Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLanguage Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents
Can world knowledge learned by large language models (LLMs) be used to act in interactive environments? In this paper, we investigate the possibility of grounding high-level tasks, expressed in natural language (e.g. "make breakfast"), to a chosen set of actionable steps (e.g. "open fridge"). While prior work focused on learning from explicit step-by-step examples of how to act, we surprisingly find that if pre-trained LMs are large enough and prompted appropriately, they can effectively decompose high-level tasks into mid-level plans without any further training. However, the plans produced naively by LLMs often cannot map precisely to admissible actions. We propose a procedure that conditions on existing demonstrations and semantically translates the plans to admissible actions. Our evaluation in the recent VirtualHome environment shows that the resulting method substantially improves executability over the LLM baseline. The conducted human evaluation reveals a trade-off between executability and correctness but shows a promising sign towards extracting actionable knowledge from language models. Website at https://huangwl18.github.io/language-planner
SIRL: Similarity-based Implicit Representation Learning
When robots learn reward functions using high capacity models that take raw state directly as input, they need to both learn a representation for what matters in the task -- the task ``features" -- as well as how to combine these features into a single objective. If they try to do both at once from input designed to teach the full reward function, it is easy to end up with a representation that contains spurious correlations in the data, which fails to generalize to new settings. Instead, our ultimate goal is to enable robots to identify and isolate the causal features that people actually care about and use when they represent states and behavior. Our idea is that we can tune into this representation by asking users what behaviors they consider similar: behaviors will be similar if the features that matter are similar, even if low-level behavior is different; conversely, behaviors will be different if even one of the features that matter differs. This, in turn, is what enables the robot to disambiguate between what needs to go into the representation versus what is spurious, as well as what aspects of behavior can be compressed together versus not. The notion of learning representations based on similarity has a nice parallel in contrastive learning, a self-supervised representation learning technique that maps visually similar data points to similar embeddings, where similarity is defined by a designer through data augmentation heuristics. By contrast, in order to learn the representations that people use, so we can learn their preferences and objectives, we use their definition of similarity. In simulation as well as in a user study, we show that learning through such similarity queries leads to representations that, while far from perfect, are indeed more generalizable than self-supervised and task-input alternatives.
Learning Intuitive Policies Using Action Features
An unaddressed challenge in multi-agent coordination is to enable AI agents to exploit the semantic relationships between the features of actions and the features of observations. Humans take advantage of these relationships in highly intuitive ways. For instance, in the absence of a shared language, we might point to the object we desire or hold up our fingers to indicate how many objects we want. To address this challenge, we investigate the effect of network architecture on the propensity of learning algorithms to exploit these semantic relationships. Across a procedurally generated coordination task, we find that attention-based architectures that jointly process a featurized representation of observations and actions have a better inductive bias for learning intuitive policies. Through fine-grained evaluation and scenario analysis, we show that the resulting policies are human-interpretable. Moreover, such agents coordinate with people without training on any human data.
Palm: Predicting Actions through Language Models @ Ego4D Long-Term Action Anticipation Challenge 2023
We present Palm, a solution to the Long-Term Action Anticipation (LTA) task utilizing vision-language and large language models. Given an input video with annotated action periods, the LTA task aims to predict possible future actions. We hypothesize that an optimal solution should capture the interdependency between past and future actions, and be able to infer future actions based on the structure and dependency encoded in the past actions. Large language models have demonstrated remarkable commonsense-based reasoning ability. Inspired by that, Palm chains an image captioning model and a large language model. It predicts future actions based on frame descriptions and action labels extracted from the input videos. Our method outperforms other participants in the EGO4D LTA challenge and achieves the best performance in terms of action prediction. Our code is available at https://github.com/DanDoge/Palm
RT-H: Action Hierarchies Using Language
Language provides a way to break down complex concepts into digestible pieces. Recent works in robot imitation learning use language-conditioned policies that predict actions given visual observations and the high-level task specified in language. These methods leverage the structure of natural language to share data between semantically similar tasks (e.g., "pick coke can" and "pick an apple") in multi-task datasets. However, as tasks become more semantically diverse (e.g., "pick coke can" and "pour cup"), sharing data between tasks becomes harder, so learning to map high-level tasks to actions requires much more demonstration data. To bridge tasks and actions, our insight is to teach the robot the language of actions, describing low-level motions with more fine-grained phrases like "move arm forward". Predicting these language motions as an intermediate step between tasks and actions forces the policy to learn the shared structure of low-level motions across seemingly disparate tasks. Furthermore, a policy that is conditioned on language motions can easily be corrected during execution through human-specified language motions. This enables a new paradigm for flexible policies that can learn from human intervention in language. Our method RT-H builds an action hierarchy using language motions: it first learns to predict language motions, and conditioned on this and the high-level task, it predicts actions, using visual context at all stages. We show that RT-H leverages this language-action hierarchy to learn policies that are more robust and flexible by effectively tapping into multi-task datasets. We show that these policies not only allow for responding to language interventions, but can also learn from such interventions and outperform methods that learn from teleoperated interventions. Our website and videos are found at https://rt-hierarchy.github.io.
IGOR: Image-GOal Representations are the Atomic Control Units for Foundation Models in Embodied AI
We introduce Image-GOal Representations (IGOR), aiming to learn a unified, semantically consistent action space across human and various robots. Through this unified latent action space, IGOR enables knowledge transfer among large-scale robot and human activity data. We achieve this by compressing visual changes between an initial image and its goal state into latent actions. IGOR allows us to generate latent action labels for internet-scale video data. This unified latent action space enables the training of foundation policy and world models across a wide variety of tasks performed by both robots and humans. We demonstrate that: (1) IGOR learns a semantically consistent action space for both human and robots, characterizing various possible motions of objects representing the physical interaction knowledge; (2) IGOR can "migrate" the movements of the object in the one video to other videos, even across human and robots, by jointly using the latent action model and world model; (3) IGOR can learn to align latent actions with natural language through the foundation policy model, and integrate latent actions with a low-level policy model to achieve effective robot control. We believe IGOR opens new possibilities for human-to-robot knowledge transfer and control.
RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control
We study how vision-language models trained on Internet-scale data can be incorporated directly into end-to-end robotic control to boost generalization and enable emergent semantic reasoning. Our goal is to enable a single end-to-end trained model to both learn to map robot observations to actions and enjoy the benefits of large-scale pretraining on language and vision-language data from the web. To this end, we propose to co-fine-tune state-of-the-art vision-language models on both robotic trajectory data and Internet-scale vision-language tasks, such as visual question answering. In contrast to other approaches, we propose a simple, general recipe to achieve this goal: in order to fit both natural language responses and robotic actions into the same format, we express the actions as text tokens and incorporate them directly into the training set of the model in the same way as natural language tokens. We refer to such category of models as vision-language-action models (VLA) and instantiate an example of such a model, which we call RT-2. Our extensive evaluation (6k evaluation trials) shows that our approach leads to performant robotic policies and enables RT-2 to obtain a range of emergent capabilities from Internet-scale training. This includes significantly improved generalization to novel objects, the ability to interpret commands not present in the robot training data (such as placing an object onto a particular number or icon), and the ability to perform rudimentary reasoning in response to user commands (such as picking up the smallest or largest object, or the one closest to another object). We further show that incorporating chain of thought reasoning allows RT-2 to perform multi-stage semantic reasoning, for example figuring out which object to pick up for use as an improvised hammer (a rock), or which type of drink is best suited for someone who is tired (an energy drink).
A Persistent Spatial Semantic Representation for High-level Natural Language Instruction Execution
Natural language provides an accessible and expressive interface to specify long-term tasks for robotic agents. However, non-experts are likely to specify such tasks with high-level instructions, which abstract over specific robot actions through several layers of abstraction. We propose that key to bridging this gap between language and robot actions over long execution horizons are persistent representations. We propose a persistent spatial semantic representation method, and show how it enables building an agent that performs hierarchical reasoning to effectively execute long-term tasks. We evaluate our approach on the ALFRED benchmark and achieve state-of-the-art results, despite completely avoiding the commonly used step-by-step instructions.
Grounded Decoding: Guiding Text Generation with Grounded Models for Robot Control
Recent progress in large language models (LLMs) has demonstrated the ability to learn and leverage Internet-scale knowledge through pre-training with autoregressive models. Unfortunately, applying such models to settings with embodied agents, such as robots, is challenging due to their lack of experience with the physical world, inability to parse non-language observations, and ignorance of rewards or safety constraints that robots may require. On the other hand, language-conditioned robotic policies that learn from interaction data can provide the necessary grounding that allows the agent to be correctly situated in the real world, but such policies are limited by the lack of high-level semantic understanding due to the limited breadth of the interaction data available for training them. Thus, if we want to make use of the semantic knowledge in a language model while still situating it in an embodied setting, we must construct an action sequence that is both likely according to the language model and also realizable according to grounded models of the environment. We frame this as a problem similar to probabilistic filtering: decode a sequence that both has high probability under the language model and high probability under a set of grounded model objectives. We demonstrate this guided decoding strategy is able to solve complex, long-horizon embodiment tasks in a robotic setting by leveraging the knowledge of both models. The project's website can be found at grounded-decoding.github.io.
A Tale of Two DRAGGNs: A Hybrid Approach for Interpreting Action-Oriented and Goal-Oriented Instructions
Robots operating alongside humans in diverse, stochastic environments must be able to accurately interpret natural language commands. These instructions often fall into one of two categories: those that specify a goal condition or target state, and those that specify explicit actions, or how to perform a given task. Recent approaches have used reward functions as a semantic representation of goal-based commands, which allows for the use of a state-of-the-art planner to find a policy for the given task. However, these reward functions cannot be directly used to represent action-oriented commands. We introduce a new hybrid approach, the Deep Recurrent Action-Goal Grounding Network (DRAGGN), for task grounding and execution that handles natural language from either category as input, and generalizes to unseen environments. Our robot-simulation results demonstrate that a system successfully interpreting both goal-oriented and action-oriented task specifications brings us closer to robust natural language understanding for human-robot interaction.
FILM: Following Instructions in Language with Modular Methods
Recent methods for embodied instruction following are typically trained end-to-end using imitation learning. This often requires the use of expert trajectories and low-level language instructions. Such approaches assume that neural states will integrate multimodal semantics to perform state tracking, building spatial memory, exploration, and long-term planning. In contrast, we propose a modular method with structured representations that (1) builds a semantic map of the scene and (2) performs exploration with a semantic search policy, to achieve the natural language goal. Our modular method achieves SOTA performance (24.46 %) with a substantial (8.17 % absolute) gap from previous work while using less data by eschewing both expert trajectories and low-level instructions. Leveraging low-level language, however, can further increase our performance (26.49 %). Our findings suggest that an explicit spatial memory and a semantic search policy can provide a stronger and more general representation for state-tracking and guidance, even in the absence of expert trajectories or low-level instructions.
Instance-Level Semantic Maps for Vision Language Navigation
Humans have a natural ability to perform semantic associations with the surrounding objects in the environment. This allows them to create a mental map of the environment, allowing them to navigate on-demand when given linguistic instructions. A natural goal in Vision Language Navigation (VLN) research is to impart autonomous agents with similar capabilities. Recent works take a step towards this goal by creating a semantic spatial map representation of the environment without any labeled data. However, their representations are limited for practical applicability as they do not distinguish between different instances of the same object. In this work, we address this limitation by integrating instance-level information into spatial map representation using a community detection algorithm and utilizing word ontology learned by large language models (LLMs) to perform open-set semantic associations in the mapping representation. The resulting map representation improves the navigation performance by two-fold (233%) on realistic language commands with instance-specific descriptions compared to the baseline. We validate the practicality and effectiveness of our approach through extensive qualitative and quantitative experiments.
