone submodular functions under a matroid constraint is a classic algorithmic problem with multiple applications in data mining and machine learning. We study this classic problem in the fully dynamic setting, where elements can be both inserted and deleted in real-time. Our main result is a randomized algorithm that maintains an efficient data structure with an O(k^2) amortized update time (in the number of additions and deletions) and yields a 4-approximate solution, where k is the rank of the matroid.
Probabilistic Generating Circuits
Generating functions, which are widely used in combinatorics and probability theory, encode function values into the coefficients of a polynomial. In this paper, we explore their use as a tractable probabilistic model, and propose probabilistic generating circuits (PGCs) for their efficient representation. PGCs are strictly more expressive efficient than many existing tractable probabilistic models, including determinantal point processes (DPPs), probabilistic circuits (PCs) such as sum-product networks, and tractable graphical models. We contend that PGCs are not just a theoretical framework that unifies vastly different existing models, but also show great potential in modeling realistic data. We exhibit a simple class of PGCs that are not trivially subsumed by simple combinations of PCs and DPPs, and obtain competitive performance on a suite of density estimation benchmarks. We also highlight PGCs' connection to the theory of strongly Rayleigh distributions.
Punctual Hilbert Schemes and Certified Approximate Singularities
In this paper we provide a new method to certify that a nearby polynomial system has a singular isolated root with a prescribed multiplicity structure. More precisely, given a polynomial system f =(f_1, ldots, f_N)in C[x_1, ldots, x_n]^N, we present a Newton iteration on an extended deflated system that locally converges, under regularity conditions, to a small deformation of f such that this deformed system has an exact singular root. The iteration simultaneously converges to the coordinates of the singular root and the coefficients of the so called inverse system that describes the multiplicity structure at the root. We use $alpha$-theory test to certify the quadratic convergence, and togive bounds on the size of the deformation and on the approximation error. The approach relies on an analysis of the punctual Hilbert scheme, for which we provide a new description. We show in particular that some of its strata can be rationally parametrized and exploit these parametrizations in the certification. We show in numerical experimentation how the approximate inverse system can be computed as a starting point of the Newton iterations and the fast numerical convergence to the singular root with its multiplicity structure, certified by our criteria.
Second-order optimization with lazy Hessians
We analyze Newton's method with lazy Hessian updates for solving general possibly non-convex optimization problems. We propose to reuse a previously seen Hessian for several iterations while computing new gradients at each step of the method. This significantly reduces the overall arithmetical complexity of second-order optimization schemes. By using the cubic regularization technique, we establish fast global convergence of our method to a second-order stationary point, while the Hessian does not need to be updated each iteration. For convex problems, we justify global and local superlinear rates for lazy Newton steps with quadratic regularization, which is easier to compute. The optimal frequency for updating the Hessian is once every d iterations, where d is the dimension of the problem. This provably improves the total arithmetical complexity of second-order algorithms by a factor d.
Cheaply Evaluating Inference Efficiency Metrics for Autoregressive Transformer APIs
Large language models (LLMs) power many state-of-the-art systems in natural language processing. However, these models are extremely computationally expensive, even at inference time, raising the natural question: when is the extra cost of deploying a larger model worth the anticipated boost in capabilities? Better understanding this tradeoff fundamentally could benefit from an inference efficiency metric that is both (i) easily comparable across models from different providers, and (ii) representative of the true cost of running queries in an isolated performance environment. Unfortunately, access to LLMs today is largely restricted to black-box text generation APIs and raw runtimes measured through this interface do not satisfy these desiderata: model providers can apply various software and hardware optimizations orthogonal to the model, and models served on shared infrastructure are susceptible to performance contention. To circumvent these problems, we propose a new metric for comparing inference efficiency across models. This metric puts models on equal footing as though they were served (i) on uniform hardware and software, and (ii) without performance contention. We call this metric the idealized runtime, and we propose a methodology to efficiently estimate this metric for autoregressive Transformer models. We also propose cost-aware variants that incorporate the number of accelerators needed to serve the model. Using these metrics, we compare ten state-of-the-art LLMs to provide the first analysis of inference efficiency-capability tradeoffs; we make several observations from this analysis, including the fact that the superior inference runtime performance of certain APIs is often a byproduct of optimizations within the API rather than the underlying model. Our methodology also facilitates the efficient comparison of different software and hardware stacks.
Graph Neural Networks with Learnable and Optimal Polynomial Bases
Polynomial filters, a kind of Graph Neural Networks, typically use a predetermined polynomial basis and learn the coefficients from the training data. It has been observed that the effectiveness of the model is highly dependent on the property of the polynomial basis. Consequently, two natural and fundamental questions arise: Can we learn a suitable polynomial basis from the training data? Can we determine the optimal polynomial basis for a given graph and node features? In this paper, we propose two spectral GNN models that provide positive answers to the questions posed above. First, inspired by Favard's Theorem, we propose the FavardGNN model, which learns a polynomial basis from the space of all possible orthonormal bases. Second, we examine the supposedly unsolvable definition of optimal polynomial basis from Wang & Zhang (2022) and propose a simple model, OptBasisGNN, which computes the optimal basis for a given graph structure and graph signal. Extensive experiments are conducted to demonstrate the effectiveness of our proposed models.
FlashRNN: Optimizing Traditional RNNs on Modern Hardware
While Transformers and other sequence-parallelizable neural network architectures seem like the current state of the art in sequence modeling, they specifically lack state-tracking capabilities. These are important for time-series tasks and logical reasoning. Traditional RNNs like LSTMs and GRUs, as well as modern variants like sLSTM do have these capabilities at the cost of strictly sequential processing. While this is often seen as a strong limitation, we show how fast these networks can get with our hardware-optimization FlashRNN in Triton and CUDA, optimizing kernels to the register level on modern GPUs. We extend traditional RNNs with a parallelization variant that processes multiple RNNs of smaller hidden state in parallel, similar to the head-wise processing in Transformers. To enable flexibility on different GPU variants, we introduce a new optimization framework for hardware-internal cache sizes, memory and compute handling. It models the hardware in a setting using polyhedral-like constraints, including the notion of divisibility. This speeds up the solution process in our ConstrINT library for general integer constraint satisfaction problems (integer CSPs). We show that our kernels can achieve 50x speed-ups over a vanilla PyTorch implementation and allow 40x larger hidden sizes compared to our Triton implementation. Our open-source kernels and the optimization library are released here to boost research in the direction of state-tracking enabled RNNs and sequence modeling: https://github.com/NX-AI/flashrnn
Improved Algorithm and Bounds for Successive Projection
Given a K-vertex simplex in a d-dimensional space, suppose we measure n points on the simplex with noise (hence, some of the observed points fall outside the simplex). Vertex hunting is the problem of estimating the K vertices of the simplex. A popular vertex hunting algorithm is successive projection algorithm (SPA). However, SPA is observed to perform unsatisfactorily under strong noise or outliers. We propose pseudo-point SPA (pp-SPA). It uses a projection step and a denoise step to generate pseudo-points and feed them into SPA for vertex hunting. We derive error bounds for pp-SPA, leveraging on extreme value theory of (possibly) high-dimensional random vectors. The results suggest that pp-SPA has faster rates and better numerical performances than SPA. Our analysis includes an improved non-asymptotic bound for the original SPA, which is of independent interest.
Sleep-time Compute: Beyond Inference Scaling at Test-time
Scaling test-time compute has emerged as a key ingredient for enabling large language models (LLMs) to solve difficult problems, but comes with high latency and inference cost. We introduce sleep-time compute, which allows models to "think" offline about contexts before queries are presented: by anticipating what queries users might ask and pre-computing useful quantities, we can significantly reduce the compute requirements at test-time. To demonstrate the efficacy of our method, we create modified versions of two reasoning tasks - Stateful GSM-Symbolic and Stateful AIME. We find that sleep-time compute can reduce the amount of test-time compute needed to achieve the same accuracy by ~ 5x on Stateful GSM-Symbolic and Stateful AIME and that by scaling sleep-time compute we can further increase accuracy by up to 13% on Stateful GSM-Symbolic and 18% on Stateful AIME. Furthermore, we introduce Multi-Query GSM-Symbolic, which extends GSM-Symbolic by including multiple related queries per context. By amortizing sleep-time compute across related queries about the same context using Multi-Query GSM-Symbolic, we can decrease the average cost per query by 2.5x. We then conduct additional analysis to understand when sleep-time compute is most effective, finding the predictability of the user query to be well correlated with the efficacy of sleep-time compute. Finally, we conduct a case-study of applying sleep-time compute to a realistic agentic SWE task.
Evaluation of OpenAI Codex for HPC Parallel Programming Models Kernel Generation
We evaluate AI-assisted generative capabilities on fundamental numerical kernels in high-performance computing (HPC), including AXPY, GEMV, GEMM, SpMV, Jacobi Stencil, and CG. We test the generated kernel codes for a variety of language-supported programming models, including (1) C++ (e.g., OpenMP [including offload], OpenACC, Kokkos, SyCL, CUDA, and HIP), (2) Fortran (e.g., OpenMP [including offload] and OpenACC), (3) Python (e.g., numba, Numba, cuPy, and pyCUDA), and (4) Julia (e.g., Threads, CUDA.jl, AMDGPU.jl, and KernelAbstractions.jl). We use the GitHub Copilot capabilities powered by OpenAI Codex available in Visual Studio Code as of April 2023 to generate a vast amount of implementations given simple <kernel> + <programming model> + <optional hints> prompt variants. To quantify and compare the results, we propose a proficiency metric around the initial 10 suggestions given for each prompt. Results suggest that the OpenAI Codex outputs for C++ correlate with the adoption and maturity of programming models. For example, OpenMP and CUDA score really high, whereas HIP is still lacking. We found that prompts from either a targeted language such as Fortran or the more general-purpose Python can benefit from adding code keywords, while Julia prompts perform acceptably well for its mature programming models (e.g., Threads and CUDA.jl). We expect for these benchmarks to provide a point of reference for each programming model's community. Overall, understanding the convergence of large language models, AI, and HPC is crucial due to its rapidly evolving nature and how it is redefining human-computer interactions.
Towards Neural Synthesis for SMT-Assisted Proof-Oriented Programming
Proof-oriented programs mix computational content with proofs of program correctness. However, the human effort involved in programming and proving is still substantial, despite the use of Satisfiability Modulo Theories (SMT) solvers to automate proofs in languages such as F*. Seeking to spur research on using AI to automate the construction of proof-oriented programs, we curate a dataset of 600K lines of open-source F* programs and proofs, including software used in production systems ranging from Windows and Linux, to Python and Firefox. Our dataset includes around 32K top-level F* definitions, each representing a type-directed program and proof synthesis problem -- producing a definition given a formal specification expressed as an F* type. We provide a program-fragment checker that queries F* to check the correctness of candidate solutions. We believe this is the largest corpus of SMT-assisted program proofs coupled with a reproducible program-fragment checker. Grounded in this dataset, we investigate the use of AI to synthesize programs and their proofs in F*, with promising results. Our main finding in that the performance of fine-tuned smaller language models (such as Phi-2 or StarCoder) compare favorably with large language models (such as GPT-4), at a much lower computational cost. We also identify various type-based retrieval augmentation techniques and find that they boost performance significantly. With detailed error analysis and case studies, we identify potential strengths and weaknesses of models and techniques and suggest directions for future improvements.
Attribute-Efficient PAC Learning of Low-Degree Polynomial Threshold Functions with Nasty Noise
The concept class of low-degree polynomial threshold functions (PTFs) plays a fundamental role in machine learning. In this paper, we study PAC learning of K-sparse degree-d PTFs on R^n, where any such concept depends only on K out of n attributes of the input. Our main contribution is a new algorithm that runs in time ({nd}/{epsilon})^{O(d)} and under the Gaussian marginal distribution, PAC learns the class up to error rate epsilon with O(K^{4d}{epsilon^{2d}} cdot log^{5d} n) samples even when an eta leq O(epsilon^d) fraction of them are corrupted by the nasty noise of Bshouty et al. (2002), possibly the strongest corruption model. Prior to this work, attribute-efficient robust algorithms are established only for the special case of sparse homogeneous halfspaces. Our key ingredients are: 1) a structural result that translates the attribute sparsity to a sparsity pattern of the Chow vector under the basis of Hermite polynomials, and 2) a novel attribute-efficient robust Chow vector estimation algorithm which uses exclusively a restricted Frobenius norm to either certify a good approximation or to validate a sparsity-induced degree-2d polynomial as a filter to detect corrupted samples.
PerfCodeGen: Improving Performance of LLM Generated Code with Execution Feedback
Large Language Models (LLMs) are widely adopted for assisting in software development tasks, yet their performance evaluations have narrowly focused on the functional correctness of generated code. Human programmers, however, require LLM-generated code to be not only correct but also optimally efficient. We propose PerfCodeGen, a training-free framework that enhances the performance of LLM-generated code by incorporating feedback based on runtime during test case execution into the self-refinement iterations. With PerfCodeGen, we achieve speedups for a significantly higher proportion of problems compared to using the base LLM with sophisticated prompting techniques. Applied to open language models like Phi-3-mini, PerfCodeGen achieves runtime efficiency comparable to prompting powerful closed models like GPT-4. We achieve state-of-the-art runtime efficiency on benchmarks such as HumanEval, MBPP, and APPS, frequently surpassing the ground truth reference solutions with PerfCodeGen using GPT-3.5 and GPT-4. Additionally, we demonstrate the effectiveness of our approach in enhancing code quality across a range of open LLMs of varying sizes including Phi-3-mini, Llama 3 8B, Mixtral 8x7B, Command R, and Llama 3 70B.
The Computational Complexity of Counting Linear Regions in ReLU Neural Networks
An established measure of the expressive power of a given ReLU neural network is the number of linear regions into which it partitions the input space. There exist many different, non-equivalent definitions of what a linear region actually is. We systematically assess which papers use which definitions and discuss how they relate to each other. We then analyze the computational complexity of counting the number of such regions for the various definitions. Generally, this turns out to be an intractable problem. We prove NP- and #P-hardness results already for networks with one hidden layer and strong hardness of approximation results for two or more hidden layers. Finally, on the algorithmic side, we demonstrate that counting linear regions can at least be achieved in polynomial space for some common definitions.
Two-timescale Extragradient for Finding Local Minimax Points
Minimax problems are notoriously challenging to optimize. However, we demonstrate that the two-timescale extragradient can be a viable solution. By utilizing dynamical systems theory, we show that it converges to points that satisfy the second-order necessary condition of local minimax points, under a mild condition. This work surpasses all previous results as we eliminate a crucial assumption that the Hessian, with respect to the maximization variable, is nondegenerate.
Moccasin: Efficient Tensor Rematerialization for Neural Networks
The deployment and training of neural networks on edge computing devices pose many challenges. The low memory nature of edge devices is often one of the biggest limiting factors encountered in the deployment of large neural network models. Tensor rematerialization or recompute is a way to address high memory requirements for neural network training and inference. In this paper we consider the problem of execution time minimization of compute graphs subject to a memory budget. In particular, we develop a new constraint programming formulation called Moccasin with only O(n) integer variables, where n is the number of nodes in the compute graph. This is a significant improvement over the works in the recent literature that propose formulations with O(n^2) Boolean variables. We present numerical studies that show that our approach is up to an order of magnitude faster than recent work especially for large-scale graphs.
Are NLP Models really able to Solve Simple Math Word Problems?
The problem of designing NLP solvers for math word problems (MWP) has seen sustained research activity and steady gains in the test accuracy. Since existing solvers achieve high performance on the benchmark datasets for elementary level MWPs containing one-unknown arithmetic word problems, such problems are often considered "solved" with the bulk of research attention moving to more complex MWPs. In this paper, we restrict our attention to English MWPs taught in grades four and lower. We provide strong evidence that the existing MWP solvers rely on shallow heuristics to achieve high performance on the benchmark datasets. To this end, we show that MWP solvers that do not have access to the question asked in the MWP can still solve a large fraction of MWPs. Similarly, models that treat MWPs as bag-of-words can also achieve surprisingly high accuracy. Further, we introduce a challenge dataset, SVAMP, created by applying carefully chosen variations over examples sampled from existing datasets. The best accuracy achieved by state-of-the-art models is substantially lower on SVAMP, thus showing that much remains to be done even for the simplest of the MWPs.
Program Synthesis with Large Language Models
This paper explores the limits of the current generation of large language models for program synthesis in general purpose programming languages. We evaluate a collection of such models (with between 244M and 137B parameters) on two new benchmarks, MBPP and MathQA-Python, in both the few-shot and fine-tuning regimes. Our benchmarks are designed to measure the ability of these models to synthesize short Python programs from natural language descriptions. The Mostly Basic Programming Problems (MBPP) dataset contains 974 programming tasks, designed to be solvable by entry-level programmers. The MathQA-Python dataset, a Python version of the MathQA benchmark, contains 23914 problems that evaluate the ability of the models to synthesize code from more complex text. On both datasets, we find that synthesis performance scales log-linearly with model size. Our largest models, even without finetuning on a code dataset, can synthesize solutions to 59.6 percent of the problems from MBPP using few-shot learning with a well-designed prompt. Fine-tuning on a held-out portion of the dataset improves performance by about 10 percentage points across most model sizes. On the MathQA-Python dataset, the largest fine-tuned model achieves 83.8 percent accuracy. Going further, we study the model's ability to engage in dialog about code, incorporating human feedback to improve its solutions. We find that natural language feedback from a human halves the error rate compared to the model's initial prediction. Additionally, we conduct an error analysis to shed light on where these models fall short and what types of programs are most difficult to generate. Finally, we explore the semantic grounding of these models by fine-tuning them to predict the results of program execution. We find that even our best models are generally unable to predict the output of a program given a specific input.
A Massively Parallel Dynamic Programming for Approximate Rectangle Escape Problem
Sublinear time complexity is required by the massively parallel computation (MPC) model. Breaking dynamic programs into a set of sparse dynamic programs that can be divided, solved, and merged in sublinear time. The rectangle escape problem (REP) is defined as follows: For n axis-aligned rectangles inside an axis-aligned bounding box B, extend each rectangle in only one of the four directions: up, down, left, or right until it reaches B and the density k is minimized, where k is the maximum number of extensions of rectangles to the boundary that pass through a point inside bounding box B. REP is NP-hard for k>1. If the rectangles are points of a grid (or unit squares of a grid), the problem is called the square escape problem (SEP) and it is still NP-hard. We give a 2-approximation algorithm for SEP with kgeq2 with time complexity O(n^{3/2}k^2). This improves the time complexity of existing algorithms which are at least quadratic. Also, the approximation ratio of our algorithm for kgeq 3 is 3/2 which is tight. We also give a 8-approximation algorithm for REP with time complexity O(nlog n+nk) and give a MPC version of this algorithm for k=O(1) which is the first parallel algorithm for this problem.
Tight High Probability Bounds for Linear Stochastic Approximation with Fixed Stepsize
This paper provides a non-asymptotic analysis of linear stochastic approximation (LSA) algorithms with fixed stepsize. This family of methods arises in many machine learning tasks and is used to obtain approximate solutions of a linear system Atheta = b for which A and b can only be accessed through random estimates {({bf A}_n, {bf b}_n): n in N^*}. Our analysis is based on new results regarding moments and high probability bounds for products of matrices which are shown to be tight. We derive high probability bounds on the performance of LSA under weaker conditions on the sequence {({bf A}_n, {bf b}_n): n in N^*} than previous works. However, in contrast, we establish polynomial concentration bounds with order depending on the stepsize. We show that our conclusions cannot be improved without additional assumptions on the sequence of random matrices {{bf A}_n: n in N^*}, and in particular that no Gaussian or exponential high probability bounds can hold. Finally, we pay a particular attention to establishing bounds with sharp order with respect to the number of iterations and the stepsize and whose leading terms contain the covariance matrices appearing in the central limit theorems.
