1 Building astroBERT, a language model for Astronomy & Astrophysics The existing search tools for exploring the NASA Astrophysics Data System (ADS) can be quite rich and empowering (e.g., similar and trending operators), but researchers are not yet allowed to fully leverage semantic search. For example, a query for "results from the Planck mission" should be able to distinguish between all the various meanings of Planck (person, mission, constant, institutions and more) without further clarification from the user. At ADS, we are applying modern machine learning and natural language processing techniques to our dataset of recent astronomy publications to train astroBERT, a deeply contextual language model based on research at Google. Using astroBERT, we aim to enrich the ADS dataset and improve its discoverability, and in particular we are developing our own named entity recognition tool. We present here our preliminary results and lessons learned. 17 authors · Dec 1, 2021
- NS3: Neuro-Symbolic Semantic Code Search Semantic code search is the task of retrieving a code snippet given a textual description of its functionality. Recent work has been focused on using similarity metrics between neural embeddings of text and code. However, current language models are known to struggle with longer, compositional text, and multi-step reasoning. To overcome this limitation, we propose supplementing the query sentence with a layout of its semantic structure. The semantic layout is used to break down the final reasoning decision into a series of lower-level decisions. We use a Neural Module Network architecture to implement this idea. We compare our model - NS3 (Neuro-Symbolic Semantic Search) - to a number of baselines, including state-of-the-art semantic code retrieval methods, and evaluate on two datasets - CodeSearchNet and Code Search and Question Answering. We demonstrate that our approach results in more precise code retrieval, and we study the effectiveness of our modular design when handling compositional queries. 6 authors · May 21, 2022
- What Makes Sentences Semantically Related: A Textual Relatedness Dataset and Empirical Study The degree of semantic relatedness of two units of language has long been considered fundamental to understanding meaning. Additionally, automatically determining relatedness has many applications such as question answering and summarization. However, prior NLP work has largely focused on semantic similarity, a subset of relatedness, because of a lack of relatedness datasets. In this paper, we introduce a dataset for Semantic Textual Relatedness, STR-2022, that has 5,500 English sentence pairs manually annotated using a comparative annotation framework, resulting in fine-grained scores. We show that human intuition regarding relatedness of sentence pairs is highly reliable, with a repeat annotation correlation of 0.84. We use the dataset to explore questions on what makes sentences semantically related. We also show the utility of STR-2022 for evaluating automatic methods of sentence representation and for various downstream NLP tasks. Our dataset, data statement, and annotation questionnaire can be found at: https://doi.org/10.5281/zenodo.7599667 3 authors · Oct 10, 2021
- Linear Cross-Lingual Mapping of Sentence Embeddings Semantics of a sentence is defined with much less ambiguity than semantics of a single word, and it should be better preserved by translation to another language. If multilingual sentence embeddings intend to represent sentence semantics, then the similarity between embeddings of any two sentences must be invariant with respect to translation. Based on this suggestion, we consider a simple linear cross-lingual mapping as a possible improvement of the multilingual embeddings. We also consider deviation from orthogonality conditions as a measure of deficiency of the embeddings. 3 authors · May 23, 2023
2 CodeSearchNet Challenge: Evaluating the State of Semantic Code Search Semantic code search is the task of retrieving relevant code given a natural language query. While related to other information retrieval tasks, it requires bridging the gap between the language used in code (often abbreviated and highly technical) and natural language more suitable to describe vague concepts and ideas. To enable evaluation of progress on code search, we are releasing the CodeSearchNet Corpus and are presenting the CodeSearchNet Challenge, which consists of 99 natural language queries with about 4k expert relevance annotations of likely results from CodeSearchNet Corpus. The corpus contains about 6 million functions from open-source code spanning six programming languages (Go, Java, JavaScript, PHP, Python, and Ruby). The CodeSearchNet Corpus also contains automatically generated query-like natural language for 2 million functions, obtained from mechanically scraping and preprocessing associated function documentation. In this article, we describe the methodology used to obtain the corpus and expert labels, as well as a number of simple baseline solutions for the task. We hope that CodeSearchNet Challenge encourages researchers and practitioners to study this interesting task further and will host a competition and leaderboard to track the progress on the challenge. We are also keen on extending CodeSearchNet Challenge to more queries and programming languages in the future. 5 authors · Sep 20, 2019
- Measuring the Quality of Answers in Political Q&As with Large Language Models This article proposes a new approach for assessing the quality of answers in political question-and-answer sessions. We measure the quality of an answer based on how easily and accurately it can be recognized in a random set of candidate answers given the question's text. This measure reflects the answer's relevance and depth of engagement with the question. Like semantic search, we can implement this approach by training a language model on the corpus of observed questions and answers without additional human-labeled data. We showcase and validate our methodology within the context of the Question Period in the Canadian House of Commons. Our analysis reveals that while some answers have a weak semantic connection to questions, hinting at some evasion or obfuscation, they are generally at least moderately relevant, far exceeding what we would expect from random replies. We also find a meaningful correlation between answer quality and the party affiliation of the members of Parliament asking the questions. 2 authors · Apr 12, 2024
1 Hubness Reduction Improves Sentence-BERT Semantic Spaces Semantic representations of text, i.e. representations of natural language which capture meaning by geometry, are essential for areas such as information retrieval and document grouping. High-dimensional trained dense vectors have received much attention in recent years as such representations. We investigate the structure of semantic spaces that arise from embeddings made with Sentence-BERT and find that the representations suffer from a well-known problem in high dimensions called hubness. Hubness results in asymmetric neighborhood relations, such that some texts (the hubs) are neighbours of many other texts while most texts (so-called anti-hubs), are neighbours of few or no other texts. We quantify the semantic quality of the embeddings using hubness scores and error rate of a neighbourhood based classifier. We find that when hubness is high, we can reduce error rate and hubness using hubness reduction methods. We identify a combination of two methods as resulting in the best reduction. For example, on one of the tested pretrained models, this combined method can reduce hubness by about 75% and error rate by about 9%. Thus, we argue that mitigating hubness in the embedding space provides better semantic representations of text. 2 authors · Nov 30, 2023
- SemEval Task 1: Semantic Textual Relatedness for African and Asian Languages We present the first shared task on Semantic Textual Relatedness (STR). While earlier shared tasks primarily focused on semantic similarity, we instead investigate the broader phenomenon of semantic relatedness across 14 languages: Afrikaans, Algerian Arabic, Amharic, English, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Punjabi, Spanish, and Telugu. These languages originate from five distinct language families and are predominantly spoken in Africa and Asia -- regions characterised by the relatively limited availability of NLP resources. Each instance in the datasets is a sentence pair associated with a score that represents the degree of semantic textual relatedness between the two sentences. Participating systems were asked to rank sentence pairs by their closeness in meaning (i.e., their degree of semantic relatedness) in the 14 languages in three main tracks: (a) supervised, (b) unsupervised, and (c) crosslingual. The task attracted 163 participants. We received 70 submissions in total (across all tasks) from 51 different teams, and 38 system description papers. We report on the best-performing systems as well as the most common and the most effective approaches for the three different tracks. 17 authors · Mar 27, 2024
- A Massive Scale Semantic Similarity Dataset of Historical English A diversity of tasks use language models trained on semantic similarity data. While there are a variety of datasets that capture semantic similarity, they are either constructed from modern web data or are relatively small datasets created in the past decade by human annotators. This study utilizes a novel source, newly digitized articles from off-copyright, local U.S. newspapers, to assemble a massive-scale semantic similarity dataset spanning 70 years from 1920 to 1989 and containing nearly 400M positive semantic similarity pairs. Historically, around half of articles in U.S. local newspapers came from newswires like the Associated Press. While local papers reproduced articles from the newswire, they wrote their own headlines, which form abstractive summaries of the associated articles. We associate articles and their headlines by exploiting document layouts and language understanding. We then use deep neural methods to detect which articles are from the same underlying source, in the presence of substantial noise and abridgement. The headlines of reproduced articles form positive semantic similarity pairs. The resulting publicly available HEADLINES dataset is significantly larger than most existing semantic similarity datasets and covers a much longer span of time. It will facilitate the application of contrastively trained semantic similarity models to a variety of tasks, including the study of semantic change across space and time. 2 authors · Jun 30, 2023
1 Dense X Retrieval: What Retrieval Granularity Should We Use? Dense retrieval has become a prominent method to obtain relevant context or world knowledge in open-domain NLP tasks. When we use a learned dense retriever on a retrieval corpus at inference time, an often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence. We discover that the retrieval unit choice significantly impacts the performance of both retrieval and downstream tasks. Distinct from the typical approach of using passages or sentences, we introduce a novel retrieval unit, proposition, for dense retrieval. Propositions are defined as atomic expressions within text, each encapsulating a distinct factoid and presented in a concise, self-contained natural language format. We conduct an empirical comparison of different retrieval granularity. Our results reveal that proposition-based retrieval significantly outperforms traditional passage or sentence-based methods in dense retrieval. Moreover, retrieval by proposition also enhances the performance of downstream QA tasks, since the retrieved texts are more condensed with question-relevant information, reducing the need for lengthy input tokens and minimizing the inclusion of extraneous, irrelevant information. 8 authors · Dec 11, 2023
- Learning semantic sentence representations from visually grounded language without lexical knowledge Current approaches to learning semantic representations of sentences often use prior word-level knowledge. The current study aims to leverage visual information in order to capture sentence level semantics without the need for word embeddings. We use a multimodal sentence encoder trained on a corpus of images with matching text captions to produce visually grounded sentence embeddings. Deep Neural Networks are trained to map the two modalities to a common embedding space such that for an image the corresponding caption can be retrieved and vice versa. We show that our model achieves results comparable to the current state-of-the-art on two popular image-caption retrieval benchmark data sets: MSCOCO and Flickr8k. We evaluate the semantic content of the resulting sentence embeddings using the data from the Semantic Textual Similarity benchmark task and show that the multimodal embeddings correlate well with human semantic similarity judgements. The system achieves state-of-the-art results on several of these benchmarks, which shows that a system trained solely on multimodal data, without assuming any word representations, is able to capture sentence level semantics. Importantly, this result shows that we do not need prior knowledge of lexical level semantics in order to model sentence level semantics. These findings demonstrate the importance of visual information in semantics. 2 authors · Mar 27, 2019
- Exploring the Representation of Word Meanings in Context: A Case Study on Homonymy and Synonymy This paper presents a multilingual study of word meaning representations in context. We assess the ability of both static and contextualized models to adequately represent different lexical-semantic relations, such as homonymy and synonymy. To do so, we created a new multilingual dataset that allows us to perform a controlled evaluation of several factors such as the impact of the surrounding context or the overlap between words, conveying the same or different senses. A systematic assessment on four scenarios shows that the best monolingual models based on Transformers can adequately disambiguate homonyms in context. However, as they rely heavily on context, these models fail at representing words with different senses when occurring in similar sentences. Experiments are performed in Galician, Portuguese, English, and Spanish, and both the dataset (with more than 3,000 evaluation items) and new models are freely released with this study. 1 authors · Jun 25, 2021
2 How Easily do Irrelevant Inputs Skew the Responses of Large Language Models? By leveraging the retrieval of information from external knowledge databases, Large Language Models (LLMs) exhibit enhanced capabilities for accomplishing many knowledge-intensive tasks. However, due to the inherent flaws of current retrieval systems, there might exist irrelevant information within those retrieving top-ranked passages. In this work, we present a comprehensive investigation into the robustness of LLMs to different types of irrelevant information under various conditions. We initially introduce a framework to construct high-quality irrelevant information that ranges from semantically unrelated, partially related, and related to questions. Furthermore, our analysis demonstrates that the constructed irrelevant information not only scores highly on similarity metrics, being highly retrieved by existing systems, but also bears semantic connections to the context. Our investigation reveals that current LLMs still face challenges in discriminating highly semantically related information and can be easily distracted by these irrelevant yet misleading contents. Besides, we also find that current solutions for handling irrelevant information have limitations in improving the robustness of LLMs to such distractions. Resources are available at https://github.com/Di-viner/LLM-Robustness-to-Irrelevant-Information. 6 authors · Apr 4, 2024
- A Comparative Study of Sentence Embedding Models for Assessing Semantic Variation Analyzing the pattern of semantic variation in long real-world texts such as books or transcripts is interesting from the stylistic, cognitive, and linguistic perspectives. It is also useful for applications such as text segmentation, document summarization, and detection of semantic novelty. The recent emergence of several vector-space methods for sentence embedding has made such analysis feasible. However, this raises the issue of how consistent and meaningful the semantic representations produced by various methods are in themselves. In this paper, we compare several recent sentence embedding methods via time-series of semantic similarity between successive sentences and matrices of pairwise sentence similarity for multiple books of literature. In contrast to previous work using target tasks and curated datasets to compare sentence embedding methods, our approach provides an evaluation of the methods 'in the wild'. We find that most of the sentence embedding methods considered do infer highly correlated patterns of semantic similarity in a given document, but show interesting differences. 2 authors · Aug 8, 2023
- Experimenting with Transitive Verbs in a DisCoCat Formal and distributional semantic models offer complementary benefits in modeling meaning. The categorical compositional distributional (DisCoCat) model of meaning of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) combines aspected of both to provide a general framework in which meanings of words, obtained distributionally, are composed using methods from the logical setting to form sentence meaning. Concrete consequences of this general abstract setting and applications to empirical data are under active study (Grefenstette et al., arxiv:1101.0309; Grefenstette and Sadrzadeh, arXiv:1106.4058v1 [cs.CL]). . In this paper, we extend this study by examining transitive verbs, represented as matrices in a DisCoCat. We discuss three ways of constructing such matrices, and evaluate each method in a disambiguation task developed by Grefenstette and Sadrzadeh (arXiv:1106.4058v1 [cs.CL]). 2 authors · Jul 15, 2011
- Concrete Sentence Spaces for Compositional Distributional Models of Meaning Coecke, Sadrzadeh, and Clark (arXiv:1003.4394v1 [cs.CL]) developed a compositional model of meaning for distributional semantics, in which each word in a sentence has a meaning vector and the distributional meaning of the sentence is a function of the tensor products of the word vectors. Abstractly speaking, this function is the morphism corresponding to the grammatical structure of the sentence in the category of finite dimensional vector spaces. In this paper, we provide a concrete method for implementing this linear meaning map, by constructing a corpus-based vector space for the type of sentence. Our construction method is based on structured vector spaces whereby meaning vectors of all sentences, regardless of their grammatical structure, live in the same vector space. Our proposed sentence space is the tensor product of two noun spaces, in which the basis vectors are pairs of words each augmented with a grammatical role. This enables us to compare meanings of sentences by simply taking the inner product of their vectors. 5 authors · Dec 31, 2010
- Talking About Large Language Models Thanks to rapid progress in artificial intelligence, we have entered an era when technology and philosophy intersect in interesting ways. Sitting squarely at the centre of this intersection are large language models (LLMs). The more adept LLMs become at mimicking human language, the more vulnerable we become to anthropomorphism, to seeing the systems in which they are embedded as more human-like than they really are. This trend is amplified by the natural tendency to use philosophically loaded terms, such as "knows", "believes", and "thinks", when describing these systems. To mitigate this trend, this paper advocates the practice of repeatedly stepping back to remind ourselves of how LLMs, and the systems of which they form a part, actually work. The hope is that increased scientific precision will encourage more philosophical nuance in the discourse around artificial intelligence, both within the field and in the public sphere. 1 authors · Dec 7, 2022
1 Geometric Signatures of Compositionality Across a Language Model's Lifetime Compositionality, the notion that the meaning of an expression is constructed from the meaning of its parts and syntactic rules, permits the infinite productivity of human language. For the first time, artificial language models (LMs) are able to match human performance in a number of compositional generalization tasks. However, much remains to be understood about the representational mechanisms underlying these abilities. We take a high-level geometric approach to this problem by relating the degree of compositionality in a dataset to the intrinsic dimensionality of its representations under an LM, a measure of feature complexity. We find not only that the degree of dataset compositionality is reflected in representations' intrinsic dimensionality, but that the relationship between compositionality and geometric complexity arises due to learned linguistic features over training. Finally, our analyses reveal a striking contrast between linear and nonlinear dimensionality, showing that they respectively encode formal and semantic aspects of linguistic composition. 5 authors · Oct 2, 2024
- Diversity Aware Relevance Learning for Argument Search In this work, we focus on the problem of retrieving relevant arguments for a query claim covering diverse aspects. State-of-the-art methods rely on explicit mappings between claims and premises, and thus are unable to utilize large available collections of premises without laborious and costly manual annotation. Their diversity approach relies on removing duplicates via clustering which does not directly ensure that the selected premises cover all aspects. This work introduces a new multi-step approach for the argument retrieval problem. Rather than relying on ground-truth assignments, our approach employs a machine learning model to capture semantic relationships between arguments. Beyond that, it aims to cover diverse facets of the query, instead of trying to identify duplicates explicitly. Our empirical evaluation demonstrates that our approach leads to a significant improvement in the argument retrieval task even though it requires less data. 5 authors · Nov 4, 2020
- Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data Most available semantic parsing datasets, comprising of pairs of natural utterances and logical forms, were collected solely for the purpose of training and evaluation of natural language understanding systems. As a result, they do not contain any of the richness and variety of natural-occurring utterances, where humans ask about data they need or are curious about. In this work, we release SEDE, a dataset with 12,023 pairs of utterances and SQL queries collected from real usage on the Stack Exchange website. We show that these pairs contain a variety of real-world challenges which were rarely reflected so far in any other semantic parsing dataset, propose an evaluation metric based on comparison of partial query clauses that is more suitable for real-world queries, and conduct experiments with strong baselines, showing a large gap between the performance on SEDE compared to other common datasets. 3 authors · Jun 9, 2021
- Interpretable Word Sense Representations via Definition Generation: The Case of Semantic Change Analysis We propose using automatically generated natural language definitions of contextualised word usages as interpretable word and word sense representations. Given a collection of usage examples for a target word, and the corresponding data-driven usage clusters (i.e., word senses), a definition is generated for each usage with a specialised Flan-T5 language model, and the most prototypical definition in a usage cluster is chosen as the sense label. We demonstrate how the resulting sense labels can make existing approaches to semantic change analysis more interpretable, and how they can allow users -- historical linguists, lexicographers, or social scientists -- to explore and intuitively explain diachronic trajectories of word meaning. Semantic change analysis is only one of many possible applications of the `definitions as representations' paradigm. Beyond being human-readable, contextualised definitions also outperform token or usage sentence embeddings in word-in-context semantic similarity judgements, making them a new promising type of lexical representation for NLP. 4 authors · May 19, 2023
- Adposition and Case Supersenses v2.6: Guidelines for English This document offers a detailed linguistic description of SNACS (Semantic Network of Adposition and Case Supersenses; Schneider et al., 2018), an inventory of 52 semantic labels ("supersenses") that characterize the use of adpositions and case markers at a somewhat coarse level of granularity, as demonstrated in the STREUSLE corpus (https://github.com/nert-nlp/streusle/ ; version 4.5 tracks guidelines version 2.6). Though the SNACS inventory aspires to be universal, this document is specific to English; documentation for other languages will be published separately. Version 2 is a revision of the supersense inventory proposed for English by Schneider et al. (2015, 2016) (henceforth "v1"), which in turn was based on previous schemes. The present inventory was developed after extensive review of the v1 corpus annotations for English, plus previously unanalyzed genitive case possessives (Blodgett and Schneider, 2018), as well as consideration of adposition and case phenomena in Hebrew, Hindi, Korean, and German. Hwang et al. (2017) present the theoretical underpinnings of the v2 scheme. Schneider et al. (2018) summarize the scheme, its application to English corpus data, and an automatic disambiguation task. Liu et al. (2021) offer an English Lexical Semantic Recognition tagger that includes SNACS labels in its output. This documentation can also be browsed alongside corpus data on the Xposition website (Gessler et al., 2022): http://www.xposition.org/ 11 authors · Apr 7, 2017
- Word Embeddings: A Survey This work lists and describes the main recent strategies for building fixed-length, dense and distributed representations for words, based on the distributional hypothesis. These representations are now commonly called word embeddings and, in addition to encoding surprisingly good syntactic and semantic information, have been proven useful as extra features in many downstream NLP tasks. 2 authors · Jan 25, 2019
- Semantic Representation and Inference for NLP Semantic representation and inference is essential for Natural Language Processing (NLP). The state of the art for semantic representation and inference is deep learning, and particularly Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and transformer Self-Attention models. This thesis investigates the use of deep learning for novel semantic representation and inference, and makes contributions in the following three areas: creating training data, improving semantic representations and extending inference learning. In terms of creating training data, we contribute the largest publicly available dataset of real-life factual claims for the purpose of automatic claim verification (MultiFC), and we present a novel inference model composed of multi-scale CNNs with different kernel sizes that learn from external sources to infer fact checking labels. In terms of improving semantic representations, we contribute a novel model that captures non-compositional semantic indicators. By definition, the meaning of a non-compositional phrase cannot be inferred from the individual meanings of its composing words (e.g., hot dog). Motivated by this, we operationalize the compositionality of a phrase contextually by enriching the phrase representation with external word embeddings and knowledge graphs. Finally, in terms of inference learning, we propose a series of novel deep learning architectures that improve inference by using syntactic dependencies, by ensembling role guided attention heads, incorporating gating layers, and concatenating multiple heads in novel and effective ways. This thesis consists of seven publications (five published and two under review). 1 authors · Jun 15, 2021
- Do Dogs have Whiskers? A New Knowledge Base of hasPart Relations We present a new knowledge-base of hasPart relationships, extracted from a large corpus of generic statements. Complementary to other resources available, it is the first which is all three of: accurate (90% precision), salient (covers relationships a person may mention), and has high coverage of common terms (approximated as within a 10 year old's vocabulary), as well as having several times more hasPart entries than in the popular ontologies ConceptNet and WordNet. In addition, it contains information about quantifiers, argument modifiers, and links the entities to appropriate concepts in Wikipedia and WordNet. The knowledge base is available at https://allenai.org/data/haspartkb 4 authors · Jun 12, 2020