Android in the Zoo: Chain-of-Action-Thought for GUI Agents
Large language model (LLM) leads to a surge of autonomous GUI agents for smartphone, which completes a task triggered by natural language through predicting a sequence of actions of API. Even though the task highly relies on past actions and visual observations, existing studies typical consider little semantic information carried out by intermediate screenshots and screen operations. To address this, this work presents Chain-of-Action-Thought (dubbed CoAT), which takes the description of the previous actions, the current screen, and more importantly the action thinking of what actions should be performed and the outcomes led by the chosen action. We demonstrate that, in a zero-shot setting upon an off-the-shell LLM, CoAT significantly improves the goal progress compared to standard context modeling. To further facilitate the research in this line, we construct a benchmark Android-In-The-Zoo (AitZ), which contains 18,643 screen-action pairs together with chain-of-action-thought annotations. Experiments show that fine-tuning a 200M model on our AitZ dataset achieves on par performance with CogAgent-Chat-18B.
Task Vectors are Cross-Modal
We investigate the internal representations of vision-and-language models (VLMs) and how they encode task representations. We consider tasks specified through examples or instructions, using either text or image inputs. Surprisingly, we find that conceptually similar tasks are mapped to similar task vector representations, regardless of how they are specified. Our findings suggest that to output answers, tokens in VLMs undergo three distinct phases: input, task, and answer, a process which is consistent across different modalities and specifications. The task vectors we identify in VLMs are general enough to be derived in one modality (e.g., text) and transferred to another (e.g., image). Additionally, we find that ensembling exemplar and instruction based task vectors produce better task representations. Taken together, these insights shed light on the underlying mechanisms of VLMs, particularly their ability to represent tasks in a shared manner across different modalities and task specifications. Project page: https://task-vectors-are-cross-modal.github.io.
Unified Dual-Intent Translation for Joint Modeling of Search and Recommendation
Recommendation systems, which assist users in discovering their preferred items among numerous options, have served billions of users across various online platforms. Intuitively, users' interactions with items are highly driven by their unchanging inherent intents (e.g., always preferring high-quality items) and changing demand intents (e.g., wanting a T-shirt in summer but a down jacket in winter). However, both types of intents are implicitly expressed in recommendation scenario, posing challenges in leveraging them for accurate intent-aware recommendations. Fortunately, in search scenario, often found alongside recommendation on the same online platform, users express their demand intents explicitly through their query words. Intuitively, in both scenarios, a user shares the same inherent intent and the interactions may be influenced by the same demand intent. It is therefore feasible to utilize the interaction data from both scenarios to reinforce the dual intents for joint intent-aware modeling. But the joint modeling should deal with two problems: 1) accurately modeling users' implicit demand intents in recommendation; 2) modeling the relation between the dual intents and the interactive items. To address these problems, we propose a novel model named Unified Dual-Intents Translation for joint modeling of Search and Recommendation (UDITSR). To accurately simulate users' demand intents in recommendation, we utilize real queries from search data as supervision information to guide its generation. To explicitly model the relation among the triplet <inherent intent, demand intent, interactive item>, we propose a dual-intent translation propagation mechanism to learn the triplet in the same semantic space via embedding translations. Extensive experiments demonstrate that UDITSR outperforms SOTA baselines both in search and recommendation tasks.
Behavioral Cloning via Search in Embedded Demonstration Dataset
Behavioural cloning uses a dataset of demonstrations to learn a behavioural policy. To overcome various learning and policy adaptation problems, we propose to use latent space to index a demonstration dataset, instantly access similar relevant experiences, and copy behavior from these situations. Actions from a selected similar situation can be performed by the agent until representations of the agent's current situation and the selected experience diverge in the latent space. Thus, we formulate our control problem as a search problem over a dataset of experts' demonstrations. We test our approach on BASALT MineRL-dataset in the latent representation of a Video PreTraining model. We compare our model to state-of-the-art Minecraft agents. Our approach can effectively recover meaningful demonstrations and show human-like behavior of an agent in the Minecraft environment in a wide variety of scenarios. Experimental results reveal that performance of our search-based approach is comparable to trained models, while allowing zero-shot task adaptation by changing the demonstration examples.
ARIA: Training Language Agents with Intention-Driven Reward Aggregation
Large language models (LLMs) have enabled agents to perform complex reasoning and decision-making through free-form language interactions. However, in open-ended language action environments (e.g., negotiation or question-asking games), the action space can be formulated as a joint distribution over tokens, resulting in an exponentially large action space. Sampling actions in such a space can lead to extreme reward sparsity, which brings large reward variance, hindering effective reinforcement learning (RL). To address this, we propose ARIA, a method that Aggregates Rewards in Intention space to enable efficient and effective language Agents training. ARIA aims to project natural language actions from the high-dimensional joint token distribution space into a low-dimensional intention space, where semantically similar actions are clustered and assigned shared rewards. This intention-aware reward aggregation reduces reward variance by densifying reward signals, fostering better policy optimization. Extensive experiments demonstrate that ARIA not only significantly reduces policy gradient variance, but also delivers substantial performance gains of an average of 9.95% across four downstream tasks, consistently outperforming offline and online RL baselines.
Husky: A Unified, Open-Source Language Agent for Multi-Step Reasoning
Language agents perform complex tasks by using tools to execute each step precisely. However, most existing agents are based on proprietary models or designed to target specific tasks, such as mathematics or multi-hop question answering. We introduce Husky, a holistic, open-source language agent that learns to reason over a unified action space to address a diverse set of complex tasks involving numerical, tabular, and knowledge-based reasoning. Husky iterates between two stages: 1) generating the next action to take towards solving a given task and 2) executing the action using expert models and updating the current solution state. We identify a thorough ontology of actions for addressing complex tasks and curate high-quality data to train expert models for executing these actions. Our experiments show that Husky outperforms prior language agents across 14 evaluation datasets. Moreover, we introduce HuskyQA, a new evaluation set which stress tests language agents for mixed-tool reasoning, with a focus on retrieving missing knowledge and performing numerical reasoning. Despite using 7B models, Husky matches or even exceeds frontier LMs such as GPT-4 on these tasks, showcasing the efficacy of our holistic approach in addressing complex reasoning problems. Our code and models are available at https://github.com/agent-husky/Husky-v1.
Think-Then-React: Towards Unconstrained Human Action-to-Reaction Generation
Modeling human-like action-to-reaction generation has significant real-world applications, like human-robot interaction and games. Despite recent advancements in single-person motion generation, it is still challenging to well handle action-to-reaction generation, due to the difficulty of directly predicting reaction from action sequence without prompts, and the absence of a unified representation that effectively encodes multi-person motion. To address these challenges, we introduce Think-Then-React (TTR), a large language-model-based framework designed to generate human-like reactions. First, with our fine-grained multimodal training strategy, TTR is capable to unify two processes during inference: a thinking process that explicitly infers action intentions and reasons corresponding reaction description, which serve as semantic prompts, and a reacting process that predicts reactions based on input action and the inferred semantic prompts. Second, to effectively represent multi-person motion in language models, we propose a unified motion tokenizer by decoupling egocentric pose and absolute space features, which effectively represents action and reaction motion with same encoding. Extensive experiments demonstrate that TTR outperforms existing baselines, achieving significant improvements in evaluation metrics, such as reducing FID from 3.988 to 1.942.
Video2Commonsense: Generating Commonsense Descriptions to Enrich Video Captioning
Captioning is a crucial and challenging task for video understanding. In videos that involve active agents such as humans, the agent's actions can bring about myriad changes in the scene. Observable changes such as movements, manipulations, and transformations of the objects in the scene, are reflected in conventional video captioning. Unlike images, actions in videos are also inherently linked to social aspects such as intentions (why the action is taking place), effects (what changes due to the action), and attributes that describe the agent. Thus for video understanding, such as when captioning videos or when answering questions about videos, one must have an understanding of these commonsense aspects. We present the first work on generating commonsense captions directly from videos, to describe latent aspects such as intentions, effects, and attributes. We present a new dataset "Video-to-Commonsense (V2C)" that contains sim9k videos of human agents performing various actions, annotated with 3 types of commonsense descriptions. Additionally we explore the use of open-ended video-based commonsense question answering (V2C-QA) as a way to enrich our captions. Both the generation task and the QA task can be used to enrich video captions.
LLaVAction: evaluating and training multi-modal large language models for action recognition
Understanding human behavior requires measuring behavioral actions. Due to its complexity, behavior is best mapped onto a rich, semantic structure such as language. The recent development of multi-modal large language models (MLLMs) is a promising candidate for a wide range of action understanding tasks. In this work, we focus on evaluating and then improving MLLMs to perform action recognition. We reformulate EPIC-KITCHENS-100, one of the largest and most challenging egocentric action datasets, to the form of video multiple question answering (EPIC-KITCHENS-100-MQA). We show that when we sample difficult incorrect answers as distractors, leading MLLMs struggle to recognize the correct actions. We propose a series of methods that greatly improve the MLLMs' ability to perform action recognition, achieving state-of-the-art on both the EPIC-KITCHENS-100 validation set, as well as outperforming GPT-4o by 21 points in accuracy on EPIC-KITCHENS-100-MQA. Lastly, we show improvements on other action-related video benchmarks such as EgoSchema, PerceptionTest, LongVideoBench, VideoMME and MVBench, suggesting that MLLMs are a promising path forward for complex action tasks. Code and models are available at: https://github.com/AdaptiveMotorControlLab/LLaVAction.
A Survey on Vision-Language-Action Models: An Action Tokenization Perspective
The remarkable advancements of vision and language foundation models in multimodal understanding, reasoning, and generation has sparked growing efforts to extend such intelligence to the physical world, fueling the flourishing of vision-language-action (VLA) models. Despite seemingly diverse approaches, we observe that current VLA models can be unified under a single framework: vision and language inputs are processed by a series of VLA modules, producing a chain of action tokens that progressively encode more grounded and actionable information, ultimately generating executable actions. We further determine that the primary design choice distinguishing VLA models lies in how action tokens are formulated, which can be categorized into language description, code, affordance, trajectory, goal state, latent representation, raw action, and reasoning. However, there remains a lack of comprehensive understanding regarding action tokens, significantly impeding effective VLA development and obscuring future directions. Therefore, this survey aims to categorize and interpret existing VLA research through the lens of action tokenization, distill the strengths and limitations of each token type, and identify areas for improvement. Through this systematic review and analysis, we offer a synthesized outlook on the broader evolution of VLA models, highlight underexplored yet promising directions, and contribute guidance for future research, hoping to bring the field closer to general-purpose intelligence.
LGMCTS: Language-Guided Monte-Carlo Tree Search for Executable Semantic Object Rearrangement
We introduce a novel approach to the executable semantic object rearrangement problem. In this challenge, a robot seeks to create an actionable plan that rearranges objects within a scene according to a pattern dictated by a natural language description. Unlike existing methods such as StructFormer and StructDiffusion, which tackle the issue in two steps by first generating poses and then leveraging a task planner for action plan formulation, our method concurrently addresses pose generation and action planning. We achieve this integration using a Language-Guided Monte-Carlo Tree Search (LGMCTS). Quantitative evaluations are provided on two simulation datasets, and complemented by qualitative tests with a real robot.