Model Collapse Demystified: The Case of Regression
In the era of proliferation of large language and image generation models, the phenomenon of "model collapse" refers to the situation whereby as a model is trained recursively on data generated from previous generations of itself over time, its performance degrades until the model eventually becomes completely useless, i.e the model collapses. In this work, we study this phenomenon in the setting of high-dimensional regression and obtain analytic formulae which quantitatively outline this phenomenon in a broad range of regimes. In the special case of polynomial decaying spectral and source conditions, we obtain modified scaling laws which exhibit new crossover phenomena from fast to slow rates. We also propose a simple strategy based on adaptive regularization to mitigate model collapse. Our theoretical results are validated with experiments.
A Compositional Atlas for Algebraic Circuits
Circuits based on sum-product structure have become a ubiquitous representation to compactly encode knowledge, from Boolean functions to probability distributions. By imposing constraints on the structure of such circuits, certain inference queries become tractable, such as model counting and most probable configuration. Recent works have explored analyzing probabilistic and causal inference queries as compositions of basic operators to derive tractability conditions. In this paper, we take an algebraic perspective for compositional inference, and show that a large class of queries - including marginal MAP, probabilistic answer set programming inference, and causal backdoor adjustment - correspond to a combination of basic operators over semirings: aggregation, product, and elementwise mapping. Using this framework, we uncover simple and general sufficient conditions for tractable composition of these operators, in terms of circuit properties (e.g., marginal determinism, compatibility) and conditions on the elementwise mappings. Applying our analysis, we derive novel tractability conditions for many such compositional queries. Our results unify tractability conditions for existing problems on circuits, while providing a blueprint for analysing novel compositional inference queries.
Polynomial, trigonometric, and tropical activations
Which functions can be used as activations in deep neural networks? This article explores families of functions based on orthonormal bases, including the Hermite polynomial basis and the Fourier trigonometric basis, as well as a basis resulting from the tropicalization of a polynomial basis. Our study shows that, through simple variance-preserving initialization and without additional clamping mechanisms, these activations can successfully be used to train deep models, such as GPT-2 for next-token prediction on OpenWebText and ConvNeXt for image classification on ImageNet. Our work addresses the issue of exploding and vanishing activations and gradients, particularly prevalent with polynomial activations, and opens the door for improving the efficiency of large-scale learning tasks. Furthermore, our approach provides insight into the structure of neural networks, revealing that networks with polynomial activations can be interpreted as multivariate polynomial mappings. Finally, using Hermite interpolation, we show that our activations can closely approximate classical ones in pre-trained models by matching both the function and its derivative, making them especially useful for fine-tuning tasks. These activations are available in the torchortho library, which can be accessed via: https://github.com/K-H-Ismail/torchortho.
On Securing Berrut Approximated Coded Computing Through Discrete Cosine Transforms
Coded computing is a reliable and fault-tolerant mechanism for implementing large computing tasks over a distributed set of worker nodes. While a majority of coded computing frameworks address accurate computation of the target functions, they are restricted to computing multivariate polynomial functions. To generalize these computing platforms to non-polynomial target functions, Jahani-Nezhad and Maddah-Ali recently proposed Berrut Approximated Coded computing (BACC), which was proven fault-tolerant against stragglers albiet with tolerable approximation errors on the target functions. Despite these benefits, there is no formal study on the security of BACC against worker nodes which report erroneous computations. To fill this research gap, we use a coding-theoretic approach to propose Secure Berrut Approximated Coded Computing (SBACC), which is resilient to stragglers and also robust to the presence of such untrusted worker nodes. One of the highlights of SBACC is the new choice of evaluation points for distributed computation which makes the well-known Discrete Cosine Transform (DCT) codes amenable to error detection and correction. To validate the new choice of evaluation points, first, we derive bounds on the accuracy of SBACC in the absence of untrusted worker nodes. Subsequently, to handle the presence of untrusted worker nodes, we derive bounds on the accuracy of SBACC and show that interesting optimization problems can be formulated to study the trade-off between the error correcting capability of the DCT codes and the accuracy of the target computation.
Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation
Advances in Large Language Models (LLMs) have sparked interest in their ability to solve Olympiad-level math problems. However, the training and evaluation of these models are constrained by the limited size and quality of available datasets, as creating large-scale data for such advanced problems requires extensive effort from human experts. In addition, current benchmarks are prone to contamination, leading to unreliable evaluations. In this paper, we present an automated pipeline that leverages the rich resources of the Art of Problem Solving (AoPS) forum, which predominantly features Olympiad-level problems and community-driven solutions. Using open-source LLMs, we develop a method to extract question-answer pairs from the forum, resulting in AoPS-Instruct, a dataset of more than 600,000 high-quality QA pairs. Our experiments demonstrate that fine-tuning LLMs on AoPS-Instruct improves their reasoning abilities across various benchmarks. Moreover, we build an automatic pipeline that introduces LiveAoPSBench, an evolving evaluation set with timestamps, derived from the latest forum data, providing a contamination-resistant benchmark for assessing LLM performance. Notably, we observe a significant decline in LLM performance over time, suggesting their success on older examples may stem from pre-training exposure rather than true reasoning ability. Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning, offering valuable insights into the capabilities and limitations of LLMs in this domain. Our benchmark and code is available at https://github.com/DSL-Lab/aops
Workflow decomposition algorithm for scheduling with quantum annealer-based hybrid solver
We introduce the Series-Parallel Workflow Decomposition (SP\-WD) heuristic algorithm for the Workflow Scheduling Problem (WSP) decomposition. We demonstrate that the SPWD algorithm facilitates the scheduling of large WSP instances with the hybrid D-Wave Constrained Quadratic Model solver, enabling the scheduling of instances that would otherwise exceed its capacity limitations. We also describe the accompanying execution environment used to obtain the results of the experiments with real-life workflow instances available in the WfCommons standardization initiative repository.
Nearly Optimal Algorithms with Sublinear Computational Complexity for Online Kernel Regression
The trade-off between regret and computational cost is a fundamental problem for online kernel regression, and previous algorithms worked on the trade-off can not keep optimal regret bounds at a sublinear computational complexity. In this paper, we propose two new algorithms, AOGD-ALD and NONS-ALD, which can keep nearly optimal regret bounds at a sublinear computational complexity, and give sufficient conditions under which our algorithms work. Both algorithms dynamically maintain a group of nearly orthogonal basis used to approximate the kernel mapping, and keep nearly optimal regret bounds by controlling the approximate error. The number of basis depends on the approximate error and the decay rate of eigenvalues of the kernel matrix. If the eigenvalues decay exponentially, then AOGD-ALD and NONS-ALD separately achieves a regret of O(L(f)) and O(d_{eff}(mu)T) at a computational complexity in O(ln^2{T}). If the eigenvalues decay polynomially with degree pgeq 1, then our algorithms keep the same regret bounds at a computational complexity in o(T) in the case of p>4 and pgeq 10, respectively. L(f) is the cumulative losses of f and d_{eff}(mu) is the effective dimension of the problem. The two regret bounds are nearly optimal and are not comparable.
A Complete Expressiveness Hierarchy for Subgraph GNNs via Subgraph Weisfeiler-Lehman Tests
Recently, subgraph GNNs have emerged as an important direction for developing expressive graph neural networks (GNNs). While numerous architectures have been proposed, so far there is still a limited understanding of how various design paradigms differ in terms of expressive power, nor is it clear what design principle achieves maximal expressiveness with minimal architectural complexity. To address these fundamental questions, this paper conducts a systematic study of general node-based subgraph GNNs through the lens of Subgraph Weisfeiler-Lehman Tests (SWL). Our central result is to build a complete hierarchy of SWL with strictly growing expressivity. Concretely, we prove that any node-based subgraph GNN falls into one of the six SWL equivalence classes, among which SSWL achieves the maximal expressive power. We also study how these equivalence classes differ in terms of their practical expressiveness such as encoding graph distance and biconnectivity. Furthermore, we give a tight expressivity upper bound of all SWL algorithms by establishing a close relation with localized versions of WL and Folklore WL (FWL) tests. Our results provide insights into the power of existing subgraph GNNs, guide the design of new architectures, and point out their limitations by revealing an inherent gap with the 2-FWL test. Finally, experiments demonstrate that SSWL-inspired subgraph GNNs can significantly outperform prior architectures on multiple benchmarks despite great simplicity.
MPS-Prover: Advancing Stepwise Theorem Proving by Multi-Perspective Search and Data Curation
Automated Theorem Proving (ATP) in formal languages remains a formidable challenge in AI, demanding rigorous logical deduction and navigating vast search spaces. While large language models (LLMs) have shown promising performance, existing stepwise provers often suffer from biased search guidance, leading to inefficiencies and suboptimal proof strategies. This paper introduces the Multi-Perspective Search Prover (MPS-Prover), a novel stepwise ATP system designed to overcome these limitations. MPS-Prover incorporates two key innovations: a highly effective post-training data curation strategy that prunes approximately 40% of redundant training data without sacrificing performance, and a multi-perspective tree search mechanism. This search integrates a learned critic model with strategically designed heuristic rules to diversify tactic selection, prevent getting trapped in unproductive states, and enhance search robustness. Extensive evaluations demonstrate that MPS-Prover achieves state-of-the-art performance on multiple challenging benchmarks, including miniF2F and ProofNet, outperforming prior 7B parameter models. Furthermore, our analyses reveal that MPS-Prover generates significantly shorter and more diverse proofs compared to existing stepwise and whole-proof methods, highlighting its efficiency and efficacy. Our work advances the capabilities of LLM-based formal reasoning and offers a robust framework and a comprehensive analysis for developing more powerful theorem provers.
Formal Mathematics Statement Curriculum Learning
We explore the use of expert iteration in the context of language modeling applied to formal mathematics. We show that at same compute budget, expert iteration, by which we mean proof search interleaved with learning, dramatically outperforms proof search only. We also observe that when applied to a collection of formal statements of sufficiently varied difficulty, expert iteration is capable of finding and solving a curriculum of increasingly difficult problems, without the need for associated ground-truth proofs. Finally, by applying this expert iteration to a manually curated set of problem statements, we achieve state-of-the-art on the miniF2F benchmark, automatically solving multiple challenging problems drawn from high school olympiads.
Divide-and-Conquer Meets Consensus: Unleashing the Power of Functions in Code Generation
Despite recent progress made by large language models in code generation, they still struggle with programs that meet complex requirements. Recent work utilizes plan-and-solve decomposition to decrease the complexity and leverage self-tests to refine the generated program. Yet, planning deep-inside requirements in advance can be challenging, and the tests need to be accurate to accomplish self-improvement. To this end, we propose FunCoder, a code generation framework incorporating the divide-and-conquer strategy with functional consensus. Specifically, FunCoder recursively branches off sub-functions as smaller goals during code generation, represented by a tree hierarchy. These sub-functions are then composited to attain more complex objectives. Additionally, we designate functions via a consensus formed by identifying similarities in program behavior, mitigating error propagation. FunCoder outperforms state-of-the-art methods by +9.8% on average in HumanEval, MBPP, xCodeEval and MATH with GPT-3.5 and GPT-4. Moreover, our method demonstrates superiority on smaller models: With FunCoder, StableCode-3b surpasses GPT-3.5 by +18.6% and achieves 97.7% of GPT-4's performance on HumanEval. Further analysis reveals that our proposed dynamic function decomposition is capable of handling complex requirements, and the functional consensus prevails over self-testing in correctness evaluation.
Training LLMs with MXFP4
Low precision (LP) datatypes such as MXFP4 can accelerate matrix multiplications (GEMMs) and reduce training costs. However, directly using MXFP4 instead of BF16 during training significantly degrades model quality. In this work, we present the first near-lossless training recipe that uses MXFP4 GEMMs, which are 2times faster than FP8 on supported hardware. Our key insight is to compute unbiased gradient estimates with stochastic rounding (SR), resulting in more accurate model updates. However, directly applying SR to MXFP4 can result in high variance from block-level outliers, harming convergence. To overcome this, we use the random Hadamard tranform to theoretically bound the variance of SR. We train GPT models up to 6.7B parameters and find that our method induces minimal degradation over mixed-precision BF16 training. Our recipe computes >1/2 the training FLOPs in MXFP4, enabling an estimated speedup of >1.3times over FP8 and >1.7times over BF16 during backpropagation.
Graph Neural Networks are Dynamic Programmers
Recent advances in neural algorithmic reasoning with graph neural networks (GNNs) are propped up by the notion of algorithmic alignment. Broadly, a neural network will be better at learning to execute a reasoning task (in terms of sample complexity) if its individual components align well with the target algorithm. Specifically, GNNs are claimed to align with dynamic programming (DP), a general problem-solving strategy which expresses many polynomial-time algorithms. However, has this alignment truly been demonstrated and theoretically quantified? Here we show, using methods from category theory and abstract algebra, that there exists an intricate connection between GNNs and DP, going well beyond the initial observations over individual algorithms such as Bellman-Ford. Exposing this connection, we easily verify several prior findings in the literature, produce better-grounded GNN architectures for edge-centric tasks, and demonstrate empirical results on the CLRS algorithmic reasoning benchmark. We hope our exposition will serve as a foundation for building stronger algorithmically aligned GNNs.
Cyber-Zero: Training Cybersecurity Agents without Runtime
Large Language Models (LLMs) have achieved remarkable success in software engineering tasks when trained with executable runtime environments, particularly in resolving GitHub issues. However, such runtime environments are often unavailable in other domains, especially cybersecurity, where challenge configurations and execution contexts are ephemeral or restricted. We present Cyber-Zero, the first runtime-free framework for synthesizing high-quality agent trajectories to train cybersecurity LLMs. Cyber-Zero leverages publicly available CTF writeups and employs persona-driven LLM simulation to reverse-engineer runtime behaviors and generate realistic, long-horizon interaction sequences without actual environments. Using trajectories synthesized by Cyber-Zero, we train LLM-based agents that achieve up to 13.1% absolute performance gains over baseline models on three prominent CTF benchmarks: InterCode-CTF, NYU CTF Bench, and Cybench. Our best model, Cyber-Zero-32B, establishes new state-of-the-art performance among open-weight models, matching the capabilities of proprietary systems like DeepSeek-V3-0324 and Claude-3.5-Sonnet while offering superior cost-effectiveness, and demonstrating that runtime-free trajectory synthesis can effectively democratize the development of state-of-the-art cybersecurity agents.
A Grand Unification of Quantum Algorithms
Quantum algorithms offer significant speedups over their classical counterparts for a variety of problems. The strongest arguments for this advantage are borne by algorithms for quantum search, quantum phase estimation, and Hamiltonian simulation, which appear as subroutines for large families of composite quantum algorithms. A number of these quantum algorithms were recently tied together by a novel technique known as the quantum singular value transformation (QSVT), which enables one to perform a polynomial transformation of the singular values of a linear operator embedded in a unitary matrix. In the seminal GSLW'19 paper on QSVT [Gily\'en, Su, Low, and Wiebe, ACM STOC 2019], many algorithms are encompassed, including amplitude amplification, methods for the quantum linear systems problem, and quantum simulation. Here, we provide a pedagogical tutorial through these developments, first illustrating how quantum signal processing may be generalized to the quantum eigenvalue transform, from which QSVT naturally emerges. Paralleling GSLW'19, we then employ QSVT to construct intuitive quantum algorithms for search, phase estimation, and Hamiltonian simulation, and also showcase algorithms for the eigenvalue threshold problem and matrix inversion. This overview illustrates how QSVT is a single framework comprising the three major quantum algorithms, thus suggesting a grand unification of quantum algorithms.
DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving
Solving mathematical problems requires advanced reasoning abilities and presents notable challenges for large language models. Previous works usually synthesize data from proprietary models to augment existing datasets, followed by instruction tuning to achieve top-tier results. However, our analysis of these datasets reveals severe biases towards easy queries, with frequent failures to generate any correct response for the most challenging queries. Hypothesizing that difficult queries are crucial to learn complex reasoning, we propose Difficulty-Aware Rejection Tuning (DART), a method that allocates difficult queries more trials during the synthesis phase, enabling more extensive training on difficult samples. Utilizing DART, we have created new datasets for mathematical problem-solving that focus more on difficult queries and are substantially smaller than previous ones. Remarkably, our synthesis process solely relies on a 7B-sized open-weight model, without reliance on the commonly used proprietary GPT-4. We fine-tune various base models on our datasets ranging from 7B to 70B in size, resulting in a series of strong models called DART-MATH. In comprehensive in-domain and out-of-domain evaluation on 6 mathematical benchmarks, DART-MATH outperforms vanilla rejection tuning significantly, being superior or comparable to previous arts, despite using much smaller datasets and no proprietary models. Furthermore, our results position our synthetic datasets as the most effective and cost-efficient publicly available resources for advancing mathematical problem-solving.
Solving Inequality Proofs with Large Language Models
Inequality proving, crucial across diverse scientific and mathematical fields, tests advanced reasoning skills such as discovering tight bounds and strategic theorem application. This makes it a distinct, demanding frontier for large language models (LLMs), offering insights beyond general mathematical problem-solving. Progress in this area is hampered by existing datasets that are often scarce, synthetic, or rigidly formal. We address this by proposing an informal yet verifiable task formulation, recasting inequality proving into two automatically checkable subtasks: bound estimation and relation prediction. Building on this, we release IneqMath, an expert-curated dataset of Olympiad-level inequalities, including a test set and training corpus enriched with step-wise solutions and theorem annotations. We also develop a novel LLM-as-judge evaluation framework, combining a final-answer judge with four step-wise judges designed to detect common reasoning flaws. A systematic evaluation of 29 leading LLMs on IneqMath reveals a surprising reality: even top models like o1 achieve less than 10% overall accuracy under step-wise scrutiny; this is a drop of up to 65.5% from their accuracy considering only final answer equivalence. This discrepancy exposes fragile deductive chains and a critical gap for current LLMs between merely finding an answer and constructing a rigorous proof. Scaling model size and increasing test-time computation yield limited gains in overall proof correctness. Instead, our findings highlight promising research directions such as theorem-guided reasoning and self-refinement. Code and data are available at https://ineqmath.github.io/.
PENCIL: Long Thoughts with Short Memory
While recent works (e.g. o1, DeepSeek R1) have demonstrated great promise of using long Chain-of-Thought (CoT) to improve reasoning capabilities of language models, scaling it up during test-time is challenging due to inefficient memory usage -- intermediate computations accumulate indefinitely in context even no longer needed for future thoughts. We propose PENCIL, which incorporates a reduction mechanism into the autoregressive generation process, allowing the model to recursively clean up intermediate thoughts based on patterns learned from training. With this reduction mechanism, PENCIL significantly reduces the maximal context length required during generation, and thus can generate longer thoughts with limited memory, solving larger-scale problems given more thinking time. For example, we demonstrate PENCIL achieves 97\% accuracy on the challenging Einstein's puzzle -- a task even large models like GPT-4 struggle with -- using only a small 25M-parameter transformer with 2048 context length. Theoretically, we prove PENCIL can perform universal space-efficient computation by simulating Turing machines with optimal time and space complexity, and thus can solve arbitrary computational tasks that would otherwise be intractable given context window constraints.