- I Bet You Did Not Mean That: Testing Semantic Importance via Betting Recent works have extended notions of feature importance to semantic concepts that are inherently interpretable to the users interacting with a black-box predictive model. Yet, precise statistical guarantees, such as false positive rate control, are needed to communicate findings transparently and to avoid unintended consequences in real-world scenarios. In this paper, we formalize the global (i.e., over a population) and local (i.e., for a sample) statistical importance of semantic concepts for the predictions of opaque models, by means of conditional independence, which allows for rigorous testing. We use recent ideas of sequential kernelized testing (SKIT) to induce a rank of importance across concepts, and showcase the effectiveness and flexibility of our framework on synthetic datasets as well as on image classification tasks using vision-language models such as CLIP. 2 authors · May 29, 2024
- A Decade of Knowledge Graphs in Natural Language Processing: A Survey In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work. 6 authors · Sep 30, 2022
- Qualia and the Formal Structure of Meaning This work explores the hypothesis that subjectively attributed meaning constitutes the phenomenal content of conscious experience. That is, phenomenal content is semantic. This form of subjective meaning manifests as an intrinsic and non-representational character of qualia. Empirically, subjective meaning is ubiquitous in conscious experiences. We point to phenomenological studies that lend evidence to support this. Furthermore, this notion of meaning closely relates to what Frege refers to as "sense", in metaphysics and philosophy of language. It also aligns with Peirce's "interpretant", in semiotics. We discuss how Frege's sense can also be extended to the raw feels of consciousness. Sense and reference both play a role in phenomenal experience. Moreover, within the context of the mind-matter relation, we provide a formalization of subjective meaning associated to one's mental representations. Identifying the precise maps between the physical and mental domains, we argue that syntactic and semantic structures transcend language, and are realized within each of these domains. Formally, meaning is a relational attribute, realized via a map that interprets syntactic structures of a formal system within an appropriate semantic space. The image of this map within the mental domain is what is relevant for experience, and thus comprises the phenomenal content of qualia. We conclude with possible implications this may have for experience-based theories of consciousness. 1 authors · May 2, 2024
- Multi-sense embeddings through a word sense disambiguation process Natural Language Understanding has seen an increasing number of publications in the last few years, especially after robust word embeddings models became prominent, when they proved themselves able to capture and represent semantic relationships from massive amounts of data. Nevertheless, traditional models often fall short in intrinsic issues of linguistics, such as polysemy and homonymy. Any expert system that makes use of natural language in its core, can be affected by a weak semantic representation of text, resulting in inaccurate outcomes based on poor decisions. To mitigate such issues, we propose a novel approach called Most Suitable Sense Annotation (MSSA), that disambiguates and annotates each word by its specific sense, considering the semantic effects of its context. Our approach brings three main contributions to the semantic representation scenario: (i) an unsupervised technique that disambiguates and annotates words by their senses, (ii) a multi-sense embeddings model that can be extended to any traditional word embeddings algorithm, and (iii) a recurrent methodology that allows our models to be re-used and their representations refined. We test our approach on six different benchmarks for the word similarity task, showing that our approach can produce state-of-the-art results and outperforms several more complex state-of-the-art systems. 3 authors · Jan 21, 2021
- Leveraging Semantic and Lexical Matching to Improve the Recall of Document Retrieval Systems: A Hybrid Approach Search engines often follow a two-phase paradigm where in the first stage (the retrieval stage) an initial set of documents is retrieved and in the second stage (the re-ranking stage) the documents are re-ranked to obtain the final result list. While deep neural networks were shown to improve the performance of the re-ranking stage in previous works, there is little literature about using deep neural networks to improve the retrieval stage. In this paper, we study the merits of combining deep neural network models and lexical models for the retrieval stage. A hybrid approach, which leverages both semantic (deep neural network-based) and lexical (keyword matching-based) retrieval models, is proposed. We perform an empirical study, using a publicly available TREC collection, which demonstrates the effectiveness of our approach and sheds light on the different characteristics of the semantic approach, the lexical approach, and their combination. 5 authors · Oct 2, 2020
2 A Latent Variable Model Approach to PMI-based Word Embeddings Semantic word embeddings represent the meaning of a word via a vector, and are created by diverse methods. Many use nonlinear operations on co-occurrence statistics, and have hand-tuned hyperparameters and reweighting methods. This paper proposes a new generative model, a dynamic version of the log-linear topic model of~mnih2007three. The methodological novelty is to use the prior to compute closed form expressions for word statistics. This provides a theoretical justification for nonlinear models like PMI, word2vec, and GloVe, as well as some hyperparameter choices. It also helps explain why low-dimensional semantic embeddings contain linear algebraic structure that allows solution of word analogies, as shown by~mikolov2013efficient and many subsequent papers. Experimental support is provided for the generative model assumptions, the most important of which is that latent word vectors are fairly uniformly dispersed in space. 5 authors · Feb 11, 2015
- A New Task: Deriving Semantic Class Targets for the Physical Sciences We define deriving semantic class targets as a novel multi-modal task. By doing so, we aim to improve classification schemes in the physical sciences which can be severely abstracted and obfuscating. We address this task for upcoming radio astronomy surveys and present the derived semantic radio galaxy morphology class targets. 11 authors · Oct 26, 2022
1 Heaps' law and Heaps functions in tagged texts: Evidences of their linguistic relevance We study the relationship between vocabulary size and text length in a corpus of 75 literary works in English, authored by six writers, distinguishing between the contributions of three grammatical classes (or ``tags,'' namely, {\it nouns}, {\it verbs}, and {\it others}), and analyze the progressive appearance of new words of each tag along each individual text. While the power-law relation prescribed by Heaps' law is satisfactorily fulfilled by total vocabulary sizes and text lengths, the appearance of new words in each text is on the whole well described by the average of random shufflings of the text, which does not obey a power law. Deviations from this average, however, are statistically significant and show a systematic trend across the corpus. Specifically, they reveal that the appearance of new words along each text is predominantly retarded with respect to the average of random shufflings. Moreover, different tags are shown to add systematically distinct contributions to this tendency, with {\it verbs} and {\it others} being respectively more and less retarded than the mean trend, and {\it nouns} following instead this overall mean. These statistical systematicities are likely to point to the existence of linguistically relevant information stored in the different variants of Heaps' law, a feature that is still in need of extensive assessment. 2 authors · Jan 7, 2020
- Transparency Helps Reveal When Language Models Learn Meaning Many current NLP systems are built from language models trained to optimize unsupervised objectives on large amounts of raw text. Under what conditions might such a procedure acquire meaning? Our systematic experiments with synthetic data reveal that, with languages where all expressions have context-independent denotations (i.e., languages with strong transparency), both autoregressive and masked language models successfully learn to emulate semantic relations between expressions. However, when denotations are changed to be context-dependent with the language otherwise unmodified, this ability degrades. Turning to natural language, our experiments with a specific phenomenon -- referential opacity -- add to the growing body of evidence that current language models do not represent natural language semantics well. We show this failure relates to the context-dependent nature of natural language form-meaning mappings. 5 authors · Oct 13, 2022
- TACAM: Topic And Context Aware Argument Mining In this work we address the problem of argument search. The purpose of argument search is the distillation of pro and contra arguments for requested topics from large text corpora. In previous works, the usual approach is to use a standard search engine to extract text parts which are relevant to the given topic and subsequently use an argument recognition algorithm to select arguments from them. The main challenge in the argument recognition task, which is also known as argument mining, is that often sentences containing arguments are structurally similar to purely informative sentences without any stance about the topic. In fact, they only differ semantically. Most approaches use topic or search term information only for the first search step and therefore assume that arguments can be classified independently of a topic. We argue that topic information is crucial for argument mining, since the topic defines the semantic context of an argument. Precisely, we propose different models for the classification of arguments, which take information about a topic of an argument into account. Moreover, to enrich the context of a topic and to let models understand the context of the potential argument better, we integrate information from different external sources such as Knowledge Graphs or pre-trained NLP models. Our evaluation shows that considering topic information, especially in connection with external information, provides a significant performance boost for the argument mining task. 3 authors · May 26, 2019
- Assessing Word Importance Using Models Trained for Semantic Tasks Many NLP tasks require to automatically identify the most significant words in a text. In this work, we derive word significance from models trained to solve semantic task: Natural Language Inference and Paraphrase Identification. Using an attribution method aimed to explain the predictions of these models, we derive importance scores for each input token. We evaluate their relevance using a so-called cross-task evaluation: Analyzing the performance of one model on an input masked according to the other model's weight, we show that our method is robust with respect to the choice of the initial task. Additionally, we investigate the scores from the syntax point of view and observe interesting patterns, e.g. words closer to the root of a syntactic tree receive higher importance scores. Altogether, these observations suggest that our method can be used to identify important words in sentences without any explicit word importance labeling in training. 3 authors · May 31, 2023
- Challenges for an Ontology of Artificial Intelligence Of primary importance in formulating a response to the increasing prevalence and power of artificial intelligence (AI) applications in society are questions of ontology. Questions such as: What "are" these systems? How are they to be regarded? How does an algorithm come to be regarded as an agent? We discuss three factors which hinder discussion and obscure attempts to form a clear ontology of AI: (1) the various and evolving definitions of AI, (2) the tendency for pre-existing technologies to be assimilated and regarded as "normal," and (3) the tendency of human beings to anthropomorphize. This list is not intended as exhaustive, nor is it seen to preclude entirely a clear ontology, however, these challenges are a necessary set of topics for consideration. Each of these factors is seen to present a 'moving target' for discussion, which poses a challenge for both technical specialists and non-practitioners of AI systems development (e.g., philosophers and theologians) to speak meaningfully given that the corpus of AI structures and capabilities evolves at a rapid pace. Finally, we present avenues for moving forward, including opportunities for collaborative synthesis for scholars in philosophy and science. 1 authors · Feb 25, 2019
1 Semantic Sensitivities and Inconsistent Predictions: Measuring the Fragility of NLI Models Recent studies of the emergent capabilities of transformer-based Natural Language Understanding (NLU) models have indicated that they have an understanding of lexical and compositional semantics. We provide evidence that suggests these claims should be taken with a grain of salt: we find that state-of-the-art Natural Language Inference (NLI) models are sensitive towards minor semantics preserving surface-form variations, which lead to sizable inconsistent model decisions during inference. Notably, this behaviour differs from valid and in-depth comprehension of compositional semantics, however does neither emerge when evaluating model accuracy on standard benchmarks nor when probing for syntactic, monotonic, and logically robust reasoning. We propose a novel framework to measure the extent of semantic sensitivity. To this end, we evaluate NLI models on adversarially generated examples containing minor semantics-preserving surface-form input noise. This is achieved using conditional text generation, with the explicit condition that the NLI model predicts the relationship between the original and adversarial inputs as a symmetric equivalence entailment. We systematically study the effects of the phenomenon across NLI models for in- and out-of- domain settings. Our experiments show that semantic sensitivity causes performance degradations of 12.92% and 23.71% average over in- and out-of- domain settings, respectively. We further perform ablation studies, analysing this phenomenon across models, datasets, and variations in inference and show that semantic sensitivity can lead to major inconsistency within model predictions. 3 authors · Jan 25, 2024
- SemAxis: A Lightweight Framework to Characterize Domain-Specific Word Semantics Beyond Sentiment Because word semantics can substantially change across communities and contexts, capturing domain-specific word semantics is an important challenge. Here, we propose SEMAXIS, a simple yet powerful framework to characterize word semantics using many semantic axes in word- vector spaces beyond sentiment. We demonstrate that SEMAXIS can capture nuanced semantic representations in multiple online communities. We also show that, when the sentiment axis is examined, SEMAXIS outperforms the state-of-the-art approaches in building domain-specific sentiment lexicons. 3 authors · Jun 14, 2018
4 Patience is all you need! An agentic system for performing scientific literature review Large language models (LLMs) have grown in their usage to provide support for question answering across numerous disciplines. The models on their own have already shown promise for answering basic questions, however fail quickly where expert domain knowledge is required or the question is nuanced. Scientific research often involves searching for relevant literature, distilling pertinent information from that literature and analysing how the findings support or contradict one another. The information is often encapsulated in the full text body of research articles, rather than just in the abstracts. Statements within these articles frequently require the wider article context to be fully understood. We have built an LLM-based system that performs such search and distillation of information encapsulated in scientific literature, and we evaluate our keyword based search and information distillation system against a set of biology related questions from previously released literature benchmarks. We demonstrate sparse retrieval methods exhibit results close to state of the art without the need for dense retrieval, with its associated infrastructure and complexity overhead. We also show how to increase the coverage of relevant documents for literature review generation. 2 authors · Mar 28 1
- Measuring Domain Knowledge for Early Prediction of Student Performance: A Semantic Approach The growing popularity of data mining catalyses the researchers to explore various exciting aspects of education. Early prediction of student performance is an emerging area among them. The researchers have used various predictors in performance modelling studies. Although prior cognition can affect student performance, establishing their relationship is still an open research challenge. Quantifying the knowledge from readily available data is the major challenge here. We have proposed a semantic approach for this purpose. Association mining on nearly 0.35 million observations establishes that prior cognition impacts the student performance. The proposed approach of measuring domain knowledge can help the early performance modelling studies to use it as a predictor. 3 authors · Jul 15, 2021
- PatentMatch: A Dataset for Matching Patent Claims & Prior Art Patent examiners need to solve a complex information retrieval task when they assess the novelty and inventive step of claims made in a patent application. Given a claim, they search for prior art, which comprises all relevant publicly available information. This time-consuming task requires a deep understanding of the respective technical domain and the patent-domain-specific language. For these reasons, we address the computer-assisted search for prior art by creating a training dataset for supervised machine learning called PatentMatch. It contains pairs of claims from patent applications and semantically corresponding text passages of different degrees from cited patent documents. Each pair has been labeled by technically-skilled patent examiners from the European Patent Office. Accordingly, the label indicates the degree of semantic correspondence (matching), i.e., whether the text passage is prejudicial to the novelty of the claimed invention or not. Preliminary experiments using a baseline system show that PatentMatch can indeed be used for training a binary text pair classifier on this challenging information retrieval task. The dataset is available online: https://hpi.de/naumann/s/patentmatch. 4 authors · Dec 27, 2020
1 SemRel2024: A Collection of Semantic Textual Relatedness Datasets for 14 Languages Exploring and quantifying semantic relatedness is central to representing language. It holds significant implications across various NLP tasks, including offering insights into the capabilities and performance of Large Language Models (LLMs). While earlier NLP research primarily focused on semantic similarity, often within the English language context, we instead investigate the broader phenomenon of semantic relatedness. In this paper, we present SemRel, a new semantic relatedness dataset collection annotated by native speakers across 14 languages:Afrikaans, Algerian Arabic, Amharic, English, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Punjabi, Spanish, and Telugu. These languages originate from five distinct language families and are predominantly spoken in Africa and Asia -- regions characterised by a relatively limited availability of NLP resources. Each instance in the SemRel datasets is a sentence pair associated with a score that represents the degree of semantic textual relatedness between the two sentences. The scores are obtained using a comparative annotation framework. We describe the data collection and annotation processes, related challenges when building the datasets, and their impact and utility in NLP. We further report experiments for each language and across the different languages. 27 authors · Feb 13, 2024
1 Retrofitting Word Vectors to Semantic Lexicons Vector space word representations are learned from distributional information of words in large corpora. Although such statistics are semantically informative, they disregard the valuable information that is contained in semantic lexicons such as WordNet, FrameNet, and the Paraphrase Database. This paper proposes a method for refining vector space representations using relational information from semantic lexicons by encouraging linked words to have similar vector representations, and it makes no assumptions about how the input vectors were constructed. Evaluated on a battery of standard lexical semantic evaluation tasks in several languages, we obtain substantial improvements starting with a variety of word vector models. Our refinement method outperforms prior techniques for incorporating semantic lexicons into the word vector training algorithms. 6 authors · Nov 15, 2014
- An Evaluation Framework for Legal Document Summarization A law practitioner has to go through numerous lengthy legal case proceedings for their practices of various categories, such as land dispute, corruption, etc. Hence, it is important to summarize these documents, and ensure that summaries contain phrases with intent matching the category of the case. To the best of our knowledge, there is no evaluation metric that evaluates a summary based on its intent. We propose an automated intent-based summarization metric, which shows a better agreement with human evaluation as compared to other automated metrics like BLEU, ROUGE-L etc. in terms of human satisfaction. We also curate a dataset by annotating intent phrases in legal documents, and show a proof of concept as to how this system can be automated. Additionally, all the code and data to generate reproducible results is available on Github. 6 authors · May 17, 2022
- Natural Language Processing in the Legal Domain In this paper, we summarize the current state of the field of NLP & Law with a specific focus on recent technical and substantive developments. To support our analysis, we construct and analyze a nearly complete corpus of more than six hundred NLP & Law related papers published over the past decade. Our analysis highlights several major trends. Namely, we document an increasing number of papers written, tasks undertaken, and languages covered over the course of the past decade. We observe an increase in the sophistication of the methods which researchers deployed in this applied context. Slowly but surely, Legal NLP is beginning to match not only the methodological sophistication of general NLP but also the professional standards of data availability and code reproducibility observed within the broader scientific community. We believe all of these trends bode well for the future of the field, but many questions in both the academic and commercial sphere still remain open. 5 authors · Feb 23, 2023
- Trajectories of Change: Approaches for Tracking Knowledge Evolution We explore local vs. global evolution of knowledge systems through the framework of socio-epistemic networks (SEN), applying two complementary methods to a corpus of scientific texts. The framework comprises three interconnected layers-social, semiotic (material), and semantic-proposing a multilayered approach to understanding structural developments of knowledge. To analyse diachronic changes on the semantic layer, we first use information-theoretic measures based on relative entropy to detect semantic shifts, assess their significance, and identify key driving features. Second, variations in document embedding densities reveal changes in semantic neighbourhoods, tracking how concentration of similar documents increase, remain stable, or disperse. This enables us to trace document trajectories based on content (topics) or metadata (authorship, institution). Case studies of Joseph Silk and Hans-J\"urgen Treder illustrate how individual scholar's work aligns with broader disciplinary shifts in general relativity and gravitation research, demonstrating the applications, limitations, and further potential of this approach. 2 authors · Dec 31, 2024
- Ultra-High Dimensional Sparse Representations with Binarization for Efficient Text Retrieval The semantic matching capabilities of neural information retrieval can ameliorate synonymy and polysemy problems of symbolic approaches. However, neural models' dense representations are more suitable for re-ranking, due to their inefficiency. Sparse representations, either in symbolic or latent form, are more efficient with an inverted index. Taking the merits of the sparse and dense representations, we propose an ultra-high dimensional (UHD) representation scheme equipped with directly controllable sparsity. UHD's large capacity and minimal noise and interference among the dimensions allow for binarized representations, which are highly efficient for storage and search. Also proposed is a bucketing method, where the embeddings from multiple layers of BERT are selected/merged to represent diverse linguistic aspects. We test our models with MS MARCO and TREC CAR, showing that our models outperforms other sparse models 7 authors · Apr 14, 2021
1 AXOLOTL'24 Shared Task on Multilingual Explainable Semantic Change Modeling This paper describes the organization and findings of AXOLOTL'24, the first multilingual explainable semantic change modeling shared task. We present new sense-annotated diachronic semantic change datasets for Finnish and Russian which were employed in the shared task, along with a surprise test-only German dataset borrowed from an existing source. The setup of AXOLOTL'24 is new to the semantic change modeling field, and involves subtasks of identifying unknown (novel) senses and providing dictionary-like definitions to these senses. The methods of the winning teams are described and compared, thus paving a path towards explainability in computational approaches to historical change of meaning. 6 authors · Jul 4, 2024
1 Transforming Hidden States into Binary Semantic Features Large language models follow a lineage of many NLP applications that were directly inspired by distributional semantics, but do not seem to be closely related to it anymore. In this paper, we propose to employ the distributional theory of meaning once again. Using Independent Component Analysis to overcome some of its challenging aspects, we show that large language models represent semantic features in their hidden states. 2 authors · Sep 29, 2024
1 VacancySBERT: the approach for representation of titles and skills for semantic similarity search in the recruitment domain The paper focuses on deep learning semantic search algorithms applied in the HR domain. The aim of the article is developing a novel approach to training a Siamese network to link the skills mentioned in the job ad with the title. It has been shown that the title normalization process can be based either on classification or similarity comparison approaches. While classification algorithms strive to classify a sample into predefined set of categories, similarity search algorithms take a more flexible approach, since they are designed to find samples that are similar to a given query sample, without requiring pre-defined classes and labels. In this article semantic similarity search to find candidates for title normalization has been used. A pre-trained language model has been adapted while teaching it to match titles and skills based on co-occurrence information. For the purpose of this research fifty billion title-descriptions pairs had been collected for training the model and thirty three thousand title-description-normalized title triplets, where normalized job title was picked up manually by job ad creator for testing purposes. As baselines FastText, BERT, SentenceBert and JobBert have been used. As a metric of the accuracy of the designed algorithm is Recall in top one, five and ten model's suggestions. It has been shown that the novel training objective lets it achieve significant improvement in comparison to other generic and specific text encoders. Two settings with treating titles as standalone strings, and with included skills as additional features during inference have been used and the results have been compared in this article. Improvements by 10% and 21.5% have been achieved using VacancySBERT and VacancySBERT (with skills) respectively. The benchmark has been developed as open-source to foster further research in the area. 3 authors · Jul 31, 2023