Can Your Model Tell a Negation from an Implicature? Unravelling Challenges With Intent Encoders
Conversational systems often rely on embedding models for intent classification and intent clustering tasks. The advent of Large Language Models (LLMs), which enable instructional embeddings allowing one to adjust semantics over the embedding space using prompts, are being viewed as a panacea for these downstream conversational tasks. However, traditional evaluation benchmarks rely solely on task metrics that don't particularly measure gaps related to semantic understanding. Thus, we propose an intent semantic toolkit that gives a more holistic view of intent embedding models by considering three tasks -- (1) intent classification, (2) intent clustering, and (3) a novel triplet task. The triplet task gauges the model's understanding of two semantic concepts paramount in real-world conversational systems -- negation and implicature. We observe that current embedding models fare poorly in semantic understanding of these concepts. To address this, we propose a pre-training approach to improve the embedding model by leveraging augmentation with data generated by an auto-regressive model and a contrastive loss term. Our approach improves the semantic understanding of the intent embedding model on the aforementioned linguistic dimensions while slightly effecting their performance on downstream task metrics.
From Occlusion to Insight: Object Search in Semantic Shelves using Large Language Models
How can a robot efficiently extract a desired object from a shelf when it is fully occluded by other objects? Prior works propose geometric approaches for this problem but do not consider object semantics. Shelves in pharmacies, restaurant kitchens, and grocery stores are often organized such that semantically similar objects are placed close to one another. Can large language models (LLMs) serve as semantic knowledge sources to accelerate robotic mechanical search in semantically arranged environments? With Semantic Spatial Search on Shelves (S^4), we use LLMs to generate affinity matrices, where entries correspond to semantic likelihood of physical proximity between objects. We derive semantic spatial distributions by synthesizing semantics with learned geometric constraints. S^4 incorporates Optical Character Recognition (OCR) and semantic refinement with predictions from ViLD, an open-vocabulary object detection model. Simulation experiments suggest that semantic spatial search reduces the search time relative to pure spatial search by an average of 24% across three domains: pharmacy, kitchen, and office shelves. A manually collected dataset of 100 semantic scenes suggests that OCR and semantic refinement improve object detection accuracy by 35%. Lastly, physical experiments in a pharmacy shelf suggest 47.1% improvement over pure spatial search. Supplementary material can be found at https://sites.google.com/view/s4-rss/home.
LineRetriever: Planning-Aware Observation Reduction for Web Agents
While large language models have demonstrated impressive capabilities in web navigation tasks, the extensive context of web pages, often represented as DOM or Accessibility Tree (AxTree) structures, frequently exceeds model context limits. Current approaches like bottom-up truncation or embedding-based retrieval lose critical information about page state and action history. This is particularly problematic for adaptive planning in web agents, where understanding the current state is essential for determining future actions. We hypothesize that embedding models lack sufficient capacity to capture plan-relevant information, especially when retrieving content that supports future action prediction. This raises a fundamental question: how can retrieval methods be optimized for adaptive planning in web navigation tasks? In response, we introduce LineRetriever, a novel approach that leverages a language model to identify and retrieve observation lines most relevant to future navigation steps. Unlike traditional retrieval methods that focus solely on semantic similarity, LineRetriever explicitly considers the planning horizon, prioritizing elements that contribute to action prediction. Our experiments demonstrate that LineRetriever can reduce the size of the observation at each step for the web agent while maintaining consistent performance within the context limitations.
A Survey on Vision-Language-Action Models for Embodied AI
Embodied AI is widely recognized as a key element of artificial general intelligence because it involves controlling embodied agents to perform tasks in the physical world. Building on the success of large language models and vision-language models, a new category of multimodal models -- referred to as vision-language-action models (VLAs) -- has emerged to address language-conditioned robotic tasks in embodied AI by leveraging their distinct ability to generate actions. In recent years, a myriad of VLAs have been developed, making it imperative to capture the rapidly evolving landscape through a comprehensive survey. To this end, we present the first survey on VLAs for embodied AI. This work provides a detailed taxonomy of VLAs, organized into three major lines of research. The first line focuses on individual components of VLAs. The second line is dedicated to developing control policies adept at predicting low-level actions. The third line comprises high-level task planners capable of decomposing long-horizon tasks into a sequence of subtasks, thereby guiding VLAs to follow more general user instructions. Furthermore, we provide an extensive summary of relevant resources, including datasets, simulators, and benchmarks. Finally, we discuss the challenges faced by VLAs and outline promising future directions in embodied AI. We have created a project associated with this survey, which is available at https://github.com/yueen-ma/Awesome-VLA.
ReAct: Synergizing Reasoning and Acting in Language Models
While large language models (LLMs) have demonstrated impressive capabilities across tasks in language understanding and interactive decision making, their abilities for reasoning (e.g. chain-of-thought prompting) and acting (e.g. action plan generation) have primarily been studied as separate topics. In this paper, we explore the use of LLMs to generate both reasoning traces and task-specific actions in an interleaved manner, allowing for greater synergy between the two: reasoning traces help the model induce, track, and update action plans as well as handle exceptions, while actions allow it to interface with external sources, such as knowledge bases or environments, to gather additional information. We apply our approach, named ReAct, to a diverse set of language and decision making tasks and demonstrate its effectiveness over state-of-the-art baselines, as well as improved human interpretability and trustworthiness over methods without reasoning or acting components. Concretely, on question answering (HotpotQA) and fact verification (Fever), ReAct overcomes issues of hallucination and error propagation prevalent in chain-of-thought reasoning by interacting with a simple Wikipedia API, and generates human-like task-solving trajectories that are more interpretable than baselines without reasoning traces. On two interactive decision making benchmarks (ALFWorld and WebShop), ReAct outperforms imitation and reinforcement learning methods by an absolute success rate of 34% and 10% respectively, while being prompted with only one or two in-context examples. Project site with code: https://react-lm.github.io
VRAG-RL: Empower Vision-Perception-Based RAG for Visually Rich Information Understanding via Iterative Reasoning with Reinforcement Learning
Effectively retrieving, reasoning and understanding visually rich information remains a challenge for RAG methods. Traditional text-based methods cannot handle visual-related information. On the other hand, current vision-based RAG approaches are often limited by fixed pipelines and frequently struggle to reason effectively due to the insufficient activation of the fundamental capabilities of models. As RL has been proven to be beneficial for model reasoning, we introduce VRAG-RL, a novel RL framework tailored for complex reasoning across visually rich information. With this framework, VLMs interact with search engines, autonomously sampling single-turn or multi-turn reasoning trajectories with the help of visual perception tokens and undergoing continual optimization based on these samples. Our approach highlights key limitations of RL in RAG domains: (i) Prior Multi-modal RAG approaches tend to merely incorporate images into the context, leading to insufficient reasoning token allocation and neglecting visual-specific perception; and (ii) When models interact with search engines, their queries often fail to retrieve relevant information due to the inability to articulate requirements, thereby leading to suboptimal performance. To address these challenges, we define an action space tailored for visually rich inputs, with actions including cropping and scaling, allowing the model to gather information from a coarse-to-fine perspective. Furthermore, to bridge the gap between users' original inquiries and the retriever, we employ a simple yet effective reward that integrates query rewriting and retrieval performance with a model-based reward. Our VRAG-RL optimizes VLMs for RAG tasks using specially designed RL strategies, aligning the model with real-world applications. The code is available at https://github.com/Alibaba-NLP/VRAG{https://github.com/Alibaba-NLP/VRAG}.
Event-Guided Procedure Planning from Instructional Videos with Text Supervision
In this work, we focus on the task of procedure planning from instructional videos with text supervision, where a model aims to predict an action sequence to transform the initial visual state into the goal visual state. A critical challenge of this task is the large semantic gap between observed visual states and unobserved intermediate actions, which is ignored by previous works. Specifically, this semantic gap refers to that the contents in the observed visual states are semantically different from the elements of some action text labels in a procedure. To bridge this semantic gap, we propose a novel event-guided paradigm, which first infers events from the observed states and then plans out actions based on both the states and predicted events. Our inspiration comes from that planning a procedure from an instructional video is to complete a specific event and a specific event usually involves specific actions. Based on the proposed paradigm, we contribute an Event-guided Prompting-based Procedure Planning (E3P) model, which encodes event information into the sequential modeling process to support procedure planning. To further consider the strong action associations within each event, our E3P adopts a mask-and-predict approach for relation mining, incorporating a probabilistic masking scheme for regularization. Extensive experiments on three datasets demonstrate the effectiveness of our proposed model.
A Transfer Learning Method for Goal Recognition Exploiting Cross-Domain Spatial Features
The ability to infer the intentions of others, predict their goals, and deduce their plans are critical features for intelligent agents. For a long time, several approaches investigated the use of symbolic representations and inferences with limited success, principally because it is difficult to capture the cognitive knowledge behind human decisions explicitly. The trend, nowadays, is increasingly focusing on learning to infer intentions directly from data, using deep learning in particular. We are now observing interesting applications of intent classification in natural language processing, visual activity recognition, and emerging approaches in other domains. This paper discusses a novel approach combining few-shot and transfer learning with cross-domain features, to learn to infer the intent of an agent navigating in physical environments, executing arbitrary long sequences of actions to achieve their goals. Experiments in synthetic environments demonstrate improved performance in terms of learning from few samples and generalizing to unseen configurations, compared to a deep-learning baseline approach.
RL Zero: Zero-Shot Language to Behaviors without any Supervision
Rewards remain an uninterpretable way to specify tasks for Reinforcement Learning, as humans are often unable to predict the optimal behavior of any given reward function, leading to poor reward design and reward hacking. Language presents an appealing way to communicate intent to agents and bypass reward design, but prior efforts to do so have been limited by costly and unscalable labeling efforts. In this work, we propose a method for a completely unsupervised alternative to grounding language instructions in a zero-shot manner to obtain policies. We present a solution that takes the form of imagine, project, and imitate: The agent imagines the observation sequence corresponding to the language description of a task, projects the imagined sequence to our target domain, and grounds it to a policy. Video-language models allow us to imagine task descriptions that leverage knowledge of tasks learned from internet-scale video-text mappings. The challenge remains to ground these generations to a policy. In this work, we show that we can achieve a zero-shot language-to-behavior policy by first grounding the imagined sequences in real observations of an unsupervised RL agent and using a closed-form solution to imitation learning that allows the RL agent to mimic the grounded observations. Our method, RLZero, is the first to our knowledge to show zero-shot language to behavior generation abilities without any supervision on a variety of tasks on simulated domains. We further show that RLZero can also generate policies zero-shot from cross-embodied videos such as those scraped from YouTube.
Context-Aware Planning and Environment-Aware Memory for Instruction Following Embodied Agents
Accomplishing household tasks requires to plan step-by-step actions considering the consequences of previous actions. However, the state-of-the-art embodied agents often make mistakes in navigating the environment and interacting with proper objects due to imperfect learning by imitating experts or algorithmic planners without such knowledge. To improve both visual navigation and object interaction, we propose to consider the consequence of taken actions by CAPEAM (Context-Aware Planning and Environment-Aware Memory) that incorporates semantic context (e.g., appropriate objects to interact with) in a sequence of actions, and the changed spatial arrangement and states of interacted objects (e.g., location that the object has been moved to) in inferring the subsequent actions. We empirically show that the agent with the proposed CAPEAM achieves state-of-the-art performance in various metrics using a challenging interactive instruction following benchmark in both seen and unseen environments by large margins (up to +10.70% in unseen env.).