CP-Bench: Evaluating Large Language Models for Constraint Modelling
Combinatorial problems are present in a wide range of industries. Constraint Programming (CP) is a well-suited problem-solving paradigm, but its core process, namely constraint modelling, is a bottleneck for wider adoption. Aiming to alleviate this bottleneck, recent studies have explored using Large Language Models (LLMs) as modelling assistants, transforming combinatorial problem descriptions to executable constraint models, similar to coding assistants. However, the existing evaluation datasets for constraint modelling are often limited to small, homogeneous, or domain-specific instances, which do not capture the diversity of real-world scenarios. This work addresses this gap by introducing CP-Bench, a novel benchmark dataset that includes a diverse set of well-known combinatorial problem classes sourced from the CP community, structured explicitly for evaluating LLM-driven CP modelling. With this dataset, and given the variety of constraint modelling frameworks, we compare and evaluate the modelling capabilities of LLMs for three distinct constraint modelling systems, which vary in abstraction level and underlying syntax: the high-level MiniZinc language and Python-based CPMpy library, and the lower-level Python interface of the OR-Tools CP-SAT solver. In order to enhance the ability of LLMs to produce valid constraint models, we systematically evaluate the use of prompt-based and inference-time compute methods adapted from existing LLM-based code generation research. Our results underscore the modelling convenience provided by Python-based frameworks, as well as the effectiveness of documentation-rich system prompts, which, augmented with repeated sampling and self-verification, achieve further improvements, reaching up to 70\% accuracy on this new, highly challenging benchmark.
Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture
Machine learning models are increasingly being scaled in both sequence length and model dimension to reach longer contexts and better performance. However, existing architectures such as Transformers scale quadratically along both these axes. We ask: are there performant architectures that can scale sub-quadratically along sequence length and model dimension? We introduce Monarch Mixer (M2), a new architecture that uses the same sub-quadratic primitive along both sequence length and model dimension: Monarch matrices, a simple class of expressive structured matrices that captures many linear transforms, achieves high hardware efficiency on GPUs, and scales sub-quadratically. As a proof of concept, we explore the performance of M2 in three domains: non-causal BERT-style language modeling, ViT-style image classification, and causal GPT-style language modeling. For non-causal BERT-style modeling, M2 matches BERT-base and BERT-large in downstream GLUE quality with up to 27% fewer parameters, and achieves up to 9.1times higher throughput at sequence length 4K. On ImageNet, M2 outperforms ViT-b by 1% in accuracy, with only half the parameters. Causal GPT-style models introduce a technical challenge: enforcing causality via masking introduces a quadratic bottleneck. To alleviate this bottleneck, we develop a novel theoretical view of Monarch matrices based on multivariate polynomial evaluation and interpolation, which lets us parameterize M2 to be causal while remaining sub-quadratic. Using this parameterization, M2 matches GPT-style Transformers at 360M parameters in pretraining perplexity on The PILE--showing for the first time that it may be possible to match Transformer quality without attention or MLPs.
Are Your LLMs Capable of Stable Reasoning?
The rapid advancement of Large Language Models (LLMs) has demonstrated remarkable progress in complex reasoning tasks. However, a significant discrepancy persists between benchmark performances and real-world applications. We identify this gap as primarily stemming from current evaluation protocols and metrics, which inadequately capture the full spectrum of LLM capabilities, particularly in complex reasoning tasks where both accuracy and consistency are crucial. This work makes two key contributions. First, we introduce G-Pass@k, a novel evaluation metric that provides a continuous assessment of model performance across multiple sampling attempts, quantifying both the model's peak performance potential and its stability. Second, we present LiveMathBench, a dynamic benchmark comprising challenging, contemporary mathematical problems designed to minimize data leakage risks during evaluation. Through extensive experiments using G-Pass@k on state-of-the-art LLMs with LiveMathBench, we provide comprehensive insights into both their maximum capabilities and operational consistency. Our findings reveal substantial room for improvement in LLMs' "realistic" reasoning capabilities, highlighting the need for more robust evaluation methods. The benchmark and detailed results are available at: https://github.com/open-compass/GPassK.
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Computing the optimal transport distance between statistical distributions is a fundamental task in machine learning. One remarkable recent advancement is entropic regularization and the Sinkhorn algorithm, which utilizes only matrix scaling and guarantees an approximated solution with near-linear runtime. Despite the success of the Sinkhorn algorithm, its runtime may still be slow due to the potentially large number of iterations needed for convergence. To achieve possibly super-exponential convergence, we present Sinkhorn-Newton-Sparse (SNS), an extension to the Sinkhorn algorithm, by introducing early stopping for the matrix scaling steps and a second stage featuring a Newton-type subroutine. Adopting the variational viewpoint that the Sinkhorn algorithm maximizes a concave Lyapunov potential, we offer the insight that the Hessian matrix of the potential function is approximately sparse. Sparsification of the Hessian results in a fast O(n^2) per-iteration complexity, the same as the Sinkhorn algorithm. In terms of total iteration count, we observe that the SNS algorithm converges orders of magnitude faster across a wide range of practical cases, including optimal transportation between empirical distributions and calculating the Wasserstein W_1, W_2 distance of discretized densities. The empirical performance is corroborated by a rigorous bound on the approximate sparsity of the Hessian matrix.
Is Complexity Required for Neural Network Pruning? A Case Study on Global Magnitude Pruning
Pruning neural networks has become popular in the last decade when it was shown that a large number of weights can be safely removed from modern neural networks without compromising accuracy. Numerous pruning methods have been proposed since then, each claiming to be better than the previous. Many state-of-the-art (SOTA) techniques today rely on complex pruning methodologies utilizing importance scores, getting feedback through back-propagation or having heuristics-based pruning rules amongst others. In this work, we question whether this pattern of introducing complexity is really necessary to achieve better pruning results. We benchmark these SOTA techniques against a naive pruning baseline, namely, Global Magnitude Pruning (Global MP). Global MP ranks weights in order of their magnitudes and prunes the smallest ones. Hence, in its vanilla form, it is one of the simplest pruning techniques. Surprisingly, we find that vanilla Global MP outperforms all the other SOTA techniques and achieves a new SOTA result. It also achieves promising performance on FLOPs sparsification, which we find is enhanced, when pruning is conducted in a gradual fashion. We also find that Global MP is generalizable across tasks, datasets, and models with superior performance. Moreover, a common issue that many pruning algorithms run into at high sparsity rates, namely, layer-collapse, can be easily fixed in Global MP by setting a minimum threshold of weights to be retained in each layer. Lastly, unlike many other SOTA techniques, Global MP does not require any additional algorithm specific hyper-parameters and is very straightforward to tune and implement. We showcase our findings on various models (WRN-28-8, ResNet-32, ResNet-50, MobileNet-V1 and FastGRNN) and multiple datasets (CIFAR-10, ImageNet and HAR-2). Code is available at https://github.com/manasgupta-1/GlobalMP.
SCBench: A KV Cache-Centric Analysis of Long-Context Methods
Long-context LLMs have enabled numerous downstream applications but also introduced significant challenges related to computational and memory efficiency. To address these challenges, optimizations for long-context inference have been developed, centered around the KV cache. However, existing benchmarks often evaluate in single-request, neglecting the full lifecycle of the KV cache in real-world use. This oversight is particularly critical, as KV cache reuse has become widely adopted in LLMs inference frameworks, such as vLLM and SGLang, as well as by LLM providers, including OpenAI, Microsoft, Google, and Anthropic. To address this gap, we introduce SCBench(SharedContextBench), a comprehensive benchmark for evaluating long-context methods from a KV cachecentric perspective: 1) KV cache generation, 2) KV cache compression, 3) KV cache retrieval, 4) KV cache loading. Specifically, SCBench uses test examples with shared context, ranging 12 tasks with two shared context modes, covering four categories of long-context capabilities: string retrieval, semantic retrieval, global information, and multi-task. With it, we provide an extensive KV cache-centric analysis of eight categories long-context solutions, including Gated Linear RNNs, Mamba-Attention hybrids, and efficient methods such as sparse attention, KV cache dropping, quantization, retrieval, loading, and prompt compression. The evaluation is conducted on 8 long-context LLMs. Our findings show that sub-O(n) memory methods suffer in multi-turn scenarios, while sparse encoding with O(n) memory and sub-O(n^2) pre-filling computation perform robustly. Dynamic sparsity yields more expressive KV caches than static patterns, and layer-level sparsity in hybrid architectures reduces memory usage with strong performance. Additionally, we identify attention distribution shift issues in long-generation scenarios. https://aka.ms/SCBench.
GSO: Challenging Software Optimization Tasks for Evaluating SWE-Agents
Developing high-performance software is a complex task that requires specialized expertise. We introduce GSO, a benchmark for evaluating language models' capabilities in developing high-performance software. We develop an automated pipeline that generates and executes performance tests to analyze repository commit histories to identify 102 challenging optimization tasks across 10 codebases, spanning diverse domains and programming languages. An agent is provided with a codebase and performance test as a precise specification, and tasked to improve the runtime efficiency, which is measured against the expert developer optimization. Our quantitative evaluation reveals that leading SWE-Agents struggle significantly, achieving less than 5% success rate, with limited improvements even with inference-time scaling. Our qualitative analysis identifies key failure modes, including difficulties with low-level languages, practicing lazy optimization strategies, and challenges in accurately localizing bottlenecks. We release the code and artifacts of our benchmark along with agent trajectories to enable future research.
Tilus: A Virtual Machine for Arbitrary Low-Precision GPGPU Computation in LLM Serving
Serving Large Language Models (LLMs) is critical for AI-powered applications but demands substantial computational resources, particularly in memory bandwidth and computational throughput. Low-precision computation has emerged as a key technique to improve efficiency while reducing resource consumption. Existing approaches for generating low-precision kernels are limited to weight bit widths that are powers of two and suffer from suboptimal performance due to high-level GPU programming abstractions. These abstractions restrict critical optimizations, such as fine-grained register management and optimized memory access patterns, which are essential for efficient low-precision computations. In this paper, we introduce a virtual machine (VM) designed for General-Purpose GPU (GPGPU) computing, enabling support for low-precision data types with arbitrary bit widths while maintaining GPU programmability. The proposed VM features a thread-block-level programming model, a hierarchical memory space, a novel algebraic layout system, and extensive support for diverse low-precision data types. VM programs are compiled into highly efficient GPU programs with automatic vectorization and instruction selection. Extensive experiments demonstrate that our VM efficiently supports a full spectrum of low-precision data types, and outperforms state-of-the-art low-precision kernels on their supported types. Compared to existing compilers like Triton and Ladder, as well as hand-optimized kernels such as QuantLLM and Marlin, our VM achieves performance improvements of 1.75x, 2.61x, 1.29x and 1.03x, respectively.
PAON: A New Neuron Model using Padé Approximants
Convolutional neural networks (CNN) are built upon the classical McCulloch-Pitts neuron model, which is essentially a linear model, where the nonlinearity is provided by a separate activation function. Several researchers have proposed enhanced neuron models, including quadratic neurons, generalized operational neurons, generative neurons, and super neurons, with stronger nonlinearity than that provided by the pointwise activation function. There has also been a proposal to use Pade approximation as a generalized activation function. In this paper, we introduce a brand new neuron model called Pade neurons (Paons), inspired by the Pade approximants, which is the best mathematical approximation of a transcendental function as a ratio of polynomials with different orders. We show that Paons are a super set of all other proposed neuron models. Hence, the basic neuron in any known CNN model can be replaced by Paons. In this paper, we extend the well-known ResNet to PadeNet (built by Paons) to demonstrate the concept. Our experiments on the single-image super-resolution task show that PadeNets can obtain better results than competing architectures.
A Generic First-Order Algorithmic Framework for Bi-Level Programming Beyond Lower-Level Singleton
In recent years, a variety of gradient-based first-order methods have been developed to solve bi-level optimization problems for learning applications. However, theoretical guarantees of these existing approaches heavily rely on the simplification that for each fixed upper-level variable, the lower-level solution must be a singleton (a.k.a., Lower-Level Singleton, LLS). In this work, we first design a counter-example to illustrate the invalidation of such LLS condition. Then by formulating BLPs from the view point of optimistic bi-level and aggregating hierarchical objective information, we establish Bi-level Descent Aggregation (BDA), a flexible and modularized algorithmic framework for generic bi-level optimization. Theoretically, we derive a new methodology to prove the convergence of BDA without the LLS condition. Our investigations also demonstrate that BDA is indeed compatible to a verify of particular first-order computation modules. Additionally, as an interesting byproduct, we also improve these conventional first-order bi-level schemes (under the LLS simplification). Particularly, we establish their convergences with weaker assumptions. Extensive experiments justify our theoretical results and demonstrate the superiority of the proposed BDA for different tasks, including hyper-parameter optimization and meta learning.
On the Power of the Weisfeiler-Leman Test for Graph Motif Parameters
Seminal research in the field of graph neural networks (GNNs) has revealed a direct correspondence between the expressive capabilities of GNNs and the k-dimensional Weisfeiler-Leman (kWL) test, a widely-recognized method for verifying graph isomorphism. This connection has reignited interest in comprehending the specific graph properties effectively distinguishable by the kWL test. A central focus of research in this field revolves around determining the least dimensionality k, for which kWL can discern graphs with different number of occurrences of a pattern graph P. We refer to such a least k as the WL-dimension of this pattern counting problem. This inquiry traditionally delves into two distinct counting problems related to patterns: subgraph counting and induced subgraph counting. Intriguingly, despite their initial appearance as separate challenges with seemingly divergent approaches, both of these problems are interconnected components of a more comprehensive problem: "graph motif parameters". In this paper, we provide a precise characterization of the WL-dimension of labeled graph motif parameters. As specific instances of this result, we obtain characterizations of the WL-dimension of the subgraph counting and induced subgraph counting problem for every labeled pattern P. We additionally demonstrate that in cases where the kWL test distinguishes between graphs with varying occurrences of a pattern P, the exact number of occurrences of P can be computed uniformly using only local information of the last layer of a corresponding GNN. We finally delve into the challenge of recognizing the WL-dimension of various graph parameters. We give a polynomial time algorithm for determining the WL-dimension of the subgraph counting problem for given pattern P, answering an open question from previous work.
Implementing and Optimizing the Scaled Dot-Product Attention on Streaming Dataflow
Transformer models serve as the backbone of many state-ofthe-art language models, and most use the scaled dot-product attention (SDPA) mechanism to capture relationships between tokens. However, the straightforward implementation of SDPA has quadratic compute and memory complexity with respect to the sequence length. On processor architectures such as GPUs and TPUs, there is a robust body of prior work. However, little work has been performed on non-processor architectures.In this work, we show how the architecture and execution model of Streaming Dataflow Accelerators can help tackle this challenge. We first define abstract hardware that adopts a streaming execution model, and we implement a cycle-accurate simulator of the abstract hardware using the Dataflow Abstract Machine simulation framework. Second, we implement the naive SDPA algorithm on this abstract hardware and show it requires linear (O(N)) intermediate memory. Third, we then modify the naive algorithm, taking inspiration from prior processor-oriented works, by reordering the multiplication and division operations. Finally, we map the modified algorithm to abstract hardware, and confirm that the implementation computes SDPA at full throughput while only using a constant amount (O(1)) of intermediate memory.
Do PhD-level LLMs Truly Grasp Elementary Addition? Probing Rule Learning vs. Memorization in Large Language Models
Despite high benchmark scores, Large Language Models (LLMs) often fail simple problem, raising a critical question: Do LLMs learn mathematical principles or merely memorize patterns? Rather than designing increasingly complex benchmarks like recent works, we investigate this using elementary two-integer addition (0 to 2^{64}), probing two core properties: commutativity (A+B=B+A) and compositional generalization (via isomorphic symbolic mappings, e.g., 7 rightarrow y). While state-of-the-art LLMs achieve 73.8-99.8\% accuracy on numerical addition, performance collapses to leq7.5\% under symbolic mapping, indicating failure to generalize learned rules. Non-monotonic performance scaling with digit count and frequent commutativity violations (over 1,700 cases of A+B neq B+A) further support this. Explicitly providing addition rules degrades performance by 81.2\% on average, while self-explanation maintains baseline accuracy, suggesting LLM arithmetic processing is misaligned with human-defined principles. Our findings indicate current LLMs rely on memory pattern over genuine rule learning, highlighting architectural limitations and the need for new approaches to achieve true mathematical reasoning.
The Automated LLM Speedrunning Benchmark: Reproducing NanoGPT Improvements
Rapid advancements in large language models (LLMs) have the potential to assist in scientific progress. A critical capability toward this endeavor is the ability to reproduce existing work. To evaluate the ability of AI agents to reproduce results in an active research area, we introduce the Automated LLM Speedrunning Benchmark, leveraging the research community contributions on the NanoGPT speedrun, a competition to train a GPT-2 model in the shortest time. Each of the 19 speedrun tasks provides the agent with the previous records training script, optionally paired with one of three hint formats, ranging from pseudocode to paper-like descriptions of the new records improvements. Records execute quickly by design and speedrun improvements encompass diverse code-level changes, ranging from high-level algorithmic advancements to hardware-aware optimizations. These features make the benchmark both accessible and realistic for the frontier problem of improving LLM training. We find that recent reasoning LLMs combined with SoTA scaffolds struggle to reimplement already-known innovations in our benchmark, even when given detailed hints. Our benchmark thus provides a simple, non-saturated measure of an LLMs ability to automate scientific reproduction, a necessary (but not sufficient) skill for an autonomous research agent.
EpiCoder: Encompassing Diversity and Complexity in Code Generation
Effective instruction tuning is indispensable for optimizing code LLMs, aligning model behavior with user expectations and enhancing model performance in real-world applications. However, most existing methods focus on code snippets, which are limited to specific functionalities and rigid structures, restricting the complexity and diversity of the synthesized data. To address these limitations, we introduce a novel feature tree-based synthesis framework inspired by Abstract Syntax Trees (AST). Unlike AST, which captures syntactic structure of code, our framework models semantic relationships between code elements, enabling the generation of more nuanced and diverse data. The feature tree is constructed from raw data and refined iteratively to increase the quantity and diversity of the extracted features. This process enables the identification of more complex patterns and relationships within the code. By sampling subtrees with controlled depth and breadth, our framework allows precise adjustments to the complexity of the generated code, supporting a wide range of tasks from simple function-level operations to intricate multi-file scenarios. We fine-tuned widely-used base models to create the EpiCoder series, achieving state-of-the-art performance at both the function and file levels across multiple benchmarks. Notably, empirical evidence indicates that our approach shows significant potential in synthesizing highly complex repository-level code data. Further analysis elucidates the merits of this approach by rigorously assessing data complexity and diversity through software engineering principles and LLM-as-a-judge method.
Balans: Multi-Armed Bandits-based Adaptive Large Neighborhood Search for Mixed-Integer Programming Problem
Mixed-integer programming (MIP) is a powerful paradigm for modeling and solving various important combinatorial optimization problems. Recently, learning-based approaches have shown a potential to speed up MIP solving via offline training that then guides important design decisions during the search. However, a significant drawback of these methods is their heavy reliance on offline training, which requires collecting training datasets and computationally costly training epochs yet offering only limited generalization to unseen (larger) instances. In this paper, we propose Balans, an adaptive meta-solver for MIPs with online learning capability that does not require any supervision or apriori training. At its core, Balans is based on adaptive large-neighborhood search, operating on top of an MIP solver by successive applications of destroy and repair neighborhood operators. During the search, the selection among different neighborhood definitions is guided on the fly for the instance at hand via multi-armed bandit algorithms. Our extensive experiments on hard optimization instances show that Balans offers significant performance gains over the default MIP solver, is better than committing to any single best neighborhood, and improves over the state-of-the-art large-neighborhood search for MIPs. Finally, we release Balans as a highly configurable, MIP solver agnostic, open-source software.