- Semantics derived automatically from language corpora contain human-like biases Artificial intelligence and machine learning are in a period of astounding growth. However, there are concerns that these technologies may be used, either with or without intention, to perpetuate the prejudice and unfairness that unfortunately characterizes many human institutions. Here we show for the first time that human-like semantic biases result from the application of standard machine learning to ordinary language---the same sort of language humans are exposed to every day. We replicate a spectrum of standard human biases as exposed by the Implicit Association Test and other well-known psychological studies. We replicate these using a widely used, purely statistical machine-learning model---namely, the GloVe word embedding---trained on a corpus of text from the Web. Our results indicate that language itself contains recoverable and accurate imprints of our historic biases, whether these are morally neutral as towards insects or flowers, problematic as towards race or gender, or even simply veridical, reflecting the {\em status quo} for the distribution of gender with respect to careers or first names. These regularities are captured by machine learning along with the rest of semantics. In addition to our empirical findings concerning language, we also contribute new methods for evaluating bias in text, the Word Embedding Association Test (WEAT) and the Word Embedding Factual Association Test (WEFAT). Our results have implications not only for AI and machine learning, but also for the fields of psychology, sociology, and human ethics, since they raise the possibility that mere exposure to everyday language can account for the biases we replicate here. 3 authors · Aug 25, 2016
1 Experimental Support for a Categorical Compositional Distributional Model of Meaning Modelling compositional meaning for sentences using empirical distributional methods has been a challenge for computational linguists. We implement the abstract categorical model of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) using data from the BNC and evaluate it. The implementation is based on unsupervised learning of matrices for relational words and applying them to the vectors of their arguments. The evaluation is based on the word disambiguation task developed by Mitchell and Lapata (2008) for intransitive sentences, and on a similar new experiment designed for transitive sentences. Our model matches the results of its competitors in the first experiment, and betters them in the second. The general improvement in results with increase in syntactic complexity showcases the compositional power of our model. 2 authors · Jun 20, 2011
- A Puzzle-Based Dataset for Natural Language Inference We provide here a dataset for tasks related to natural language understanding and natural language inference. The dataset contains logical puzzles in natural language from three domains: comparing puzzles, knighs and knaves, and zebra puzzles. Each puzzle is associated with the entire set of atomic questions that can be generated based on the relations and individuals occurring in the text. For each question we provide the correct answer: entailment, contradiction or ambiguity. The answer's correctness is verified against theorem provers. Good puzzles have two properties: (i) each piece of information is necessary and (ii) no unnecessary information is provided. These properties make puzzles interesting candidates for machine comprehension tasks. 2 authors · Dec 10, 2021
- Named Entity Recognition and Classification on Historical Documents: A Survey After decades of massive digitisation, an unprecedented amount of historical documents is available in digital format, along with their machine-readable texts. While this represents a major step forward with respect to preservation and accessibility, it also opens up new opportunities in terms of content mining and the next fundamental challenge is to develop appropriate technologies to efficiently search, retrieve and explore information from this 'big data of the past'. Among semantic indexing opportunities, the recognition and classification of named entities are in great demand among humanities scholars. Yet, named entity recognition (NER) systems are heavily challenged with diverse, historical and noisy inputs. In this survey, we present the array of challenges posed by historical documents to NER, inventory existing resources, describe the main approaches deployed so far, and identify key priorities for future developments. 5 authors · Sep 23, 2021
1 Mapping distributional to model-theoretic semantic spaces: a baseline Word embeddings have been shown to be useful across state-of-the-art systems in many natural language processing tasks, ranging from question answering systems to dependency parsing. (Herbelot and Vecchi, 2015) explored word embeddings and their utility for modeling language semantics. In particular, they presented an approach to automatically map a standard distributional semantic space onto a set-theoretic model using partial least squares regression. We show in this paper that a simple baseline achieves a +51% relative improvement compared to their model on one of the two datasets they used, and yields competitive results on the second dataset. 1 authors · Jul 10, 2016
- Table2answer: Read the database and answer without SQL Semantic parsing is the task of mapping natural language to logic form. In question answering, semantic parsing can be used to map the question to logic form and execute the logic form to get the answer. One key problem for semantic parsing is the hard label work. We study this problem in another way: we do not use the logic form any more. Instead we only use the schema and answer info. We think that the logic form step can be injected into the deep model. The reason why we think removing the logic form step is possible is that human can do the task without explicit logic form. We use BERT-based model and do the experiment in the WikiSQL dataset, which is a large natural language to SQL dataset. Our experimental evaluations that show that our model can achieves the baseline results in WikiSQL dataset. 2 authors · Feb 12, 2019
- The language of prompting: What linguistic properties make a prompt successful? The latest generation of LLMs can be prompted to achieve impressive zero-shot or few-shot performance in many NLP tasks. However, since performance is highly sensitive to the choice of prompts, considerable effort has been devoted to crowd-sourcing prompts or designing methods for prompt optimisation. Yet, we still lack a systematic understanding of how linguistic properties of prompts correlate with task performance. In this work, we investigate how LLMs of different sizes, pre-trained and instruction-tuned, perform on prompts that are semantically equivalent, but vary in linguistic structure. We investigate both grammatical properties such as mood, tense, aspect and modality, as well as lexico-semantic variation through the use of synonyms. Our findings contradict the common assumption that LLMs achieve optimal performance on lower perplexity prompts that reflect language use in pretraining or instruction-tuning data. Prompts transfer poorly between datasets or models, and performance cannot generally be explained by perplexity, word frequency, ambiguity or prompt length. Based on our results, we put forward a proposal for a more robust and comprehensive evaluation standard for prompting research. 3 authors · Nov 3, 2023
- Are distributional representations ready for the real world? Evaluating word vectors for grounded perceptual meaning Distributional word representation methods exploit word co-occurrences to build compact vector encodings of words. While these representations enjoy widespread use in modern natural language processing, it is unclear whether they accurately encode all necessary facets of conceptual meaning. In this paper, we evaluate how well these representations can predict perceptual and conceptual features of concrete concepts, drawing on two semantic norm datasets sourced from human participants. We find that several standard word representations fail to encode many salient perceptual features of concepts, and show that these deficits correlate with word-word similarity prediction errors. Our analyses provide motivation for grounded and embodied language learning approaches, which may help to remedy these deficits. 2 authors · May 31, 2017
2 PaECTER: Patent-level Representation Learning using Citation-informed Transformers PaECTER is a publicly available, open-source document-level encoder specific for patents. We fine-tune BERT for Patents with examiner-added citation information to generate numerical representations for patent documents. PaECTER performs better in similarity tasks than current state-of-the-art models used in the patent domain. More specifically, our model outperforms the next-best patent specific pre-trained language model (BERT for Patents) on our patent citation prediction test dataset on two different rank evaluation metrics. PaECTER predicts at least one most similar patent at a rank of 1.32 on average when compared against 25 irrelevant patents. Numerical representations generated by PaECTER from patent text can be used for downstream tasks such as classification, tracing knowledge flows, or semantic similarity search. Semantic similarity search is especially relevant in the context of prior art search for both inventors and patent examiners. PaECTER is available on Hugging Face. 5 authors · Feb 29, 2024
- Semantics-aware BERT for Language Understanding The latest work on language representations carefully integrates contextualized features into language model training, which enables a series of success especially in various machine reading comprehension and natural language inference tasks. However, the existing language representation models including ELMo, GPT and BERT only exploit plain context-sensitive features such as character or word embeddings. They rarely consider incorporating structured semantic information which can provide rich semantics for language representation. To promote natural language understanding, we propose to incorporate explicit contextual semantics from pre-trained semantic role labeling, and introduce an improved language representation model, Semantics-aware BERT (SemBERT), which is capable of explicitly absorbing contextual semantics over a BERT backbone. SemBERT keeps the convenient usability of its BERT precursor in a light fine-tuning way without substantial task-specific modifications. Compared with BERT, semantics-aware BERT is as simple in concept but more powerful. It obtains new state-of-the-art or substantially improves results on ten reading comprehension and language inference tasks. 7 authors · Sep 5, 2019
- Rethinking Search: Making Domain Experts out of Dilettantes When experiencing an information need, users want to engage with a domain expert, but often turn to an information retrieval system, such as a search engine, instead. Classical information retrieval systems do not answer information needs directly, but instead provide references to (hopefully authoritative) answers. Successful question answering systems offer a limited corpus created on-demand by human experts, which is neither timely nor scalable. Pre-trained language models, by contrast, are capable of directly generating prose that may be responsive to an information need, but at present they are dilettantes rather than domain experts -- they do not have a true understanding of the world, they are prone to hallucinating, and crucially they are incapable of justifying their utterances by referring to supporting documents in the corpus they were trained over. This paper examines how ideas from classical information retrieval and pre-trained language models can be synthesized and evolved into systems that truly deliver on the promise of domain expert advice. 4 authors · May 5, 2021
- Exploring the Landscape of Natural Language Processing Research As an efficient approach to understand, generate, and process natural language texts, research in natural language processing (NLP) has exhibited a rapid spread and wide adoption in recent years. Given the increasing amount of research work in this area, several NLP-related approaches have been surveyed in the research community. However, a comprehensive study that categorizes established topics, identifies trends, and outlines areas for future research remains absent to this day. Contributing to closing this gap, we have systematically classified and analyzed research papers included in the ACL Anthology. As a result, we present a structured overview of the research landscape, provide a taxonomy of fields-of-study in NLP, analyze recent developments in NLP, summarize our findings, and highlight directions for future work. 3 authors · Jul 20, 2023
1 How Humans and LLMs Organize Conceptual Knowledge: Exploring Subordinate Categories in Italian People can categorize the same entity at multiple taxonomic levels, such as basic (bear), superordinate (animal), and subordinate (grizzly bear). While prior research has focused on basic-level categories, this study is the first attempt to examine the organization of categories by analyzing exemplars produced at the subordinate level. We present a new Italian psycholinguistic dataset of human-generated exemplars for 187 concrete words. We then use these data to evaluate whether textual and vision LLMs produce meaningful exemplars that align with human category organization across three key tasks: exemplar generation, category induction, and typicality judgment. Our findings show a low alignment between humans and LLMs, consistent with previous studies. However, their performance varies notably across different semantic domains. Ultimately, this study highlights both the promises and the constraints of using AI-generated exemplars to support psychological and linguistic research. 4 authors · May 27 1
- PropSegmEnt: A Large-Scale Corpus for Proposition-Level Segmentation and Entailment Recognition The widely studied task of Natural Language Inference (NLI) requires a system to recognize whether one piece of text is textually entailed by another, i.e. whether the entirety of its meaning can be inferred from the other. In current NLI datasets and models, textual entailment relations are typically defined on the sentence- or paragraph-level. However, even a simple sentence often contains multiple propositions, i.e. distinct units of meaning conveyed by the sentence. As these propositions can carry different truth values in the context of a given premise, we argue for the need to recognize the textual entailment relation of each proposition in a sentence individually. We propose PropSegmEnt, a corpus of over 35K propositions annotated by expert human raters. Our dataset structure resembles the tasks of (1) segmenting sentences within a document to the set of propositions, and (2) classifying the entailment relation of each proposition with respect to a different yet topically-aligned document, i.e. documents describing the same event or entity. We establish strong baselines for the segmentation and entailment tasks. Through case studies on summary hallucination detection and document-level NLI, we demonstrate that our conceptual framework is potentially useful for understanding and explaining the compositionality of NLI labels. 5 authors · Dec 20, 2022
- Learning Language Games through Interaction We introduce a new language learning setting relevant to building adaptive natural language interfaces. It is inspired by Wittgenstein's language games: a human wishes to accomplish some task (e.g., achieving a certain configuration of blocks), but can only communicate with a computer, who performs the actual actions (e.g., removing all red blocks). The computer initially knows nothing about language and therefore must learn it from scratch through interaction, while the human adapts to the computer's capabilities. We created a game in a blocks world and collected interactions from 100 people playing it. First, we analyze the humans' strategies, showing that using compositionality and avoiding synonyms correlates positively with task performance. Second, we compare computer strategies, showing how to quickly learn a semantic parsing model from scratch, and that modeling pragmatics further accelerates learning for successful players. 3 authors · Jun 8, 2016
- Query-Response Interactions by Multi-tasks in Semantic Search for Chatbot Candidate Retrieval Semantic search for candidate retrieval is an important yet neglected problem in retrieval-based Chatbots, which aims to select a bunch of candidate responses efficiently from a large pool. The existing bottleneck is to ensure the model architecture having two points: 1) rich interactions between a query and a response to produce query-relevant responses; 2) ability of separately projecting the query and the response into latent spaces to apply efficiently in semantic search during online inference. To tackle this problem, we propose a novel approach, called Multitask-based Semantic Search Neural Network (MSSNN) for candidate retrieval, which accomplishes query-response interactions through multi-tasks. The method employs a Seq2Seq modeling task to learn a good query encoder, and then performs a word prediction task to build response embeddings, finally conducts a simple matching model to form the dot-product scorer. Experimental studies have demonstrated the potential of the proposed approach. 3 authors · Aug 23, 2022
3 The Geometry of Categorical and Hierarchical Concepts in Large Language Models Understanding how semantic meaning is encoded in the representation spaces of large language models is a fundamental problem in interpretability. In this paper, we study the two foundational questions in this area. First, how are categorical concepts, such as {'mammal', 'bird', 'reptile', 'fish'}, represented? Second, how are hierarchical relations between concepts encoded? For example, how is the fact that 'dog' is a kind of 'mammal' encoded? We show how to extend the linear representation hypothesis to answer these questions. We find a remarkably simple structure: simple categorical concepts are represented as simplices, hierarchically related concepts are orthogonal in a sense we make precise, and (in consequence) complex concepts are represented as polytopes constructed from direct sums of simplices, reflecting the hierarchical structure. We validate these theoretical results on the Gemma large language model, estimating representations for 957 hierarchically related concepts using data from WordNet. 4 authors · Jun 3, 2024
- The ROOTS Search Tool: Data Transparency for LLMs ROOTS is a 1.6TB multilingual text corpus developed for the training of BLOOM, currently the largest language model explicitly accompanied by commensurate data governance efforts. In continuation of these efforts, we present the ROOTS Search Tool: a search engine over the entire ROOTS corpus offering both fuzzy and exact search capabilities. ROOTS is the largest corpus to date that can be investigated this way. The ROOTS Search Tool is open-sourced and available on Hugging Face Spaces. We describe our implementation and the possible use cases of our tool. 8 authors · Feb 27, 2023
- Deep Learning for Answer Sentence Selection Answer sentence selection is the task of identifying sentences that contain the answer to a given question. This is an important problem in its own right as well as in the larger context of open domain question answering. We propose a novel approach to solving this task via means of distributed representations, and learn to match questions with answers by considering their semantic encoding. This contrasts prior work on this task, which typically relies on classifiers with large numbers of hand-crafted syntactic and semantic features and various external resources. Our approach does not require any feature engineering nor does it involve specialist linguistic data, making this model easily applicable to a wide range of domains and languages. Experimental results on a standard benchmark dataset from TREC demonstrate that---despite its simplicity---our model matches state of the art performance on the answer sentence selection task. 4 authors · Dec 4, 2014
- SeaEval for Multilingual Foundation Models: From Cross-Lingual Alignment to Cultural Reasoning We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Most models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained "balanced multilingual" capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios. 7 authors · Sep 9, 2023
3 Semantic Uncertainty: Linguistic Invariances for Uncertainty Estimation in Natural Language Generation We introduce a method to measure uncertainty in large language models. For tasks like question answering, it is essential to know when we can trust the natural language outputs of foundation models. We show that measuring uncertainty in natural language is challenging because of "semantic equivalence" -- different sentences can mean the same thing. To overcome these challenges we introduce semantic entropy -- an entropy which incorporates linguistic invariances created by shared meanings. Our method is unsupervised, uses only a single model, and requires no modifications to off-the-shelf language models. In comprehensive ablation studies we show that the semantic entropy is more predictive of model accuracy on question answering data sets than comparable baselines. 3 authors · Feb 19, 2023
- ReCoRD: Bridging the Gap between Human and Machine Commonsense Reading Comprehension We present a large-scale dataset, ReCoRD, for machine reading comprehension requiring commonsense reasoning. Experiments on this dataset demonstrate that the performance of state-of-the-art MRC systems fall far behind human performance. ReCoRD represents a challenge for future research to bridge the gap between human and machine commonsense reading comprehension. ReCoRD is available at http://nlp.jhu.edu/record. 6 authors · Oct 30, 2018
- Mapping Natural Language Commands to Web Elements The web provides a rich, open-domain environment with textual, structural, and spatial properties. We propose a new task for grounding language in this environment: given a natural language command (e.g., "click on the second article"), choose the correct element on the web page (e.g., a hyperlink or text box). We collected a dataset of over 50,000 commands that capture various phenomena such as functional references (e.g. "find who made this site"), relational reasoning (e.g. "article by john"), and visual reasoning (e.g. "top-most article"). We also implemented and analyzed three baseline models that capture different phenomena present in the dataset. 5 authors · Aug 28, 2018
- WiC: the Word-in-Context Dataset for Evaluating Context-Sensitive Meaning Representations By design, word embeddings are unable to model the dynamic nature of words' semantics, i.e., the property of words to correspond to potentially different meanings. To address this limitation, dozens of specialized meaning representation techniques such as sense or contextualized embeddings have been proposed. However, despite the popularity of research on this topic, very few evaluation benchmarks exist that specifically focus on the dynamic semantics of words. In this paper we show that existing models have surpassed the performance ceiling of the standard evaluation dataset for the purpose, i.e., Stanford Contextual Word Similarity, and highlight its shortcomings. To address the lack of a suitable benchmark, we put forward a large-scale Word in Context dataset, called WiC, based on annotations curated by experts, for generic evaluation of context-sensitive representations. WiC is released in https://pilehvar.github.io/wic/. 2 authors · Aug 28, 2018
- Exploring Non-Verbal Predicates in Semantic Role Labeling: Challenges and Opportunities Although we have witnessed impressive progress in Semantic Role Labeling (SRL), most of the research in the area is carried out assuming that the majority of predicates are verbs. Conversely, predicates can also be expressed using other parts of speech, e.g., nouns and adjectives. However, non-verbal predicates appear in the benchmarks we commonly use to measure progress in SRL less frequently than in some real-world settings -- newspaper headlines, dialogues, and tweets, among others. In this paper, we put forward a new PropBank dataset which boasts wide coverage of multiple predicate types. Thanks to it, we demonstrate empirically that standard benchmarks do not provide an accurate picture of the current situation in SRL and that state-of-the-art systems are still incapable of transferring knowledge across different predicate types. Having observed these issues, we also present a novel, manually-annotated challenge set designed to give equal importance to verbal, nominal, and adjectival predicate-argument structures. We use such dataset to investigate whether we can leverage different linguistic resources to promote knowledge transfer. In conclusion, we claim that SRL is far from "solved", and its integration with other semantic tasks might enable significant improvements in the future, especially for the long tail of non-verbal predicates, thereby facilitating further research on SRL for non-verbal predicates. 3 authors · Jul 4, 2023
- TartuNLP @ AXOLOTL-24: Leveraging Classifier Output for New Sense Detection in Lexical Semantics We present our submission to the AXOLOTL-24 shared task. The shared task comprises two subtasks: identifying new senses that words gain with time (when comparing newer and older time periods) and producing the definitions for the identified new senses. We implemented a conceptually simple and computationally inexpensive solution to both subtasks. We trained adapter-based binary classification models to match glosses with usage examples and leveraged the probability output of the models to identify novel senses. The same models were used to match examples of novel sense usages with Wiktionary definitions. Our submission attained third place on the first subtask and the first place on the second subtask. 2 authors · Jul 4, 2024
- SEFD: Semantic-Enhanced Framework for Detecting LLM-Generated Text The widespread adoption of large language models (LLMs) has created an urgent need for robust tools to detect LLM-generated text, especially in light of paraphrasing techniques that often evade existing detection methods. To address this challenge, we present a novel semantic-enhanced framework for detecting LLM-generated text (SEFD) that leverages a retrieval-based mechanism to fully utilize text semantics. Our framework improves upon existing detection methods by systematically integrating retrieval-based techniques with traditional detectors, employing a carefully curated retrieval mechanism that strikes a balance between comprehensive coverage and computational efficiency. We showcase the effectiveness of our approach in sequential text scenarios common in real-world applications, such as online forums and Q\&A platforms. Through comprehensive experiments across various LLM-generated texts and detection methods, we demonstrate that our framework substantially enhances detection accuracy in paraphrasing scenarios while maintaining robustness for standard LLM-generated content. 6 authors · Nov 17, 2024
2 PhiloBERTA: A Transformer-Based Cross-Lingual Analysis of Greek and Latin Lexicons We present PhiloBERTA, a cross-lingual transformer model that measures semantic relationships between ancient Greek and Latin lexicons. Through analysis of selected term pairs from classical texts, we use contextual embeddings and angular similarity metrics to identify precise semantic alignments. Our results show that etymologically related pairs demonstrate significantly higher similarity scores, particularly for abstract philosophical concepts such as epist\=em\=e (scientia) and dikaiosyn\=e (iustitia). Statistical analysis reveals consistent patterns in these relationships (p = 0.012), with etymologically related pairs showing remarkably stable semantic preservation compared to control pairs. These findings establish a quantitative framework for examining how philosophical concepts moved between Greek and Latin traditions, offering new methods for classical philological research. 2 authors · Mar 7 2
- The Semantic Scholar Open Data Platform The volume of scientific output is creating an urgent need for automated tools to help scientists keep up with developments in their field. Semantic Scholar (S2) is an open data platform and website aimed at accelerating science by helping scholars discover and understand scientific literature. We combine public and proprietary data sources using state-of-the-art techniques for scholarly PDF content extraction and automatic knowledge graph construction to build the Semantic Scholar Academic Graph, the largest open scientific literature graph to-date, with 200M+ papers, 80M+ authors, 550M+ paper-authorship edges, and 2.4B+ citation edges. The graph includes advanced semantic features such as structurally parsed text, natural language summaries, and vector embeddings. In this paper, we describe the components of the S2 data processing pipeline and the associated APIs offered by the platform. We will update this living document to reflect changes as we add new data offerings and improve existing services. 48 authors · Jan 24, 2023