Learning Language Games through Interaction
We introduce a new language learning setting relevant to building adaptive natural language interfaces. It is inspired by Wittgenstein's language games: a human wishes to accomplish some task (e.g., achieving a certain configuration of blocks), but can only communicate with a computer, who performs the actual actions (e.g., removing all red blocks). The computer initially knows nothing about language and therefore must learn it from scratch through interaction, while the human adapts to the computer's capabilities. We created a game in a blocks world and collected interactions from 100 people playing it. First, we analyze the humans' strategies, showing that using compositionality and avoiding synonyms correlates positively with task performance. Second, we compare computer strategies, showing how to quickly learn a semantic parsing model from scratch, and that modeling pragmatics further accelerates learning for successful players.
Improving Generalization in Task-oriented Dialogues with Workflows and Action Plans
Task-oriented dialogue is difficult in part because it involves understanding user intent, collecting information from the user, executing API calls, and generating helpful and fluent responses. However, for complex tasks one must also correctly do all of these things over multiple steps, and in a specific order. While large pre-trained language models can be fine-tuned end-to-end to create multi-step task-oriented dialogue agents that generate fluent text, our experiments confirm that this approach alone cannot reliably perform new multi-step tasks that are unseen during training. To address these limitations, we augment the dialogue contexts given to text2text transformers with known valid workflow names and action plans. Action plans consist of sequences of actions required to accomplish a task, and are encoded as simple sequences of keywords (e.g. verify-identity, pull-up-account, reset-password, etc.). We perform extensive experiments on the Action-Based Conversations Dataset (ABCD) with T5-small, base and large models, and show that such models: a) are able to more readily generalize to unseen workflows by following the provided plan, and b) are able to generalize to executing unseen actions if they are provided in the plan. In contrast, models are unable to fully accomplish new multi-step tasks when they are not provided action plan information, even when given new valid workflow names.
Inferring Rewards from Language in Context
In classic instruction following, language like "I'd like the JetBlue flight" maps to actions (e.g., selecting that flight). However, language also conveys information about a user's underlying reward function (e.g., a general preference for JetBlue), which can allow a model to carry out desirable actions in new contexts. We present a model that infers rewards from language pragmatically: reasoning about how speakers choose utterances not only to elicit desired actions, but also to reveal information about their preferences. On a new interactive flight-booking task with natural language, our model more accurately infers rewards and predicts optimal actions in unseen environments, in comparison to past work that first maps language to actions (instruction following) and then maps actions to rewards (inverse reinforcement learning).
You Only Look at Screens: Multimodal Chain-of-Action Agents
Autonomous user interface (UI) agents aim to facilitate task automation by interacting with the user interface without manual intervention. Recent studies have investigated eliciting the capabilities of large language models (LLMs) for effective engagement in diverse environments. To align with the input-output requirement of LLMs, existing approaches are developed under a sandbox setting where they rely on external tools and application-specific APIs to parse the environment into textual elements and interpret the predicted actions. Consequently, those approaches often grapple with inference inefficiency and error propagation risks. To mitigate the challenges, we introduce Auto-UI, a multimodal solution that directly interacts with the interface, bypassing the need for environment parsing or reliance on application-dependent APIs. Moreover, we propose a chain-of-action technique -- leveraging a series of intermediate previous action histories and future action plans -- to help the agent decide what action to execute. We evaluate our approach on a new device-control benchmark AITW with 30K unique instructions, spanning multi-step tasks such as application operation, web searching, and web shopping. Experimental results show that Auto-UI achieves state-of-the-art performance with an action type prediction accuracy of 90% and an overall action success rate of 74%. Code is publicly available at https://github.com/cooelf/Auto-UI.
Don't Copy the Teacher: Data and Model Challenges in Embodied Dialogue
Embodied dialogue instruction following requires an agent to complete a complex sequence of tasks from a natural language exchange. The recent introduction of benchmarks (Padmakumar et al., 2022) raises the question of how best to train and evaluate models for this multi-turn, multi-agent, long-horizon task. This paper contributes to that conversation, by arguing that imitation learning (IL) and related low-level metrics are actually misleading and do not align with the goals of embodied dialogue research and may hinder progress. We provide empirical comparisons of metrics, analysis of three models, and make suggestions for how the field might best progress. First, we observe that models trained with IL take spurious actions during evaluation. Second, we find that existing models fail to ground query utterances, which are essential for task completion. Third, we argue evaluation should focus on higher-level semantic goals.
Do As I Can, Not As I Say: Grounding Language in Robotic Affordances
Large language models can encode a wealth of semantic knowledge about the world. Such knowledge could be extremely useful to robots aiming to act upon high-level, temporally extended instructions expressed in natural language. However, a significant weakness of language models is that they lack real-world experience, which makes it difficult to leverage them for decision making within a given embodiment. For example, asking a language model to describe how to clean a spill might result in a reasonable narrative, but it may not be applicable to a particular agent, such as a robot, that needs to perform this task in a particular environment. We propose to provide real-world grounding by means of pretrained skills, which are used to constrain the model to propose natural language actions that are both feasible and contextually appropriate. The robot can act as the language model's "hands and eyes," while the language model supplies high-level semantic knowledge about the task. We show how low-level skills can be combined with large language models so that the language model provides high-level knowledge about the procedures for performing complex and temporally-extended instructions, while value functions associated with these skills provide the grounding necessary to connect this knowledge to a particular physical environment. We evaluate our method on a number of real-world robotic tasks, where we show the need for real-world grounding and that this approach is capable of completing long-horizon, abstract, natural language instructions on a mobile manipulator. The project's website and the video can be found at https://say-can.github.io/.
EgoNormia: Benchmarking Physical Social Norm Understanding
Human activity is moderated by norms. When performing actions in the real world, humans not only follow norms, but also consider the trade-off between different norms However, machines are often trained without explicit supervision on norm understanding and reasoning, especially when the norms are grounded in a physical and social context. To improve and evaluate the normative reasoning capability of vision-language models (VLMs), we present EgoNormia |epsilon|, consisting of 1,853 ego-centric videos of human interactions, each of which has two related questions evaluating both the prediction and justification of normative actions. The normative actions encompass seven categories: safety, privacy, proxemics, politeness, cooperation, coordination/proactivity, and communication/legibility. To compile this dataset at scale, we propose a novel pipeline leveraging video sampling, automatic answer generation, filtering, and human validation. Our work demonstrates that current state-of-the-art vision-language models lack robust norm understanding, scoring a maximum of 45% on EgoNormia (versus a human bench of 92%). Our analysis of performance in each dimension highlights the significant risks of safety, privacy, and the lack of collaboration and communication capability when applied to real-world agents. We additionally show that through a retrieval-based generation method, it is possible to use EgoNomia to enhance normative reasoning in VLMs.
SoFar: Language-Grounded Orientation Bridges Spatial Reasoning and Object Manipulation
Spatial intelligence is a critical component of embodied AI, promoting robots to understand and interact with their environments. While recent advances have enhanced the ability of VLMs to perceive object locations and positional relationships, they still lack the capability to precisely understand object orientations-a key requirement for tasks involving fine-grained manipulations. Addressing this limitation not only requires geometric reasoning but also an expressive and intuitive way to represent orientation. In this context, we propose that natural language offers a more flexible representation space than canonical frames, making it particularly suitable for instruction-following robotic systems. In this paper, we introduce the concept of semantic orientation, which defines object orientations using natural language in a reference-frame-free manner (e.g., the ''plug-in'' direction of a USB or the ''handle'' direction of a knife). To support this, we construct OrienText300K, a large-scale dataset of 3D models annotated with semantic orientations that link geometric understanding to functional semantics. By integrating semantic orientation into a VLM system, we enable robots to generate manipulation actions with both positional and orientational constraints. Extensive experiments in simulation and real world demonstrate that our approach significantly enhances robotic manipulation capabilities, e.g., 48.7% accuracy on Open6DOR and 74.9% accuracy on SIMPLER.
tagE: Enabling an Embodied Agent to Understand Human Instructions
Natural language serves as the primary mode of communication when an intelligent agent with a physical presence engages with human beings. While a plethora of research focuses on natural language understanding (NLU), encompassing endeavors such as sentiment analysis, intent prediction, question answering, and summarization, the scope of NLU directed at situations necessitating tangible actions by an embodied agent remains limited. The inherent ambiguity and incompleteness inherent in natural language present challenges for intelligent agents striving to decipher human intention. To tackle this predicament head-on, we introduce a novel system known as task and argument grounding for Embodied agents (tagE). At its core, our system employs an inventive neural network model designed to extract a series of tasks from complex task instructions expressed in natural language. Our proposed model adopts an encoder-decoder framework enriched with nested decoding to effectively extract tasks and their corresponding arguments from these intricate instructions. These extracted tasks are then mapped (or grounded) to the robot's established collection of skills, while the arguments find grounding in objects present within the environment. To facilitate the training and evaluation of our system, we have curated a dataset featuring complex instructions. The results of our experiments underscore the prowess of our approach, as it outperforms robust baseline models.
SESA: Supervised Explicit Semantic Analysis
In recent years supervised representation learning has provided state of the art or close to the state of the art results in semantic analysis tasks including ranking and information retrieval. The core idea is to learn how to embed items into a latent space such that they optimize a supervised objective in that latent space. The dimensions of the latent space have no clear semantics, and this reduces the interpretability of the system. For example, in personalization models, it is hard to explain why a particular item is ranked high for a given user profile. We propose a novel model of representation learning called Supervised Explicit Semantic Analysis (SESA) that is trained in a supervised fashion to embed items to a set of dimensions with explicit semantics. The model learns to compare two objects by representing them in this explicit space, where each dimension corresponds to a concept from a knowledge base. This work extends Explicit Semantic Analysis (ESA) with a supervised model for ranking problems. We apply this model to the task of Job-Profile relevance in LinkedIn in which a set of skills defines our explicit dimensions of the space. Every profile and job are encoded to this set of skills their similarity is calculated in this space. We use RNNs to embed text input into this space. In addition to interpretability, our model makes use of the web-scale collaborative skills data that is provided by users for each LinkedIn profile. Our model provides state of the art result while it remains interpretable.
Asking Before Action: Gather Information in Embodied Decision Making with Language Models
With strong capabilities of reasoning and a generic understanding of the world, Large Language Models (LLMs) have shown great potential in building versatile embodied decision making agents capable of performing diverse tasks. However, when deployed to unfamiliar environments, we show that LLM agents face challenges in efficiently gathering necessary information, leading to suboptimal performance. On the other hand, in unfamiliar scenarios, human individuals often seek additional information from their peers before taking action, leveraging external knowledge to avoid unnecessary trial and error. Building upon this intuition, we propose Asking Before Action (ABA), a method that empowers the agent to proactively query external sources for pertinent information using natural language during their interactions in the environment. In this way, the agent is able to enhance its efficiency and performance by mitigating wasteful steps and circumventing the difficulties associated with exploration in unfamiliar environments. We empirically evaluate our method on an embodied decision making benchmark, ALFWorld, and demonstrate that despite modest modifications in prompts, our method exceeds baseline LLM agents by more than 40%. Further experiments on two variants of ALFWorld illustrate that by imitation learning, ABA effectively retains and reuses queried and known information in subsequent tasks, mitigating the need for repetitive inquiries. Both qualitative and quantitative results exhibit remarkable performance on tasks that previous methods struggle to solve.