A Hardware-Aware System for Accelerating Deep Neural Network Optimization
Recent advances in Neural Architecture Search (NAS) which extract specialized hardware-aware configurations (a.k.a. "sub-networks") from a hardware-agnostic "super-network" have become increasingly popular. While considerable effort has been employed towards improving the first stage, namely, the training of the super-network, the search for derivative high-performing sub-networks is still largely under-explored. For example, some recent network morphism techniques allow a super-network to be trained once and then have hardware-specific networks extracted from it as needed. These methods decouple the super-network training from the sub-network search and thus decrease the computational burden of specializing to different hardware platforms. We propose a comprehensive system that automatically and efficiently finds sub-networks from a pre-trained super-network that are optimized to different performance metrics and hardware configurations. By combining novel search tactics and algorithms with intelligent use of predictors, we significantly decrease the time needed to find optimal sub-networks from a given super-network. Further, our approach does not require the super-network to be refined for the target task a priori, thus allowing it to interface with any super-network. We demonstrate through extensive experiments that our system works seamlessly with existing state-of-the-art super-network training methods in multiple domains. Moreover, we show how novel search tactics paired with evolutionary algorithms can accelerate the search process for ResNet50, MobileNetV3 and Transformer while maintaining objective space Pareto front diversity and demonstrate an 8x faster search result than the state-of-the-art Bayesian optimization WeakNAS approach.
AutoReP: Automatic ReLU Replacement for Fast Private Network Inference
The growth of the Machine-Learning-As-A-Service (MLaaS) market has highlighted clients' data privacy and security issues. Private inference (PI) techniques using cryptographic primitives offer a solution but often have high computation and communication costs, particularly with non-linear operators like ReLU. Many attempts to reduce ReLU operations exist, but they may need heuristic threshold selection or cause substantial accuracy loss. This work introduces AutoReP, a gradient-based approach to lessen non-linear operators and alleviate these issues. It automates the selection of ReLU and polynomial functions to speed up PI applications and introduces distribution-aware polynomial approximation (DaPa) to maintain model expressivity while accurately approximating ReLUs. Our experimental results demonstrate significant accuracy improvements of 6.12% (94.31%, 12.9K ReLU budget, CIFAR-10), 8.39% (74.92%, 12.9K ReLU budget, CIFAR-100), and 9.45% (63.69%, 55K ReLU budget, Tiny-ImageNet) over current state-of-the-art methods, e.g., SNL. Morever, AutoReP is applied to EfficientNet-B2 on ImageNet dataset, and achieved 75.55% accuracy with 176.1 times ReLU budget reduction.
Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation
Formal proofs are challenging to write even for experienced experts. Recent progress in Neural Theorem Proving (NTP) shows promise in expediting this process. However, the formal corpora available on the Internet are limited compared to the general text, posing a significant data scarcity challenge for NTP. To address this issue, this work proposes Alchemy, a general framework for data synthesis that constructs formal theorems through symbolic mutation. Specifically, for each candidate theorem in Mathlib, we identify all invocable theorems that can be used to rewrite or apply to it. Subsequently, we mutate the candidate theorem by replacing the corresponding term in the statement with its equivalent form or antecedent. As a result, our method increases the number of theorems in Mathlib by an order of magnitude, from 110k to 6M. Furthermore, we perform continual pretraining and supervised finetuning on this augmented corpus for large language models. Experimental results demonstrate the effectiveness of our approach, achieving a 5% absolute performance improvement on Leandojo benchmark. Additionally, our synthetic data achieve a 2.5% absolute performance gain on the out-of-distribution miniF2F benchmark. To provide further insights, we conduct a comprehensive analysis of synthetic data composition and the training paradigm, offering valuable guidance for developing a strong theorem prover.
BigO(Bench) -- Can LLMs Generate Code with Controlled Time and Space Complexity?
We introduce BigO(Bench), a novel coding benchmark designed to evaluate the capabilities of generative language models in understanding and generating code with specified time and space complexities. This benchmark addresses the gap in current evaluations that often overlook the ability of models to comprehend and produce code constrained by computational complexity. BigO(Bench) includes tooling to infer the algorithmic complexity of any Python function from profiling measurements, including human- or LLM-generated solutions. BigO(Bench) also includes of set of 3,105 coding problems and 1,190,250 solutions from Code Contests annotated with inferred (synthetic) time and space complexity labels from the complexity framework, as well as corresponding runtime and memory footprint values for a large set of input sizes. We present results from evaluating multiple state-of-the-art language models on this benchmark, highlighting their strengths and weaknesses in handling complexity requirements. In particular, token-space reasoning models are unrivaled in code generation but not in complexity understanding, hinting that they may not generalize well to tasks for which no reward was given at training time.
Probabilistic Programming with Programmable Variational Inference
Compared to the wide array of advanced Monte Carlo methods supported by modern probabilistic programming languages (PPLs), PPL support for variational inference (VI) is less developed: users are typically limited to a predefined selection of variational objectives and gradient estimators, which are implemented monolithically (and without formal correctness arguments) in PPL backends. In this paper, we propose a more modular approach to supporting variational inference in PPLs, based on compositional program transformation. In our approach, variational objectives are expressed as programs, that may employ first-class constructs for computing densities of and expected values under user-defined models and variational families. We then transform these programs systematically into unbiased gradient estimators for optimizing the objectives they define. Our design enables modular reasoning about many interacting concerns, including automatic differentiation, density accumulation, tracing, and the application of unbiased gradient estimation strategies. Additionally, relative to existing support for VI in PPLs, our design increases expressiveness along three axes: (1) it supports an open-ended set of user-defined variational objectives, rather than a fixed menu of options; (2) it supports a combinatorial space of gradient estimation strategies, many not automated by today's PPLs; and (3) it supports a broader class of models and variational families, because it supports constructs for approximate marginalization and normalization (previously introduced only for Monte Carlo inference). We implement our approach in an extension to the Gen probabilistic programming system (genjax.vi, implemented in JAX), and evaluate on several deep generative modeling tasks, showing minimal performance overhead vs. hand-coded implementations and performance competitive with well-established open-source PPLs.
A Categorical Framework for Learning Generalised Tree Automata
Automata learning is a popular technique used to automatically construct an automaton model from queries. Much research went into devising ad hoc adaptations of algorithms for different types of automata. The CALF project seeks to unify these using category theory in order to ease correctness proofs and guide the design of new algorithms. In this paper, we extend CALF to cover learning of algebraic structures that may not have a coalgebraic presentation. Furthermore, we provide a detailed algorithmic account of an abstract version of the popular L* algorithm, which was missing from CALF. We instantiate the abstract theory to a large class of Set functors, by which we recover for the first time practical tree automata learning algorithms from an abstract framework and at the same time obtain new algorithms to learn algebras of quotiented polynomial functors.
Learners' Languages
In "Backprop as functor", the authors show that the fundamental elements of deep learning -- gradient descent and backpropagation -- can be conceptualized as a strong monoidal functor Para(Euc)toLearn from the category of parameterized Euclidean spaces to that of learners, a category developed explicitly to capture parameter update and backpropagation. It was soon realized that there is an isomorphism LearncongPara(Slens), where Slens is the symmetric monoidal category of simple lenses as used in functional programming. In this note, we observe that Slens is a full subcategory of Poly, the category of polynomial functors in one variable, via the functor Amapsto Ay^A. Using the fact that (Poly,otimes) is monoidal closed, we show that a map Ato B in Para(Slens) has a natural interpretation in terms of dynamical systems (more precisely, generalized Moore machines) whose interface is the internal-hom type [Ay^A,By^B]. Finally, we review the fact that the category p-Coalg of dynamical systems on any p in Poly forms a topos, and consider the logical propositions that can be stated in its internal language. We give gradient descent as an example, and we conclude by discussing some directions for future work.
MathConstruct: Challenging LLM Reasoning with Constructive Proofs
While Large Language Models (LLMs) demonstrate impressive performance in mathematics, existing math benchmarks come with significant limitations. Many focus on problems with fixed ground-truth answers, and are often saturated due to problem simplicity or the viability of guessing or memorization. Crucially, they capture only a narrow subset of relevant math problems. To address this research gap, we introduce \mc, a new benchmark of 126 challenging problems sourced from various math competitions, which targets constructive proofs, a widely encountered problem type requiring the construction of mathematical objects with specific properties. These proofs are particularly suitable for LLM evaluation, as solution correctness can be easily verified. Our automated verifiers also enable MathConstruct to generate problem variations, used to evaluate robustness. State-of-the-art LLMs solve only 54% of MathConstruct problems, highlighting its complexity and importance for LLM evaluation.
UDC: A Unified Neural Divide-and-Conquer Framework for Large-Scale Combinatorial Optimization Problems
Single-stage neural combinatorial optimization solvers have achieved near-optimal results on various small-scale combinatorial optimization (CO) problems without requiring expert knowledge. However, these solvers exhibit significant performance degradation when applied to large-scale CO problems. Recently, two-stage neural methods motivated by divide-and-conquer strategies have shown efficiency in addressing large-scale CO problems. Nevertheless, the performance of these methods highly relies on problem-specific heuristics in either the dividing or the conquering procedure, which limits their applicability to general CO problems. Moreover, these methods employ separate training schemes and ignore the interdependencies between the dividing and conquering strategies, often leading to sub-optimal solutions. To tackle these drawbacks, this article develops a unified neural divide-and-conquer framework (i.e., UDC) for solving general large-scale CO problems. UDC offers a Divide-Conquer-Reunion (DCR) training method to eliminate the negative impact of a sub-optimal dividing policy. Employing a high-efficiency Graph Neural Network (GNN) for global instance dividing and a fixed-length sub-path solver for conquering divided sub-problems, the proposed UDC framework demonstrates extensive applicability, achieving superior performance in 10 representative large-scale CO problems. The code is available at https://github.com/CIAM-Group/NCO_code/tree/main/single_objective/UDC-Large-scale-CO-master.
Novel Quadratic Constraints for Extending LipSDP beyond Slope-Restricted Activations
Recently, semidefinite programming (SDP) techniques have shown great promise in providing accurate Lipschitz bounds for neural networks. Specifically, the LipSDP approach (Fazlyab et al., 2019) has received much attention and provides the least conservative Lipschitz upper bounds that can be computed with polynomial time guarantees. However, one main restriction of LipSDP is that its formulation requires the activation functions to be slope-restricted on [0,1], preventing its further use for more general activation functions such as GroupSort, MaxMin, and Householder. One can rewrite MaxMin activations for example as residual ReLU networks. However, a direct application of LipSDP to the resultant residual ReLU networks is conservative and even fails in recovering the well-known fact that the MaxMin activation is 1-Lipschitz. Our paper bridges this gap and extends LipSDP beyond slope-restricted activation functions. To this end, we provide novel quadratic constraints for GroupSort, MaxMin, and Householder activations via leveraging their underlying properties such as sum preservation. Our proposed analysis is general and provides a unified approach for estimating ell_2 and ell_infty Lipschitz bounds for a rich class of neural network architectures, including non-residual and residual neural networks and implicit models, with GroupSort, MaxMin, and Householder activations. Finally, we illustrate the utility of our approach with a variety of experiments and show that our proposed SDPs generate less conservative Lipschitz bounds in comparison to existing approaches.
How Well Do LLMs Generate Code for Different Application Domains? Benchmark and Evaluation
Recently, an increasing number of AI-driven programming assistants powered by code LLMs have been integrated into various real-world software development environments, significantly boosting developer productivity. However, existing code generation benchmarks primarily focus on general-purpose scenarios, leaving the code generation performance of LLMs for specific application domains largely unknown. In this paper, we introduce a new benchmark, MultiCodeBench, to fill this gap. MultiCodeBench comprises 2,400 programming tasks, covering 12 popular software development domains and 15 programming languages. Specifically, we perform in-depth research to identify these 12 application domains. Given that each domain may involve multiple technical frameworks, and that different frameworks present distinct challenges in the coding process, we categorize the commonly used frameworks and platforms within each domain. We then sample programming problems from GitHub repositories related to these subdomains. To ensure the quality of the tasks and mitigate data leakage issues, we invite annotators to rewrite the docstrings for each task in MultiCodeBench. Additionally, we build a static analysis-based dependency parsing tool to extract the dependencies in the ground truth for each task, enabling deeper performance analysis. Through extensive experiments on MultiCodeBench with eleven representative mainstream LLMs, we reveal the code generation performance of the LLMs across different application domains, providing practical insights for developers in downstream fields when selecting LLMs. Furthermore, we analyze the reasons behind the models' failures in completing software application development tasks, offering guidance for model developers to enhance domain-specific code generation capabilities.
A Simple and Provable Scaling Law for the Test-Time Compute of Large Language Models
We propose a general two-stage algorithm that enjoys a provable scaling law for the test-time compute of large language models (LLMs). Given an input problem, the proposed algorithm first generates N candidate solutions, and then chooses the best one via a multiple-round knockout tournament where each pair of candidates are compared for K times and only the winners move on to the next round. In a minimalistic implementation, both stages can be executed with a black-box LLM alone and nothing else (e.g., no external verifier or reward model), and a total of N times (K + 1) highly parallelizable LLM calls are needed for solving an input problem. Assuming that a generated candidate solution is correct with probability p_{gen} > 0 and a comparison between a pair of correct and incorrect solutions identifies the right winner with probability p_{comp} > 0.5 (i.e., better than a random guess), we prove theoretically that the failure probability of the proposed algorithm decays to zero exponentially with respect to N and K: $P(final output is incorrect) le (1 - p_{gen})^N + lceil log_2 N rceil e^{-2 K (p_{comp} - 0.5)^2}.$ Our empirical results with the challenging MMLU-Pro benchmark validate the technical assumptions, as well as the efficacy of the proposed algorithm and the gains from scaling up its test-time compute.
Collapsible Linear Blocks for Super-Efficient Super Resolution
With the advent of smart devices that support 4K and 8K resolution, Single Image Super Resolution (SISR) has become an important computer vision problem. However, most super resolution deep networks are computationally very expensive. In this paper, we propose Super-Efficient Super Resolution (SESR) networks that establish a new state-of-the-art for efficient super resolution. Our approach is based on linear overparameterization of CNNs and creates an efficient model architecture for SISR. With theoretical analysis, we uncover the limitations of existing overparameterization methods and show how the proposed method alleviates them. Detailed experiments across six benchmark datasets demonstrate that SESR achieves similar or better image quality than state-of-the-art models while requiring 2x to 330x fewer Multiply-Accumulate (MAC) operations. As a result, SESR can be used on constrained hardware to perform x2 (1080p to 4K) and x4 (1080p to 8K) SISR. Towards this, we estimate hardware performance numbers for a commercial Arm mobile-Neural Processing Unit (NPU) for 1080p to 4K (x2) and 1080p to 8K (x4) SISR. Our results highlight the challenges faced by super resolution on AI accelerators and demonstrate that SESR is significantly faster (e.g., 6x-8x higher FPS) than existing models on mobile-NPU. Finally, SESR outperforms prior models by 1.5x-2x in latency on Arm CPU and GPU when deployed on a real mobile device. The code for this work is available at https://github.com/ARM-software/sesr.
SBSC: Step-By-Step Coding for Improving Mathematical Olympiad Performance
We propose Step-by-Step Coding (SBSC): a multi-turn math reasoning framework that enables Large Language Models (LLMs) to generate sequence of programs for solving Olympiad level math problems. At each step/turn, by leveraging the code execution outputs and programs of previous steps, the model generates the next sub-task and the corresponding program to solve it. This way, SBSC, sequentially navigates to reach the final answer. SBSC allows more granular, flexible and precise approach to problem-solving compared to existing methods. Extensive experiments highlight the effectiveness of SBSC in tackling competition and Olympiad-level math problems. For Claude-3.5-Sonnet, we observe SBSC (greedy decoding) surpasses existing state-of-the-art (SOTA) program generation based reasoning strategies by absolute 10.7% on AMC12, 8% on AIME and 12.6% on MathOdyssey. Given SBSC is multi-turn in nature, we also benchmark SBSC's greedy decoding against self-consistency decoding results of existing SOTA math reasoning strategies and observe performance gain by absolute 6.2% on AMC, 6.7% on AIME and 7.4% on MathOdyssey.
Near-Optimal Quantum Algorithm for Minimizing the Maximal Loss
The problem of minimizing the maximum of N convex, Lipschitz functions plays significant roles in optimization and machine learning. It has a series of results, with the most recent one requiring O(Nepsilon^{-2/3} + epsilon^{-8/3}) queries to a first-order oracle to compute an epsilon-suboptimal point. On the other hand, quantum algorithms for optimization are rapidly advancing with speedups shown on many important optimization problems. In this paper, we conduct a systematic study for quantum algorithms and lower bounds for minimizing the maximum of N convex, Lipschitz functions. On one hand, we develop quantum algorithms with an improved complexity bound of O(Nepsilon^{-5/3} + epsilon^{-8/3}). On the other hand, we prove that quantum algorithms must take Omega(Nepsilon^{-2/3}) queries to a first order quantum oracle, showing that our dependence on N is optimal up to poly-logarithmic factors.
Fat Polygonal Partitions with Applications to Visualization and Embeddings
Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in R^d. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space: we give a rm polylog(Delta)-approximation algorithm for embedding n-point ultrametrics into R^d with minimum distortion, where Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.
φ-Decoding: Adaptive Foresight Sampling for Balanced Inference-Time Exploration and Exploitation
Inference-time optimization scales computation to derive deliberate reasoning steps for effective performance. While previous search-based strategies address the short-sightedness of auto-regressive generation, the vast search space leads to excessive exploration and insufficient exploitation. To strike an efficient balance to derive the optimal step, we frame the decoding strategy as foresight sampling, leveraging simulated future steps to obtain globally optimal step estimation. Built on it, we propose a novel decoding strategy, named phi-Decoding. To provide a precise and expressive estimation of step value, phi-Decoding approximates two distributions via foresight and clustering. Sampling from the joint distribution, the optimal steps can be selected for exploitation. To support adaptive computation allocation, we propose in-width and in-depth pruning strategies, featuring a light-weight solution to achieve inference efficiency. Extensive experiments across seven benchmarks show phi-Decoding outperforms strong baselines in both performance and efficiency. Additional analysis demonstrates its generalization across various LLMs and scalability across a wide range of computing budgets. The code will be released at https://github.com/xufangzhi/phi-Decoding, and the open-source PyPI package is coming soon.
Quantum algorithm for solving linear systems of equations
Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given a matrix A and a vector b, find a vector x such that Ax=b. We consider the case where one doesn't need to know the solution x itself, but rather an approximation of the expectation value of some operator associated with x, e.g., x'Mx for some matrix M. In this case, when A is sparse, N by N and has condition number kappa, classical algorithms can find x and estimate x'Mx in O(N sqrt(kappa)) time. Here, we exhibit a quantum algorithm for this task that runs in poly(log N, kappa) time, an exponential improvement over the best classical algorithm.
Dissecting the Runtime Performance of the Training, Fine-tuning, and Inference of Large Language Models
Large Language Models (LLMs) have seen great advance in both academia and industry, and their popularity results in numerous open-source frameworks and techniques in accelerating LLM pre-training, fine-tuning, and inference. Training and deploying LLMs are expensive as it requires considerable computing resources and memory, hence many efficient approaches have been developed for improving system pipelines as well as operators. However, the runtime performance can vary significantly across hardware and software stacks, which makes it difficult to choose the best configuration. In this work, we aim to benchmark the performance from both macro and micro perspectives. First, we benchmark the end-to-end performance of pre-training, fine-tuning, and serving LLMs in different sizes , i.e., 7, 13, and 70 billion parameters (7B, 13B, and 70B) on three 8-GPU platforms with and without individual optimization techniques, including ZeRO, quantization, recomputation, FlashAttention. Then, we dive deeper to provide a detailed runtime analysis of the sub-modules, including computing and communication operators in LLMs. For end users, our benchmark and findings help better understand different optimization techniques, training and inference frameworks, together with hardware platforms in choosing configurations for deploying LLMs. For researchers, our in-depth module-wise analyses discover potential opportunities for future work to further optimize the runtime performance of LLMs.