- SciPIP: An LLM-based Scientific Paper Idea Proposer The exponential growth of knowledge and the increasing complexity of interdisciplinary research pose significant challenges for researchers, including information overload and difficulties in exploring novel ideas. The advancements in large language models (LLMs), such as GPT-4, have shown great potential in enhancing idea proposals, but how to effectively utilize large models for reasonable idea proposal has not been thoroughly explored. This paper proposes a scientific paper idea proposer (SciPIP). Based on a user-provided research background, SciPIP retrieves helpful papers from a literature database while leveraging the capabilities of LLMs to generate more novel and feasible ideas. To this end, 1) we construct a literature retrieval database, extracting lots of papers' multi-dimension information for fast access. Then, a literature retrieval method based on semantics, entity, and citation co-occurrences is proposed to search relevant literature from multiple aspects based on the user-provided background. 2) After literature retrieval, we introduce dual-path idea proposal strategies, where one path infers solutions from the retrieved literature and the other path generates original ideas through model brainstorming. We then combine the two to achieve a good balance between feasibility and originality. Through extensive experiments on the natural language processing (NLP) field, we demonstrate that SciPIP can retrieve citations similar to those of existing top conference papers and generate many ideas consistent with them. Additionally, we evaluate the originality of other ideas generated by SciPIP using large language models, further validating the effectiveness of our proposed method. The code and the database are released at https://github.com/cheerss/SciPIP. 10 authors · Oct 30, 2024
- SemEval-2017 Task 1: Semantic Textual Similarity - Multilingual and Cross-lingual Focused Evaluation Semantic Textual Similarity (STS) measures the meaning similarity of sentences. Applications include machine translation (MT), summarization, generation, question answering (QA), short answer grading, semantic search, dialog and conversational systems. The STS shared task is a venue for assessing the current state-of-the-art. The 2017 task focuses on multilingual and cross-lingual pairs with one sub-track exploring MT quality estimation (MTQE) data. The task obtained strong participation from 31 teams, with 17 participating in all language tracks. We summarize performance and review a selection of well performing methods. Analysis highlights common errors, providing insight into the limitations of existing models. To support ongoing work on semantic representations, the STS Benchmark is introduced as a new shared training and evaluation set carefully selected from the corpus of English STS shared task data (2012-2017). 5 authors · Jul 31, 2017
- Confabulation: The Surprising Value of Large Language Model Hallucinations This paper presents a systematic defense of large language model (LLM) hallucinations or 'confabulations' as a potential resource instead of a categorically negative pitfall. The standard view is that confabulations are inherently problematic and AI research should eliminate this flaw. In this paper, we argue and empirically demonstrate that measurable semantic characteristics of LLM confabulations mirror a human propensity to utilize increased narrativity as a cognitive resource for sense-making and communication. In other words, it has potential value. Specifically, we analyze popular hallucination benchmarks and reveal that hallucinated outputs display increased levels of narrativity and semantic coherence relative to veridical outputs. This finding reveals a tension in our usually dismissive understandings of confabulation. It suggests, counter-intuitively, that the tendency for LLMs to confabulate may be intimately associated with a positive capacity for coherent narrative-text generation. 4 authors · Jun 6, 2024
- Superlatives in Context: Explicit and Implicit Domain Restrictions for Superlative Frames Superlatives are used to single out elements with a maximal/minimal property. Semantically, superlatives perform a set comparison: something (or some things) has the min/max property out of a set. As such, superlatives provide an ideal phenomenon for studying implicit phenomena and discourse restrictions. While this comparison set is often not explicitly defined, its (implicit) restrictions can be inferred from the discourse context the expression appears in. In this work we provide an extensive computational study on the semantics of superlatives. We propose a unified account of superlative semantics which allows us to derive a broad-coverage annotation schema. Using this unified schema we annotated a multi-domain dataset of superlatives and their semantic interpretations. We specifically focus on interpreting implicit or ambiguous superlative expressions, by analyzing how the discourse context restricts the set of interpretations. In a set of experiments we then analyze how well models perform at variations of predicting superlative semantics, with and without context. We show that the fine-grained semantics of superlatives in context can be challenging for contemporary models, including GPT-4. 4 authors · May 31, 2024
- Semantic Models for the First-stage Retrieval: A Comprehensive Review Multi-stage ranking pipelines have been a practical solution in modern search systems, where the first-stage retrieval is to return a subset of candidate documents, and latter stages attempt to re-rank those candidates. Unlike re-ranking stages going through quick technique shifts during past decades, the first-stage retrieval has long been dominated by classical term-based models. Unfortunately, these models suffer from the vocabulary mismatch problem, which may block re-ranking stages from relevant documents at the very beginning. Therefore, it has been a long-term desire to build semantic models for the first-stage retrieval that can achieve high recall efficiently. Recently, we have witnessed an explosive growth of research interests on the first-stage semantic retrieval models. We believe it is the right time to survey current status, learn from existing methods, and gain some insights for future development. In this paper, we describe the current landscape of the first-stage retrieval models under a unified framework to clarify the connection between classical term-based retrieval methods, early semantic retrieval methods and neural semantic retrieval methods. Moreover, we identify some open challenges and envision some future directions, with the hope of inspiring more researches on these important yet less investigated topics. 6 authors · Mar 8, 2021
6 Retrieval-Enhanced Machine Learning: Synthesis and Opportunities In the field of language modeling, models augmented with retrieval components have emerged as a promising solution to address several challenges faced in the natural language processing (NLP) field, including knowledge grounding, interpretability, and scalability. Despite the primary focus on NLP, we posit that the paradigm of retrieval-enhancement can be extended to a broader spectrum of machine learning (ML) such as computer vision, time series prediction, and computational biology. Therefore, this work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature. Also, we found that while a number of studies employ retrieval components to augment their models, there is a lack of integration with foundational Information Retrieval (IR) research. We bridge this gap between the seminal IR research and contemporary REML studies by investigating each component that comprises the REML framework. Ultimately, the goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research. 5 authors · Jul 17, 2024 2
- Semantic Specialization for Knowledge-based Word Sense Disambiguation A promising approach for knowledge-based Word Sense Disambiguation (WSD) is to select the sense whose contextualized embeddings computed for its definition sentence are closest to those computed for a target word in a given sentence. This approach relies on the similarity of the sense and context embeddings computed by a pre-trained language model. We propose a semantic specialization for WSD where contextualized embeddings are adapted to the WSD task using solely lexical knowledge. The key idea is, for a given sense, to bring semantically related senses and contexts closer and send different/unrelated senses farther away. We realize this idea as the joint optimization of the Attract-Repel objective for sense pairs and the self-training objective for context-sense pairs while controlling deviations from the original embeddings. The proposed method outperformed previous studies that adapt contextualized embeddings. It achieved state-of-the-art performance on knowledge-based WSD when combined with the reranking heuristic that uses the sense inventory. We found that the similarity characteristics of specialized embeddings conform to the key idea. We also found that the (dis)similarity of embeddings between the related/different/unrelated senses correlates well with the performance of WSD. 2 authors · Apr 22, 2023
1 What Looks Good with my Sofa: Multimodal Search Engine for Interior Design In this paper, we propose a multi-modal search engine for interior design that combines visual and textual queries. The goal of our engine is to retrieve interior objects, e.g. furniture or wall clocks, that share visual and aesthetic similarities with the query. Our search engine allows the user to take a photo of a room and retrieve with a high recall a list of items identical or visually similar to those present in the photo. Additionally, it allows to return other items that aesthetically and stylistically fit well together. To achieve this goal, our system blends the results obtained using textual and visual modalities. Thanks to this blending strategy, we increase the average style similarity score of the retrieved items by 11%. Our work is implemented as a Web-based application and it is planned to be opened to the public. 6 authors · Jul 21, 2017
2 What Evidence Do Language Models Find Convincing? Retrieval-augmented language models are being increasingly tasked with subjective, contentious, and conflicting queries such as "is aspartame linked to cancer". To resolve these ambiguous queries, one must search through a large range of websites and consider "which, if any, of this evidence do I find convincing?". In this work, we study how LLMs answer this question. In particular, we construct ConflictingQA, a dataset that pairs controversial queries with a series of real-world evidence documents that contain different facts (e.g., quantitative results), argument styles (e.g., appeals to authority), and answers (Yes or No). We use this dataset to perform sensitivity and counterfactual analyses to explore which text features most affect LLM predictions. Overall, we find that current models rely heavily on the relevance of a website to the query, while largely ignoring stylistic features that humans find important such as whether a text contains scientific references or is written with a neutral tone. Taken together, these results highlight the importance of RAG corpus quality (e.g., the need to filter misinformation), and possibly even a shift in how LLMs are trained to better align with human judgements. 3 authors · Feb 18, 2024
1 Disentangling Dense Embeddings with Sparse Autoencoders Sparse autoencoders (SAEs) have shown promise in extracting interpretable features from complex neural networks. We present one of the first applications of SAEs to dense text embeddings from large language models, demonstrating their effectiveness in disentangling semantic concepts. By training SAEs on embeddings of over 420,000 scientific paper abstracts from computer science and astronomy, we show that the resulting sparse representations maintain semantic fidelity while offering interpretability. We analyse these learned features, exploring their behaviour across different model capacities and introducing a novel method for identifying ``feature families'' that represent related concepts at varying levels of abstraction. To demonstrate the practical utility of our approach, we show how these interpretable features can be used to precisely steer semantic search, allowing for fine-grained control over query semantics. This work bridges the gap between the semantic richness of dense embeddings and the interpretability of sparse representations. We open source our embeddings, trained sparse autoencoders, and interpreted features, as well as a web app for exploring them. 4 authors · Aug 1, 2024
1 Foundations of Vector Retrieval Vectors are universal mathematical objects that can represent text, images, speech, or a mix of these data modalities. That happens regardless of whether data is represented by hand-crafted features or learnt embeddings. Collect a large enough quantity of such vectors and the question of retrieval becomes urgently relevant: Finding vectors that are more similar to a query vector. This monograph is concerned with the question above and covers fundamental concepts along with advanced data structures and algorithms for vector retrieval. In doing so, it recaps this fascinating topic and lowers barriers of entry into this rich area of research. 1 authors · Jan 17, 2024
- On the Relationship between Sentence Analogy Identification and Sentence Structure Encoding in Large Language Models The ability of Large Language Models (LLMs) to encode syntactic and semantic structures of language is well examined in NLP. Additionally, analogy identification, in the form of word analogies are extensively studied in the last decade of language modeling literature. In this work we specifically look at how LLMs' abilities to capture sentence analogies (sentences that convey analogous meaning to each other) vary with LLMs' abilities to encode syntactic and semantic structures of sentences. Through our analysis, we find that LLMs' ability to identify sentence analogies is positively correlated with their ability to encode syntactic and semantic structures of sentences. Specifically, we find that the LLMs which capture syntactic structures better, also have higher abilities in identifying sentence analogies. 7 authors · Oct 11, 2023
1 A PhD Student's Perspective on Research in NLP in the Era of Very Large Language Models Recent progress in large language models has enabled the deployment of many generative NLP applications. At the same time, it has also led to a misleading public discourse that ``it's all been solved.'' Not surprisingly, this has in turn made many NLP researchers -- especially those at the beginning of their career -- wonder about what NLP research area they should focus on. This document is a compilation of NLP research directions that are rich for exploration, reflecting the views of a diverse group of PhD students in an academic research lab. While we identify many research areas, many others exist; we do not cover those areas that are currently addressed by LLMs but where LLMs lag behind in performance, or those focused on LLM development. We welcome suggestions for other research directions to include: https://bit.ly/nlp-era-llm 22 authors · May 21, 2023
1 Can Humans Identify Domains? Textual domain is a crucial property within the Natural Language Processing (NLP) community due to its effects on downstream model performance. The concept itself is, however, loosely defined and, in practice, refers to any non-typological property, such as genre, topic, medium or style of a document. We investigate the core notion of domains via human proficiency in identifying related intrinsic textual properties, specifically the concepts of genre (communicative purpose) and topic (subject matter). We publish our annotations in *TGeGUM*: A collection of 9.1k sentences from the GUM dataset (Zeldes, 2017) with single sentence and larger context (i.e., prose) annotations for one of 11 genres (source type), and its topic/subtopic as per the Dewey Decimal library classification system (Dewey, 1979), consisting of 10/100 hierarchical topics of increased granularity. Each instance is annotated by three annotators, for a total of 32.7k annotations, allowing us to examine the level of human disagreement and the relative difficulty of each annotation task. With a Fleiss' kappa of at most 0.53 on the sentence level and 0.66 at the prose level, it is evident that despite the ubiquity of domains in NLP, there is little human consensus on how to define them. By training classifiers to perform the same task, we find that this uncertainty also extends to NLP models. 6 authors · Apr 2, 2024
1 Topic Analysis of Superconductivity Literature by Semantic Non-negative Matrix Factorization We utilize a recently developed topic modeling method called SeNMFk, extending the standard Non-negative Matrix Factorization (NMF) methods by incorporating the semantic structure of the text, and adding a robust system for determining the number of topics. With SeNMFk, we were able to extract coherent topics validated by human experts. From these topics, a few are relatively general and cover broad concepts, while the majority can be precisely mapped to specific scientific effects or measurement techniques. The topics also differ by ubiquity, with only three topics prevalent in almost 40 percent of the abstract, while each specific topic tends to dominate a small subset of the abstracts. These results demonstrate the ability of SeNMFk to produce a layered and nuanced analysis of large scientific corpora. 4 authors · Dec 1, 2021
2 Internet-Augmented Dialogue Generation The largest store of continually updating knowledge on our planet can be accessed via internet search. In this work we study giving access to this information to conversational agents. Large language models, even though they store an impressive amount of knowledge within their weights, are known to hallucinate facts when generating dialogue (Shuster et al., 2021); moreover, those facts are frozen in time at the point of model training. In contrast, we propose an approach that learns to generate an internet search query based on the context, and then conditions on the search results to finally generate a response, a method that can employ up-to-the-minute relevant information. We train and evaluate such models on a newly collected dataset of human-human conversations whereby one of the speakers is given access to internet search during knowledgedriven discussions in order to ground their responses. We find that search-query based access of the internet in conversation provides superior performance compared to existing approaches that either use no augmentation or FAISS-based retrieval (Lewis et al., 2020). 3 authors · Jul 15, 2021
- Using clarification questions to improve software developers' Web search Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals. 2 authors · Jul 26, 2022
- The Possible, the Plausible, and the Desirable: Event-Based Modality Detection for Language Processing Modality is the linguistic ability to describe events with added information such as how desirable, plausible, or feasible they are. Modality is important for many NLP downstream tasks such as the detection of hedging, uncertainty, speculation, and more. Previous studies that address modality detection in NLP often restrict modal expressions to a closed syntactic class, and the modal sense labels are vastly different across different studies, lacking an accepted standard. Furthermore, these senses are often analyzed independently of the events that they modify. This work builds on the theoretical foundations of the Georgetown Gradable Modal Expressions (GME) work by Rubinstein et al. (2013) to propose an event-based modality detection task where modal expressions can be words of any syntactic class and sense labels are drawn from a comprehensive taxonomy which harmonizes the modal concepts contributed by the different studies. We present experiments on the GME corpus aiming to detect and classify fine-grained modal concepts and associate them with their modified events. We show that detecting and classifying modal expressions is not only feasible, but also improves the detection of modal events in their own right. 5 authors · Jun 15, 2021
- Reading with Intent Retrieval augmented generation (RAG) systems augment how knowledge language models are by integrating external information sources such as Wikipedia, internal documents, scientific papers, or the open internet. RAG systems that rely on the open internet as their knowledge source have to contend with the complexities of human-generated content. Human communication extends much deeper than just the words rendered as text. Intent, tonality, and connotation can all change the meaning of what is being conveyed. Recent real-world deployments of RAG systems have shown some difficulty in understanding these nuances of human communication. One significant challenge for these systems lies in processing sarcasm. Though the Large Language Models (LLMs) that make up the backbone of these RAG systems are able to detect sarcasm, they currently do not always use these detections for the subsequent processing of text. To address these issues, in this paper, we synthetically generate sarcastic passages from Natural Question's Wikipedia retrieval corpus. We then test the impact of these passages on the performance of both the retriever and reader portion of the RAG pipeline. We introduce a prompting system designed to enhance the model's ability to interpret and generate responses in the presence of sarcasm, thus improving overall system performance. Finally, we conduct ablation studies to validate the effectiveness of our approach, demonstrating improvements in handling sarcastic content within RAG systems. 4 authors · Aug 20, 2024
- Shiva++: An Enhanced Graph based Ontology Matcher With the web getting bigger and assimilating knowledge about different concepts and domains, it is becoming very difficult for simple database driven applications to capture the data for a domain. Thus developers have come out with ontology based systems which can store large amount of information and can apply reasoning and produce timely information. Thus facilitating effective knowledge management. Though this approach has made our lives easier, but at the same time has given rise to another problem. Two different ontologies assimilating same knowledge tend to use different terms for the same concepts. This creates confusion among knowledge engineers and workers, as they do not know which is a better term then the other. Thus we need to merge ontologies working on same domain so that the engineers can develop a better application over it. This paper shows the development of one such matcher which merges the concepts available in two ontologies at two levels; 1) at string level and 2) at semantic level; thus producing better merged ontologies. We have used a graph matching technique which works at the core of the system. We have also evaluated the system and have tested its performance with its predecessor which works only on string matching. Thus current approach produces better results. 4 authors · Apr 19, 2014
- ANALOGICAL -- A Novel Benchmark for Long Text Analogy Evaluation in Large Language Models Over the past decade, analogies, in the form of word-level analogies, have played a significant role as an intrinsic measure of evaluating the quality of word embedding methods such as word2vec. Modern large language models (LLMs), however, are primarily evaluated on extrinsic measures based on benchmarks such as GLUE and SuperGLUE, and there are only a few investigations on whether LLMs can draw analogies between long texts. In this paper, we present ANALOGICAL, a new benchmark to intrinsically evaluate LLMs across a taxonomy of analogies of long text with six levels of complexity -- (i) word, (ii) word vs. sentence, (iii) syntactic, (iv) negation, (v) entailment, and (vi) metaphor. Using thirteen datasets and three different distance measures, we evaluate the abilities of eight LLMs in identifying analogical pairs in the semantic vector space. Our evaluation finds that it is increasingly challenging for LLMs to identify analogies when going up the analogy taxonomy. 9 authors · May 8, 2023
- Explainable Semantic Space by Grounding Language to Vision with Cross-Modal Contrastive Learning In natural language processing, most models try to learn semantic representations merely from texts. The learned representations encode the distributional semantics but fail to connect to any knowledge about the physical world. In contrast, humans learn language by grounding concepts in perception and action and the brain encodes grounded semantics for cognition. Inspired by this notion and recent work in vision-language learning, we design a two-stream model for grounding language learning in vision. The model includes a VGG-based visual stream and a Bert-based language stream. The two streams merge into a joint representational space. Through cross-modal contrastive learning, the model first learns to align visual and language representations with the MS COCO dataset. The model further learns to retrieve visual objects with language queries through a cross-modal attention module and to infer the visual relations between the retrieved objects through a bilinear operator with the Visual Genome dataset. After training, the language stream of this model is a stand-alone language model capable of embedding concepts in a visually grounded semantic space. This semantic space manifests principal dimensions explainable with human intuition and neurobiological knowledge. Word embeddings in this semantic space are predictive of human-defined norms of semantic features and are segregated into perceptually distinctive clusters. Furthermore, the visually grounded language model also enables compositional language understanding based on visual knowledge and multimodal image search with queries based on images, texts, or their combinations. 4 authors · Nov 13, 2021
- Memory, Consciousness and Large Language Model With the development in cognitive science and Large Language Models (LLMs), increasing connections have come to light between these two distinct fields. Building upon these connections, we propose a conjecture suggesting the existence of a duality between LLMs and Tulving's theory of memory. We identify a potential correspondence between Tulving's synergistic ecphory model (SEM) of retrieval and the emergent abilities observed in LLMs, serving as supporting evidence for our conjecture. Furthermore, we speculate that consciousness may be considered a form of emergent ability based on this duality. We also discuss how other theories of consciousness intersect with our research. 2 authors · Jan 4, 2024
- SubData: A Python Library to Collect and Combine Datasets for Evaluating LLM Alignment on Downstream Tasks With the release of ever more capable large language models (LLMs), researchers in NLP and related disciplines have started to explore the usability of LLMs for a wide variety of different annotation tasks. Very recently, a lot of this attention has shifted to tasks that are subjective in nature. Given that the latest generations of LLMs have digested and encoded extensive knowledge about different human subpopulations and individuals, the hope is that these models can be trained, tuned or prompted to align with a wide range of different human perspectives. While researchers already evaluate the success of this alignment via surveys and tests, there is a lack of resources to evaluate the alignment on what oftentimes matters the most in NLP; the actual downstream tasks. To fill this gap we present SubData, a Python library that offers researchers working on topics related to subjectivity in annotation tasks a convenient way of collecting, combining and using a range of suitable datasets. 3 authors · Dec 21, 2024
6 The Semantic Hub Hypothesis: Language Models Share Semantic Representations Across Languages and Modalities Modern language models can process inputs across diverse languages and modalities. We hypothesize that models acquire this capability through learning a shared representation space across heterogeneous data types (e.g., different languages and modalities), which places semantically similar inputs near one another, even if they are from different modalities/languages. We term this the semantic hub hypothesis, following the hub-and-spoke model from neuroscience (Patterson et al., 2007) which posits that semantic knowledge in the human brain is organized through a transmodal semantic "hub" which integrates information from various modality-specific "spokes" regions. We first show that model representations for semantically equivalent inputs in different languages are similar in the intermediate layers, and that this space can be interpreted using the model's dominant pretraining language via the logit lens. This tendency extends to other data types, including arithmetic expressions, code, and visual/audio inputs. Interventions in the shared representation space in one data type also predictably affect model outputs in other data types, suggesting that this shared representations space is not simply a vestigial byproduct of large-scale training on broad data, but something that is actively utilized by the model during input processing. 5 authors · Nov 7, 2024 2