Intrinsically Motivated Open-Ended Multi-Task Learning Using Transfer Learning to Discover Task Hierarchy
In open-ended continuous environments, robots need to learn multiple parameterised control tasks in hierarchical reinforcement learning. We hypothesise that the most complex tasks can be learned more easily by transferring knowledge from simpler tasks, and faster by adapting the complexity of the actions to the task. We propose a task-oriented representation of complex actions, called procedures, to learn online task relationships and unbounded sequences of action primitives to control the different observables of the environment. Combining both goal-babbling with imitation learning, and active learning with transfer of knowledge based on intrinsic motivation, our algorithm self-organises its learning process. It chooses at any given time a task to focus on; and what, how, when and from whom to transfer knowledge. We show with a simulation and a real industrial robot arm, in cross-task and cross-learner transfer settings, that task composition is key to tackle highly complex tasks. Task decomposition is also efficiently transferred across different embodied learners and by active imitation, where the robot requests just a small amount of demonstrations and the adequate type of information. The robot learns and exploits task dependencies so as to learn tasks of every complexity.
MORE-3S:Multimodal-based Offline Reinforcement Learning with Shared Semantic Spaces
Drawing upon the intuition that aligning different modalities to the same semantic embedding space would allow models to understand states and actions more easily, we propose a new perspective to the offline reinforcement learning (RL) challenge. More concretely, we transform it into a supervised learning task by integrating multimodal and pre-trained language models. Our approach incorporates state information derived from images and action-related data obtained from text, thereby bolstering RL training performance and promoting long-term strategic thinking. We emphasize the contextual understanding of language and demonstrate how decision-making in RL can benefit from aligning states' and actions' representation with languages' representation. Our method significantly outperforms current baselines as evidenced by evaluations conducted on Atari and OpenAI Gym environments. This contributes to advancing offline RL performance and efficiency while providing a novel perspective on offline RL.Our code and data are available at https://github.com/Zheng0428/MORE_.
Learning Embeddings that Capture Spatial Semantics for Indoor Navigation
Incorporating domain-specific priors in search and navigation tasks has shown promising results in improving generalization and sample complexity over end-to-end trained policies. In this work, we study how object embeddings that capture spatial semantic priors can guide search and navigation tasks in a structured environment. We know that humans can search for an object like a book, or a plate in an unseen house, based on the spatial semantics of bigger objects detected. For example, a book is likely to be on a bookshelf or a table, whereas a plate is likely to be in a cupboard or dishwasher. We propose a method to incorporate such spatial semantic awareness in robots by leveraging pre-trained language models and multi-relational knowledge bases as object embeddings. We demonstrate using these object embeddings to search a query object in an unseen indoor environment. We measure the performance of these embeddings in an indoor simulator (AI2Thor). We further evaluate different pre-trained embedding onSuccess Rate(SR) and success weighted by Path Length(SPL).
Goal Inference from Open-Ended Dialog
We present an online method for embodied agents to learn and accomplish diverse user goals. While offline methods like RLHF can represent various goals but require large datasets, our approach achieves similar flexibility with online efficiency. We extract natural language goal representations from conversations with Large Language Models (LLMs). We prompt an LLM to role play as a human with different goals and use the corresponding likelihoods to run Bayesian inference over potential goals. As a result, our method can represent uncertainty over complex goals based on unrestricted dialog. We evaluate our method in grocery shopping and home robot assistance domains using a text-based interface and AI2Thor simulation respectively. Results show our method outperforms ablation baselines that lack either explicit goal representation or probabilistic inference.
QUART-Online: Latency-Free Large Multimodal Language Model for Quadruped Robot Learning
This paper addresses the inherent inference latency challenges associated with deploying multimodal large language models (MLLM) in quadruped vision-language-action (QUAR-VLA) tasks. Our investigation reveals that conventional parameter reduction techniques ultimately impair the performance of the language foundation model during the action instruction tuning phase, making them unsuitable for this purpose. We introduce a novel latency-free quadruped MLLM model, dubbed QUART-Online, designed to enhance inference efficiency without degrading the performance of the language foundation model. By incorporating Action Chunk Discretization (ACD), we compress the original action representation space, mapping continuous action values onto a smaller set of discrete representative vectors while preserving critical information. Subsequently, we fine-tune the MLLM to integrate vision, language, and compressed actions into a unified semantic space. Experimental results demonstrate that QUART-Online operates in tandem with the existing MLLM system, achieving real-time inference in sync with the underlying controller frequency, significantly boosting the success rate across various tasks by 65%. Our project page is https://quart-online.github.io.
ERRA: An Embodied Representation and Reasoning Architecture for Long-horizon Language-conditioned Manipulation Tasks
This letter introduces ERRA, an embodied learning architecture that enables robots to jointly obtain three fundamental capabilities (reasoning, planning, and interaction) for solving long-horizon language-conditioned manipulation tasks. ERRA is based on tightly-coupled probabilistic inferences at two granularity levels. Coarse-resolution inference is formulated as sequence generation through a large language model, which infers action language from natural language instruction and environment state. The robot then zooms to the fine-resolution inference part to perform the concrete action corresponding to the action language. Fine-resolution inference is constructed as a Markov decision process, which takes action language and environmental sensing as observations and outputs the action. The results of action execution in environments provide feedback for subsequent coarse-resolution reasoning. Such coarse-to-fine inference allows the robot to decompose and achieve long-horizon tasks interactively. In extensive experiments, we show that ERRA can complete various long-horizon manipulation tasks specified by abstract language instructions. We also demonstrate successful generalization to the novel but similar natural language instructions.
ActionPiece: Contextually Tokenizing Action Sequences for Generative Recommendation
Generative recommendation (GR) is an emerging paradigm where user actions are tokenized into discrete token patterns and autoregressively generated as predictions. However, existing GR models tokenize each action independently, assigning the same fixed tokens to identical actions across all sequences without considering contextual relationships. This lack of context-awareness can lead to suboptimal performance, as the same action may hold different meanings depending on its surrounding context. To address this issue, we propose ActionPiece to explicitly incorporate context when tokenizing action sequences. In ActionPiece, each action is represented as a set of item features, which serve as the initial tokens. Given the action sequence corpora, we construct the vocabulary by merging feature patterns as new tokens, based on their co-occurrence frequency both within individual sets and across adjacent sets. Considering the unordered nature of feature sets, we further introduce set permutation regularization, which produces multiple segmentations of action sequences with the same semantics. Experiments on public datasets demonstrate that ActionPiece consistently outperforms existing action tokenization methods, improving NDCG@10 by 6.00% to 12.82%.
MolmoAct: Action Reasoning Models that can Reason in Space
Reasoning is central to purposeful action, yet most robotic foundation models map perception and instructions directly to control, which limits adaptability, generalization, and semantic grounding. We introduce Action Reasoning Models (ARMs), a class of vision-language-action models that integrate perception, planning, and control through a structured three-stage pipeline. Our model, MolmoAct, encodes observations and instructions into depth-aware perception tokens, generates mid-level spatial plans as editable trajectory traces, and predicts precise low-level actions, enabling explainable and steerable behavior. MolmoAct-7B-D achieves strong performance across simulation and real-world settings: 70.5% zero-shot accuracy on SimplerEnv Visual Matching tasks, surpassing closed-source Pi-0 and GR00T N1; 86.6% average success on LIBERO, including an additional 6.3% gain over ThinkAct on long-horizon tasks; and in real-world fine-tuning, an additional 10% (single-arm) and an additional 22.7% (bimanual) task progression over Pi-0-FAST. It also outperforms baselines by an additional 23.3% on out-of-distribution generalization and achieves top human-preference scores for open-ended instruction following and trajectory steering. Furthermore, we release, for the first time, the MolmoAct Dataset -- a mid-training robot dataset comprising over 10,000 high quality robot trajectories across diverse scenarios and tasks. Training with this dataset yields an average 5.5% improvement in general performance over the base model. We release all model weights, training code, our collected dataset, and our action reasoning dataset, establishing MolmoAct as both a state-of-the-art robotics foundation model and an open blueprint for building ARMs that transform perception into purposeful action through structured reasoning. Blogpost: https://allenai.org/blog/molmoact
Scalable Semantic Non-Markovian Simulation Proxy for Reinforcement Learning
Recent advances in reinforcement learning (RL) have shown much promise across a variety of applications. However, issues such as scalability, explainability, and Markovian assumptions limit its applicability in certain domains. We observe that many of these shortcomings emanate from the simulator as opposed to the RL training algorithms themselves. As such, we propose a semantic proxy for simulation based on a temporal extension to annotated logic. In comparison with two high-fidelity simulators, we show up to three orders of magnitude speed-up while preserving the quality of policy learned. In addition, we show the ability to model and leverage non-Markovian dynamics and instantaneous actions while providing an explainable trace describing the outcomes of the agent actions.
NeBuLa: A discourse aware Minecraft Builder
When engaging in collaborative tasks, humans efficiently exploit the semantic structure of a conversation to optimize verbal and nonverbal interactions. But in recent "language to code" or "language to action" models, this information is lacking. We show how incorporating the prior discourse and nonlinguistic context of a conversation situated in a nonlinguistic environment can improve the "language to action" component of such interactions. We fine tune an LLM to predict actions based on prior context; our model, NeBuLa, doubles the net-action F1 score over the baseline on this task of Jayannavar et al.(2020). We also investigate our model's ability to construct shapes and understand location descriptions using a synthetic dataset.
Language-Grounded Dynamic Scene Graphs for Interactive Object Search with Mobile Manipulation
To fully leverage the capabilities of mobile manipulation robots, it is imperative that they are able to autonomously execute long-horizon tasks in large unexplored environments. While large language models (LLMs) have shown emergent reasoning skills on arbitrary tasks, existing work primarily concentrates on explored environments, typically focusing on either navigation or manipulation tasks in isolation. In this work, we propose MoMa-LLM, a novel approach that grounds language models within structured representations derived from open-vocabulary scene graphs, dynamically updated as the environment is explored. We tightly interleave these representations with an object-centric action space. The resulting approach is zero-shot, open-vocabulary, and readily extendable to a spectrum of mobile manipulation and household robotic tasks. We demonstrate the effectiveness of MoMa-LLM in a novel semantic interactive search task in large realistic indoor environments. In extensive experiments in both simulation and the real world, we show substantially improved search efficiency compared to conventional baselines and state-of-the-art approaches, as well as its applicability to more abstract tasks. We make the code publicly available at http://moma-llm.cs.uni-freiburg.de.
C2C: Component-to-Composition Learning for Zero-Shot Compositional Action Recognition
Compositional actions consist of dynamic (verbs) and static (objects) concepts. Humans can easily recognize unseen compositions using the learned concepts. For machines, solving such a problem requires a model to recognize unseen actions composed of previously observed verbs and objects, thus requiring so-called compositional generalization ability. To facilitate this research, we propose a novel Zero-Shot Compositional Action Recognition (ZS-CAR) task. For evaluating the task, we construct a new benchmark, Something-composition (Sth-com), based on the widely used Something-Something V2 dataset. We also propose a novel Component-to-Composition (C2C) learning method to solve the new ZS-CAR task. C2C includes an independent component learning module and a composition inference module. Last, we devise an enhanced training strategy to address the challenges of component variations between seen and unseen compositions and to handle the subtle balance between learning seen and unseen actions. The experimental results demonstrate that the proposed framework significantly surpasses the existing compositional generalization methods and sets a new state-of-the-art. The new Sth-com benchmark and code are available at https://github.com/RongchangLi/ZSCAR_C2C.