A Formal Perspective on Byte-Pair Encoding
Byte-Pair Encoding (BPE) is a popular algorithm used for tokenizing data in NLP, despite being devised initially as a compression method. BPE appears to be a greedy algorithm at face value, but the underlying optimization problem that BPE seeks to solve has not yet been laid down. We formalize BPE as a combinatorial optimization problem. Via submodular functions, we prove that the iterative greedy version is a 1{{sigma(mu^star)}}(1-e^{-{sigma(mu^star)}})-approximation of an optimal merge sequence, where {sigma(mu^star)} is the total backward curvature with respect to the optimal merge sequence mu^star. Empirically the lower bound of the approximation is approx 0.37. We provide a faster implementation of BPE which improves the runtime complexity from Oleft(N Mright) to Oleft(N log Mright), where N is the sequence length and M is the merge count. Finally, we optimize the brute-force algorithm for optimal BPE using memoization.
Convergent Graph Solvers
We propose the convergent graph solver (CGS), a deep learning method that learns iterative mappings to predict the properties of a graph system at its stationary state (fixed point) with guaranteed convergence. CGS systematically computes the fixed points of a target graph system and decodes them to estimate the stationary properties of the system without the prior knowledge of existing solvers or intermediate solutions. The forward propagation of CGS proceeds in three steps: (1) constructing the input dependent linear contracting iterative maps, (2) computing the fixed-points of the linear maps, and (3) decoding the fixed-points to estimate the properties. The contractivity of the constructed linear maps guarantees the existence and uniqueness of the fixed points following the Banach fixed point theorem. To train CGS efficiently, we also derive a tractable analytical expression for its gradient by leveraging the implicit function theorem. We evaluate the performance of CGS by applying it to various network-analytic and graph benchmark problems. The results indicate that CGS has competitive capabilities for predicting the stationary properties of graph systems, irrespective of whether the target systems are linear or non-linear. CGS also shows high performance for graph classification problems where the existence or the meaning of a fixed point is hard to be clearly defined, which highlights the potential of CGS as a general graph neural network architecture.
CUDA-LLM: LLMs Can Write Efficient CUDA Kernels
Large Language Models (LLMs) have demonstrated strong capabilities in general-purpose code generation. However, generating the code which is deeply hardware-specific, architecture-aware, and performance-critical, especially for massively parallel GPUs, remains a complex challenge. In this work, we explore the use of LLMs for the automated generation and optimization of CUDA programs, with the goal of producing high-performance GPU kernels that fully exploit the underlying hardware. To address this challenge, we propose a novel framework called Feature Search and Reinforcement (FSR). FSR jointly optimizes compilation and functional correctness, as well as the runtime performance, which are validated through extensive and diverse test cases, and measured by actual kernel execution latency on the target GPU, respectively. This approach enables LLMs not only to generate syntactically and semantically correct CUDA code but also to iteratively refine it for efficiency, tailored to the characteristics of the GPU architecture. We evaluate FSR on representative CUDA kernels, covering AI workloads and computational intensive algorithms. Our results show that LLMs augmented with FSR consistently guarantee correctness rates. Meanwhile, the automatically generated kernels can outperform general human-written code by a factor of up to 179times in execution speeds. These findings highlight the potential of combining LLMs with performance reinforcement to automate GPU programming for hardware-specific, architecture-sensitive, and performance-critical applications.
S4: a High-sparsity, High-performance AI Accelerator
Exploiting sparsity underlying neural networks has become one of the most potential methodologies to reduce the memory footprint, I/O cost, and computation workloads during inference. And the degree of sparsity one can exploit has become higher as larger model sizes have been considered along with the trend of pre-training giant models. On the other hand, compared with quantization that has been a widely supported option, acceleration through high-degree sparsity is not supported in most computing platforms. In this work, we introduce the first commercial hardware platform supporting high-degree sparsity acceleration up to 32 times -- S4. Combined with state-of-the-art sparse pruning techniques, we demonstrate several-times practical inference speedup on S4 over mainstream inference platforms such as Nvidia T4. We also show that in practice a sparse model of larger size can achieve both higher accuracy and higher throughput on S4 than a dense model of smaller size.
Discovering symbolic expressions with parallelized tree search
Symbolic regression plays a crucial role in modern scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data. A grand challenge lies in the arduous search for parsimonious and generalizable mathematical formulas, in an infinite search space, while intending to fit the training data. Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade when handling problems of complexity, which essentially hinders the pace of applying symbolic regression for scientific exploration across interdisciplinary domains. To this end, we introduce a parallelized tree search (PTS) model to efficiently distill generic mathematical expressions from limited data. Through a series of extensive experiments, we demonstrate the superior accuracy and efficiency of PTS for equation discovery, which greatly outperforms the state-of-the-art baseline models on over 80 synthetic and experimental datasets (e.g., lifting its performance by up to 99% accuracy improvement and one-order of magnitude speed up). PTS represents a key advance in accurate and efficient data-driven discovery of symbolic, interpretable models (e.g., underlying physical laws) and marks a pivotal transition towards scalable symbolic learning.
Tighter Information-Theoretic Generalization Bounds from Supersamples
In this work, we present a variety of novel information-theoretic generalization bounds for learning algorithms, from the supersample setting of Steinke & Zakynthinou (2020)-the setting of the "conditional mutual information" framework. Our development exploits projecting the loss pair (obtained from a training instance and a testing instance) down to a single number and correlating loss values with a Rademacher sequence (and its shifted variants). The presented bounds include square-root bounds, fast-rate bounds, including those based on variance and sharpness, and bounds for interpolating algorithms etc. We show theoretically or empirically that these bounds are tighter than all information-theoretic bounds known to date on the same supersample setting.
Inference-Time Hyper-Scaling with KV Cache Compression
Inference-time scaling trades efficiency for increased reasoning accuracy by generating longer or more parallel sequences. However, in Transformer LLMs, generation cost is bottlenecked by the size of the key-value (KV) cache, rather than the number of generated tokens. Hence, we explore inference-time hyper-scaling: by compressing the KV cache, we can generate more tokens within the same compute budget and further improve the accuracy of scaled inference. The success of this approach, however, hinges on the ability of compression methods to preserve accuracy even at high compression ratios. To make hyper-scaling practical, we introduce Dynamic Memory Sparsification (DMS), a novel method for sparsifying KV caches that only requires 1K training steps to achieve 8times compression, while maintaining better accuracy than training-free sparse attention. Instead of prematurely discarding cached tokens, DMS delays token eviction, implicitly merging representations and preserving critical information. We demonstrate the effectiveness of inference-time hyper-scaling with DMS on multiple families of LLMs, showing that it boosts accuracy for comparable inference runtime and memory load. For instance, we enhance Qwen-R1 32B by an average of 9.1 points on AIME 24, 7.6 on GPQA, and 9.6 on LiveCodeBench across compute budgets.
MiniF2F: a cross-system benchmark for formal Olympiad-level mathematics
We present miniF2F, a dataset of formal Olympiad-level mathematics problems statements intended to provide a unified cross-system benchmark for neural theorem proving. The miniF2F benchmark currently targets Metamath, Lean, Isabelle (partially) and HOL Light (partially) and consists of 488 problem statements drawn from the AIME, AMC, and the International Mathematical Olympiad (IMO), as well as material from high-school and undergraduate mathematics courses. We report baseline results using GPT-f, a neural theorem prover based on GPT-3 and provide an analysis of its performance. We intend for miniF2F to be a community-driven effort and hope that our benchmark will help spur advances in neural theorem proving.
On the Expressiveness and Length Generalization of Selective State-Space Models on Regular Languages
Selective state-space models (SSMs) are an emerging alternative to the Transformer, offering the unique advantage of parallel training and sequential inference. Although these models have shown promising performance on a variety of tasks, their formal expressiveness and length generalization properties remain underexplored. In this work, we provide insight into the workings of selective SSMs by analyzing their expressiveness and length generalization performance on regular language tasks, i.e., finite-state automaton (FSA) emulation. We address certain limitations of modern SSM-based architectures by introducing the Selective Dense State-Space Model (SD-SSM), the first selective SSM that exhibits perfect length generalization on a set of various regular language tasks using a single layer. It utilizes a dictionary of dense transition matrices, a softmax selection mechanism that creates a convex combination of dictionary matrices at each time step, and a readout consisting of layer normalization followed by a linear map. We then proceed to evaluate variants of diagonal selective SSMs by considering their empirical performance on commutative and non-commutative automata. We explain the experimental results with theoretical considerations. Our code is available at https://github.com/IBM/selective-dense-state-space-model.
How Long It Takes for an Ordinary Node with an Ordinary ID to Output?
In the context of distributed synchronous computing, processors perform in rounds, and the time-complexity of a distributed algorithm is classically defined as the number of rounds before all computing nodes have output. Hence, this complexity measure captures the running time of the slowest node(s). In this paper, we are interested in the running time of the ordinary nodes, to be compared with the running time of the slowest nodes. The node-averaged time-complexity of a distributed algorithm on a given instance is defined as the average, taken over every node of the instance, of the number of rounds before that node output. We compare the node-averaged time-complexity with the classical one in the standard LOCAL model for distributed network computing. We show that there can be an exponential gap between the node-averaged time-complexity and the classical time-complexity, as witnessed by, e.g., leader election. Our first main result is a positive one, stating that, in fact, the two time-complexities behave the same for a large class of problems on very sparse graphs. In particular, we show that, for LCL problems on cycles, the node-averaged time complexity is of the same order of magnitude as the slowest node time-complexity. In addition, in the LOCAL model, the time-complexity is computed as a worst case over all possible identity assignments to the nodes of the network. In this paper, we also investigate the ID-averaged time-complexity, when the number of rounds is averaged over all possible identity assignments. Our second main result is that the ID-averaged time-complexity is essentially the same as the expected time-complexity of randomized algorithms (where the expectation is taken over all possible random bits used by the nodes, and the number of rounds is measured for the worst-case identity assignment). Finally, we study the node-averaged ID-averaged time-complexity.
Rethinking Fine-Tuning when Scaling Test-Time Compute: Limiting Confidence Improves Mathematical Reasoning
Recent progress in large language models (LLMs) highlights the power of scaling test-time compute to achieve strong performance on complex tasks, such as mathematical reasoning and code generation. This raises a critical question: how should model training be modified to optimize performance under a subsequent test-time compute strategy and budget? To explore this, we focus on pass@N, a simple test-time strategy that searches for a correct answer in N independent samples. We show, surprisingly, that training with cross-entropy (CE) loss can be {it misaligned} with pass@N in that pass@N accuracy {it decreases} with longer training. We explain the origins of this misalignment in terms of model overconfidence induced by CE, and experimentally verify our prediction of overconfidence as an impediment to scaling test-time compute via pass@N. Furthermore we suggest a principled, modified training loss that is better aligned to pass@N by limiting model confidence and rescuing pass@N test performance. Our algorithm demonstrates improved mathematical reasoning on MATH and MiniF2F benchmarks under several scenarios: (1) providing answers to math questions; and (2) proving theorems by searching over proof trees of varying shapes. Overall our work underscores the importance of co-designing two traditionally separate phases of LLM development: training-time protocols and test-time search and reasoning strategies.
How to Train Your HiPPO: State Space Models with Generalized Orthogonal Basis Projections
Linear time-invariant state space models (SSM) are a classical model from engineering and statistics, that have recently been shown to be very promising in machine learning through the Structured State Space sequence model (S4). A core component of S4 involves initializing the SSM state matrix to a particular matrix called a HiPPO matrix, which was empirically important for S4's ability to handle long sequences. However, the specific matrix that S4 uses was actually derived in previous work for a particular time-varying dynamical system, and the use of this matrix as a time-invariant SSM had no known mathematical interpretation. Consequently, the theoretical mechanism by which S4 models long-range dependencies actually remains unexplained. We derive a more general and intuitive formulation of the HiPPO framework, which provides a simple mathematical interpretation of S4 as a decomposition onto exponentially-warped Legendre polynomials, explaining its ability to capture long dependencies. Our generalization introduces a theoretically rich class of SSMs that also lets us derive more intuitive S4 variants for other bases such as the Fourier basis, and explains other aspects of training S4, such as how to initialize the important timescale parameter. These insights improve S4's performance to 86% on the Long Range Arena benchmark, with 96% on the most difficult Path-X task.
Nearly-Linear Time and Streaming Algorithms for Outlier-Robust PCA
We study principal component analysis (PCA), where given a dataset in R^d from a distribution, the task is to find a unit vector v that approximately maximizes the variance of the distribution after being projected along v. Despite being a classical task, standard estimators fail drastically if the data contains even a small fraction of outliers, motivating the problem of robust PCA. Recent work has developed computationally-efficient algorithms for robust PCA that either take super-linear time or have sub-optimal error guarantees. Our main contribution is to develop a nearly-linear time algorithm for robust PCA with near-optimal error guarantees. We also develop a single-pass streaming algorithm for robust PCA with memory usage nearly-linear in the dimension.
How to Capture Higher-order Correlations? Generalizing Matrix Softmax Attention to Kronecker Computation
In the classical transformer attention scheme, we are given three n times d size matrices Q, K, V (the query, key, and value tokens), and the goal is to compute a new n times d size matrix D^{-1} exp(QK^top) V where D = diag( exp(QK^top) {bf 1}_n ). In this work, we study a generalization of attention which captures triple-wise correlations. This generalization is able to solve problems about detecting triple-wise connections that were shown to be impossible for transformers. The potential downside of this generalization is that it appears as though computations are even more difficult, since the straightforward algorithm requires cubic time in n. However, we show that in the bounded-entry setting (which arises in practice, and which is well-studied in both theory and practice), there is actually a near-linear time algorithm. More precisely, we show that bounded entries are both necessary and sufficient for quickly performing generalized computations: bullet On the positive side, if all entries of the input matrices are bounded above by o(sqrt[3]{log n}) then we show how to approximate the ``tensor-type'' attention matrix in n^{1+o(1)} time. bullet On the negative side, we show that if the entries of the input matrices may be as large as Omega(sqrt[3]{log n}), then there is no algorithm that runs faster than n^{3-o(1)} (assuming the Strong Exponential Time Hypothesis from fine-grained complexity theory). We also show that our construction, algorithms, and lower bounds naturally generalize to higher-order tensors and correlations. Interestingly, the higher the order of the tensors, the lower the bound on the entries needs to be for an efficient algorithm. Our results thus yield a natural tradeoff between the boundedness of the entries, and order of the tensor one may use for more expressive, efficient attention computation.
On Preemption and Learning in Stochastic Scheduling
We study single-machine scheduling of jobs, each belonging to a job type that determines its duration distribution. We start by analyzing the scenario where the type characteristics are known and then move to two learning scenarios where the types are unknown: non-preemptive problems, where each started job must be completed before moving to another job; and preemptive problems, where job execution can be paused in the favor of moving to a different job. In both cases, we design algorithms that achieve sublinear excess cost, compared to the performance with known types, and prove lower bounds for the non-preemptive case. Notably, we demonstrate, both theoretically and through simulations, how preemptive algorithms can greatly outperform non-preemptive ones when the durations of different job types are far from one another, a phenomenon that does not occur when the type durations are known.
An Algorithm for Computing with Brauer's Group Equivariant Neural Network Layers
The learnable, linear neural network layers between tensor power spaces of R^{n} that are equivariant to the orthogonal group, O(n), the special orthogonal group, SO(n), and the symplectic group, Sp(n), were characterised in arXiv:2212.08630. We present an algorithm for multiplying a vector by any weight matrix for each of these groups, using category theoretic constructions to implement the procedure. We achieve a significant reduction in computational cost compared with a naive implementation by making use of Kronecker product matrices to perform the multiplication. We show that our approach extends to the symmetric group, S_n, recovering the algorithm of arXiv:2303.06208 in the process.
Analytical confidence intervals for the number of different objects in data streams
This paper develops a new mathematical-statistical approach to analyze a class of Flajolet-Martin algorithms (FMa), and provides analytical confidence intervals for the number F0 of distinct elements in a stream, based on Chernoff bounds. The class of FMa has reached a significant popularity in bigdata stream learning, and the attention of the literature has mainly been based on algorithmic aspects, basically complexity optimality, while the statistical analysis of these class of algorithms has been often faced heuristically. The analysis provided here shows deep connections with mathematical special functions and with extreme value theory. The latter connection may help in explaining heuristic considerations, while the first opens many numerical issues, faced at the end of the present paper. Finally, the algorithms are tested on an anonymized real data stream and MonteCarlo simulations are provided to support our analytical choice in this context.
SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot
We show for the first time that large-scale generative pretrained transformer (GPT) family models can be pruned to at least 50% sparsity in one-shot, without any retraining, at minimal loss of accuracy. This is achieved via a new pruning method called SparseGPT, specifically designed to work efficiently and accurately on massive GPT-family models. We can execute SparseGPT on the largest available open-source models, OPT-175B and BLOOM-176B, in under 4.5 hours, and can reach 60% unstructured sparsity with negligible increase in perplexity: remarkably, more than 100 billion weights from these models can be ignored at inference time. SparseGPT generalizes to semi-structured (2:4 and 4:8) patterns, and is compatible with weight quantization approaches. The code is available at: https://github.com/IST-DASLab/sparsegpt.
CRUXEval: A Benchmark for Code Reasoning, Understanding and Execution
We present CRUXEval (Code Reasoning, Understanding, and eXecution Evaluation), a benchmark consisting of 800 Python functions (3-13 lines). Each function comes with an input-output pair, leading to two natural tasks: input prediction and output prediction. First, we propose a generic recipe for generating our execution benchmark which can be used to create future variation of the benchmark. Second, we evaluate twenty code models on our benchmark and discover that many recent high-scoring models on HumanEval do not show the same improvements on our benchmark. Third, we show that simple CoT and fine-tuning schemes can improve performance on our benchmark but remain far from solving it. The best setup, GPT-4 with chain of thought (CoT), achieves a pass@1 of 75% and 81% on input and output prediction, respectively. In contrast, Code Llama 34B achieves a pass@1 of 50% and 46% on input and output prediction, highlighting the gap between open and closed source models. As no model is close to acing CRUXEval, we provide examples of consistent GPT-4 failures on simple programs as a lens into its code reasoning capabilities and areas for improvement.
The Larger the Better? Improved LLM Code-Generation via Budget Reallocation
It is a common belief that large language models (LLMs) are better than smaller-sized ones. However, larger models also require significantly more time and compute during inference. This begs the question: what happens when both models operate under the same budget? (e.g., compute, run-time). To address this question, we analyze code generation LLMs of various sizes and make comparisons such as running a 70B model once vs. generating five outputs from a 13B model. We consider a standard unit-test setup, which can be used to select the correct output from the smaller model. Our findings reveal that the repeated use of smaller models can yield consistent improvements, with gains of up to 15% across five tasks. On the other hand, in scenarios where unit-tests are unavailable, a ranking-based selection of candidates from the smaller model falls short of the performance of a single output from larger ones. Our results highlight the potential of using smaller models instead of larger ones, and the importance of studying approaches for ranking LLM outputs.