- Open Sentence Embeddings for Portuguese with the Serafim PT* encoders family Sentence encoder encode the semantics of their input, enabling key downstream applications such as classification, clustering, or retrieval. In this paper, we present Serafim PT*, a family of open-source sentence encoders for Portuguese with various sizes, suited to different hardware/compute budgets. Each model exhibits state-of-the-art performance and is made openly available under a permissive license, allowing its use for both commercial and research purposes. Besides the sentence encoders, this paper contributes a systematic study and lessons learned concerning the selection criteria of learning objectives and parameters that support top-performing encoders. 5 authors · Jul 28, 2024
- SemEval 2019 Shared Task: Cross-lingual Semantic Parsing with UCCA - Call for Participation We announce a shared task on UCCA parsing in English, German and French, and call for participants to submit their systems. UCCA is a cross-linguistically applicable framework for semantic representation, which builds on extensive typological work and supports rapid annotation. UCCA poses a challenge for existing parsing techniques, as it exhibits reentrancy (resulting in DAG structures), discontinuous structures and non-terminal nodes corresponding to complex semantic units. Given the success of recent semantic parsing shared tasks (on SDP and AMR), we expect the task to have a significant contribution to the advancement of UCCA parsing in particular, and semantic parsing in general. Furthermore, existing applications for semantic evaluation that are based on UCCA will greatly benefit from better automatic methods for UCCA parsing. The competition website is https://competitions.codalab.org/competitions/19160 6 authors · May 31, 2018
2 Seven Failure Points When Engineering a Retrieval Augmented Generation System Software engineers are increasingly adding semantic search capabilities to applications using a strategy known as Retrieval Augmented Generation (RAG). A RAG system involves finding documents that semantically match a query and then passing the documents to a large language model (LLM) such as ChatGPT to extract the right answer using an LLM. RAG systems aim to: a) reduce the problem of hallucinated responses from LLMs, b) link sources/references to generated responses, and c) remove the need for annotating documents with meta-data. However, RAG systems suffer from limitations inherent to information retrieval systems and from reliance on LLMs. In this paper, we present an experience report on the failure points of RAG systems from three case studies from separate domains: research, education, and biomedical. We share the lessons learned and present 7 failure points to consider when designing a RAG system. The two key takeaways arising from our work are: 1) validation of a RAG system is only feasible during operation, and 2) the robustness of a RAG system evolves rather than designed in at the start. We conclude with a list of potential research directions on RAG systems for the software engineering community. 5 authors · Jan 11, 2024
- What's In Your Field? Mapping Scientific Research with Knowledge Graphs and Large Language Models The scientific literature's exponential growth makes it increasingly challenging to navigate and synthesize knowledge across disciplines. Large language models (LLMs) are powerful tools for understanding scientific text, but they fail to capture detailed relationships across large bodies of work. Unstructured approaches, like retrieval augmented generation, can sift through such corpora to recall relevant facts; however, when millions of facts influence the answer, unstructured approaches become cost prohibitive. Structured representations offer a natural complement -- enabling systematic analysis across the whole corpus. Recent work enhances LLMs with unstructured or semistructured representations of scientific concepts; to complement this, we try extracting structured representations using LLMs. By combining LLMs' semantic understanding with a schema of scientific concepts, we prototype a system that answers precise questions about the literature as a whole. Our schema applies across scientific fields and we extract concepts from it using only 20 manually annotated abstracts. To demonstrate the system, we extract concepts from 30,000 papers on arXiv spanning astrophysics, fluid dynamics, and evolutionary biology. The resulting database highlights emerging trends and, by visualizing the knowledge graph, offers new ways to explore the ever-growing landscape of scientific knowledge. Demo: abby101/surveyor-0 on HF Spaces. Code: https://github.com/chiral-carbon/kg-for-science. 4 authors · Mar 12
- CSTS: Conditional Semantic Textual Similarity Semantic textual similarity (STS) has been a cornerstone task in NLP that measures the degree of similarity between a pair of sentences, with applications in information retrieval, question answering, and embedding methods. However, it is an inherently ambiguous task, with the sentence similarity depending on the specific aspect of interest. We resolve this ambiguity by proposing a novel task called conditional STS (C-STS) which measures similarity conditioned on an aspect elucidated in natural language (hereon, condition). As an example, the similarity between the sentences "The NBA player shoots a three-pointer." and "A man throws a tennis ball into the air to serve." is higher for the condition "The motion of the ball." (both upward) and lower for "The size of the ball." (one large and one small). C-STS's advantages are two-fold: (1) it reduces the subjectivity and ambiguity of STS, and (2) enables fine-grained similarity evaluation using diverse conditions. C-STS contains almost 20,000 instances from diverse domains and we evaluate several state-of-the-art models to demonstrate that even the most performant fine-tuning and in-context learning models (GPT-4, Flan, SimCSE) find it challenging, with Spearman correlation scores of <50. We encourage the community to evaluate their models on C-STS to provide a more holistic view of semantic similarity and natural language understanding. 9 authors · May 24, 2023
- Love Me, Love Me, Say (and Write!) that You Love Me: Enriching the WASABI Song Corpus with Lyrics Annotations We present the WASABI Song Corpus, a large corpus of songs enriched with metadata extracted from music databases on the Web, and resulting from the processing of song lyrics and from audio analysis. More specifically, given that lyrics encode an important part of the semantics of a song, we focus here on the description of the methods we proposed to extract relevant information from the lyrics, such as their structure segmentation, their topics, the explicitness of the lyrics content, the salient passages of a song and the emotions conveyed. The creation of the resource is still ongoing: so far, the corpus contains 1.73M songs with lyrics (1.41M unique lyrics) annotated at different levels with the output of the above mentioned methods. Such corpus labels and the provided methods can be exploited by music search engines and music professionals (e.g. journalists, radio presenters) to better handle large collections of lyrics, allowing an intelligent browsing, categorization and segmentation recommendation of songs. 5 authors · Dec 5, 2019
1 It's not Rocket Science : Interpreting Figurative Language in Narratives Figurative language is ubiquitous in English. Yet, the vast majority of NLP research focuses on literal language. Existing text representations by design rely on compositionality, while figurative language is often non-compositional. In this paper, we study the interpretation of two non-compositional figurative languages (idioms and similes). We collected datasets of fictional narratives containing a figurative expression along with crowd-sourced plausible and implausible continuations relying on the correct interpretation of the expression. We then trained models to choose or generate the plausible continuation. Our experiments show that models based solely on pre-trained language models perform substantially worse than humans on these tasks. We additionally propose knowledge-enhanced models, adopting human strategies for interpreting figurative language types : inferring meaning from the context and relying on the constituent words' literal meanings. The knowledge-enhanced models improve the performance on both the discriminative and generative tasks, further bridging the gap from human performance. 3 authors · Aug 31, 2021
- Mind your Language (Model): Fact-Checking LLMs and their Role in NLP Research and Practice Much of the recent discourse within the NLP research community has been centered around Large Language Models (LLMs), their functionality and potential -- yet not only do we not have a working definition of LLMs, but much of this discourse relies on claims and assumptions that are worth re-examining. This position paper contributes a definition of LLMs, explicates some of the assumptions made regarding their functionality, and outlines the existing evidence for and against them. We conclude with suggestions for research directions and their framing in future work. 2 authors · Aug 14, 2023
- A Corpus for Reasoning About Natural Language Grounded in Photographs We introduce a new dataset for joint reasoning about natural language and images, with a focus on semantic diversity, compositionality, and visual reasoning challenges. The data contains 107,292 examples of English sentences paired with web photographs. The task is to determine whether a natural language caption is true about a pair of photographs. We crowdsource the data using sets of visually rich images and a compare-and-contrast task to elicit linguistically diverse language. Qualitative analysis shows the data requires compositional joint reasoning, including about quantities, comparisons, and relations. Evaluation using state-of-the-art visual reasoning methods shows the data presents a strong challenge. 6 authors · Nov 1, 2018
- COMPS: Conceptual Minimal Pair Sentences for testing Robust Property Knowledge and its Inheritance in Pre-trained Language Models A characteristic feature of human semantic cognition is its ability to not only store and retrieve the properties of concepts observed through experience, but to also facilitate the inheritance of properties (can breathe) from superordinate concepts (animal) to their subordinates (dog) -- i.e. demonstrate property inheritance. In this paper, we present COMPS, a collection of minimal pair sentences that jointly tests pre-trained language models (PLMs) on their ability to attribute properties to concepts and their ability to demonstrate property inheritance behavior. Analyses of 22 different PLMs on COMPS reveal that they can easily distinguish between concepts on the basis of a property when they are trivially different, but find it relatively difficult when concepts are related on the basis of nuanced knowledge representations. Furthermore, we find that PLMs can demonstrate behavior consistent with property inheritance to a great extent, but fail in the presence of distracting information, which decreases the performance of many models, sometimes even below chance. This lack of robustness in demonstrating simple reasoning raises important questions about PLMs' capacity to make correct inferences even when they appear to possess the prerequisite knowledge. 3 authors · Oct 4, 2022
- PARAPHRASUS : A Comprehensive Benchmark for Evaluating Paraphrase Detection Models The task of determining whether two texts are paraphrases has long been a challenge in NLP. However, the prevailing notion of paraphrase is often quite simplistic, offering only a limited view of the vast spectrum of paraphrase phenomena. Indeed, we find that evaluating models in a paraphrase dataset can leave uncertainty about their true semantic understanding. To alleviate this, we release paraphrasus, a benchmark designed for multi-dimensional assessment of paraphrase detection models and finer model selection. We find that paraphrase detection models under a fine-grained evaluation lens exhibit trade-offs that cannot be captured through a single classification dataset. 3 authors · Sep 18, 2024
- Hybrid Semantic Search: Unveiling User Intent Beyond Keywords This paper addresses the limitations of traditional keyword-based search in understanding user intent and introduces a novel hybrid search approach that leverages the strengths of non-semantic search engines, Large Language Models (LLMs), and embedding models. The proposed system integrates keyword matching, semantic vector embeddings, and LLM-generated structured queries to deliver highly relevant and contextually appropriate search results. By combining these complementary methods, the hybrid approach effectively captures both explicit and implicit user intent.The paper further explores techniques to optimize query execution for faster response times and demonstrates the effectiveness of this hybrid search model in producing comprehensive and accurate search outcomes. 6 authors · Aug 17, 2024
2 Retrieving Texts based on Abstract Descriptions In this work, we aim to connect two research areas: instruction models and retrieval-based models. While instruction-tuned Large Language Models (LLMs) excel at extracting information from text, they are not suitable for semantic retrieval. Similarity search over embedding vectors allows to index and query vectors, but the similarity reflected in the embedding is sub-optimal for many use cases. We identify the task of retrieving sentences based on abstract descriptions of their content. We demonstrate the inadequacy of current text embeddings and propose an alternative model that significantly improves when used in standard nearest neighbor search. The model is trained using positive and negative pairs sourced through prompting an a large language model (LLM). While it is easy to source the training material from an LLM, the retrieval task cannot be performed by the LLM directly. This demonstrates that data from LLMs can be used not only for distilling more efficient specialized models than the original LLM, but also for creating new capabilities not immediately possible using the original model. 5 authors · May 21, 2023
- Bad Form: Comparing Context-Based and Form-Based Few-Shot Learning in Distributional Semantic Models Word embeddings are an essential component in a wide range of natural language processing applications. However, distributional semantic models are known to struggle when only a small number of context sentences are available. Several methods have been proposed to obtain higher-quality vectors for these words, leveraging both this context information and sometimes the word forms themselves through a hybrid approach. We show that the current tasks do not suffice to evaluate models that use word-form information, as such models can easily leverage word forms in the training data that are related to word forms in the test data. We introduce 3 new tasks, allowing for a more balanced comparison between models. Furthermore, we show that hyperparameters that have largely been ignored in previous work can consistently improve the performance of both baseline and advanced models, achieving a new state of the art on 4 out of 6 tasks. 3 authors · Oct 1, 2019
- Discourse-Aware Text Simplification: From Complex Sentences to Linked Propositions Sentences that present a complex syntax act as a major stumbling block for downstream Natural Language Processing applications whose predictive quality deteriorates with sentence length and complexity. The task of Text Simplification (TS) may remedy this situation. It aims to modify sentences in order to make them easier to process, using a set of rewriting operations, such as reordering, deletion, or splitting. State-of-the-art syntactic TS approaches suffer from two major drawbacks: first, they follow a very conservative approach in that they tend to retain the input rather than transforming it, and second, they ignore the cohesive nature of texts, where context spread across clauses or sentences is needed to infer the true meaning of a statement. To address these problems, we present a discourse-aware TS approach that splits and rephrases complex English sentences within the semantic context in which they occur. Based on a linguistically grounded transformation stage that uses clausal and phrasal disembedding mechanisms, complex sentences are transformed into shorter utterances with a simple canonical structure that can be easily analyzed by downstream applications. With sentence splitting, we thus address a TS task that has hardly been explored so far. Moreover, we introduce the notion of minimality in this context, as we aim to decompose source sentences into a set of self-contained minimal semantic units. To avoid breaking down the input into a disjointed sequence of statements that is difficult to interpret because important contextual information is missing, we incorporate the semantic context between the split propositions in the form of hierarchical structures and semantic relationships. In that way, we generate a semantic hierarchy of minimal propositions that leads to a novel representation of complex assertions that puts a semantic layer on top of the simplified sentences. 4 authors · Aug 1, 2023
- SESA: Supervised Explicit Semantic Analysis In recent years supervised representation learning has provided state of the art or close to the state of the art results in semantic analysis tasks including ranking and information retrieval. The core idea is to learn how to embed items into a latent space such that they optimize a supervised objective in that latent space. The dimensions of the latent space have no clear semantics, and this reduces the interpretability of the system. For example, in personalization models, it is hard to explain why a particular item is ranked high for a given user profile. We propose a novel model of representation learning called Supervised Explicit Semantic Analysis (SESA) that is trained in a supervised fashion to embed items to a set of dimensions with explicit semantics. The model learns to compare two objects by representing them in this explicit space, where each dimension corresponds to a concept from a knowledge base. This work extends Explicit Semantic Analysis (ESA) with a supervised model for ranking problems. We apply this model to the task of Job-Profile relevance in LinkedIn in which a set of skills defines our explicit dimensions of the space. Every profile and job are encoded to this set of skills their similarity is calculated in this space. We use RNNs to embed text input into this space. In addition to interpretability, our model makes use of the web-scale collaborative skills data that is provided by users for each LinkedIn profile. Our model provides state of the art result while it remains interpretable. 2 authors · Aug 10, 2017
- ParaNMT-50M: Pushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations We describe PARANMT-50M, a dataset of more than 50 million English-English sentential paraphrase pairs. We generated the pairs automatically by using neural machine translation to translate the non-English side of a large parallel corpus, following Wieting et al. (2017). Our hope is that ParaNMT-50M can be a valuable resource for paraphrase generation and can provide a rich source of semantic knowledge to improve downstream natural language understanding tasks. To show its utility, we use ParaNMT-50M to train paraphrastic sentence embeddings that outperform all supervised systems on every SemEval semantic textual similarity competition, in addition to showing how it can be used for paraphrase generation. 2 authors · Nov 15, 2017
- Language Models as Semiotic Machines: Reconceptualizing AI Language Systems through Structuralist and Post-Structuralist Theories of Language This paper proposes a novel framework for understanding large language models (LLMs) by reconceptualizing them as semiotic machines rather than as imitations of human cognition. Drawing from structuralist and post-structuralist theories of language-specifically the works of Ferdinand de Saussure and Jacques Derrida-I argue that LLMs should be understood as models of language itself, aligning with Derrida's concept of 'writing' (l'ecriture). The paper is structured into three parts. First, I lay the theoretical groundwork by explaining how the word2vec embedding algorithm operates within Saussure's framework of language as a relational system of signs. Second, I apply Derrida's critique of Saussure to position 'writing' as the object modeled by LLMs, offering a view of the machine's 'mind' as a statistical approximation of sign behavior. Finally, the third section addresses how modern LLMs reflect post-structuralist notions of unfixed meaning, arguing that the "next token generation" mechanism effectively captures the dynamic nature of meaning. By reconceptualizing LLMs as semiotic machines rather than cognitive models, this framework provides an alternative lens through which to assess the strengths and limitations of LLMs, offering new avenues for future research. 1 authors · Oct 16, 2024
- Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation With the advent of large multimodal language models, science is now at a threshold of an AI-based technological transformation. Recently, a plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently. This includes all aspects of the research cycle, especially (1) searching for relevant literature; (2) generating research ideas and conducting experimentation; generating (3) text-based and (4) multimodal content (e.g., scientific figures and diagrams); and (5) AI-based automatic peer review. In this survey, we provide an in-depth overview over these exciting recent developments, which promise to fundamentally alter the scientific research process for good. Our survey covers the five aspects outlined above, indicating relevant datasets, methods and results (including evaluation) as well as limitations and scope for future research. Ethical concerns regarding shortcomings of these tools and potential for misuse (fake science, plagiarism, harms to research integrity) take a particularly prominent place in our discussion. We hope that our survey will not only become a reference guide for newcomers to the field but also a catalyst for new AI-based initiatives in the area of "AI4Science". 14 authors · Feb 7
- Auto-tagging of Short Conversational Sentences using Transformer Methods The problem of categorizing short speech sentences according to their semantic features with high accuracy is a subject studied in natural language processing. In this study, a data set created with samples classified in 46 different categories was used. Examples consist of sentences taken from chat conversations between a company's customer representatives and the company's website visitors. The primary purpose is to automatically tag questions and requests from visitors in the most accurate way for 46 predetermined categories for use in a chat application to generate meaningful answers to the questions asked by the website visitors. For this, different BERT models and one GPT-2 model, pre-trained in Turkish, were preferred. The classification performances of the relevant models were analyzed in detail and reported accordingly. 8 authors · Jun 3, 2021
- Leveraging Multimodal LLM for Inspirational User Interface Search Inspirational search, the process of exploring designs to inform and inspire new creative work, is pivotal in mobile user interface (UI) design. However, exploring the vast space of UI references remains a challenge. Existing AI-based UI search methods often miss crucial semantics like target users or the mood of apps. Additionally, these models typically require metadata like view hierarchies, limiting their practical use. We used a multimodal large language model (MLLM) to extract and interpret semantics from mobile UI images. We identified key UI semantics through a formative study and developed a semantic-based UI search system. Through computational and human evaluations, we demonstrate that our approach significantly outperforms existing UI retrieval methods, offering UI designers a more enriched and contextually relevant search experience. We enhance the understanding of mobile UI design semantics and highlight MLLMs' potential in inspirational search, providing a rich dataset of UI semantics for future studies. 5 authors · Jan 29
- MINERS: Multilingual Language Models as Semantic Retrievers Words have been represented in a high-dimensional vector space that encodes their semantic similarities, enabling downstream applications such as retrieving synonyms, antonyms, and relevant contexts. However, despite recent advances in multilingual language models (LMs), the effectiveness of these models' representations in semantic retrieval contexts has not been comprehensively explored. To fill this gap, this paper introduces the MINERS, a benchmark designed to evaluate the ability of multilingual LMs in semantic retrieval tasks, including bitext mining and classification via retrieval-augmented contexts. We create a comprehensive framework to assess the robustness of LMs in retrieving samples across over 200 diverse languages, including extremely low-resource languages in challenging cross-lingual and code-switching settings. Our results demonstrate that by solely retrieving semantically similar embeddings yields performance competitive with state-of-the-art approaches, without requiring any fine-tuning. 3 authors · Jun 11, 2024
- A quantum teleportation inspired algorithm produces sentence meaning from word meaning and grammatical structure We discuss an algorithm which produces the meaning of a sentence given meanings of its words, and its resemblance to quantum teleportation. In fact, this protocol was the main source of inspiration for this algorithm which has many applications in the area of Natural Language Processing. 5 authors · May 2, 2013
2 Borges and AI Many believe that Large Language Models (LLMs) open the era of Artificial Intelligence (AI). Some see opportunities while others see dangers. Yet both proponents and opponents grasp AI through the imagery popularised by science fiction. Will the machine become sentient and rebel against its creators? Will we experience a paperclip apocalypse? Before answering such questions, we should first ask whether this mental imagery provides a good description of the phenomenon at hand. Understanding weather patterns through the moods of the gods only goes so far. The present paper instead advocates understanding LLMs and their connection to AI through the imagery of Jorge Luis Borges, a master of 20th century literature, forerunner of magical realism, and precursor to postmodern literature. This exercise leads to a new perspective that illuminates the relation between language modelling and artificial intelligence. 2 authors · Sep 27, 2023
- Semantic Trails of City Explorations: How Do We Live a City The knowledge of city exploration trails of people is in short supply because of the complexity in defining meaningful trails representative of individual behaviours and in the access to actionable data. Existing datasets have only recorded isolated check-ins of activities featured by opaque venue types. In this paper, we fill the gaps in defining what is a semantic trail of city exploration and how it can be generated by integrating different data sources. Furthermore, we publicly release two datasets holding millions of semantic trails each and we discuss their most salient characteristics. We finally present an application using these datasets to build a recommender system meant to guide tourists while exploring a city. 6 authors · Dec 11, 2018
- Constrained Language Models Yield Few-Shot Semantic Parsers We explore the use of large pretrained language models as few-shot semantic parsers. The goal in semantic parsing is to generate a structured meaning representation given a natural language input. However, language models are trained to generate natural language. To bridge the gap, we use language models to paraphrase inputs into a controlled sublanguage resembling English that can be automatically mapped to a target meaning representation. Our results demonstrate that with only a small amount of data and very little code to convert into English-like representations, our blueprint for rapidly bootstrapping semantic parsers leads to surprisingly effective performance on multiple community tasks, greatly exceeding baseline methods also trained on the same limited data. 10 authors · Apr 18, 2021