Autonomous Improvement of Instruction Following Skills via Foundation Models
Intelligent instruction-following robots capable of improving from autonomously collected experience have the potential to transform robot learning: instead of collecting costly teleoperated demonstration data, large-scale deployment of fleets of robots can quickly collect larger quantities of autonomous data that can collectively improve their performance. However, autonomous improvement requires solving two key problems: (i) fully automating a scalable data collection procedure that can collect diverse and semantically meaningful robot data and (ii) learning from non-optimal, autonomous data with no human annotations. To this end, we propose a novel approach that addresses these challenges, allowing instruction-following policies to improve from autonomously collected data without human supervision. Our framework leverages vision-language models to collect and evaluate semantically meaningful experiences in new environments, and then utilizes a decomposition of instruction following tasks into (semantic) language-conditioned image generation and (non-semantic) goal reaching, which makes it significantly more practical to improve from this autonomously collected data without any human annotations. We carry out extensive experiments in the real world to demonstrate the effectiveness of our approach, and find that in a suite of unseen environments, the robot policy can be improved significantly with autonomously collected data. We open-source the code for our semantic autonomous improvement pipeline, as well as our autonomous dataset of 30.5K trajectories collected across five tabletop environments.
Multi-Domain Dialogue Acts and Response Co-Generation
Generating fluent and informative responses is of critical importance for task-oriented dialogue systems. Existing pipeline approaches generally predict multiple dialogue acts first and use them to assist response generation. There are at least two shortcomings with such approaches. First, the inherent structures of multi-domain dialogue acts are neglected. Second, the semantic associations between acts and responses are not taken into account for response generation. To address these issues, we propose a neural co-generation model that generates dialogue acts and responses concurrently. Unlike those pipeline approaches, our act generation module preserves the semantic structures of multi-domain dialogue acts and our response generation module dynamically attends to different acts as needed. We train the two modules jointly using an uncertainty loss to adjust their task weights adaptively. Extensive experiments are conducted on the large-scale MultiWOZ dataset and the results show that our model achieves very favorable improvement over several state-of-the-art models in both automatic and human evaluations.
PRISE: Learning Temporal Action Abstractions as a Sequence Compression Problem
Temporal action abstractions, along with belief state representations, are a powerful knowledge sharing mechanism for sequential decision making. In this work, we propose a novel view that treats inducing temporal action abstractions as a sequence compression problem. To do so, we bring a subtle but critical component of LLM training pipelines -- input tokenization via byte pair encoding (BPE) -- to the seemingly distant task of learning skills of variable time span in continuous control domains. We introduce an approach called Primitive Sequence Encoding (PRISE) that combines continuous action quantization with BPE to learn powerful action abstractions. We empirically show that high-level skills discovered by PRISE from a multitask set of robotic manipulation demonstrations significantly boost the performance of both multitask imitation learning as well as few-shot imitation learning on unseen tasks. Our code will be released at https://github.com/FrankZheng2022/PRISE.
KinMo: Kinematic-aware Human Motion Understanding and Generation
Controlling human motion based on text presents an important challenge in computer vision. Traditional approaches often rely on holistic action descriptions for motion synthesis, which struggle to capture subtle movements of local body parts. This limitation restricts the ability to isolate and manipulate specific movements. To address this, we propose a novel motion representation that decomposes motion into distinct body joint group movements and interactions from a kinematic perspective. We design an automatic dataset collection pipeline that enhances the existing text-motion benchmark by incorporating fine-grained local joint-group motion and interaction descriptions. To bridge the gap between text and motion domains, we introduce a hierarchical motion semantics approach that progressively fuses joint-level interaction information into the global action-level semantics for modality alignment. With this hierarchy, we introduce a coarse-to-fine motion synthesis procedure for various generation and editing downstream applications. Our quantitative and qualitative experiments demonstrate that the proposed formulation enhances text-motion retrieval by improving joint-spatial understanding, and enables more precise joint-motion generation and control. Project Page: {\smallhttps://andypinxinliu.github.io/KinMo/}
Rethinking Video-Text Understanding: Retrieval from Counterfactually Augmented Data
Recent video-text foundation models have demonstrated strong performance on a wide variety of downstream video understanding tasks. Can these video-text models genuinely understand the contents of natural videos? Standard video-text evaluations could be misleading as many questions can be inferred merely from the objects and contexts in a single frame or biases inherent in the datasets. In this paper, we aim to better assess the capabilities of current video-text models and understand their limitations. We propose a novel evaluation task for video-text understanding, namely retrieval from counterfactually augmented data (RCAD), and a new Feint6K dataset. To succeed on our new evaluation task, models must derive a comprehensive understanding of the video from cross-frame reasoning. Analyses show that previous video-text foundation models can be easily fooled by counterfactually augmented data and are far behind human-level performance. In order to narrow the gap between video-text models and human performance on RCAD, we identify a key limitation of current contrastive approaches on video-text data and introduce LLM-teacher, a more effective approach to learn action semantics by leveraging knowledge obtained from a pretrained large language model. Experiments and analyses show that our approach successfully learn more discriminative action embeddings and improves results on Feint6K when applied to multiple video-text models. Our Feint6K dataset and project page is available at https://feint6k.github.io.
P-RAG: Progressive Retrieval Augmented Generation For Planning on Embodied Everyday Task
Embodied Everyday Task is a popular task in the embodied AI community, requiring agents to make a sequence of actions based on natural language instructions and visual observations. Traditional learning-based approaches face two challenges. Firstly, natural language instructions often lack explicit task planning. Secondly, extensive training is required to equip models with knowledge of the task environment. Previous works based on Large Language Model (LLM) either suffer from poor performance due to the lack of task-specific knowledge or rely on ground truth as few-shot samples. To address the above limitations, we propose a novel approach called Progressive Retrieval Augmented Generation (P-RAG), which not only effectively leverages the powerful language processing capabilities of LLMs but also progressively accumulates task-specific knowledge without ground-truth. Compared to the conventional RAG methods, which retrieve relevant information from the database in a one-shot manner to assist generation, P-RAG introduces an iterative approach to progressively update the database. In each iteration, P-RAG retrieves the latest database and obtains historical information from the previous interaction as experiential references for the current interaction. Moreover, we also introduce a more granular retrieval scheme that not only retrieves similar tasks but also incorporates retrieval of similar situations to provide more valuable reference experiences. Extensive experiments reveal that P-RAG achieves competitive results without utilizing ground truth and can even further improve performance through self-iterations.
ConceptGraphs: Open-Vocabulary 3D Scene Graphs for Perception and Planning
For robots to perform a wide variety of tasks, they require a 3D representation of the world that is semantically rich, yet compact and efficient for task-driven perception and planning. Recent approaches have attempted to leverage features from large vision-language models to encode semantics in 3D representations. However, these approaches tend to produce maps with per-point feature vectors, which do not scale well in larger environments, nor do they contain semantic spatial relationships between entities in the environment, which are useful for downstream planning. In this work, we propose ConceptGraphs, an open-vocabulary graph-structured representation for 3D scenes. ConceptGraphs is built by leveraging 2D foundation models and fusing their output to 3D by multi-view association. The resulting representations generalize to novel semantic classes, without the need to collect large 3D datasets or finetune models. We demonstrate the utility of this representation through a number of downstream planning tasks that are specified through abstract (language) prompts and require complex reasoning over spatial and semantic concepts. (Project page: https://concept-graphs.github.io/ Explainer video: https://youtu.be/mRhNkQwRYnc )
DSTI at LLMs4OL 2024 Task A: Intrinsic versus extrinsic knowledge for type classification
We introduce semantic towers, an extrinsic knowledge representation method, and compare it to intrinsic knowledge in large language models for ontology learning. Our experiments show a trade-off between performance and semantic grounding for extrinsic knowledge compared to a fine-tuned model intrinsic knowledge. We report our findings on the Large Language Models for Ontology Learning (LLMs4OL) 2024 challenge.
InfoCon: Concept Discovery with Generative and Discriminative Informativeness
We focus on the self-supervised discovery of manipulation concepts that can be adapted and reassembled to address various robotic tasks. We propose that the decision to conceptualize a physical procedure should not depend on how we name it (semantics) but rather on the significance of the informativeness in its representation regarding the low-level physical state and state changes. We model manipulation concepts (discrete symbols) as generative and discriminative goals and derive metrics that can autonomously link them to meaningful sub-trajectories from noisy, unlabeled demonstrations. Specifically, we employ a trainable codebook containing encodings (concepts) capable of synthesizing the end-state of a sub-trajectory given the current state (generative informativeness). Moreover, the encoding corresponding to a particular sub-trajectory should differentiate the state within and outside it and confidently predict the subsequent action based on the gradient of its discriminative score (discriminative informativeness). These metrics, which do not rely on human annotation, can be seamlessly integrated into a VQ-VAE framework, enabling the partitioning of demonstrations into semantically consistent sub-trajectories, fulfilling the purpose of discovering manipulation concepts and the corresponding sub-goal (key) states. We evaluate the effectiveness of the learned concepts by training policies that utilize them as guidance, demonstrating superior performance compared to other baselines. Additionally, our discovered manipulation concepts compare favorably to human-annotated ones while saving much manual effort.
AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents
Autonomy via agents using large language models (LLMs) for personalized, standardized tasks boosts human efficiency. Automating web tasks (like booking hotels within a budget) is increasingly sought after. Fulfilling practical needs, the web agent also serves as an important proof-of-concept example for various agent grounding scenarios, with its success promising advancements in many future applications. Prior research often handcrafts web agent strategies (e.g., prompting templates, multi-agent systems, search methods, etc.) and the corresponding in-context examples, which may not generalize well across all real-world scenarios. On the other hand, there has been limited study on the misalignment between a web agent's observation/action representation and the pre-training data of the LLM it's based on. This discrepancy is especially notable when LLMs are primarily trained for language completion rather than tasks involving embodied navigation actions and symbolic web elements. Our study enhances an LLM-based web agent by simply refining its observation and action space to better align with the LLM's capabilities. This approach enables our base agent to significantly outperform previous methods on a wide variety of web tasks. Specifically, on WebArena, a benchmark featuring general-purpose web interaction tasks, our agent AgentOccam surpasses the previous state-of-the-art and concurrent work by 9.8 (+29.4%) and 5.9 (+15.8%) absolute points respectively, and boosts the success rate by 26.6 points (+161%) over similar plain web agents with its observation and action space alignment. We achieve this without using in-context examples, new agent roles, online feedback or search strategies. AgentOccam's simple design highlights LLMs' impressive zero-shot performance on web tasks, and underlines the critical role of carefully tuning observation and action spaces for LLM-based agents.