CodeMonkeys: Scaling Test-Time Compute for Software Engineering
Scaling test-time compute is a promising axis for improving LLM capabilities. However, test-time compute can be scaled in a variety of ways, and effectively combining different approaches remains an active area of research. Here, we explore this problem in the context of solving real-world GitHub issues from the SWE-bench dataset. Our system, named CodeMonkeys, allows models to iteratively edit a codebase by jointly generating and running a testing script alongside their draft edit. We sample many of these multi-turn trajectories for every issue to generate a collection of candidate edits. This approach lets us scale "serial" test-time compute by increasing the number of iterations per trajectory and "parallel" test-time compute by increasing the number of trajectories per problem. With parallel scaling, we can amortize up-front costs across multiple downstream samples, allowing us to identify relevant codebase context using the simple method of letting an LLM read every file. In order to select between candidate edits, we combine voting using model-generated tests with a final multi-turn trajectory dedicated to selection. Overall, CodeMonkeys resolves 57.4% of issues from SWE-bench Verified using a budget of approximately 2300 USD. Our selection method can also be used to combine candidates from different sources. Selecting over an ensemble of edits from existing top SWE-bench Verified submissions obtains a score of 66.2% and outperforms the best member of the ensemble on its own. We fully release our code and data at https://scalingintelligence.stanford.edu/pubs/codemonkeys.
In defense of parameter sharing for model-compression
When considering a model architecture, there are several ways to reduce its memory footprint. Historically, popular approaches included selecting smaller architectures and creating sparse networks through pruning. More recently, randomized parameter-sharing (RPS) methods have gained traction for model compression at start of training. In this paper, we comprehensively assess the trade-off between memory and accuracy across RPS, pruning techniques, and building smaller models. Our findings demonstrate that RPS, which is both data and model-agnostic, consistently outperforms/matches smaller models and all moderately informed pruning strategies, such as MAG, SNIP, SYNFLOW, and GRASP, across the entire compression range. This advantage becomes particularly pronounced in higher compression scenarios. Notably, even when compared to highly informed pruning techniques like Lottery Ticket Rewinding (LTR), RPS exhibits superior performance in high compression settings. This points out inherent capacity advantage that RPS enjoys over sparse models. Theoretically, we establish RPS as a superior technique in terms of memory-efficient representation when compared to pruning for linear models. This paper argues in favor of paradigm shift towards RPS based models. During our rigorous evaluation of RPS, we identified issues in the state-of-the-art RPS technique ROAST, specifically regarding stability (ROAST's sensitivity to initialization hyperparameters, often leading to divergence) and Pareto-continuity (ROAST's inability to recover the accuracy of the original model at zero compression). We provably address both of these issues. We refer to the modified RPS, which incorporates our improvements, as STABLE-RPS.
Machine Learning for Online Algorithm Selection under Censored Feedback
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms. For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime. As the latter is known to exhibit a heavy-tail distribution, an algorithm is normally stopped when exceeding a predefined upper time limit. As a consequence, machine learning methods used to optimize an algorithm selection strategy in a data-driven manner need to deal with right-censored samples, a problem that has received little attention in the literature so far. In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem. Moreover, we adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon. In an extensive experimental evaluation on an adapted version of the ASlib benchmark, we demonstrate that theoretically well-founded methods based on Thompson sampling perform specifically strong and improve in comparison to existing methods.
VERINA: Benchmarking Verifiable Code Generation
Large language models (LLMs) are increasingly integrated in software development, but ensuring correctness in LLM-generated code remains challenging and often requires costly manual review. Verifiable code generation -- jointly generating code, specifications, and proofs of code-specification alignment -- offers a promising path to address this limitation and further unleash LLMs' benefits in coding. Yet, there exists a significant gap in evaluation: current benchmarks often lack support for end-to-end verifiable code generation. In this paper, we introduce Verina (Verifiable Code Generation Arena), a high-quality benchmark enabling a comprehensive and modular evaluation of code, specification, and proof generation as well as their compositions. Verina consists of 189 manually curated coding tasks in Lean, with detailed problem descriptions, reference implementations, formal specifications, and extensive test suites. Our extensive evaluation of state-of-the-art LLMs reveals significant challenges in verifiable code generation, especially in proof generation, underscoring the need for improving LLM-based theorem provers in verification domains. The best model, OpenAI o4-mini, generates only 61.4% correct code, 51.0% sound and complete specifications, and 3.6% successful proofs, with one trial per task. We hope Verina will catalyze progress in verifiable code generation by providing a rigorous and comprehensive benchmark. We release our dataset on https://huggingface.co/datasets/sunblaze-ucb/verina and our evaluation code on https://github.com/sunblaze-ucb/verina.
Scattered Forest Search: Smarter Code Space Exploration with LLMs
We propose a novel approach to scaling LLM inference for code generation. We frame code generation as a black box optimization problem within the code space, and employ optimization-inspired techniques to enhance exploration. Specifically, we introduce Scattered Forest Search to enhance solution diversity while searching for solutions. Our theoretical analysis illustrates how these methods avoid local optima during optimization. Extensive experiments on HumanEval, MBPP, APPS, CodeContests, and Leetcode reveal significant performance improvements. For instance, our method achieves a pass@1 rate of 67.1% on HumanEval+ and 87.2% on HumanEval with GPT-3.5, marking improvements of 8.6% and 4.3% over the state-of-the-art, while also halving the iterations needed to find the correct solution. Furthermore, our method scales more efficiently than existing search techniques, including tree search, line search, and repeated sampling.
A Deductive Verification Infrastructure for Probabilistic Programs
This paper presents a quantitative program verification infrastructure for discrete probabilistic programs. Our infrastructure can be viewed as the probabilistic analogue of Boogie: its central components are an intermediate verification language (IVL) together with a real-valued logic. Our IVL provides a programming-language-style for expressing verification conditions whose validity implies the correctness of a program under investigation. As our focus is on verifying quantitative properties such as bounds on expected outcomes, expected run-times, or termination probabilities, off-the-shelf IVLs based on Boolean first-order logic do not suffice. Instead, a paradigm shift from the standard Boolean to a real-valued domain is required. Our IVL features quantitative generalizations of standard verification constructs such as assume- and assert-statements. Verification conditions are generated by a weakest-precondition-style semantics, based on our real-valued logic. We show that our verification infrastructure supports natural encodings of numerous verification techniques from the literature. With our SMT-based implementation, we automatically verify a variety of benchmarks. To the best of our knowledge, this establishes the first deductive verification infrastructure for expectation-based reasoning about probabilistic programs.
Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates
In this paper, we describe a phenomenon, which we named "super-convergence", where neural networks can be trained an order of magnitude faster than with standard training methods. The existence of super-convergence is relevant to understanding why deep networks generalize well. One of the key elements of super-convergence is training with one learning rate cycle and a large maximum learning rate. A primary insight that allows super-convergence training is that large learning rates regularize the training, hence requiring a reduction of all other forms of regularization in order to preserve an optimal regularization balance. We also derive a simplification of the Hessian Free optimization method to compute an estimate of the optimal learning rate. Experiments demonstrate super-convergence for Cifar-10/100, MNIST and Imagenet datasets, and resnet, wide-resnet, densenet, and inception architectures. In addition, we show that super-convergence provides a greater boost in performance relative to standard training when the amount of labeled training data is limited. The architectures and code to replicate the figures in this paper are available at github.com/lnsmith54/super-convergence. See http://www.fast.ai/2018/04/30/dawnbench-fastai/ for an application of super-convergence to win the DAWNBench challenge (see https://dawn.cs.stanford.edu/benchmark/).
SSR: Speculative Parallel Scaling Reasoning in Test-time
Large language models (LLMs) have achieved impressive results on multi-step mathematical reasoning, yet at the cost of high computational overhead. This challenge is particularly acute for test-time scaling methods such as parallel decoding, which increase answer diversity but scale poorly in efficiency. To address this efficiency-accuracy trade-off, we propose SSR (Speculative Parallel Scaling Reasoning), a training-free framework that leverages a key insight: by introducing speculative decoding at the step level, we can accelerate reasoning without sacrificing correctness. SSR integrates two components: a Selective Parallel Module (SPM) that identifies a small set of promising reasoning strategies via model-internal scoring, and Step-level Speculative Decoding (SSD), which enables efficient draft-target collaboration for fine-grained reasoning acceleration. Experiments on three mathematical benchmarks-AIME 2024, MATH-500, and LiveMathBench - demonstrate that SSR achieves strong gains over baselines. For instance, on LiveMathBench, SSR improves pass@1 accuracy by 13.84% while reducing computation to 80.5% of the baseline FLOPs. On MATH-500, SSR reduces compute to only 30% with no loss in accuracy.
Constrained Efficient Global Optimization of Expensive Black-box Functions
We study the problem of constrained efficient global optimization, where both the objective and constraints are expensive black-box functions that can be learned with Gaussian processes. We propose CONFIG (CONstrained efFIcient Global Optimization), a simple and effective algorithm to solve it. Under certain regularity assumptions, we show that our algorithm enjoys the same cumulative regret bound as that in the unconstrained case and similar cumulative constraint violation upper bounds. For commonly used Matern and Squared Exponential kernels, our bounds are sublinear and allow us to derive a convergence rate to the optimal solution of the original constrained problem. In addition, our method naturally provides a scheme to declare infeasibility when the original black-box optimization problem is infeasible. Numerical experiments on sampled instances from the Gaussian process, artificial numerical problems, and a black-box building controller tuning problem all demonstrate the competitive performance of our algorithm. Compared to the other state-of-the-art methods, our algorithm significantly improves the theoretical guarantees, while achieving competitive empirical performance.
Scalable MatMul-free Language Modeling
Matrix multiplication (MatMul) typically dominates the overall computational cost of large language models (LLMs). This cost only grows as LLMs scale to larger embedding dimensions and context lengths. In this work, we show that MatMul operations can be completely eliminated from LLMs while maintaining strong performance at billion-parameter scales. Our experiments show that our proposed MatMul-free models achieve performance on-par with state-of-the-art Transformers that require far more memory during inference at a scale up to at least 2.7B parameters. We investigate the scaling laws and find that the performance gap between our MatMul-free models and full precision Transformers narrows as the model size increases. We also provide a GPU-efficient implementation of this model which reduces memory usage by up to 61% over an unoptimized baseline during training. By utilizing an optimized kernel during inference, our model's memory consumption can be reduced by more than 10x compared to unoptimized models. To properly quantify the efficiency of our architecture, we build a custom hardware solution on an FPGA which exploits lightweight operations beyond what GPUs are capable of. We processed billion-parameter scale models at 13W beyond human readable throughput, moving LLMs closer to brain-like efficiency. This work not only shows how far LLMs can be stripped back while still performing effectively, but also points at the types of operations future accelerators should be optimized for in processing the next generation of lightweight LLMs. Our code implementation is available at https://github.com/ridgerchu/matmulfreellm.
Root Cause Analysis In Microservice Using Neural Granger Causal Discovery
In recent years, microservices have gained widespread adoption in IT operations due to their scalability, maintenance, and flexibility. However, it becomes challenging for site reliability engineers (SREs) to pinpoint the root cause due to the complex relationships in microservices when facing system malfunctions. Previous research employed structured learning methods (e.g., PC-algorithm) to establish causal relationships and derive root causes from causal graphs. Nevertheless, they ignored the temporal order of time series data and failed to leverage the rich information inherent in the temporal relationships. For instance, in cases where there is a sudden spike in CPU utilization, it can lead to an increase in latency for other microservices. However, in this scenario, the anomaly in CPU utilization occurs before the latency increase, rather than simultaneously. As a result, the PC-algorithm fails to capture such characteristics. To address these challenges, we propose RUN, a novel approach for root cause analysis using neural Granger causal discovery with contrastive learning. RUN enhances the backbone encoder by integrating contextual information from time series, and leverages a time series forecasting model to conduct neural Granger causal discovery. In addition, RUN incorporates Pagerank with a personalization vector to efficiently recommend the top-k root causes. Extensive experiments conducted on the synthetic and real-world microservice-based datasets demonstrate that RUN noticeably outperforms the state-of-the-art root cause analysis methods. Moreover, we provide an analysis scenario for the sock-shop case to showcase the practicality and efficacy of RUN in microservice-based applications. Our code is publicly available at https://github.com/zmlin1998/RUN.
IterLara: A Turing Complete Algebra for Big Data, AI, Scientific Computing, and Database
Lara is a key-value algebra that aims at unifying linear and relational algebra with three types of operation abstraction. The study of Lara's expressive ability reports that it can represent relational algebra and most linear algebra operations. However, several essential computations, such as matrix inversion and determinant, cannot be expressed in Lara. Lara cannot represent global and iterative computation, either. This article proposes IterLara, extending Lara with iterative operators, to provide an algebraic model that unifies operations in general-purpose computing, like big data, AI, scientific computing, and database. We study the expressive ability of Lara and IterLara and prove that IterLara with aggregation functions can represent matrix inversion, determinant. Besides, we demonstrate that IterLara with no limitation of function utility is Turing complete. We also propose the Operation Count (OP) as a metric of computation amount for IterLara and ensure that the OP metric is in accordance with the existing computation metrics.
AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions
Computers calculate transcendental functions by approximating them through the composition of a few limited-precision instructions. For example, an exponential can be calculated with a Taylor series. These approximation methods were developed over the centuries by mathematicians, who emphasized the attainability of arbitrary precision. Computers, however, operate on few limited precision types, such as the popular float32. In this study, we show that when aiming for limited precision, existing approximation methods can be outperformed by programs automatically discovered from scratch by a simple evolutionary algorithm. In particular, over real numbers, our method can approximate the exponential function reaching orders of magnitude more precision for a given number of operations when compared to previous approaches. More practically, over float32 numbers and constrained to less than 1 ULP of error, the same method attains a speedup over baselines by generating code that triggers better XLA/LLVM compilation paths. In other words, in both cases, evolution searched a vast space of possible programs, without knowledge of mathematics, to discover previously unknown optimized approximations to high precision, for the first time. We also give evidence that these results extend beyond the exponential. The ubiquity of transcendental functions suggests that our method has the potential to reduce the cost of scientific computing applications.
Tight Certification of Adversarially Trained Neural Networks via Nonconvex Low-Rank Semidefinite Relaxations
Adversarial training is well-known to produce high-quality neural network models that are empirically robust against adversarial perturbations. Nevertheless, once a model has been adversarially trained, one often desires a certification that the model is truly robust against all future attacks. Unfortunately, when faced with adversarially trained models, all existing approaches have significant trouble making certifications that are strong enough to be practically useful. Linear programming (LP) techniques in particular face a "convex relaxation barrier" that prevent them from making high-quality certifications, even after refinement with mixed-integer linear programming (MILP) and branch-and-bound (BnB) techniques. In this paper, we propose a nonconvex certification technique, based on a low-rank restriction of a semidefinite programming (SDP) relaxation. The nonconvex relaxation makes strong certifications comparable to much more expensive SDP methods, while optimizing over dramatically fewer variables comparable to much weaker LP methods. Despite nonconvexity, we show how off-the-shelf local optimization algorithms can be used to achieve and to certify global optimality in polynomial time. Our experiments find that the nonconvex relaxation almost completely closes the gap towards exact certification of adversarially trained models.
Near-Optimal Cryptographic Hardness of Agnostically Learning Halfspaces and ReLU Regression under Gaussian Marginals
We study the task of agnostically learning halfspaces under the Gaussian distribution. Specifically, given labeled examples (x,y) from an unknown distribution on R^n times { pm 1}, whose marginal distribution on x is the standard Gaussian and the labels y can be arbitrary, the goal is to output a hypothesis with 0-1 loss OPT+epsilon, where OPT is the 0-1 loss of the best-fitting halfspace. We prove a near-optimal computational hardness result for this task, under the widely believed sub-exponential time hardness of the Learning with Errors (LWE) problem. Prior hardness results are either qualitatively suboptimal or apply to restricted families of algorithms. Our techniques extend to yield near-optimal lower bounds for related problems, including ReLU regression.
EffiBench: Benchmarking the Efficiency of Automatically Generated Code
Code generation models have increasingly become integral to aiding software development, offering assistance in tasks such as code completion, debugging, and code translation. Although current research has thoroughly examined the correctness of code produced by code generation models, a vital aspect, i.e., the efficiency of the generated code, has often been neglected. This paper presents EffiBench, a benchmark with 1,000 efficiency-critical coding problems for assessing the efficiency of code generated by code generation models. EffiBench contains a diverse set of LeetCode coding problems. Each problem is paired with an executable human-written canonical solution. With EffiBench, we empirically examine the capability of 21 Large Language Models (13 open-sourced and 8 closed-sourced) in generating efficient code. The results demonstrate that GPT-4-turbo generates the most efficient code, significantly outperforming Palm-2-chat-bison, Claude-instant-1, Gemini-pro, GPT-4, and GPT-3.5. Nevertheless, its code efficiency is still worse than the efficiency of human-written canonical solutions. In particular, the average and worst execution time of GPT-4-turbo generated code is 1.69 and 45.49 times that of the canonical solutions.
Pre^3: Enabling Deterministic Pushdown Automata for Faster Structured LLM Generation
Extensive LLM applications demand efficient structured generations, particularly for LR(1) grammars, to produce outputs in specified formats (e.g., JSON). Existing methods primarily parse LR(1) grammars into a pushdown automaton (PDA), leading to runtime execution overhead for context-dependent token processing, especially inefficient under large inference batches. To address these issues, we propose Pre^3 that exploits deterministic pushdown automata (DPDA) to optimize the constrained LLM decoding efficiency. First, by precomputing prefix-conditioned edges during the preprocessing, Pre^3 enables ahead-of-time edge analysis and thus makes parallel transition processing possible. Second, by leveraging the prefix-conditioned edges, Pre^3 introduces a novel approach that transforms LR(1) transition graphs into DPDA, eliminating the need for runtime path exploration and achieving edge transitions with minimal overhead. Pre^3 can be seamlessly integrated into standard LLM inference frameworks, reducing time per output token (TPOT) by up to 40% and increasing throughput by up to 36% in our experiments. Our code is available at https://github.com/ModelTC/lightllm.
How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark
The emergence of large language models (LLMs) has significantly pushed the frontiers of program synthesis. Advancement of LLM-based program synthesis calls for a thorough evaluation of LLM-generated code. Most evaluation frameworks focus on the (functional) correctness of generated code; efficiency, as an important measure of code quality, has been overlooked in existing evaluations. In this work, we develop ENAMEL (EfficeNcy AutoMatic EvaLuator), a rigorous and high-standard benchmark for evaluating the capability of LLMs in generating efficient code. Firstly, we propose a new efficiency metric called eff@k, which generalizes the pass@k metric from correctness to efficiency and appropriately handles right-censored execution time. Furthermore, we derive an unbiased and variance-reduced estimator of eff@k via Rao--Blackwellization; we also provide a numerically stable implementation for the new estimator. Secondly, to set a high-standard for efficiency evaluation, we employ a human expert to design best algorithms and implementations as our reference solutions of efficiency, many of which are much more efficient than existing canonical solutions in HumanEval and HumanEval+. Moreover, to ensure a rigorous evaluation, we employ a human expert to curate strong test case generators to filter out wrong code and differentiate suboptimal algorithms. An extensive study across 30 popular LLMs using our benchmark ENAMEL shows that LLMs still fall short of generating expert-level efficient code. Using two subsets of our problem set, we demonstrate that such deficiency is because current LLMs struggle in designing advanced algorithms and are barely aware of implementation optimization. Our benchmark is publicly available at https://github.com/q-rz/enamel .