- Visualizing the Obvious: A Concreteness-based Ensemble Model for Noun Property Prediction Neural language models encode rich knowledge about entities and their relationships which can be extracted from their representations using probing. Common properties of nouns (e.g., red strawberries, small ant) are, however, more challenging to extract compared to other types of knowledge because they are rarely explicitly stated in texts. We hypothesize this to mainly be the case for perceptual properties which are obvious to the participants in the communication. We propose to extract these properties from images and use them in an ensemble model, in order to complement the information that is extracted from language models. We consider perceptual properties to be more concrete than abstract properties (e.g., interesting, flawless). We propose to use the adjectives' concreteness score as a lever to calibrate the contribution of each source (text vs. images). We evaluate our ensemble model in a ranking task where the actual properties of a noun need to be ranked higher than other non-relevant properties. Our results show that the proposed combination of text and images greatly improves noun property prediction compared to powerful text-based language models. 5 authors · Oct 23, 2022
- A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature We present a corpus of 5,000 richly annotated abstracts of medical articles describing clinical randomized controlled trials. Annotations include demarcations of text spans that describe the Patient population enrolled, the Interventions studied and to what they were Compared, and the Outcomes measured (the `PICO' elements). These spans are further annotated at a more granular level, e.g., individual interventions within them are marked and mapped onto a structured medical vocabulary. We acquired annotations from a diverse set of workers with varying levels of expertise and cost. We describe our data collection process and the corpus itself in detail. We then outline a set of challenging NLP tasks that would aid searching of the medical literature and the practice of evidence-based medicine. 7 authors · Jun 11, 2018
- Query Understanding for Natural Language Enterprise Search Natural Language Search (NLS) extends the capabilities of search engines that perform keyword search allowing users to issue queries in a more "natural" language. The engine tries to understand the meaning of the queries and to map the query words to the symbols it supports like Persons, Organizations, Time Expressions etc.. It, then, retrieves the information that satisfies the user's need in different forms like an answer, a record or a list of records. We present an NLS system we implemented as part of the Search service of a major CRM platform. The system is currently in production serving thousands of customers. Our user studies showed that creating dynamic reports with NLS saved more than 50% of our user's time compared to achieving the same result with navigational search. We describe the architecture of the system, the particularities of the CRM domain as well as how they have influenced our design decisions. Among several submodules of the system we detail the role of a Deep Learning Named Entity Recognizer. The paper concludes with discussion over the lessons learned while developing this product. 8 authors · Dec 11, 2020
- Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change Understanding how words change their meanings over time is key to models of language and cultural evolution, but historical data on meaning is scarce, making theories hard to develop and test. Word embeddings show promise as a diachronic tool, but have not been carefully evaluated. We develop a robust methodology for quantifying semantic change by evaluating word embeddings (PPMI, SVD, word2vec) against known historical changes. We then use this methodology to reveal statistical laws of semantic evolution. Using six historical corpora spanning four languages and two centuries, we propose two quantitative laws of semantic change: (i) the law of conformity---the rate of semantic change scales with an inverse power-law of word frequency; (ii) the law of innovation---independent of frequency, words that are more polysemous have higher rates of semantic change. 3 authors · May 29, 2016
1 KNOW: A Real-World Ontology for Knowledge Capture with Large Language Models We present KNOW--the Knowledge Navigator Ontology for the World--the first ontology designed to capture everyday knowledge to augment large language models (LLMs) in real-world generative AI use cases such as personal AI assistants. Our domain is human life, both its everyday concerns and its major milestones. We have limited the initial scope of the modeled concepts to only established human universals: spacetime (places, events) plus social (people, groups, organizations). The inclusion criteria for modeled concepts are pragmatic, beginning with universality and utility. We compare and contrast previous work such as Schema.org and Cyc--as well as attempts at a synthesis of knowledge graphs and language models--noting how LLMs already encode internally much of the commonsense tacit knowledge that took decades to capture in the Cyc project. We also make available code-generated software libraries for the 12 most popular programming languages, enabling the direct use of ontology concepts in software engineering. We emphasize simplicity and developer experience in promoting AI interoperability. 1 authors · May 30, 2024
- The Short Text Matching Model Enhanced with Knowledge via Contrastive Learning In recent years, short Text Matching tasks have been widely applied in the fields ofadvertising search and recommendation. The difficulty lies in the lack of semantic information and word ambiguity caused by the short length of the text. Previous works have introduced complement sentences or knowledge bases to provide additional feature information. However, these methods have not fully interacted between the original sentence and the complement sentence, and have not considered the noise issue that may arise from the introduction of external knowledge bases. Therefore, this paper proposes a short Text Matching model that combines contrastive learning and external knowledge. The model uses a generative model to generate corresponding complement sentences and uses the contrastive learning method to guide the model to obtain more semantically meaningful encoding of the original sentence. In addition, to avoid noise, we use keywords as the main semantics of the original sentence to retrieve corresponding knowledge words in the knowledge base, and construct a knowledge graph. The graph encoding model is used to integrate the knowledge base information into the model. Our designed model achieves state-of-the-art performance on two publicly available Chinese Text Matching datasets, demonstrating the effectiveness of our model. 7 authors · Apr 7, 2023
- Factorising Meaning and Form for Intent-Preserving Paraphrasing We propose a method for generating paraphrases of English questions that retain the original intent but use a different surface form. Our model combines a careful choice of training objective with a principled information bottleneck, to induce a latent encoding space that disentangles meaning and form. We train an encoder-decoder model to reconstruct a question from a paraphrase with the same meaning and an exemplar with the same surface form, leading to separated encoding spaces. We use a Vector-Quantized Variational Autoencoder to represent the surface form as a set of discrete latent variables, allowing us to use a classifier to select a different surface form at test time. Crucially, our method does not require access to an external source of target exemplars. Extensive experiments and a human evaluation show that we are able to generate paraphrases with a better tradeoff between semantic preservation and syntactic novelty compared to previous methods. 2 authors · May 31, 2021
- Worldwide AI Ethics: a review of 200 guidelines and recommendations for AI governance In the last decade, several organizations have produced documents intended to standardize, in the normative sense, and promote guidance to our recent and rapid AI development. However, the full spectrum of ideas presented in these documents has not yet been analyzed, except for a few meta-analyses and critical reviews of the field. In this work, we seek to expand on the work done by past researchers and create a tool for better data visualization of the contents and nature of these documents, to understand whether there is consensus or similarity between the principles espoused by various institutions, which may inspire debates on future regulations. We also provide some preliminary thoughts and questions that could guide the continuity of the research through a critical analysis of the results acquired by our methodology into a sample size of 200 documents. 10 authors · Jun 23, 2022
6 Token Erasure as a Footprint of Implicit Vocabulary Items in LLMs LLMs process text as sequences of tokens that roughly correspond to words, where less common words are represented by multiple tokens. However, individual tokens are often semantically unrelated to the meanings of the words/concepts they comprise. For example, Llama-2-7b's tokenizer splits the word "northeastern" into the tokens ['_n', 'ort', 'he', 'astern'], none of which correspond to semantically meaningful units like "north" or "east." Similarly, the overall meanings of named entities like "Neil Young" and multi-word expressions like "break a leg" cannot be directly inferred from their constituent tokens. Mechanistically, how do LLMs convert such arbitrary groups of tokens into useful higher-level representations? In this work, we find that last token representations of named entities and multi-token words exhibit a pronounced "erasure" effect, where information about previous and current tokens is rapidly forgotten in early layers. Using this observation, we propose a method to "read out" the implicit vocabulary of an autoregressive LLM by examining differences in token representations across layers, and present results of this method for Llama-2-7b and Llama-3-8B. To our knowledge, this is the first attempt to probe the implicit vocabulary of an LLM. 4 authors · Jun 28, 2024 4
- Reasoning or Simply Next Token Prediction? A Benchmark for Stress-Testing Large Language Models We propose MMLU-SR, a novel dataset designed to measure the true comprehension abilities of Large Language Models (LLMs) by challenging their performance in question-answering tasks with modified terms. We reasoned that an agent that ``truly'' understands a concept can still evaluate it when key terms are replaced by suitably defined alternate terms, and sought to differentiate such comprehension from mere text replacement. In our study, we modified standardized test questions by replacing a key term with a dummy word along with its definition. The key term could be in the context of questions, answers, or both questions and answers. Notwithstanding the high scores achieved by recent popular LLMs on the MMLU leaderboard, we found a substantial reduction in model performance after such replacement, suggesting poor comprehension. This new benchmark provides a rigorous benchmark for testing true model comprehension, and poses a challenge to the broader scientific community. 5 authors · Jun 15, 2024
- Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting We present a large-scale study of gender bias in occupation classification, a task where the use of machine learning may lead to negative outcomes on peoples' lives. We analyze the potential allocation harms that can result from semantic representation bias. To do so, we study the impact on occupation classification of including explicit gender indicators---such as first names and pronouns---in different semantic representations of online biographies. Additionally, we quantify the bias that remains when these indicators are "scrubbed," and describe proxy behavior that occurs in the absence of explicit gender indicators. As we demonstrate, differences in true positive rates between genders are correlated with existing gender imbalances in occupations, which may compound these imbalances. 9 authors · Jan 27, 2019
- Domain and Function: A Dual-Space Model of Semantic Relations and Compositions Given appropriate representations of the semantic relations between carpenter and wood and between mason and stone (for example, vectors in a vector space model), a suitable algorithm should be able to recognize that these relations are highly similar (carpenter is to wood as mason is to stone; the relations are analogous). Likewise, with representations of dog, house, and kennel, an algorithm should be able to recognize that the semantic composition of dog and house, dog house, is highly similar to kennel (dog house and kennel are synonymous). It seems that these two tasks, recognizing relations and compositions, are closely connected. However, up to now, the best models for relations are significantly different from the best models for compositions. In this paper, we introduce a dual-space model that unifies these two tasks. This model matches the performance of the best previous models for relations and compositions. The dual-space model consists of a space for measuring domain similarity and a space for measuring function similarity. Carpenter and wood share the same domain, the domain of carpentry. Mason and stone share the same domain, the domain of masonry. Carpenter and mason share the same function, the function of artisans. Wood and stone share the same function, the function of materials. In the composition dog house, kennel has some domain overlap with both dog and house (the domains of pets and buildings). The function of kennel is similar to the function of house (the function of shelters). By combining domain and function similarities in various ways, we can model relations, compositions, and other aspects of semantics. 1 authors · Sep 16, 2013
- A Language for Function Signature Representations Recent work by (Richardson and Kuhn, 2017a,b; Richardson et al., 2018) looks at semantic parser induction and question answering in the domain of source code libraries and APIs. In this brief note, we formalize the representations being learned in these studies and introduce a simple domain specific language and a systematic translation from this language to first-order logic. By recasting the target representations in terms of classical logic, we aim to broaden the applicability of existing code datasets for investigating more complex natural language understanding and reasoning problems in the software domain. 1 authors · Mar 31, 2018
- Ragnarök: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track Did you try out the new Bing Search? Or maybe you fiddled around with Google AI~Overviews? These might sound familiar because the modern-day search stack has recently evolved to include retrieval-augmented generation (RAG) systems. They allow searching and incorporating real-time data into large language models (LLMs) to provide a well-informed, attributed, concise summary in contrast to the traditional search paradigm that relies on displaying a ranked list of documents. Therefore, given these recent advancements, it is crucial to have an arena to build, test, visualize, and systematically evaluate RAG-based search systems. With this in mind, we propose the TREC 2024 RAG Track to foster innovation in evaluating RAG systems. In our work, we lay out the steps we've made towards making this track a reality -- we describe the details of our reusable framework, Ragnar\"ok, explain the curation of the new MS MARCO V2.1 collection choice, release the development topics for the track, and standardize the I/O definitions which assist the end user. Next, using Ragnar\"ok, we identify and provide key industrial baselines such as OpenAI's GPT-4o or Cohere's Command R+. Further, we introduce a web-based user interface for an interactive arena allowing benchmarking pairwise RAG systems by crowdsourcing. We open-source our Ragnar\"ok framework and baselines to achieve a unified standard for future RAG systems. 8 authors · Jun 24, 2024
- What do Language Models know about word senses? Zero-Shot WSD with Language Models and Domain Inventories Language Models are the core for almost any Natural Language Processing system nowadays. One of their particularities is their contextualized representations, a game changer feature when a disambiguation between word senses is necessary. In this paper we aim to explore to what extent language models are capable of discerning among senses at inference time. We performed this analysis by prompting commonly used Languages Models such as BERT or RoBERTa to perform the task of Word Sense Disambiguation (WSD). We leverage the relation between word senses and domains, and cast WSD as a textual entailment problem, where the different hypothesis refer to the domains of the word senses. Our results show that this approach is indeed effective, close to supervised systems. 4 authors · Feb 7, 2023
- Étude cognitive des processus de construction d'une requête dans un système de gestion de connaissances médicales This article presents the Cogni-CISMeF project, which aims at improving medical information search in the CISMeF system (Catalog and Index of French-language health resources) by including a conversational agent to interact with the user in natural language. To study the cognitive processes involved during the information search, a bottom-up methodology was adopted. Experimentation has been set up to obtain human dialogs between a user (playing the role of patient) dealing with medical information search and a CISMeF expert refining the request. The analysis of these dialogs underlined the use of discursive evidence: vocabulary, reformulation, implicit or explicit expression of user intentions, conversational sequences, etc. A model of artificial agent is proposed. It leads the user in its information search by proposing to him examples, assistance and choices. This model was implemented and integrated in the CISMeF system. ---- Cet article d\'ecrit le projet Cogni-CISMeF qui propose un module de dialogue Homme-Machine \`a int\'egrer dans le syst\`eme d'indexation de connaissances m\'edicales CISMeF (Catalogue et Index des Sites M\'edicaux Francophones). Nous avons adopt\'e une d\'emarche de mod\'elisation cognitive en proc\'edant \`a un recueil de corpus de dialogues entre un utilisateur (jouant le r\^ole d'un patient) d\'esirant une information m\'edicale et un expert CISMeF af inant cette demande pour construire la requ\^ete. Nous avons analys\'e la structure des dialogues ainsi obtenus et avons \'etudi\'e un certain nombre d'indices discursifs : vocabulaire employ\'e, marques de reformulation, commentaires m\'eta et \'epilinguistiques, expression implicite ou explicite des intentions de l'utilisateur, encha\^inement conversationnel, etc. De cette analyse, nous avons construit un mod\`ele d'agent artificiel dot\'e de capacit\'es cognitives capables d'aider l'utilisateur dans sa t\^ache de recherche d'information. Ce mod\`ele a \'et\'e impl\'ement\'e et int\'egr\'e dans le syst\`eme CISMeF. 5 authors · Feb 10, 2014
- A large annotated corpus for learning natural language inference Understanding entailment and contradiction is fundamental to understanding natural language, and inference about entailment and contradiction is a valuable testing ground for the development of semantic representations. However, machine learning research in this area has been dramatically limited by the lack of large-scale resources. To address this, we introduce the Stanford Natural Language Inference corpus, a new, freely available collection of labeled sentence pairs, written by humans doing a novel grounded task based on image captioning. At 570K pairs, it is two orders of magnitude larger than all other resources of its type. This increase in scale allows lexicalized classifiers to outperform some sophisticated existing entailment models, and it allows a neural network-based model to perform competitively on natural language inference benchmarks for the first time. 4 authors · Aug 21, 2015
- SciDr at SDU-2020: IDEAS -- Identifying and Disambiguating Everyday Acronyms for Scientific Domain We present our systems submitted for the shared tasks of Acronym Identification (AI) and Acronym Disambiguation (AD) held under Workshop on SDU. We mainly experiment with BERT and SciBERT. In addition, we assess the effectiveness of "BIOless" tagging and blending along with the prowess of ensembling in AI. For AD, we formulate the problem as a span prediction task, experiment with different training techniques and also leverage the use of external data. Our systems rank 11th and 3rd in AI and AD tasks respectively. 2 authors · Feb 17, 2021
2 Yo'LLaVA: Your Personalized Language and Vision Assistant Large Multimodal Models (LMMs) have shown remarkable capabilities across a variety of tasks (e.g., image captioning, visual question answering). While broad, their knowledge remains generic (e.g., recognizing a dog), and they are unable to handle personalized subjects (e.g., recognizing a user's pet dog). Human reasoning, in contrast, typically operates within the context of specific subjects in our surroundings. For example, one might ask, "What should I buy for my dog's birthday?"; as opposed to a generic inquiry about "What should I buy for a dog's birthday?". Similarly, when looking at a friend's image, the interest lies in seeing their activities (e.g., "my friend is holding a cat"), rather than merely observing generic human actions (e.g., "a man is holding a cat"). In this paper, we introduce the novel task of personalizing LMMs, so that they can have conversations about a specific subject. We propose Yo'LLaVA, which learns to embed a personalized subject into a set of latent tokens given a handful of example images of the subject. Our qualitative and quantitative analyses reveal that Yo'LLaVA can learn the concept more efficiently using fewer tokens and more effectively encode the visual attributes compared to strong prompting baselines (e.g., LLaVA). 6 authors · Jun 13, 2024
- Semantic Network Interpretation Network interpretation as an effort to reveal the features learned by a network remains largely visualization-based. In this paper, our goal is to tackle semantic network interpretation at both filter and decision level. For filter-level interpretation, we represent the concepts a filter encodes with a probability distribution of visual attributes. The decision-level interpretation is achieved by textual summarization that generates an explanatory sentence containing clues behind a network's decision. A Bayesian inference algorithm is proposed to automatically associate filters and network decisions with visual attributes. Human study confirms that the semantic interpretation is a beneficial alternative or complement to visualization methods. We demonstrate the crucial role that semantic network interpretation can play in understanding a network's failure patterns. More importantly, semantic network interpretation enables a better understanding of the correlation between a model's performance and its distribution metrics like filter selectivity and concept sparseness. 2 authors · May 23, 2018
- A Finnish News Corpus for Named Entity Recognition We present a corpus of Finnish news articles with a manually prepared named entity annotation. The corpus consists of 953 articles (193,742 word tokens) with six named entity classes (organization, location, person, product, event, and date). The articles are extracted from the archives of Digitoday, a Finnish online technology news source. The corpus is available for research purposes. We present baseline experiments on the corpus using a rule-based and two deep learning systems on two, in-domain and out-of-domain, test sets. 4 authors · Aug 12, 2019
- Emotion Identification for French in Written Texts: Considering their Modes of Expression as a Step Towards Text Complexity Analysis The objective of this paper is to predict (A) whether a sentence in a written text expresses an emotion, (B) the mode(s) in which it is expressed, (C) whether it is basic or complex, and (D) its emotional category. One of our major contributions, through a dataset and a model, is to integrate the fact that an emotion can be expressed in different modes: from a direct mode, essentially lexicalized, to a more indirect mode, where emotions will only be suggested, a mode that NLP approaches generally don't take into account. Another originality is that the scope is on written texts, as opposed usual work focusing on conversational (often multi-modal) data. In this context, modes of expression are seen as a factor towards the automatic analysis of complexity in texts. Experiments on French texts show acceptable results compared to the human annotators' agreement, and outperforming results compared to using a large language model with in-context learning (i.e. no fine-tuning). 3 authors · May 23, 2024
1 Reasoning Over Paragraph Effects in Situations A key component of successfully reading a passage of text is the ability to apply knowledge gained from the passage to a new situation. In order to facilitate progress on this kind of reading, we present ROPES, a challenging benchmark for reading comprehension targeting Reasoning Over Paragraph Effects in Situations. We target expository language describing causes and effects (e.g., "animal pollinators increase efficiency of fertilization in flowers"), as they have clear implications for new situations. A system is presented a background passage containing at least one of these relations, a novel situation that uses this background, and questions that require reasoning about effects of the relationships in the background passage in the context of the situation. We collect background passages from science textbooks and Wikipedia that contain such phenomena, and ask crowd workers to author situations, questions, and answers, resulting in a 14,322 question dataset. We analyze the challenges of this task and evaluate the performance of state-of-the-art reading comprehension models. The best model performs only slightly better than randomly guessing an answer of the correct type, at 61.6% F1, well below the human performance of 89.0%. 4 authors · Aug 16, 2019
- MORE: Multi-mOdal REtrieval Augmented Generative Commonsense Reasoning Since commonsense information has been recorded significantly less frequently than its existence, language models pre-trained by text generation have difficulty to learn sufficient commonsense knowledge. Several studies have leveraged text retrieval to augment the models' commonsense ability. Unlike text, images capture commonsense information inherently but little effort has been paid to effectively utilize them. In this work, we propose a novel Multi-mOdal REtrieval (MORE) augmentation framework, to leverage both text and images to enhance the commonsense ability of language models. Extensive experiments on the Common-Gen task have demonstrated the efficacy of MORE based on the pre-trained models of both single and multiple modalities. 4 authors · Feb 21, 2024
- SemRe-Rank: Improving Automatic Term Extraction By Incorporating Semantic Relatedness With Personalised PageRank Automatic Term Extraction deals with the extraction of terminology from a domain specific corpus, and has long been an established research area in data and knowledge acquisition. ATE remains a challenging task as it is known that there is no existing ATE methods that can consistently outperform others in any domain. This work adopts a refreshed perspective to this problem: instead of searching for such a 'one-size-fit-all' solution that may never exist, we propose to develop generic methods to 'enhance' existing ATE methods. We introduce SemRe-Rank, the first method based on this principle, to incorporate semantic relatedness - an often overlooked venue - into an existing ATE method to further improve its performance. SemRe-Rank incorporates word embeddings into a personalised PageRank process to compute 'semantic importance' scores for candidate terms from a graph of semantically related words (nodes), which are then used to revise the scores of candidate terms computed by a base ATE algorithm. Extensively evaluated with 13 state-of-the-art base ATE methods on four datasets of diverse nature, it is shown to have achieved widespread improvement over all base methods and across all datasets, with up to 15 percentage points when measured by the Precision in the top ranked K candidate terms (the average for a set of K's), or up to 28 percentage points in F1 measured at a K that equals to the expected real terms in the candidates (F1 in short). Compared to an alternative approach built on the well-known TextRank algorithm, SemRe-Rank can potentially outperform by up to 8 points in Precision at top K, or up to 17 points in F1. 3 authors · Nov 9, 2017