Open-World Object Manipulation using Pre-trained Vision-Language Models
For robots to follow instructions from people, they must be able to connect the rich semantic information in human vocabulary, e.g. "can you get me the pink stuffed whale?" to their sensory observations and actions. This brings up a notably difficult challenge for robots: while robot learning approaches allow robots to learn many different behaviors from first-hand experience, it is impractical for robots to have first-hand experiences that span all of this semantic information. We would like a robot's policy to be able to perceive and pick up the pink stuffed whale, even if it has never seen any data interacting with a stuffed whale before. Fortunately, static data on the internet has vast semantic information, and this information is captured in pre-trained vision-language models. In this paper, we study whether we can interface robot policies with these pre-trained models, with the aim of allowing robots to complete instructions involving object categories that the robot has never seen first-hand. We develop a simple approach, which we call Manipulation of Open-World Objects (MOO), which leverages a pre-trained vision-language model to extract object-identifying information from the language command and image, and conditions the robot policy on the current image, the instruction, and the extracted object information. In a variety of experiments on a real mobile manipulator, we find that MOO generalizes zero-shot to a wide range of novel object categories and environments. In addition, we show how MOO generalizes to other, non-language-based input modalities to specify the object of interest such as finger pointing, and how it can be further extended to enable open-world navigation and manipulation. The project's website and evaluation videos can be found at https://robot-moo.github.io/
ALFWorld: Aligning Text and Embodied Environments for Interactive Learning
Given a simple request like Put a washed apple in the kitchen fridge, humans can reason in purely abstract terms by imagining action sequences and scoring their likelihood of success, prototypicality, and efficiency, all without moving a muscle. Once we see the kitchen in question, we can update our abstract plans to fit the scene. Embodied agents require the same abilities, but existing work does not yet provide the infrastructure necessary for both reasoning abstractly and executing concretely. We address this limitation by introducing ALFWorld, a simulator that enables agents to learn abstract, text based policies in TextWorld (C\^ot\'e et al., 2018) and then execute goals from the ALFRED benchmark (Shridhar et al., 2020) in a rich visual environment. ALFWorld enables the creation of a new BUTLER agent whose abstract knowledge, learned in TextWorld, corresponds directly to concrete, visually grounded actions. In turn, as we demonstrate empirically, this fosters better agent generalization than training only in the visually grounded environment. BUTLER's simple, modular design factors the problem to allow researchers to focus on models for improving every piece of the pipeline (language understanding, planning, navigation, and visual scene understanding).
IRef-VLA: A Benchmark for Interactive Referential Grounding with Imperfect Language in 3D Scenes
With the recent rise of large language models, vision-language models, and other general foundation models, there is growing potential for multimodal, multi-task robotics that can operate in diverse environments given natural language input. One such application is indoor navigation using natural language instructions. However, despite recent progress, this problem remains challenging due to the 3D spatial reasoning and semantic understanding required. Additionally, the language used may be imperfect or misaligned with the scene, further complicating the task. To address this challenge, we curate a benchmark dataset, IRef-VLA, for Interactive Referential Vision and Language-guided Action in 3D Scenes with imperfect references. IRef-VLA is the largest real-world dataset for the referential grounding task, consisting of over 11.5K scanned 3D rooms from existing datasets, 7.6M heuristically generated semantic relations, and 4.7M referential statements. Our dataset also contains semantic object and room annotations, scene graphs, navigable free space annotations, and is augmented with statements where the language has imperfections or ambiguities. We verify the generalizability of our dataset by evaluating with state-of-the-art models to obtain a performance baseline and also develop a graph-search baseline to demonstrate the performance bound and generation of alternatives using scene-graph knowledge. With this benchmark, we aim to provide a resource for 3D scene understanding that aids the development of robust, interactive navigation systems. The dataset and all source code is publicly released at https://github.com/HaochenZ11/IRef-VLA.
One-Shot Imitation under Mismatched Execution
Human demonstrations as prompts are a powerful way to program robots to do long-horizon manipulation tasks. However, translating these demonstrations into robot-executable actions presents significant challenges due to execution mismatches in movement styles and physical capabilities. Existing methods either depend on human-robot paired data, which is infeasible to scale, or rely heavily on frame-level visual similarities that often break down in practice. To address these challenges, we propose RHyME, a novel framework that automatically aligns human and robot task executions using optimal transport costs. Given long-horizon robot demonstrations, RHyME synthesizes semantically equivalent human videos by retrieving and composing short-horizon human clips. This approach facilitates effective policy training without the need for paired data. RHyME successfully imitates a range of cross-embodiment demonstrators, both in simulation and with a real human hand, achieving over 50\% increase in task success compared to previous methods. We release our code and datasets at https://portal-cornell.github.io/rhyme/.
ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks
We present ALFRED (Action Learning From Realistic Environments and Directives), a benchmark for learning a mapping from natural language instructions and egocentric vision to sequences of actions for household tasks. ALFRED includes long, compositional tasks with non-reversible state changes to shrink the gap between research benchmarks and real-world applications. ALFRED consists of expert demonstrations in interactive visual environments for 25k natural language directives. These directives contain both high-level goals like "Rinse off a mug and place it in the coffee maker." and low-level language instructions like "Walk to the coffee maker on the right." ALFRED tasks are more complex in terms of sequence length, action space, and language than existing vision-and-language task datasets. We show that a baseline model based on recent embodied vision-and-language tasks performs poorly on ALFRED, suggesting that there is significant room for developing innovative grounded visual language understanding models with this benchmark.
Mapping Natural Language Commands to Web Elements
The web provides a rich, open-domain environment with textual, structural, and spatial properties. We propose a new task for grounding language in this environment: given a natural language command (e.g., "click on the second article"), choose the correct element on the web page (e.g., a hyperlink or text box). We collected a dataset of over 50,000 commands that capture various phenomena such as functional references (e.g. "find who made this site"), relational reasoning (e.g. "article by john"), and visual reasoning (e.g. "top-most article"). We also implemented and analyzed three baseline models that capture different phenomena present in the dataset.
DANLI: Deliberative Agent for Following Natural Language Instructions
Recent years have seen an increasing amount of work on embodied AI agents that can perform tasks by following human language instructions. However, most of these agents are reactive, meaning that they simply learn and imitate behaviors encountered in the training data. These reactive agents are insufficient for long-horizon complex tasks. To address this limitation, we propose a neuro-symbolic deliberative agent that, while following language instructions, proactively applies reasoning and planning based on its neural and symbolic representations acquired from past experience (e.g., natural language and egocentric vision). We show that our deliberative agent achieves greater than 70% improvement over reactive baselines on the challenging TEACh benchmark. Moreover, the underlying reasoning and planning processes, together with our modular framework, offer impressive transparency and explainability to the behaviors of the agent. This enables an in-depth understanding of the agent's capabilities, which shed light on challenges and opportunities for future embodied agents for instruction following. The code is available at https://github.com/sled-group/DANLI.
CSTS: Conditional Semantic Textual Similarity
Semantic textual similarity (STS) has been a cornerstone task in NLP that measures the degree of similarity between a pair of sentences, with applications in information retrieval, question answering, and embedding methods. However, it is an inherently ambiguous task, with the sentence similarity depending on the specific aspect of interest. We resolve this ambiguity by proposing a novel task called conditional STS (C-STS) which measures similarity conditioned on an aspect elucidated in natural language (hereon, condition). As an example, the similarity between the sentences "The NBA player shoots a three-pointer." and "A man throws a tennis ball into the air to serve." is higher for the condition "The motion of the ball." (both upward) and lower for "The size of the ball." (one large and one small). C-STS's advantages are two-fold: (1) it reduces the subjectivity and ambiguity of STS, and (2) enables fine-grained similarity evaluation using diverse conditions. C-STS contains almost 20,000 instances from diverse domains and we evaluate several state-of-the-art models to demonstrate that even the most performant fine-tuning and in-context learning models (GPT-4, Flan, SimCSE) find it challenging, with Spearman correlation scores of <50. We encourage the community to evaluate their models on C-STS to provide a more holistic view of semantic similarity and natural language understanding.
AppAgentX: Evolving GUI Agents as Proficient Smartphone Users
Recent advancements in Large Language Models (LLMs) have led to the development of intelligent LLM-based agents capable of interacting with graphical user interfaces (GUIs). These agents demonstrate strong reasoning and adaptability, enabling them to perform complex tasks that traditionally required predefined rules. However, the reliance on step-by-step reasoning in LLM-based agents often results in inefficiencies, particularly for routine tasks. In contrast, traditional rule-based systems excel in efficiency but lack the intelligence and flexibility to adapt to novel scenarios. To address this challenge, we propose a novel evolutionary framework for GUI agents that enhances operational efficiency while retaining intelligence and flexibility. Our approach incorporates a memory mechanism that records the agent's task execution history. By analyzing this history, the agent identifies repetitive action sequences and evolves high-level actions that act as shortcuts, replacing these low-level operations and improving efficiency. This allows the agent to focus on tasks requiring more complex reasoning, while simplifying routine actions. Experimental results on multiple benchmark tasks demonstrate that our approach significantly outperforms existing methods in both efficiency and accuracy. The code will be open-sourced to support further research.
Aligning Robot and Human Representations
To act in the world, robots rely on a representation of salient task aspects: for example, to carry a cup of coffee, a robot must consider movement efficiency and cup orientation in its behaviour. However, if we want robots to act for and with people, their representations must not be just functional but also reflective of what humans care about, i.e. their representations must be aligned with humans'. In this survey, we pose that current reward and imitation learning approaches suffer from representation misalignment, where the robot's learned representation does not capture the human's representation. We suggest that because humans will be the ultimate evaluator of robot performance in the world, it is critical that we explicitly focus our efforts on aligning learned task representations with humans, in addition to learning the downstream task. We advocate that current representation learning approaches in robotics should be studied from the perspective of how well they accomplish the objective of representation alignment. To do so, we mathematically define the problem, identify its key desiderata, and situate current robot learning methods within this formalism. We conclude the survey by suggesting future directions for exploring open challenges.
COMPS: Conceptual Minimal Pair Sentences for testing Robust Property Knowledge and its Inheritance in Pre-trained Language Models
A characteristic feature of human semantic cognition is its ability to not only store and retrieve the properties of concepts observed through experience, but to also facilitate the inheritance of properties (can breathe) from superordinate concepts (animal) to their subordinates (dog) -- i.e. demonstrate property inheritance. In this paper, we present COMPS, a collection of minimal pair sentences that jointly tests pre-trained language models (PLMs) on their ability to attribute properties to concepts and their ability to demonstrate property inheritance behavior. Analyses of 22 different PLMs on COMPS reveal that they can easily distinguish between concepts on the basis of a property when they are trivially different, but find it relatively difficult when concepts are related on the basis of nuanced knowledge representations. Furthermore, we find that PLMs can demonstrate behavior consistent with property inheritance to a great extent, but fail in the presence of distracting information, which decreases the performance of many models, sometimes even below chance. This lack of robustness in demonstrating simple reasoning raises important questions about PLMs' capacity to make correct inferences even when they appear to possess the prerequisite knowledge.