OIBench: Benchmarking Strong Reasoning Models with Olympiad in Informatics
As models become increasingly sophisticated, conventional algorithm benchmarks are increasingly saturated, underscoring the need for more challenging benchmarks to guide future improvements in algorithmic reasoning. This paper introduces OIBench, a high-quality, private, and challenging olympiad-level informatics dataset comprising 250 carefully curated original problems. We detail the construction methodology of the benchmark, ensuring a comprehensive assessment across various programming paradigms and complexities, and we demonstrate its contamination-resistant properties via experiments. We propose Time/Space Completion Curves for finer-grained efficiency analysis and enable direct human-model comparisons through high-level participant evaluations. Our experiments reveal that while open-source models lag behind closed-source counterparts, current SOTA models already outperform most human participants in both correctness and efficiency, while still being suboptimal compared to the canonical solutions. By releasing OIBench as a fully open-source resource (https://huggingface.co/datasets/AGI-Eval/OIBench), we hope this benchmark will contribute to advancing code reasoning capabilities for future LLMs.
TOPLOC: A Locality Sensitive Hashing Scheme for Trustless Verifiable Inference
Large language models (LLMs) have proven to be very capable, but access to the best models currently rely on inference providers which introduces trust challenges -- how can we be sure that the provider is using the model configuration they claim? We propose TOPLOC, a novel method for verifiable inference that addresses this problem. TOPLOC leverages a compact locality sensitive hashing mechanism for intermediate activations which can detect unauthorized modifications to models, prompts, or precision with 100% accuracy, achieving no false positives or negatives in our empirical evaluations. Our approach is robust across diverse hardware configurations, GPU types, and algebraic reorderings, which allows for validation speeds significantly faster than the original inference. By introducing a polynomial encoding scheme, TOPLOC minimizes memory overhead of the generated commits by 1000times, requiring only 258 bytes of storage per 32 new tokens compared to the 262KB requirement of storing the token embeddings directly for Llama-3.1-8B-Instruct. Our method empowers users to verify LLM inference computations efficiently, fostering greater trust and transparency in open ecosystems and lays a foundation for decentralized and verifiable AI services.
ParBalans: Parallel Multi-Armed Bandits-based Adaptive Large Neighborhood Search
Solving Mixed-Integer Programming (MIP) problems often requires substantial computational resources due to their combinatorial nature. Parallelization has emerged as a critical strategy to accelerate solution times and enhance scalability to tackle large, complex instances. This paper investigates the parallelization capabilities of Balans, a recently proposed multi-armed bandits-based adaptive large neighborhood search for MIPs. While Balans's modular architecture inherently supports parallel exploration of diverse parameter configurations, this potential has not been thoroughly examined. To address this gap, we introduce ParBalans, an extension that leverages both solver-level and algorithmic-level parallelism to improve performance on challenging MIP instances. Our experimental results demonstrate that ParBalans exhibits competitive performance compared to the state-of-the-art commercial solver Gurobi, particularly on hard optimization benchmarks.
Quantum Lower Bounds for Finding Stationary Points of Nonconvex Functions
Quantum algorithms for optimization problems are of general interest. Despite recent progress in classical lower bounds for nonconvex optimization under different settings and quantum lower bounds for convex optimization, quantum lower bounds for nonconvex optimization are still widely open. In this paper, we conduct a systematic study of quantum query lower bounds on finding epsilon-approximate stationary points of nonconvex functions, and we consider the following two important settings: 1) having access to p-th order derivatives; or 2) having access to stochastic gradients. The classical query lower bounds is Omegabig(epsilon^{-1+p{p}}big) regarding the first setting, and Omega(epsilon^{-4}) regarding the second setting (or Omega(epsilon^{-3}) if the stochastic gradient function is mean-squared smooth). In this paper, we extend all these classical lower bounds to the quantum setting. They match the classical algorithmic results respectively, demonstrating that there is no quantum speedup for finding epsilon-stationary points of nonconvex functions with p-th order derivative inputs or stochastic gradient inputs, whether with or without the mean-squared smoothness assumption. Technically, our quantum lower bounds are obtained by showing that the sequential nature of classical hard instances in all these settings also applies to quantum queries, preventing any quantum speedup other than revealing information of the stationary points sequentially.
APOLLO: Automated LLM and Lean Collaboration for Advanced Formal Reasoning
Formal reasoning and automated theorem proving constitute a challenging subfield of machine learning, in which machines are tasked with proving mathematical theorems using formal languages like Lean. A formal verification system can check whether a formal proof is correct or not almost instantaneously, but generating a completely correct formal proof with large language models (LLMs) remains a formidable task. The usual approach in the literature is to prompt the LLM many times (up to several thousands) until one of the generated proofs passes the verification system. In this work, we present APOLLO (Automated PrOof repair via LLM and Lean cOllaboration), a modular, model-agnostic pipeline that combines the strengths of the Lean compiler with an LLM's reasoning abilities to achieve better proof-generation results at a low sampling budget. Apollo directs a fully automated process in which the LLM generates proofs for theorems, a set of agents analyze the proofs, fix the syntax errors, identify the mistakes in the proofs using Lean, isolate failing sub-lemmas, utilize automated solvers, and invoke an LLM on each remaining goal with a low top-K budget. The repaired sub-proofs are recombined and reverified, iterating up to a user-controlled maximum number of attempts. On the miniF2F benchmark, we establish a new state-of-the-art accuracy of 75.0% among 7B-parameter models while keeping the sampling budget below one thousand. Moreover, Apollo raises the state-of-the-art accuracy for Goedel-Prover-SFT to 65.6% while cutting sample complexity from 25,600 to a few hundred. General-purpose models (o3-mini, o4-mini) jump from 3-7% to over 40% accuracy. Our results demonstrate that targeted, compiler-guided repair of LLM outputs yields dramatic gains in both efficiency and correctness, suggesting a general paradigm for scalable automated theorem proving.
Compatibility of Fundamental Matrices for Complete Viewing Graphs
This paper studies the problem of recovering cameras from a set of fundamental matrices. A set of fundamental matrices is said to be compatible if a set of cameras exists for which they are the fundamental matrices. We focus on the complete graph, where fundamental matrices for each pair of cameras are given. Previous work has established necessary and sufficient conditions for compatibility as rank and eigenvalue conditions on the n-view fundamental matrix obtained by concatenating the individual fundamental matrices. In this work, we show that the eigenvalue condition is redundant. We provide explicit homogeneous polynomials that describe necessary and sufficient conditions for compatibility in terms of the fundamental matrices and their epipoles. In this direction, we find that quadruple-wise compatibility is enough to ensure global compatibility for any number of cameras. We demonstrate that for four cameras, compatibility is generically described by triple-wise conditions and one additional equation involving all fundamental matrices.
4-bit Shampoo for Memory-Efficient Network Training
Second-order optimizers, maintaining a matrix termed a preconditioner, are superior to first-order optimizers in both theory and practice. The states forming the preconditioner and its inverse root restrict the maximum size of models trained by second-order optimizers. To address this, compressing 32-bit optimizer states to lower bitwidths has shown promise in reducing memory usage. However, current approaches only pertain to first-order optimizers. In this paper, we propose the first 4-bit second-order optimizers, exemplified by 4-bit Shampoo, maintaining performance similar to that of 32-bit ones. We show that quantizing the eigenvector matrix of the preconditioner in 4-bit Shampoo is remarkably better than quantizing the preconditioner itself both theoretically and experimentally. By rectifying the orthogonality of the quantized eigenvector matrix, we enhance the approximation of the preconditioner's eigenvector matrix, which also benefits the computation of its inverse 4-th root. Besides, we find that linear square quantization slightly outperforms dynamic tree quantization when quantizing second-order optimizer states. Evaluation on various networks for image classification demonstrates that our 4-bit Shampoo achieves comparable test accuracy to its 32-bit counterpart while being more memory-efficient. The source code will be made available.
Let's Make Block Coordinate Descent Converge Faster: Faster Greedy Rules, Message-Passing, Active-Set Complexity, and Superlinear Convergence
Block coordinate descent (BCD) methods are widely used for large-scale numerical optimization because of their cheap iteration costs, low memory requirements, amenability to parallelization, and ability to exploit problem structure. Three main algorithmic choices influence the performance of BCD methods: the block partitioning strategy, the block selection rule, and the block update rule. In this paper we explore all three of these building blocks and propose variations for each that can significantly improve the progress made by each BCD iteration. We (i) propose new greedy block-selection strategies that guarantee more progress per iteration than the Gauss-Southwell rule; (ii) explore practical issues like how to implement the new rules when using "variable" blocks; (iii) explore the use of message-passing to compute matrix or Newton updates efficiently on huge blocks for problems with sparse dependencies between variables; and (iv) consider optimal active manifold identification, which leads to bounds on the "active-set complexity" of BCD methods and leads to superlinear convergence for certain problems with sparse solutions (and in some cases finite termination at an optimal solution). We support all of our findings with numerical results for the classic machine learning problems of least squares, logistic regression, multi-class logistic regression, label propagation, and L1-regularization.
Optimal LP Rounding and Linear-Time Approximation Algorithms for Clustering Edge-Colored Hypergraphs
We study the approximability of an existing framework for clustering edge-colored hypergraphs, which is closely related to chromatic correlation clustering and is motivated by machine learning and data mining applications where the goal is to cluster a set of objects based on multiway interactions of different categories or types. We present improved approximation guarantees based on linear programming, and show they are tight by proving a matching integrality gap. Our results also include new approximation hardness results, a combinatorial 2-approximation whose runtime is linear in the hypergraph size, and several new connections to well-studied objectives such as vertex cover and hypergraph multiway cut.
Power-Softmax: Towards Secure LLM Inference over Encrypted Data
Modern cryptographic methods for implementing privacy-preserving LLMs such as Homomorphic Encryption (HE) require the LLMs to have a polynomial form. Forming such a representation is challenging because Transformers include non-polynomial components, such as Softmax and layer normalization. Previous approaches have either directly approximated pre-trained models with large-degree polynomials, which are less efficient over HE, or replaced non-polynomial components with easier-to-approximate primitives before training, e.g., Softmax with pointwise attention. The latter approach might introduce scalability challenges. We present a new HE-friendly variant of self-attention that offers a stable form for training and is easy to approximate with polynomials for secure inference. Our work introduces the first polynomial LLMs with 32 layers and over a billion parameters, exceeding the size of previous models by more than tenfold. The resulting models demonstrate reasoning and in-context learning (ICL) capabilities comparable to standard transformers of the same size, representing a breakthrough in the field. Finally, we provide a detailed latency breakdown for each computation over encrypted data, paving the way for further optimization, and explore the differences in inductive bias between transformers relying on our HE-friendly variant and standard transformers. Our code is attached as a supplement.
Toward TransfORmers: Revolutionizing the Solution of Mixed Integer Programs with Transformers
In this study, we introduce an innovative deep learning framework that employs a transformer model to address the challenges of mixed-integer programs, specifically focusing on the Capacitated Lot Sizing Problem (CLSP). Our approach, to our knowledge, is the first to utilize transformers to predict the binary variables of a mixed-integer programming (MIP) problem. Specifically, our approach harnesses the encoder decoder transformer's ability to process sequential data, making it well-suited for predicting binary variables indicating production setup decisions in each period of the CLSP. This problem is inherently dynamic, and we need to handle sequential decision making under constraints. We present an efficient algorithm in which CLSP solutions are learned through a transformer neural network. The proposed post-processed transformer algorithm surpasses the state-of-the-art solver, CPLEX and Long Short-Term Memory (LSTM) in solution time, optimal gap, and percent infeasibility over 240K benchmark CLSP instances tested. After the ML model is trained, conducting inference on the model, reduces the MIP into a linear program (LP). This transforms the ML-based algorithm, combined with an LP solver, into a polynomial-time approximation algorithm to solve a well-known NP-Hard problem, with almost perfect solution quality.
Putting the Value Back in RL: Better Test-Time Scaling by Unifying LLM Reasoners With Verifiers
Prevalent reinforcement learning~(RL) methods for fine-tuning LLM reasoners, such as GRPO or Leave-one-out PPO, abandon the learned value function in favor of empirically estimated returns. This hinders test-time compute scaling that relies on using the value-function for verification. In this work, we propose RL^V that augments any ``value-free'' RL method by jointly training the LLM as both a reasoner and a generative verifier using RL-generated data, adding verification capabilities without significant overhead. Empirically, RL^V boosts MATH accuracy by over 20\% with parallel sampling and enables 8-32times efficient test-time compute scaling compared to the base RL method. RL^V also exhibits strong generalization capabilities for both easy-to-hard and out-of-domain tasks. Furthermore, RL^V achieves 1.2-1.6times higher performance when jointly scaling parallel and sequential test-time compute with a long reasoning R1 model.
Simple Hardware-Efficient Long Convolutions for Sequence Modeling
State space models (SSMs) have high performance on long sequence modeling but require sophisticated initialization techniques and specialized implementations for high quality and runtime performance. We study whether a simple alternative can match SSMs in performance and efficiency: directly learning long convolutions over the sequence. We find that a key requirement to achieving high performance is keeping the convolution kernels smooth. We find that simple interventions--such as squashing the kernel weights--result in smooth kernels and recover SSM performance on a range of tasks including the long range arena, image classification, language modeling, and brain data modeling. Next, we develop FlashButterfly, an IO-aware algorithm to improve the runtime performance of long convolutions. FlashButterfly appeals to classic Butterfly decompositions of the convolution to reduce GPU memory IO and increase FLOP utilization. FlashButterfly speeds up convolutions by 2.2times, and allows us to train on Path256, a challenging task with sequence length 64K, where we set state-of-the-art by 29.1 points while training 7.2times faster than prior work. Lastly, we introduce an extension to FlashButterfly that learns the coefficients of the Butterfly decomposition, increasing expressivity without increasing runtime. Using this extension, we outperform a Transformer on WikiText103 by 0.2 PPL with 30% fewer parameters.
Fine-Tuning Large Language Models on Quantum Optimization Problems for Circuit Generation
Large language models (LLM) have achieved remarkable outcomes in addressing complex problems, including math, coding, and analyzing large amounts of scientific reports. Yet few works have explored the potential of LLM in quantum computing. The most challenging problem is how to leverage LLMs to automatically generate quantum circuits at a large scale. In this paper, we address such a challenge by fine-tuning LLMs and injecting the domain-specific knowledge of quantum computing. In particular, we investigate the mechanisms to generate training data sets and construct the end-to-end pipeline to fine-tune pre-trained LLMs that produce parameterized quantum circuits for optimization problems. We have prepared 14,000 quantum circuits covering a substantial part of the quantum optimization landscape: 12 optimization problem instances and their optimized QAOA, VQE, and adaptive VQE circuits. The fine-tuned LLMs can construct syntactically correct parametrized quantum circuits in the most recent OpenQASM 3.0. We have evaluated the quality of the parameters by comparing them to the optimized expectation values and distributions. Our evaluation shows that the fine-tuned LLM outperforms state-of-the-art models and that the parameters are better than random. The LLM-generated parametrized circuits and initial parameters can be used as a starting point for further optimization, e.g., templates in quantum machine learning and the benchmark for compilers and hardware.
Finding Increasingly Large Extremal Graphs with AlphaZero and Tabu Search
This work studies a central extremal graph theory problem inspired by a 1975 conjecture of Erdos, which aims to find graphs with a given size (number of nodes) that maximize the number of edges without having 3- or 4-cycles. We formulate this problem as a sequential decision-making problem and compare AlphaZero, a neural network-guided tree search, with tabu search, a heuristic local search method. Using either method, by introducing a curriculum -- jump-starting the search for larger graphs using good graphs found at smaller sizes -- we improve the state-of-the-art lower bounds for several sizes. We also propose a flexible graph-generation environment and a permutation-invariant network architecture for learning to search in the space of graphs.
Accurate Computation of the Logarithm of Modified Bessel Functions on GPUs
Bessel functions are critical in scientific computing for applications such as machine learning, protein structure modeling, and robotics. However, currently, available routines lack precision or fail for certain input ranges, such as when the order v is large, and GPU-specific implementations are limited. We address the precision limitations of current numerical implementations while dramatically improving the runtime. We propose two novel algorithms for computing the logarithm of modified Bessel functions of the first and second kinds by computing intermediate values on a logarithmic scale. Our algorithms are robust and never have issues with underflows or overflows while having relative errors on the order of machine precision, even for inputs where existing libraries fail. In C++/CUDA, our algorithms have median and maximum speedups of 45x and 6150x for GPU and 17x and 3403x for CPU, respectively, over the ranges of inputs and third-party libraries tested. Compared to SciPy, the algorithms have median and maximum speedups of 77x and 300x for GPU and 35x and 98x for CPU, respectively, over the tested inputs. The ability to robustly compute a solution and the low relative errors allow us to fit von Mises-Fisher, vMF, distributions to high-dimensional neural network features. This is, e.g., relevant for uncertainty quantification in metric learning. We obtain image feature data by processing CIFAR10 training images with the convolutional layers of a pre-trained ResNet50. We successfully fit vMF distributions to 2048-, 8192-, and 32768-dimensional image feature data using our algorithms. Our approach provides fast and accurate results while existing implementations in SciPy and mpmath fail to fit successfully. Our approach is readily implementable on GPUs, and we provide a fast open-source implementation alongside this paper.
Efficiently Programming Large Language Models using SGLang
Large language models (LLMs) are increasingly used for complex tasks requiring multiple chained generation calls, advanced prompting techniques, control flow, and interaction with external environments. However, efficient systems for programming and executing these applications are lacking. To bridge this gap, we introduce SGLang, a Structured Generation Language for LLMs. SGLang is designed for the efficient programming of LLMs and incorporates primitives for common LLM programming patterns. We have implemented SGLang as a domain-specific language embedded in Python, and we developed an interpreter, a compiler, and a high-performance runtime for SGLang. These components work together to enable optimizations such as parallelism, batching, caching, sharing, and other compilation techniques. Additionally, we propose RadixAttention, a novel technique that maintains a Least Recently Used (LRU) cache of the Key-Value (KV) cache for all requests in a radix tree, enabling automatic KV cache reuse across multiple generation calls at runtime. SGLang simplifies the writing of LLM programs and boosts execution efficiency. Our experiments demonstrate that SGLang can speed up common LLM tasks by up to 5x, while reducing code complexity and enhancing control.
Information-theoretic subset selection of multivariate Markov chains via submodular optimization
We study the problem of optimally projecting the transition matrix of a finite ergodic multivariate Markov chain onto a lower-dimensional state space. Specifically, we seek to construct a projected Markov chain that optimizes various information-theoretic criteria under cardinality constraints. These criteria include entropy rate, information-theoretic distance to factorizability, independence, and stationarity. We formulate these tasks as best subset selection problems over multivariate Markov chains and leverage the submodular (or supermodular) structure of the objective functions to develop efficient greedy-based algorithms with theoretical guarantees. We extend our analysis to k-submodular settings and introduce a generalized version of the distorted greedy algorithm, which may be of independent interest. Finally, we illustrate the theory and algorithms through extensive numerical experiments with publicly available code on multivariate Markov chains associated with the Bernoulli-Laplace and Curie-Weiss model.