- Evaluation of Word Embeddings for the Social Sciences Word embeddings are an essential instrument in many NLP tasks. Most available resources are trained on general language from Web corpora or Wikipedia dumps. However, word embeddings for domain-specific language are rare, in particular for the social science domain. Therefore, in this work, we describe the creation and evaluation of word embedding models based on 37,604 open-access social science research papers. In the evaluation, we compare domain-specific and general language models for (i) language coverage, (ii) diversity, and (iii) semantic relationships. We found that the created domain-specific model, even with a relatively small vocabulary size, covers a large part of social science concepts, their neighborhoods are diverse in comparison to more general models. Across all relation types, we found a more extensive coverage of semantic relationships. 3 authors · Feb 13, 2023
- Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration Phrase representations derived from BERT often do not exhibit complex phrasal compositionality, as the model relies instead on lexical similarity to determine semantic relatedness. In this paper, we propose a contrastive fine-tuning objective that enables BERT to produce more powerful phrase embeddings. Our approach (Phrase-BERT) relies on a dataset of diverse phrasal paraphrases, which is automatically generated using a paraphrase generation model, as well as a large-scale dataset of phrases in context mined from the Books3 corpus. Phrase-BERT outperforms baselines across a variety of phrase-level similarity tasks, while also demonstrating increased lexical diversity between nearest neighbors in the vector space. Finally, as a case study, we show that Phrase-BERT embeddings can be easily integrated with a simple autoencoder to build a phrase-based neural topic model that interprets topics as mixtures of words and phrases by performing a nearest neighbor search in the embedding space. Crowdsourced evaluations demonstrate that this phrase-based topic model produces more coherent and meaningful topics than baseline word and phrase-level topic models, further validating the utility of Phrase-BERT. 3 authors · Sep 13, 2021
- Sequencing Matters: A Generate-Retrieve-Generate Model for Building Conversational Agents This paper contains what the Georgetown InfoSense group has done in regard to solving the challenges presented by TREC iKAT 2023. Our submitted runs outperform the median runs by a significant margin, exhibiting superior performance in nDCG across various cut numbers and in overall success rate. Our approach uses a Generate-Retrieve-Generate method, which we've found to greatly outpace Retrieve-Then-Generate approaches for the purposes of iKAT. Our solution involves the use of Large Language Models (LLMs) for initial answers, answer grounding by BM25, passage quality filtering by logistic regression, and answer generation by LLMs again. We leverage several purpose-built Language Models, including BERT, Chat-based, and text-to-transfer-based models, for text understanding, classification, generation, and summarization. The official results of the TREC evaluation contradict our initial self-evaluation, which may suggest that a decrease in the reliance on our retrieval and classification methods is better. Nonetheless, our findings suggest that the sequence of involving these different components matters, where we see an essentiality of using LLMs before using search engines. 2 authors · Nov 15, 2023
36 Evaluating D-MERIT of Partial-annotation on Information Retrieval Retrieval models are often evaluated on partially-annotated datasets. Each query is mapped to a few relevant texts and the remaining corpus is assumed to be irrelevant. As a result, models that successfully retrieve false negatives are punished in evaluation. Unfortunately, completely annotating all texts for every query is not resource efficient. In this work, we show that using partially-annotated datasets in evaluation can paint a distorted picture. We curate D-MERIT, a passage retrieval evaluation set from Wikipedia, aspiring to contain all relevant passages for each query. Queries describe a group (e.g., ``journals about linguistics'') and relevant passages are evidence that entities belong to the group (e.g., a passage indicating that Language is a journal about linguistics). We show that evaluating on a dataset containing annotations for only a subset of the relevant passages might result in misleading ranking of the retrieval systems and that as more relevant texts are included in the evaluation set, the rankings converge. We propose our dataset as a resource for evaluation and our study as a recommendation for balance between resource-efficiency and reliable evaluation when annotating evaluation sets for text retrieval. 7 authors · Jun 23, 2024 2
- Some Like It Small: Czech Semantic Embedding Models for Industry Applications This article focuses on the development and evaluation of Small-sized Czech sentence embedding models. Small models are important components for real-time industry applications in resource-constrained environments. Given the limited availability of labeled Czech data, alternative approaches, including pre-training, knowledge distillation, and unsupervised contrastive fine-tuning, are investigated. Comprehensive intrinsic and extrinsic analyses are conducted, showcasing the competitive performance of our models compared to significantly larger counterparts, with approximately 8 times smaller size and 5 times faster speed than conventional Base-sized models. To promote cooperation and reproducibility, both the models and the evaluation pipeline are made publicly accessible. Ultimately, this article presents practical applications of the developed sentence embedding models in Seznam.cz, the Czech search engine. These models have effectively replaced previous counterparts, enhancing the overall search experience for instance, in organic search, featured snippets, and image search. This transition has yielded improved performance. 4 authors · Nov 23, 2023
1 Compositional Semantic Parsing with Large Language Models Humans can reason compositionally when presented with new tasks. Previous research shows that appropriate prompting techniques enable large language models (LLMs) to solve artificial compositional generalization tasks such as SCAN. In this work, we identify additional challenges in more realistic semantic parsing tasks with larger vocabulary and refine these prompting techniques to address them. Our best method is based on least-to-most prompting: it decomposes the problem using prompting-based syntactic parsing, then uses this decomposition to select appropriate exemplars and to sequentially generate the semantic parse. This method allows us to set a new state of the art for CFQ while requiring only 1% of the training data used by traditional approaches. Due to the general nature of our approach, we expect similar efforts will lead to new results in other tasks and domains, especially for knowledge-intensive applications. 8 authors · Sep 29, 2022
- Can a Gorilla Ride a Camel? Learning Semantic Plausibility from Text Modeling semantic plausibility requires commonsense knowledge about the world and has been used as a testbed for exploring various knowledge representations. Previous work has focused specifically on modeling physical plausibility and shown that distributional methods fail when tested in a supervised setting. At the same time, distributional models, namely large pretrained language models, have led to improved results for many natural language understanding tasks. In this work, we show that these pretrained language models are in fact effective at modeling physical plausibility in the supervised setting. We therefore present the more difficult problem of learning to model physical plausibility directly from text. We create a training set by extracting attested events from a large corpus, and we provide a baseline for training on these attested events in a self-supervised manner and testing on a physical plausibility task. We believe results could be further improved by injecting explicit commonsense knowledge into a distributional model. 3 authors · Nov 13, 2019
1 Every child should have parents: a taxonomy refinement algorithm based on hyperbolic term embeddings We introduce the use of Poincar\'e embeddings to improve existing state-of-the-art approaches to domain-specific taxonomy induction from text as a signal for both relocating wrong hyponym terms within a (pre-induced) taxonomy as well as for attaching disconnected terms in a taxonomy. This method substantially improves previous state-of-the-art results on the SemEval-2016 Task 13 on taxonomy extraction. We demonstrate the superiority of Poincar\'e embeddings over distributional semantic representations, supporting the hypothesis that they can better capture hierarchical lexical-semantic relationships than embeddings in the Euclidean space. 6 authors · Jun 5, 2019
- Joint Learning of Sentence Embeddings for Relevance and Entailment We consider the problem of Recognizing Textual Entailment within an Information Retrieval context, where we must simultaneously determine the relevancy as well as degree of entailment for individual pieces of evidence to determine a yes/no answer to a binary natural language question. We compare several variants of neural networks for sentence embeddings in a setting of decision-making based on evidence of varying relevance. We propose a basic model to integrate evidence for entailment, show that joint training of the sentence embeddings to model relevance and entailment is feasible even with no explicit per-evidence supervision, and show the importance of evaluating strong baselines. We also demonstrate the benefit of carrying over text comprehension model trained on an unrelated task for our small datasets. Our research is motivated primarily by a new open dataset we introduce, consisting of binary questions and news-based evidence snippets. We also apply the proposed relevance-entailment model on a similar task of ranking multiple-choice test answers, evaluating it on a preliminary dataset of school test questions as well as the standard MCTest dataset, where we improve the neural model state-of-art. 3 authors · May 16, 2016
1 The Knesset Corpus: An Annotated Corpus of Hebrew Parliamentary Proceedings We present the Knesset Corpus, a corpus of Hebrew parliamentary proceedings containing over 30 million sentences (over 384 million tokens) from all the (plenary and committee) protocols held in the Israeli parliament between 1998 and 2022. Sentences are annotated with morpho-syntactic information and are associated with detailed meta-information reflecting demographic and political properties of the speakers, based on a large database of parliament members and factions that we compiled. We discuss the structure and composition of the corpus and the various processing steps we applied to it. To demonstrate the utility of this novel dataset we present two use cases. We show that the corpus can be used to examine historical developments in the style of political discussions by showing a reduction in lexical richness in the proceedings over time. We also investigate some differences between the styles of men and women speakers. These use cases exemplify the potential of the corpus to shed light on important trends in the Israeli society, supporting research in linguistics, political science, communication, law, etc. 5 authors · May 28, 2024
- Meaning Representations from Trajectories in Autoregressive Models We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text. This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model. Moreover, unlike vector-based representations, distribution-based representations can also model asymmetric relations (e.g., direction of logical entailment, hypernym/hyponym relations) by using algebraic operations between likelihood functions. These ideas are grounded in distributional perspectives on semantics and are connected to standard constructions in automata theory, but to our knowledge they have not been applied to modern language models. We empirically show that the representations obtained from large models align well with human annotations, outperform other zero-shot and prompt-free methods on semantic similarity tasks, and can be used to solve more complex entailment and containment tasks that standard embeddings cannot handle. Finally, we extend our method to represent data from different modalities (e.g., image and text) using multimodal autoregressive models. Our code is available at: https://github.com/tianyu139/meaning-as-trajectories 6 authors · Oct 23, 2023
1 DocGenome: An Open Large-scale Scientific Document Benchmark for Training and Testing Multi-modal Large Language Models Scientific documents record research findings and valuable human knowledge, comprising a vast corpus of high-quality data. Leveraging multi-modality data extracted from these documents and assessing large models' abilities to handle scientific document-oriented tasks is therefore meaningful. Despite promising advancements, large models still perform poorly on multi-page scientific document extraction and understanding tasks, and their capacity to process within-document data formats such as charts and equations remains under-explored. To address these issues, we present DocGenome, a structured document benchmark constructed by annotating 500K scientific documents from 153 disciplines in the arXiv open-access community, using our custom auto-labeling pipeline. DocGenome features four key characteristics: 1) Completeness: It is the first dataset to structure data from all modalities including 13 layout attributes along with their LaTeX source codes. 2) Logicality: It provides 6 logical relationships between different entities within each scientific document. 3) Diversity: It covers various document-oriented tasks, including document classification, visual grounding, document layout detection, document transformation, open-ended single-page QA and multi-page QA. 4) Correctness: It undergoes rigorous quality control checks conducted by a specialized team. We conduct extensive experiments to demonstrate the advantages of DocGenome and objectively evaluate the performance of large models on our benchmark. 23 authors · Jun 17, 2024
- Towards Deep Semantic Analysis Of Hashtags Hashtags are semantico-syntactic constructs used across various social networking and microblogging platforms to enable users to start a topic specific discussion or classify a post into a desired category. Segmenting and linking the entities present within the hashtags could therefore help in better understanding and extraction of information shared across the social media. However, due to lack of space delimiters in the hashtags (e.g #nsavssnowden), the segmentation of hashtags into constituent entities ("NSA" and "Edward Snowden" in this case) is not a trivial task. Most of the current state-of-the-art social media analytics systems like Sentiment Analysis and Entity Linking tend to either ignore hashtags, or treat them as a single word. In this paper, we present a context aware approach to segment and link entities in the hashtags to a knowledge base (KB) entry, based on the context within the tweet. Our approach segments and links the entities in hashtags such that the coherence between hashtag semantics and the tweet is maximized. To the best of our knowledge, no existing study addresses the issue of linking entities in hashtags for extracting semantic information. We evaluate our method on two different datasets, and demonstrate the effectiveness of our technique in improving the overall entity linking in tweets via additional semantic information provided by segmenting and linking entities in a hashtag. 3 authors · Jan 13, 2015
2 Evolution and Transformation of Scientific Knowledge over the Sphaera Corpus: A Network Study We investigated the evolution and transformation of scientific knowledge in the early modern period, analyzing more than 350 different editions of textbooks used for teaching astronomy in European universities from the late fifteenth century to mid-seventeenth century. These historical sources constitute the Sphaera Corpus. By examining different semantic relations among individual parts of each edition on record, we built a multiplex network consisting of six layers, as well as the aggregated network built from the superposition of all the layers. The network analysis reveals the emergence of five different communities. The contribution of each layer in shaping the communities and the properties of each community are studied. The most influential books in the corpus are found by calculating the average age of all the out-going and in-coming links for each book. A small group of editions is identified as a transmitter of knowledge as they bridge past knowledge to the future through a long temporal interval. Our analysis, moreover, identifies the most disruptive books. These books introduce new knowledge that is then adopted by almost all the books published afterwards until the end of the whole period of study. The historical research on the content of the identified books, as an empirical test, finally corroborates the results of all our analyses. 6 authors · Apr 1, 2020
- Open Subtitles Paraphrase Corpus for Six Languages This paper accompanies the release of Opusparcus, a new paraphrase corpus for six European languages: German, English, Finnish, French, Russian, and Swedish. The corpus consists of paraphrases, that is, pairs of sentences in the same language that mean approximately the same thing. The paraphrases are extracted from the OpenSubtitles2016 corpus, which contains subtitles from movies and TV shows. The informal and colloquial genre that occurs in subtitles makes such data a very interesting language resource, for instance, from the perspective of computer assisted language learning. For each target language, the Opusparcus data have been partitioned into three types of data sets: training, development and test sets. The training sets are large, consisting of millions of sentence pairs, and have been compiled automatically, with the help of probabilistic ranking functions. The development and test sets consist of sentence pairs that have been checked manually; each set contains approximately 1000 sentence pairs that have been verified to be acceptable paraphrases by two annotators. 1 authors · Sep 17, 2018
- NLP-KG: A System for Exploratory Search of Scientific Literature in Natural Language Processing Scientific literature searches are often exploratory, whereby users are not yet familiar with a particular field or concept but are interested in learning more about it. However, existing systems for scientific literature search are typically tailored to keyword-based lookup searches, limiting the possibilities for exploration. We propose NLP-KG, a feature-rich system designed to support the exploration of research literature in unfamiliar natural language processing (NLP) fields. In addition to a semantic search, NLP-KG allows users to easily find survey papers that provide a quick introduction to a field of interest. Further, a Fields of Study hierarchy graph enables users to familiarize themselves with a field and its related areas. Finally, a chat interface allows users to ask questions about unfamiliar concepts or specific articles in NLP and obtain answers grounded in knowledge retrieved from scientific publications. Our system provides users with comprehensive exploration possibilities, supporting them in investigating the relationships between different fields, understanding unfamiliar concepts in NLP, and finding relevant research literature. Demo, video, and code are available at: https://github.com/NLP-Knowledge-Graph/NLP-KG-WebApp. 2 authors · Jun 21, 2024
4 Foundations of Large Language Models This is a book about large language models. As indicated by the title, it primarily focuses on foundational concepts rather than comprehensive coverage of all cutting-edge technologies. The book is structured into four main chapters, each exploring a key area: pre-training, generative models, prompting techniques, and alignment methods. It is intended for college students, professionals, and practitioners in natural language processing and related fields, and can serve as a reference for anyone interested in large language models. 2 authors · Jan 15
- Supervised Topical Key Phrase Extraction of News Stories using Crowdsourcing, Light Filtering and Co-reference Normalization Fast and effective automated indexing is critical for search and personalized services. Key phrases that consist of one or more words and represent the main concepts of the document are often used for the purpose of indexing. In this paper, we investigate the use of additional semantic features and pre-processing steps to improve automatic key phrase extraction. These features include the use of signal words and freebase categories. Some of these features lead to significant improvements in the accuracy of the results. We also experimented with 2 forms of document pre-processing that we call light filtering and co-reference normalization. Light filtering removes sentences from the document, which are judged peripheral to its main content. Co-reference normalization unifies several written forms of the same named entity into a unique form. We also needed a "Gold Standard" - a set of labeled documents for training and evaluation. While the subjective nature of key phrase selection precludes a true "Gold Standard", we used Amazon's Mechanical Turk service to obtain a useful approximation. Our data indicates that the biggest improvements in performance were due to shallow semantic features, news categories, and rhetorical signals (nDCG 78.47% vs. 68.93%). The inclusion of deeper semantic features such as Freebase sub-categories was not beneficial by itself, but in combination with pre-processing, did cause slight improvements in the nDCG scores. 5 authors · Jun 20, 2013
- VideoSET: Video Summary Evaluation through Text In this paper we present VideoSET, a method for Video Summary Evaluation through Text that can evaluate how well a video summary is able to retain the semantic information contained in its original video. We observe that semantics is most easily expressed in words, and develop a text-based approach for the evaluation. Given a video summary, a text representation of the video summary is first generated, and an NLP-based metric is then used to measure its semantic distance to ground-truth text summaries written by humans. We show that our technique has higher agreement with human judgment than pixel-based distance metrics. We also release text annotations and ground-truth text summaries for a number of publicly available video datasets, for use by the computer vision community. 3 authors · Jun 23, 2014
- Meaning at the Planck scale? Contextualized word embeddings for doing history, philosophy, and sociology of science This paper explores the potential of contextualized word embeddings (CWEs) as a new tool in the history, philosophy, and sociology of science (HPSS) for studying contextual and evolving meanings of scientific concepts. Using the term "Planck" as a test case, I evaluate five BERT-based models with varying degrees of domain-specific pretraining, including my custom model Astro-HEP-BERT, trained on the Astro-HEP Corpus, a dataset containing 21.84 million paragraphs from 600,000 articles in astrophysics and high-energy physics. For this analysis, I compiled two labeled datasets: (1) the Astro-HEP-Planck Corpus, consisting of 2,900 labeled occurrences of "Planck" sampled from 1,500 paragraphs in the Astro-HEP Corpus, and (2) a physics-related Wikipedia dataset comprising 1,186 labeled occurrences of "Planck" across 885 paragraphs. Results demonstrate that the domain-adapted models outperform the general-purpose ones in disambiguating the target term, predicting its known meanings, and generating high-quality sense clusters, as measured by a novel purity indicator I developed. Additionally, this approach reveals semantic shifts in the target term over three decades in the unlabeled Astro-HEP Corpus, highlighting the emergence of the Planck space mission as a dominant sense. The study underscores the importance of domain-specific pretraining for analyzing scientific language and demonstrates the cost-effectiveness of adapting pretrained models for HPSS research. By offering a scalable and transferable method for modeling the meanings of scientific concepts, CWEs open up new avenues for investigating the socio-historical dynamics of scientific discourses. 1 authors · Nov 21, 2024
1 Extracting Mathematical Concepts with Large Language Models We extract mathematical concepts from mathematical text using generative large language models (LLMs) like ChatGPT, contributing to the field of automatic term extraction (ATE) and mathematical text processing, and also to the study of LLMs themselves. Our work builds on that of others in that we aim for automatic extraction of terms (keywords) in one mathematical field, category theory, using as a corpus the 755 abstracts from a snapshot of the online journal "Theory and Applications of Categories", circa 2020. Where our study diverges from previous work is in (1) providing a more thorough analysis of what makes mathematical term extraction a difficult problem to begin with; (2) paying close attention to inter-annotator disagreements; (3) providing a set of guidelines which both human and machine annotators could use to standardize the extraction process; (4) introducing a new annotation tool to help humans with ATE, applicable to any mathematical field and even beyond mathematics; (5) using prompts to ChatGPT as part of the extraction process, and proposing best practices for such prompts; and (6) raising the question of whether ChatGPT could be used as an annotator on the same level as human experts. Our overall findings are that the matter of mathematical ATE is an interesting field which can benefit from participation by LLMs, but LLMs themselves cannot at this time surpass human performance on it. 4 authors · Aug 29, 2023
1 SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations from Scientific Publications We describe the SemEval task of extracting keyphrases and relations between them from scientific documents, which is crucial for understanding which publications describe which processes, tasks and materials. Although this was a new task, we had a total of 26 submissions across 3 evaluation scenarios. We expect the task and the findings reported in this paper to be relevant for researchers working on understanding scientific content, as well as the broader knowledge base population and information extraction communities. 5 authors · Apr 10, 2017
- Automatic Prediction of Discourse Connectives Accurate prediction of suitable discourse connectives (however, furthermore, etc.) is a key component of any system aimed at building coherent and fluent discourses from shorter sentences and passages. As an example, a dialog system might assemble a long and informative answer by sampling passages extracted from different documents retrieved from the Web. We formulate the task of discourse connective prediction and release a dataset of 2.9M sentence pairs separated by discourse connectives for this task. Then, we evaluate the hardness of the task for human raters, apply a recently proposed decomposable attention (DA) model to this task and observe that the automatic predictor has a higher F1 than human raters (32 vs. 30). Nevertheless, under specific conditions the raters still outperform the DA model, suggesting that there is headroom for future improvements. 4 authors · Feb 3, 2017
23 GeAR: Generation Augmented Retrieval Document retrieval techniques form the foundation for the development of large-scale information systems. The prevailing methodology is to construct a bi-encoder and compute the semantic similarity. However, such scalar similarity is difficult to reflect enough information and impedes our comprehension of the retrieval results. In addition, this computational process mainly emphasizes the global semantics and ignores the fine-grained semantic relationship between the query and the complex text in the document. In this paper, we propose a new method called Generation Augmented Retrieval (GeAR) that incorporates well-designed fusion and decoding modules. This enables GeAR to generate the relevant text from documents based on the fused representation of the query and the document, thus learning to "focus on" the fine-grained information. Also when used as a retriever, GeAR does not add any computational burden over bi-encoders. To support the training of the new framework, we have introduced a pipeline to efficiently synthesize high-quality data by utilizing large language models. GeAR exhibits competitive retrieval and localization performance across diverse scenarios and datasets. Moreover, the qualitative analysis and the results generated by GeAR provide novel insights into the interpretation of retrieval results. The code, data, and models will be released after completing technical review to facilitate future research. 9 authors · Jan 6 2