Efficient and practical quantum compiler towards multi-qubit systems with deep reinforcement learning
Efficient quantum compiling tactics greatly enhance the capability of quantum computers to execute complicated quantum algorithms. Due to its fundamental importance, a plethora of quantum compilers has been designed in past years. However, there are several caveats to current protocols, which are low optimality, high inference time, limited scalability, and lack of universality. To compensate for these defects, here we devise an efficient and practical quantum compiler assisted by advanced deep reinforcement learning (RL) techniques, i.e., data generation, deep Q-learning, and AQ* search. In this way, our protocol is compatible with various quantum machines and can be used to compile multi-qubit operators. We systematically evaluate the performance of our proposal in compiling quantum operators with both inverse-closed and inverse-free universal basis sets. In the task of single-qubit operator compiling, our proposal outperforms other RL-based quantum compilers in the measure of compiling sequence length and inference time. Meanwhile, the output solution is near-optimal, guaranteed by the Solovay-Kitaev theorem. Notably, for the inverse-free universal basis set, the achieved sequence length complexity is comparable with the inverse-based setting and dramatically advances previous methods. These empirical results contribute to improving the inverse-free Solovay-Kitaev theorem. In addition, for the first time, we demonstrate how to leverage RL-based quantum compilers to accomplish two-qubit operator compiling. The achieved results open an avenue for integrating RL with quantum compiling to unify efficiency and practicality and thus facilitate the exploration of quantum advantages.
Subgraph Permutation Equivariant Networks
In this work we develop a new method, named Sub-graph Permutation Equivariant Networks (SPEN), which provides a framework for building graph neural networks that operate on sub-graphs, while using a base update function that is permutation equivariant, that are equivariant to a novel choice of automorphism group. Message passing neural networks have been shown to be limited in their expressive power and recent approaches to over come this either lack scalability or require structural information to be encoded into the feature space. The general framework presented here overcomes the scalability issues associated with global permutation equivariance by operating more locally on sub-graphs. In addition, through operating on sub-graphs the expressive power of higher-dimensional global permutation equivariant networks is improved; this is due to fact that two non-distinguishable graphs often contain distinguishable sub-graphs. Furthermore, the proposed framework only requires a choice of k-hops for creating ego-network sub-graphs and a choice of representation space to be used for each layer, which makes the method easily applicable across a range of graph based domains. We experimentally validate the method on a range of graph benchmark classification tasks, demonstrating statistically indistinguishable results from the state-of-the-art on six out of seven benchmarks. Further, we demonstrate that the use of local update functions offers a significant improvement in GPU memory over global methods.
Astraios: Parameter-Efficient Instruction Tuning Code Large Language Models
The high cost of full-parameter fine-tuning (FFT) of Large Language Models (LLMs) has led to a series of parameter-efficient fine-tuning (PEFT) methods. However, it remains unclear which methods provide the best cost-performance trade-off at different model scales. We introduce Astraios, a suite of 28 instruction-tuned OctoCoder models using 7 tuning methods and 4 model sizes up to 16 billion parameters. Through investigations across 5 tasks and 8 different datasets encompassing both code comprehension and code generation tasks, we find that FFT generally leads to the best downstream performance across all scales, and PEFT methods differ significantly in their efficacy based on the model scale. LoRA usually offers the most favorable trade-off between cost and performance. Further investigation into the effects of these methods on both model robustness and code security reveals that larger models tend to demonstrate reduced robustness and less security. At last, we explore the relationships among updated parameters, cross-entropy loss, and task performance. We find that the tuning effectiveness observed in small models generalizes well to larger models, and the validation loss in instruction tuning can be a reliable indicator of overall downstream performance.
Faster Algorithms for Text-to-Pattern Hamming Distances
We study the classic Text-to-Pattern Hamming Distances problem: given a pattern P of length m and a text T of length n, both over a polynomial-size alphabet, compute the Hamming distance between P and T[i, ., . , i+m-1] for every shift i, under the standard Word-RAM model with Theta(log n)-bit words. - We provide an O(nm) time Las Vegas randomized algorithm for this problem, beating the decades-old O(n m log m) running time [Abrahamson, SICOMP 1987]. We also obtain a deterministic algorithm, with a slightly higher O(nm(log mloglog m)^{1/4}) running time. Our randomized algorithm extends to the k-bounded setting, with running time Obig(n+nk{m}big), removing all the extra logarithmic factors from earlier algorithms [Gawrychowski and Uzna\'{n}ski, ICALP 2018; Chan, Golan, Kociumaka, Kopelowitz and Porat, STOC 2020]. - For the (1+epsilon)-approximate version of Text-to-Pattern Hamming Distances, we give an O(epsilon^{-0.93}n) time Monte Carlo randomized algorithm, beating the previous O(epsilon^{-1}n) running time [Kopelowitz and Porat, FOCS 2015; Kopelowitz and Porat, SOSA 2018]. Our approximation algorithm exploits a connection with 3SUM, and uses a combination of Fredman's trick, equality matrix product, and random sampling; in particular, we obtain new results on approximate counting versions of 3SUM and Exact Triangle, which may be of independent interest. Our exact algorithms use a novel combination of hashing, bit-packed FFT, and recursion; in particular, we obtain a faster algorithm for computing the sumset of two integer sets, in the regime when the universe size is close to quadratic in the number of elements. We also prove a fine-grained equivalence between the exact Text-to-Pattern Hamming Distances problem and a range-restricted, counting version of 3SUM.
μnit Scaling: Simple and Scalable FP8 LLM Training
Large Language Model training with 8-bit floating point (FP8) formats promises significant efficiency improvements, but reduced numerical precision makes training challenging. It is currently possible to train in FP8 only if one is willing to tune various hyperparameters, reduce model scale, or accept the overhead of computing dynamic scale factors. We demonstrate simple, scalable FP8 training that requires no dynamic scaling factors or special hyperparameters, even at large model sizes. Our method, munit Scaling (muS), also enables simple hyperparameter transfer across model widths, matched numerics across training and inference, and other desirable properties. munit Scaling is straightforward to implement, consisting of a set of minimal interventions based on a first-principles analysis of common transformer operations. We validate our method by training models from 1B to 13B parameters, performing all hidden linear layer computations in FP8. We achieve quality equal to higher precision baselines while also training up to 33% faster.
Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl
PySR is an open-source library for practical symbolic regression, a type of machine learning which aims to discover human-interpretable symbolic models. PySR was developed to democratize and popularize symbolic regression for the sciences, and is built on a high-performance distributed back-end, a flexible search algorithm, and interfaces with several deep learning packages. PySR's internal search algorithm is a multi-population evolutionary algorithm, which consists of a unique evolve-simplify-optimize loop, designed for optimization of unknown scalar constants in newly-discovered empirical expressions. PySR's backend is the extremely optimized Julia library SymbolicRegression.jl, which can be used directly from Julia. It is capable of fusing user-defined operators into SIMD kernels at runtime, performing automatic differentiation, and distributing populations of expressions to thousands of cores across a cluster. In describing this software, we also introduce a new benchmark, "EmpiricalBench," to quantify the applicability of symbolic regression algorithms in science. This benchmark measures recovery of historical empirical equations from original and synthetic datasets.
Unsupervised Discovery of Formulas for Mathematical Constants
Ongoing efforts that span over decades show a rise of AI methods for accelerating scientific discovery, yet accelerating discovery in mathematics remains a persistent challenge for AI. Specifically, AI methods were not effective in creation of formulas for mathematical constants because each such formula must be correct for infinite digits of precision, with "near-true" formulas providing no insight toward the correct ones. Consequently, formula discovery lacks a clear distance metric needed to guide automated discovery in this realm. In this work, we propose a systematic methodology for categorization, characterization, and pattern identification of such formulas. The key to our methodology is introducing metrics based on the convergence dynamics of the formulas, rather than on the numerical value of the formula. These metrics enable the first automated clustering of mathematical formulas. We demonstrate this methodology on Polynomial Continued Fraction formulas, which are ubiquitous in their intrinsic connections to mathematical constants, and generalize many mathematical functions and structures. We test our methodology on a set of 1,768,900 such formulas, identifying many known formulas for mathematical constants, and discover previously unknown formulas for pi, ln(2), Gauss', and Lemniscate's constants. The uncovered patterns enable a direct generalization of individual formulas to infinite families, unveiling rich mathematical structures. This success paves the way towards a generative model that creates formulas fulfilling specified mathematical properties, accelerating the rate of discovery of useful formulas.
Knowledge Transfer from High-Resource to Low-Resource Programming Languages for Code LLMs
Over the past few years, Large Language Models of Code (Code LLMs) have started to have a significant impact on programming practice. Code LLMs are also emerging as a building block for research in programming languages and software engineering. However, the quality of code produced by a Code LLM varies significantly by programming languages. Code LLMs produce impressive results on programming languages that are well represented in their training data (e.g., Java, Python, or JavaScript), but struggle with low-resource languages, like OCaml and Racket. This paper presents an effective approach for boosting the performance of Code LLMs on low-resource languages using semi-synthetic data. Our approach generates high-quality datasets for low-resource languages, which can then be used to fine-tune any pretrained Code LLM. Our approach, called MultiPL-T, translates training data from high-resource languages into training data for low-resource languages. We apply our approach to generate tens of thousands of new, validated training items for Racket, OCaml, and Lua from Python. Moreover, we use an open dataset (The Stack) and model (StarCoderBase), which allow us to decontaminate benchmarks and train models on this data without violating the model license. With MultiPL-T generated data, we present fine-tuned versions of StarCoderBase that achieve state-of-the-art performance for Racket, OCaml, and Lua on benchmark problems. For Lua, our fine-tuned model achieves the same performance as StarCoderBase as Python -- a very high-resource language -- on the MultiPL-E benchmarks. For Racket and OCaml, we double their performance on MultiPL-E, bringing their performance close to higher-resource languages such as Ruby and C#.
Floating-Point Multiply-Add with Approximate Normalization for Low-Cost Matrix Engines
The widespread adoption of machine learning algorithms necessitates hardware acceleration to ensure efficient performance. This acceleration relies on custom matrix engines that operate on full or reduced-precision floating-point arithmetic. However, conventional floating-point implementations can be power hungry. This paper proposes a method to improve the energy efficiency of the matrix engines used in machine learning algorithm acceleration. Our approach leverages approximate normalization within the floating-point multiply-add units as a means to reduce their hardware complexity, without sacrificing overall machine-learning model accuracy. Hardware synthesis results show that this technique reduces area and power consumption roughly by 16% and 13% on average for Bfloat16 format. Also, the error introduced in transformer model accuracy is 1% on average, for the most efficient configuration of the proposed approach.
Generalized-Smooth Nonconvex Optimization is As Efficient As Smooth Nonconvex Optimization
Various optimal gradient-based algorithms have been developed for smooth nonconvex optimization. However, many nonconvex machine learning problems do not belong to the class of smooth functions and therefore the existing algorithms are sub-optimal. Instead, these problems have been shown to satisfy certain generalized-smooth conditions, which have not been well understood in the existing literature. In this paper, we propose a notion of alpha-symmetric generalized-smoothness that extends the existing notions and covers many important functions such as high-order polynomials and exponential functions. We study the fundamental properties and establish descent lemmas for the functions in this class. Then, to solve such a large class of nonconvex problems, we design a special deterministic normalized gradient descent algorithm that achieves the optimal iteration complexity O(epsilon^{-2}), and also prove that the popular SPIDER variance reduction algorithm achieves the optimal sample complexity O(epsilon^{-3}) in the stochastic setting. Our results show that solving generalized-smooth nonconvex problems is as efficient as solving smooth nonconvex problems.
Opening the AI black box: program synthesis via mechanistic interpretability
We present MIPS, a novel method for program synthesis based on automated mechanistic interpretability of neural networks trained to perform the desired task, auto-distilling the learned algorithm into Python code. We test MIPS on a benchmark of 62 algorithmic tasks that can be learned by an RNN and find it highly complementary to GPT-4: MIPS solves 32 of them, including 13 that are not solved by GPT-4 (which also solves 30). MIPS uses an integer autoencoder to convert the RNN into a finite state machine, then applies Boolean or integer symbolic regression to capture the learned algorithm. As opposed to large language models, this program synthesis technique makes no use of (and is therefore not limited by) human training data such as algorithms and code from GitHub. We discuss opportunities and challenges for scaling up this approach to make machine-learned models more interpretable and trustworthy.
Escaping saddle points in zeroth-order optimization: the power of two-point estimators
Two-point zeroth order methods are important in many applications of zeroth-order optimization, such as robotics, wind farms, power systems, online optimization, and adversarial robustness to black-box attacks in deep neural networks, where the problem may be high-dimensional and/or time-varying. Most problems in these applications are nonconvex and contain saddle points. While existing works have shown that zeroth-order methods utilizing Omega(d) function valuations per iteration (with d denoting the problem dimension) can escape saddle points efficiently, it remains an open question if zeroth-order methods based on two-point estimators can escape saddle points. In this paper, we show that by adding an appropriate isotropic perturbation at each iteration, a zeroth-order algorithm based on 2m (for any 1 leq m leq d) function evaluations per iteration can not only find epsilon-second order stationary points polynomially fast, but do so using only Oleft(d{mepsilon^{2}psi}right) function evaluations, where psi geq Omegaleft(epsilonright) is a parameter capturing the extent to which the function of interest exhibits the strict saddle property.
On Computing Optimal Tree Ensembles
Random forests and, more generally, (decision\nobreakdash-)tree ensembles are widely used methods for classification and regression. Recent algorithmic advances allow to compute decision trees that are optimal for various measures such as their size or depth. We are not aware of such research for tree ensembles and aim to contribute to this area. Mainly, we provide two novel algorithms and corresponding lower bounds. First, we are able to carry over and substantially improve on tractability results for decision trees, obtaining a (6delta D S)^S cdot poly-time algorithm, where S is the number of cuts in the tree ensemble, D the largest domain size, and delta is the largest number of features in which two examples differ. To achieve this, we introduce the witness-tree technique which also seems promising for practice. Second, we show that dynamic programming, which has been successful for decision trees, may also be viable for tree ensembles, providing an ell^n cdot poly-time algorithm, where ell is the number of trees and n the number of examples. Finally, we compare the number of cuts necessary to classify training data sets for decision trees and tree ensembles, showing that ensembles may need exponentially fewer cuts for increasing number of trees.
Functional Benchmarks for Robust Evaluation of Reasoning Performance, and the Reasoning Gap
We propose a framework for robust evaluation of reasoning capabilities of language models, using functional variants of benchmarks. Models that solve a reasoning test should exhibit no difference in performance over the static version of a problem compared to a snapshot of the functional variant. We have rewritten the relevant fragment of the MATH benchmark into its functional variant MATH(), with functionalization of other benchmarks to follow. When evaluating current state-of-the-art models over snapshots of MATH(), we find a reasoning gap -- the percentage difference between the static and functional accuracies. We find reasoning gaps from 58.35% to 80.31% among the state-of-the-art closed and open weights models that perform well on static benchmarks, with the caveat that the gaps are likely to be smaller with more sophisticated prompting strategies. Here we show that models which anecdotally have good reasoning performance over real-world tasks, have quantifiable lower gaps, motivating the open problem of building "gap 0" models. Code for evaluation and new evaluation datasets, three MATH() snapshots, are publicly available at https://github.com/consequentai/fneval/.
Gradient-Based Program Repair: Fixing Bugs in Continuous Program Spaces
Automatic program repair seeks to generate correct code from buggy programs, with most approaches searching the correct program in a discrete, symbolic space of source code tokens. This symbolic search is fundamentally limited by its inability to directly reason about program behavior. We introduce Gradient-Based Program Repair (GBPR), a new paradigm that reframes program repair as continuous optimization in a differentiable numerical program space. Our core insight is to compile symbolic programs into differentiable numerical representations, enabling search in the numerical program space directly guided by program behavior. To evaluate GBPR, we present RaspBugs, a new benchmark of 1,466 buggy symbolic RASP programs and their respective numerical representations. Our experiments demonstrate that GBPR can effectively repair buggy symbolic programs by gradient-based optimization in the numerical program space, with convincing repair trajectories. To our knowledge, we are the first to state program repair as continuous optimization in a numerical program space. Our work establishes a new direction for program repair research, bridging two rich worlds: continuous optimization and program behavior.
LLM-SR: Scientific Equation Discovery via Programming with Large Language Models
Mathematical equations have been unreasonably effective in describing complex natural phenomena across various scientific disciplines. However, discovering such insightful equations from data presents significant challenges due to the necessity of navigating extremely high-dimensional combinatorial and nonlinear hypothesis spaces. Traditional methods of equation discovery largely focus on extracting equations from data alone, often neglecting the rich domain-specific prior knowledge that scientists typically depend on. To bridge this gap, we introduce LLM-SR, a novel approach that leverages the extensive scientific knowledge and robust code generation capabilities of Large Language Models (LLMs) to discover scientific equations from data in an efficient manner. Specifically, LLM-SR treats equations as programs with mathematical operators and combines LLMs' scientific priors with evolutionary search over equation programs. The LLM iteratively proposes new equation skeletons, drawing from its physical understanding, which are then optimized against data to estimate skeleton parameters. We demonstrate LLM-SR's effectiveness across three diverse scientific domains, where it discovers physically accurate equations that provide significantly better fits to in-domain and out-of-domain data compared to the well-established equation discovery baselines
IGC: Integrating a Gated Calculator into an LLM to Solve Arithmetic Tasks Reliably and Efficiently
Solving arithmetic tasks is a simple and fundamental skill, yet modern Large Language Models (LLMs) have great difficulty with them. We introduce the Integrated Gated Calculator (IGC), a module that enables LLMs to perform arithmetic by emulating a calculator on the GPU. We finetune a Llama model with our module and test it on the BigBench Arithmetic benchmark, where it beats the State of the Art, outperforming all models on the benchmark, including models almost two orders of magnitude larger. Our approach takes only a single iteration to run and requires no external tools. It performs arithmetic operations entirely inside the LLM without the need to produce intermediate tokens. It is computationally efficient, interpretable, and avoids side-effects on tasks that do not require arithmetic operations. It reliably achieves 98\% to 99\% accuracy across multiple training runs and for all subtasks, including the substantially harder subtask of multiplication, which was previously unsolved.
Optimizing Memory Mapping Using Deep Reinforcement Learning
Resource scheduling and allocation is a critical component of many high impact systems ranging from congestion control to cloud computing. Finding more optimal solutions to these problems often has significant impact on resource and time savings, reducing device wear-and-tear, and even potentially improving carbon emissions. In this paper, we focus on a specific instance of a scheduling problem, namely the memory mapping problem that occurs during compilation of machine learning programs: That is, mapping tensors to different memory layers to optimize execution time. We introduce an approach for solving the memory mapping problem using Reinforcement Learning. RL is a solution paradigm well-suited for sequential decision making problems that are amenable to planning, and combinatorial search spaces with high-dimensional data inputs. We formulate the problem as a single-player game, which we call the mallocGame, such that high-reward trajectories of the game correspond to efficient memory mappings on the target hardware. We also introduce a Reinforcement Learning agent, mallocMuZero, and show that it is capable of playing this game to discover new and improved memory mapping solutions that lead to faster execution times on real ML workloads on ML accelerators. We compare the performance of mallocMuZero to the default solver used by the Accelerated Linear Algebra (XLA) compiler on a benchmark of realistic ML workloads. In addition, we show that mallocMuZero is capable of improving the execution time of the recently published AlphaTensor matrix multiplication model.
Large Language Models for Compiler Optimization
We explore the novel application of Large Language Models to code optimization. We present a 7B-parameter transformer model trained from scratch to optimize LLVM assembly for code size. The model takes as input unoptimized assembly and outputs a list of compiler options to best optimize the program. Crucially, during training, we ask the model to predict the instruction counts before and after optimization, and the optimized code itself. These auxiliary learning tasks significantly improve the optimization performance of the model and improve the model's depth of understanding. We evaluate on a large suite of test programs. Our approach achieves a 3.0% improvement in reducing instruction counts over the compiler, outperforming two state-of-the-art baselines that require thousands of compilations. Furthermore, the model shows surprisingly strong code reasoning abilities, generating compilable code 91% of the time and perfectly emulating the output of the compiler 70% of the time.