1 SetCSE: Set Operations using Contrastive Learning of Sentence Embeddings Taking inspiration from Set Theory, we introduce SetCSE, an innovative information retrieval framework. SetCSE employs sets to represent complex semantics and incorporates well-defined operations for structured information querying under the provided context. Within this framework, we introduce an inter-set contrastive learning objective to enhance comprehension of sentence embedding models concerning the given semantics. Furthermore, we present a suite of operations, including SetCSE intersection, difference, and operation series, that leverage sentence embeddings of the enhanced model for complex sentence retrieval tasks. Throughout this paper, we demonstrate that SetCSE adheres to the conventions of human language expressions regarding compounded semantics, provides a significant enhancement in the discriminatory capability of underlying sentence embedding models, and enables numerous information retrieval tasks involving convoluted and intricate prompts which cannot be achieved using existing querying methods. 1 authors · Apr 24, 2024
- The Role of Complex NLP in Transformers for Text Ranking? Even though term-based methods such as BM25 provide strong baselines in ranking, under certain conditions they are dominated by large pre-trained masked language models (MLMs) such as BERT. To date, the source of their effectiveness remains unclear. Is it their ability to truly understand the meaning through modeling syntactic aspects? We answer this by manipulating the input order and position information in a way that destroys the natural sequence order of query and passage and shows that the model still achieves comparable performance. Overall, our results highlight that syntactic aspects do not play a critical role in the effectiveness of re-ranking with BERT. We point to other mechanisms such as query-passage cross-attention and richer embeddings that capture word meanings based on aggregated context regardless of the word order for being the main attributions for its superior performance. 2 authors · Jul 6, 2022
- Can Linguistic Knowledge Improve Multimodal Alignment in Vision-Language Pretraining? The multimedia community has shown a significant interest in perceiving and representing the physical world with multimodal pretrained neural network models, and among them, the visual-language pertaining (VLP) is, currently, the most captivating topic. However, there have been few endeavors dedicated to the exploration of 1) whether essential linguistic knowledge (e.g., semantics and syntax) can be extracted during VLP, and 2) how such linguistic knowledge impact or enhance the multimodal alignment. In response, here we aim to elucidate the impact of comprehensive linguistic knowledge, including semantic expression and syntactic structure, on multimodal alignment. Specifically, we design and release the SNARE, the first large-scale multimodal alignment probing benchmark, to detect the vital linguistic components, e.g., lexical, semantic, and syntax knowledge, containing four tasks: Semantic structure, Negation logic, Attribute ownership, and Relationship composition. Based on our proposed probing benchmarks, our holistic analyses of five advanced VLP models illustrate that the VLP model: i) shows insensitivity towards complex syntax structures and relies on content words for sentence comprehension; ii) demonstrates limited comprehension of combinations between sentences and negations; iii) faces challenges in determining the presence of actions or spatial relationships within visual information and struggles with verifying the correctness of triple combinations. We make our benchmark and code available at https://github.com/WangFei-2019/SNARE/. 6 authors · Aug 24, 2023
1 Large Language Models as Annotators: Enhancing Generalization of NLP Models at Minimal Cost State-of-the-art supervised NLP models achieve high accuracy but are also susceptible to failures on inputs from low-data regimes, such as domains that are not represented in training data. As an approximation to collecting ground-truth labels for the specific domain, we study the use of large language models (LLMs) for annotating inputs and improving the generalization of NLP models. Specifically, given a budget for LLM annotations, we present an algorithm for sampling the most informative inputs to annotate and retrain the NLP model. We find that popular active learning strategies such as uncertainty-based sampling do not work well. Instead, we propose a sampling strategy based on the difference in prediction scores between the base model and the finetuned NLP model, utilizing the fact that most NLP models are finetuned from a base model. Experiments with classification (semantic similarity) and ranking (semantic search) tasks show that our sampling strategy leads to significant gains in accuracy for both the training and target domains. 2 authors · Jun 27, 2023
- How Do Large Language Models Capture the Ever-changing World Knowledge? A Review of Recent Advances Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at https://github.com/hyintell/awesome-refreshing-llms 5 authors · Oct 11, 2023
1 QUEST: A Retrieval Dataset of Entity-Seeking Queries with Implicit Set Operations Formulating selective information needs results in queries that implicitly specify set operations, such as intersection, union, and difference. For instance, one might search for "shorebirds that are not sandpipers" or "science-fiction films shot in England". To study the ability of retrieval systems to meet such information needs, we construct QUEST, a dataset of 3357 natural language queries with implicit set operations, that map to a set of entities corresponding to Wikipedia documents. The dataset challenges models to match multiple constraints mentioned in queries with corresponding evidence in documents and correctly perform various set operations. The dataset is constructed semi-automatically using Wikipedia category names. Queries are automatically composed from individual categories, then paraphrased and further validated for naturalness and fluency by crowdworkers. Crowdworkers also assess the relevance of entities based on their documents and highlight attribution of query constraints to spans of document text. We analyze several modern retrieval systems, finding that they often struggle on such queries. Queries involving negation and conjunction are particularly challenging and systems are further challenged with combinations of these operations. 5 authors · May 19, 2023
- Embracing data abundance: BookTest Dataset for Reading Comprehension There is a practically unlimited amount of natural language data available. Still, recent work in text comprehension has focused on datasets which are small relative to current computing possibilities. This article is making a case for the community to move to larger data and as a step in that direction it is proposing the BookTest, a new dataset similar to the popular Children's Book Test (CBT), however more than 60 times larger. We show that training on the new data improves the accuracy of our Attention-Sum Reader model on the original CBT test data by a much larger margin than many recent attempts to improve the model architecture. On one version of the dataset our ensemble even exceeds the human baseline provided by Facebook. We then show in our own human study that there is still space for further improvement. 3 authors · Oct 4, 2016
- Neural Passage Quality Estimation for Static Pruning Neural networks -- especially those that use large, pre-trained language models -- have improved search engines in various ways. Most prominently, they can estimate the relevance of a passage or document to a user's query. In this work, we depart from this direction by exploring whether neural networks can effectively predict which of a document's passages are unlikely to be relevant to any query submitted to the search engine. We refer to this query-agnostic estimation of passage relevance as a passage's quality. We find that our novel methods for estimating passage quality allow passage corpora to be pruned considerably while maintaining statistically equivalent effectiveness; our best methods can consistently prune >25% of passages in a corpora, across various retrieval pipelines. Such substantial pruning reduces the operating costs of neural search engines in terms of computing resources, power usage, and carbon footprint -- both when processing queries (thanks to a smaller index size) and when indexing (lightweight models can prune low-quality passages prior to the costly dense or learned sparse encoding step). This work sets the stage for developing more advanced neural "learning-what-to-index" methods. 4 authors · Jul 16, 2024
- From cart to truck: meaning shift through words in English in the last two centuries This onomasiological study uses diachronic word embeddings to explore how different words represented the same concepts over time, using historical word data from 1800 to 2000. We identify shifts in energy, transport, entertainment, and computing domains, revealing connections between language and societal changes. Our approach consisted in using diachronic word embeddings trained using word2vec with skipgram and aligning them using orthogonal Procrustes. We discuss possible difficulties linked to the relationships the method identifies. Moreover, we look at the ethical aspects of interpreting results, highlighting the need for expert insights to understand the method's significance. 2 authors · Aug 28, 2024
- LitSearch: A Retrieval Benchmark for Scientific Literature Search Literature search questions, such as "where can I find research on the evaluation of consistency in generated summaries?" pose significant challenges for modern search engines and retrieval systems. These questions often require a deep understanding of research concepts and the ability to reason over entire articles. In this work, we introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers. LitSearch is constructed using a combination of (1) questions generated by GPT-4 based on paragraphs containing inline citations from research papers and (2) questions about recently published papers, manually written by their authors. All LitSearch questions were manually examined or edited by experts to ensure high quality. We extensively benchmark state-of-the-art retrieval models and also evaluate two LLM-based reranking pipelines. We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% difference in absolute recall@5. The LLM-based reranking strategies further improve the best-performing dense retriever by 4.4%. Additionally, commercial search engines and research tools like Google Search perform poorly on LitSearch, lagging behind the best dense retriever by 32 points. Taken together, these results show that LitSearch is an informative new testbed for retrieval systems while catering to a real-world use case. 6 authors · Jul 10, 2024
- Russian Web Tables: A Public Corpus of Web Tables for Russian Language Based on Wikipedia Corpora that contain tabular data such as WebTables are a vital resource for the academic community. Essentially, they are the backbone of any modern research in information management. They are used for various tasks of data extraction, knowledge base construction, question answering, column semantic type detection and many other. Such corpora are useful not only as a source of data, but also as a base for building test datasets. So far, there were no such corpora for the Russian language and this seriously hindered research in the aforementioned areas. In this paper, we present the first corpus of Web tables created specifically out of Russian language material. It was built via a special toolkit we have developed to crawl the Russian Wikipedia. Both the corpus and the toolkit are open-source and publicly available. Finally, we present a short study that describes Russian Wikipedia tables and their statistics. 3 authors · Oct 3, 2022
- The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations We introduce a new test of how well language models capture meaning in children's books. Unlike standard language modelling benchmarks, it distinguishes the task of predicting syntactic function words from that of predicting lower-frequency words, which carry greater semantic content. We compare a range of state-of-the-art models, each with a different way of encoding what has been previously read. We show that models which store explicit representations of long-term contexts outperform state-of-the-art neural language models at predicting semantic content words, although this advantage is not observed for syntactic function words. Interestingly, we find that the amount of text encoded in a single memory representation is highly influential to the performance: there is a sweet-spot, not too big and not too small, between single words and full sentences that allows the most meaningful information in a text to be effectively retained and recalled. Further, the attention over such window-based memories can be trained effectively through self-supervision. We then assess the generality of this principle by applying it to the CNN QA benchmark, which involves identifying named entities in paraphrased summaries of news articles, and achieve state-of-the-art performance. 4 authors · Nov 6, 2015
4 Word Form Matters: LLMs' Semantic Reconstruction under Typoglycemia Human readers can efficiently comprehend scrambled words, a phenomenon known as Typoglycemia, primarily by relying on word form; if word form alone is insufficient, they further utilize contextual cues for interpretation. While advanced large language models (LLMs) exhibit similar abilities, the underlying mechanisms remain unclear. To investigate this, we conduct controlled experiments to analyze the roles of word form and contextual information in semantic reconstruction and examine LLM attention patterns. Specifically, we first propose SemRecScore, a reliable metric to quantify the degree of semantic reconstruction, and validate its effectiveness. Using this metric, we study how word form and contextual information influence LLMs' semantic reconstruction ability, identifying word form as the core factor in this process. Furthermore, we analyze how LLMs utilize word form and find that they rely on specialized attention heads to extract and process word form information, with this mechanism remaining stable across varying levels of word scrambling. This distinction between LLMs' fixed attention patterns primarily focused on word form and human readers' adaptive strategy in balancing word form and contextual information provides insights into enhancing LLM performance by incorporating human-like, context-aware mechanisms. 6 authors · Mar 3 2
2 Pixel Sentence Representation Learning Pretrained language models are long known to be subpar in capturing sentence and document-level semantics. Though heavily investigated, transferring perturbation-based methods from unsupervised visual representation learning to NLP remains an unsolved problem. This is largely due to the discreteness of subword units brought by tokenization of language models, limiting small perturbations of inputs to form semantics-preserved positive pairs. In this work, we conceptualize the learning of sentence-level textual semantics as a visual representation learning process. Drawing from cognitive and linguistic sciences, we introduce an unsupervised visual sentence representation learning framework, employing visually-grounded text perturbation methods like typos and word order shuffling, resonating with human cognitive patterns, and enabling perturbation to texts to be perceived as continuous. Our approach is further bolstered by large-scale unsupervised topical alignment training and natural language inference supervision, achieving comparable performance in semantic textual similarity (STS) to existing state-of-the-art NLP methods. Additionally, we unveil our method's inherent zero-shot cross-lingual transferability and a unique leapfrogging pattern across languages during iterative training. To our knowledge, this is the first representation learning method devoid of traditional language models for understanding sentence and document semantics, marking a stride closer to human-like textual comprehension. Our code is available at https://github.com/gowitheflow-1998/Pixel-Linguist 10 authors · Feb 12, 2024
1 Sub-Sentence Encoder: Contrastive Learning of Propositional Semantic Representations We introduce sub-sentence encoder, a contrastively-learned contextual embedding model for fine-grained semantic representation of text. In contrast to the standard practice with sentence embeddings, where the meaning of an entire sequence of text is encoded into a fixed-length vector, the sub-sentence encoder learns to produce distinct contextual embeddings corresponding to different atomic propositions, i.e. atomic units of meaning expressed within a text sequence. The sub-sentence embeddings are contrastively learned to recognize (inferred) semantic equivalence between propositions across different text sequences. Our experiments show the effectiveness of sub-sentence encoders in applications, such as retrieving supporting facts for fine-grained text attribution or recognizing the conditional semantic similarity between texts. In practice, we demonstrate that sub-sentence encoders keep the same level of inference cost and space complexity compared to sentence encoders. 10 authors · Nov 7, 2023
- Dense Text Retrieval based on Pretrained Language Models: A Survey Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval. 4 authors · Nov 27, 2022
- A Comparative Analysis of Conversational Large Language Models in Knowledge-Based Text Generation Generating natural language text from graph-structured data is essential for conversational information seeking. Semantic triples derived from knowledge graphs can serve as a valuable source for grounding responses from conversational agents by providing a factual basis for the information they communicate. This is especially relevant in the context of large language models, which offer great potential for conversational interaction but are prone to hallucinating, omitting, or producing conflicting information. In this study, we conduct an empirical analysis of conversational large language models in generating natural language text from semantic triples. We compare four large language models of varying sizes with different prompting techniques. Through a series of benchmark experiments on the WebNLG dataset, we analyze the models' performance and identify the most common issues in the generated predictions. Our findings show that the capabilities of large language models in triple verbalization can be significantly improved through few-shot prompting, post-processing, and efficient fine-tuning techniques, particularly for smaller models that exhibit lower zero-shot performance. 4 authors · Feb 2, 2024
33 A Survey on the Honesty of Large Language Models Honesty is a fundamental principle for aligning large language models (LLMs) with human values, requiring these models to recognize what they know and don't know and be able to faithfully express their knowledge. Despite promising, current LLMs still exhibit significant dishonest behaviors, such as confidently presenting wrong answers or failing to express what they know. In addition, research on the honesty of LLMs also faces challenges, including varying definitions of honesty, difficulties in distinguishing between known and unknown knowledge, and a lack of comprehensive understanding of related research. To address these issues, we provide a survey on the honesty of LLMs, covering its clarification, evaluation approaches, and strategies for improvement. Moreover, we offer insights for future research, aiming to inspire further exploration in this important area. 15 authors · Sep 27, 2024 3
1 From Words to Worth: Newborn Article Impact Prediction with LLM As the academic landscape expands, the challenge of efficiently identifying potentially high-impact articles among the vast number of newly published works becomes critical. This paper introduces a promising approach, leveraging the capabilities of fine-tuned LLMs to predict the future impact of newborn articles solely based on titles and abstracts. Moving beyond traditional methods heavily reliant on external information, the proposed method discerns the shared semantic features of highly impactful papers from a large collection of title-abstract and potential impact pairs. These semantic features are further utilized to regress an improved metric, TNCSI_SP, which has been endowed with value, field, and time normalization properties. Additionally, a comprehensive dataset has been constructed and released for fine-tuning the LLM, containing over 12,000 entries with corresponding titles, abstracts, and TNCSI_SP. The quantitative results, with an NDCG@20 of 0.901, demonstrate that the proposed approach achieves state-of-the-art performance in predicting the impact of newborn articles when compared to competitive counterparts. Finally, we demonstrate a real-world application for predicting the impact of newborn journal articles to demonstrate its noteworthy practical value. Overall, our findings challenge existing paradigms and propose a shift towards a more content-focused prediction of academic impact, offering new insights for assessing newborn article impact. 8 authors · Aug 7, 2024
- NewsEdits 2.0: Learning the Intentions Behind Updating News As events progress, news articles often update with new information: if we are not cautious, we risk propagating outdated facts. In this work, we hypothesize that linguistic features indicate factual fluidity, and that we can predict which facts in a news article will update using solely the text of a news article (i.e. not external resources like search engines). We test this hypothesis, first, by isolating fact-updates in large news revisions corpora. News articles may update for many reasons (e.g. factual, stylistic, narrative). We introduce the NewsEdits 2.0 taxonomy, an edit-intentions schema that separates fact updates from stylistic and narrative updates in news writing. We annotate over 9,200 pairs of sentence revisions and train high-scoring ensemble models to apply this schema. Then, taking a large dataset of silver-labeled pairs, we show that we can predict when facts will update in older article drafts with high precision. Finally, to demonstrate the usefulness of these findings, we construct a language model question asking (LLM-QA) abstention task. We wish the LLM to abstain from answering questions when information is likely to become outdated. Using our predictions, we show, LLM absention reaches near oracle levels of accuracy. 4 authors · Nov 27, 2024
- HmBlogs: A big general Persian corpus This paper introduces the hmBlogs corpus for Persian, as a low resource language. This corpus has been prepared based on a collection of nearly 20 million blog posts over a period of about 15 years from a space of Persian blogs and includes more than 6.8 billion tokens. It can be claimed that this corpus is currently the largest Persian corpus that has been prepared independently for the Persian language. This corpus is presented in both raw and preprocessed forms, and based on the preprocessed corpus some word embedding models are produced. By the provided models, the hmBlogs is compared with some of the most important corpora available in Persian, and the results show the superiority of the hmBlogs corpus over the others. These evaluations also present the importance and effects of corpora, evaluation datasets, model production methods, different hyperparameters and even the evaluation methods. In addition to evaluating the corpus and its produced language models, this research also presents a semantic analogy dataset. 2 authors · Nov 3, 2021
- A Dataset for Metaphor Detection in Early Medieval Hebrew Poetry There is a large volume of late antique and medieval Hebrew texts. They represent a crucial linguistic and cultural bridge between Biblical and modern Hebrew. Poetry is prominent in these texts and one of its main haracteristics is the frequent use of metaphor. Distinguishing figurative and literal language use is a major task for scholars of the Humanities, especially in the fields of literature, linguistics, and hermeneutics. This paper presents a new, challenging dataset of late antique and medieval Hebrew poetry with expert annotations of metaphor, as well as some baseline results, which we hope will facilitate further research in this area. 5 authors · Feb 27, 2024
- Representing Syntax and Composition with Geometric Transformations The exploitation of syntactic graphs (SyGs) as a word's context has been shown to be beneficial for distributional semantic models (DSMs), both at the level of individual word representations and in deriving phrasal representations via composition. However, notwithstanding the potential performance benefit, the syntactically-aware DSMs proposed to date have huge numbers of parameters (compared to conventional DSMs) and suffer from data sparsity. Furthermore, the encoding of the SyG links (i.e., the syntactic relations) has been largely limited to linear maps. The knowledge graphs' literature, on the other hand, has proposed light-weight models employing different geometric transformations (GTs) to encode edges in a knowledge graph (KG). Our work explores the possibility of adopting this family of models to encode SyGs. Furthermore, we investigate which GT better encodes syntactic relations, so that these representations can be used to enhance phrase-level composition via syntactic contextualisation. 4 authors · Jun 3, 2021
- SQUINKY! A Corpus of Sentence-level Formality, Informativeness, and Implicature We introduce a corpus of 7,032 sentences rated by human annotators for formality, informativeness, and implicature on a 1-7 scale. The corpus was annotated using Amazon Mechanical Turk. Reliability in the obtained judgments was examined by comparing mean ratings across two MTurk experiments, and correlation with pilot annotations (on sentence formality) conducted in a more controlled setting. Despite the subjectivity and inherent difficulty of the annotation task, correlations between mean ratings were quite encouraging, especially on formality and informativeness. We further explored correlation between the three linguistic variables, genre-wise variation of ratings and correlations within genres, compatibility with automatic stylistic scoring, and sentential make-up of a document in terms of style. To date, our corpus is the largest sentence-level annotated corpus released for formality, informativeness, and implicature. 1 authors · Jun 7, 2015
- A Few Brief Notes on DeepImpact, COIL, and a Conceptual Framework for Information Retrieval Techniques Recent developments in representational learning for information retrieval can be organized in a conceptual framework that establishes two pairs of contrasts: sparse vs. dense representations and unsupervised vs. learned representations. Sparse learned representations can further be decomposed into expansion and term weighting components. This framework allows us to understand the relationship between recently proposed techniques such as DPR, ANCE, DeepCT, DeepImpact, and COIL, and furthermore, gaps revealed by our analysis point to "low hanging fruit" in terms of techniques that have yet to be explored. We present a novel technique dubbed "uniCOIL", a simple extension of COIL that achieves to our knowledge the current state-of-the-art in sparse retrieval on the popular MS MARCO passage ranking dataset. Our implementation using the Anserini IR toolkit is built on the Lucene search library and thus fully compatible with standard inverted indexes. 2 authors · Jun 28, 2021
1 Delving into the Utilisation of ChatGPT in Scientific Publications in Astronomy Rapid progress in the capabilities of machine learning approaches in natural language processing has culminated in the rise of large language models over the last two years. Recent works have shown unprecedented adoption of these for academic writing, especially in some fields, but their pervasiveness in astronomy has not been studied sufficiently. To remedy this, we extract words that ChatGPT uses more often than humans when generating academic text and search a total of 1 million articles for them. This way, we assess the frequency of word occurrence in published works in astronomy tracked by the NASA Astrophysics Data System since 2000. We then perform a statistical analysis of the occurrences. We identify a list of words favoured by ChatGPT and find a statistically significant increase for these words against a control group in 2024, which matches the trend in other disciplines. These results suggest a widespread adoption of these models in the writing of astronomy papers. We encourage organisations, publishers, and researchers to work together to identify ethical and pragmatic guidelines to maximise the benefits of these systems while maintaining scientific rigour. 4 authors · Jun 25, 2024