Cosmos-Reason1: From Physical Common Sense To Embodied Reasoning
Physical AI systems need to perceive, understand, and perform complex actions in the physical world. In this paper, we present the Cosmos-Reason1 models that can understand the physical world and generate appropriate embodied decisions (e.g., next step action) in natural language through long chain-of-thought reasoning processes. We begin by defining key capabilities for Physical AI reasoning, with a focus on physical common sense and embodied reasoning. To represent physical common sense, we use a hierarchical ontology that captures fundamental knowledge about space, time, and physics. For embodied reasoning, we rely on a two-dimensional ontology that generalizes across different physical embodiments. Building on these capabilities, we develop two multimodal large language models, Cosmos-Reason1-8B and Cosmos-Reason1-56B. We curate data and train our models in four stages: vision pre-training, general supervised fine-tuning (SFT), Physical AI SFT, and Physical AI reinforcement learning (RL) as the post-training. To evaluate our models, we build comprehensive benchmarks for physical common sense and embodied reasoning according to our ontologies. Evaluation results show that Physical AI SFT and reinforcement learning bring significant improvements. To facilitate the development of Physical AI, we will make our code and pre-trained models available under the NVIDIA Open Model License at https://github.com/nvidia-cosmos/cosmos-reason1.
ToolChain*: Efficient Action Space Navigation in Large Language Models with A* Search
Large language models (LLMs) have demonstrated powerful decision-making and planning capabilities in solving complicated real-world problems. LLM-based autonomous agents can interact with diverse tools (e.g., functional APIs) and generate solution plans that execute a series of API function calls in a step-by-step manner. The multitude of candidate API function calls significantly expands the action space, amplifying the critical need for efficient action space navigation. However, existing methods either struggle with unidirectional exploration in expansive action spaces, trapped into a locally optimal solution, or suffer from exhaustively traversing all potential actions, causing inefficient navigation. To address these issues, we propose ToolChain*, an efficient tree search-based planning algorithm for LLM-based agents. It formulates the entire action space as a decision tree, where each node represents a possible API function call involved in a solution plan. By incorporating the A* search algorithm with task-specific cost function design, it efficiently prunes high-cost branches that may involve incorrect actions, identifying the most low-cost valid path as the solution. Extensive experiments on multiple tool-use and reasoning tasks demonstrate that ToolChain* efficiently balances exploration and exploitation within an expansive action space. It outperforms state-of-the-art baselines on planning and reasoning tasks by 3.1% and 3.5% on average while requiring 7.35x and 2.31x less time, respectively.
Exploring Non-Verbal Predicates in Semantic Role Labeling: Challenges and Opportunities
Although we have witnessed impressive progress in Semantic Role Labeling (SRL), most of the research in the area is carried out assuming that the majority of predicates are verbs. Conversely, predicates can also be expressed using other parts of speech, e.g., nouns and adjectives. However, non-verbal predicates appear in the benchmarks we commonly use to measure progress in SRL less frequently than in some real-world settings -- newspaper headlines, dialogues, and tweets, among others. In this paper, we put forward a new PropBank dataset which boasts wide coverage of multiple predicate types. Thanks to it, we demonstrate empirically that standard benchmarks do not provide an accurate picture of the current situation in SRL and that state-of-the-art systems are still incapable of transferring knowledge across different predicate types. Having observed these issues, we also present a novel, manually-annotated challenge set designed to give equal importance to verbal, nominal, and adjectival predicate-argument structures. We use such dataset to investigate whether we can leverage different linguistic resources to promote knowledge transfer. In conclusion, we claim that SRL is far from "solved", and its integration with other semantic tasks might enable significant improvements in the future, especially for the long tail of non-verbal predicates, thereby facilitating further research on SRL for non-verbal predicates.
InfiGUI-G1: Advancing GUI Grounding with Adaptive Exploration Policy Optimization
The emergence of Multimodal Large Language Models (MLLMs) has propelled the development of autonomous agents that operate on Graphical User Interfaces (GUIs) using pure visual input. A fundamental challenge is robustly grounding natural language instructions. This requires a precise spatial alignment, which accurately locates the coordinates of each element, and, more critically, a correct semantic alignment, which matches the instructions to the functionally appropriate UI element. Although Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be effective at improving spatial alignment for these MLLMs, we find that inefficient exploration bottlenecks semantic alignment, which prevent models from learning difficult semantic associations. To address this exploration problem, we present Adaptive Exploration Policy Optimization (AEPO), a new policy optimization framework. AEPO employs a multi-answer generation strategy to enforce broader exploration, which is then guided by a theoretically grounded Adaptive Exploration Reward (AER) function derived from first principles of efficiency eta=U/C. Our AEPO-trained models, InfiGUI-G1-3B and InfiGUI-G1-7B, establish new state-of-the-art results across multiple challenging GUI grounding benchmarks, achieving significant relative improvements of up to 9.0% against the naive RLVR baseline on benchmarks designed to test generalization and semantic understanding. Resources are available at https://github.com/InfiXAI/InfiGUI-G1.
SAGE: Bridging Semantic and Actionable Parts for GEneralizable Manipulation of Articulated Objects
To interact with daily-life articulated objects of diverse structures and functionalities, understanding the object parts plays a central role in both user instruction comprehension and task execution. However, the possible discordance between the semantic meaning and physics functionalities of the parts poses a challenge for designing a general system. To address this problem, we propose SAGE, a novel framework that bridges semantic and actionable parts of articulated objects to achieve generalizable manipulation under natural language instructions. More concretely, given an articulated object, we first observe all the semantic parts on it, conditioned on which an instruction interpreter proposes possible action programs that concretize the natural language instruction. Then, a part-grounding module maps the semantic parts into so-called Generalizable Actionable Parts (GAParts), which inherently carry information about part motion. End-effector trajectories are predicted on the GAParts, which, together with the action program, form an executable policy. Additionally, an interactive feedback module is incorporated to respond to failures, which closes the loop and increases the robustness of the overall framework. Key to the success of our framework is the joint proposal and knowledge fusion between a large vision-language model (VLM) and a small domain-specific model for both context comprehension and part perception, with the former providing general intuitions and the latter serving as expert facts. Both simulation and real-robot experiments show our effectiveness in handling a large variety of articulated objects with diverse language-instructed goals.
From Pixels to UI Actions: Learning to Follow Instructions via Graphical User Interfaces
Much of the previous work towards digital agents for graphical user interfaces (GUIs) has relied on text-based representations (derived from HTML or other structured data sources), which are not always readily available. These input representations have been often coupled with custom, task-specific action spaces. This paper focuses on creating agents that interact with the digital world using the same conceptual interface that humans commonly use -- via pixel-based screenshots and a generic action space corresponding to keyboard and mouse actions. Building upon recent progress in pixel-based pretraining, we show, for the first time, that it is possible for such agents to outperform human crowdworkers on the MiniWob++ benchmark of GUI-based instruction following tasks.
A^2Nav: Action-Aware Zero-Shot Robot Navigation by Exploiting Vision-and-Language Ability of Foundation Models
We study the task of zero-shot vision-and-language navigation (ZS-VLN), a practical yet challenging problem in which an agent learns to navigate following a path described by language instructions without requiring any path-instruction annotation data. Normally, the instructions have complex grammatical structures and often contain various action descriptions (e.g., "proceed beyond", "depart from"). How to correctly understand and execute these action demands is a critical problem, and the absence of annotated data makes it even more challenging. Note that a well-educated human being can easily understand path instructions without the need for any special training. In this paper, we propose an action-aware zero-shot VLN method (A^2Nav) by exploiting the vision-and-language ability of foundation models. Specifically, the proposed method consists of an instruction parser and an action-aware navigation policy. The instruction parser utilizes the advanced reasoning ability of large language models (e.g., GPT-3) to decompose complex navigation instructions into a sequence of action-specific object navigation sub-tasks. Each sub-task requires the agent to localize the object and navigate to a specific goal position according to the associated action demand. To accomplish these sub-tasks, an action-aware navigation policy is learned from freely collected action-specific datasets that reveal distinct characteristics of each action demand. We use the learned navigation policy for executing sub-tasks sequentially to follow the navigation instruction. Extensive experiments show A^2Nav achieves promising ZS-VLN performance and even surpasses the supervised learning methods on R2R-Habitat and RxR-Habitat datasets.
Mapping Natural Language Instructions to Mobile UI Action Sequences
We present a new problem: grounding natural language instructions to mobile user interface actions, and create three new datasets for it. For full task evaluation, we create PIXELHELP, a corpus that pairs English instructions with actions performed by people on a mobile UI emulator. To scale training, we decouple the language and action data by (a) annotating action phrase spans in HowTo instructions and (b) synthesizing grounded descriptions of actions for mobile user interfaces. We use a Transformer to extract action phrase tuples from long-range natural language instructions. A grounding Transformer then contextually represents UI objects using both their content and screen position and connects them to object descriptions. Given a starting screen and instruction, our model achieves 70.59% accuracy on predicting complete ground-truth action sequences in PIXELHELP.
CODEX: A Cluster-Based Method for Explainable Reinforcement Learning
Despite the impressive feats demonstrated by Reinforcement Learning (RL), these algorithms have seen little adoption in high-risk, real-world applications due to current difficulties in explaining RL agent actions and building user trust. We present Counterfactual Demonstrations for Explanation (CODEX), a method that incorporates semantic clustering, which can effectively summarize RL agent behavior in the state-action space. Experimentation on the MiniGrid and StarCraft II gaming environments reveals the semantic clusters retain temporal as well as entity information, which is reflected in the constructed summary of agent behavior. Furthermore, clustering the discrete+continuous game-state latent representations identifies the most crucial episodic events, demonstrating a relationship between the latent and semantic spaces. This work contributes to the growing body of work that strives to unlock the power of RL for widespread use by leveraging and extending techniques from Natural Language Processing.
WhyAct: Identifying Action Reasons in Lifestyle Vlogs
We aim to automatically identify human action reasons in online videos. We focus on the widespread genre of lifestyle vlogs, in which people perform actions while verbally describing them. We introduce and make publicly available the WhyAct dataset, consisting of 1,077 visual actions manually annotated with their reasons. We describe a multimodal model that leverages visual and textual information to automatically infer the reasons corresponding to an action presented in the video.
ProgPrompt: Generating Situated Robot Task Plans using Large Language Models
Task planning can require defining myriad domain knowledge about the world in which a robot needs to act. To ameliorate that effort, large language models (LLMs) can be used to score potential next actions during task planning, and even generate action sequences directly, given an instruction in natural language with no additional domain information. However, such methods either require enumerating all possible next steps for scoring, or generate free-form text that may contain actions not possible on a given robot in its current context. We present a programmatic LLM prompt structure that enables plan generation functional across situated environments, robot capabilities, and tasks. Our key insight is to prompt the LLM with program-like specifications of the available actions and objects in an environment, as well as with example programs that can be executed. We make concrete recommendations about prompt structure and generation constraints through ablation experiments, demonstrate state of the art success rates in VirtualHome household tasks, and deploy our method on a physical robot arm for tabletop tasks. Website at progprompt.github.io
DynaSaur: Large Language Agents Beyond Predefined Actions
Existing LLM agent systems typically select actions from a fixed and predefined set at every step. While this approach is effective in closed, narrowly-scoped environments, we argue that it presents two major challenges when deploying LLM agents in real-world scenarios: (1) selecting from a fixed set of actions significantly restricts the planning and acting capabilities of LLM agents, and (2) this approach requires substantial human effort to enumerate and implement all possible actions, which becomes impractical in complex environments with a vast number of potential actions. In this work, we propose an LLM agent framework that enables the dynamic creation and composition of actions in an online manner. In this framework, the agent interacts with the environment by generating and executing programs written in a general-purpose programming language at each step. Furthermore, generated actions are accumulated over time for future reuse. Our extensive experiments on the GAIA benchmark demonstrate that this framework offers significantly greater flexibility and outperforms previous methods. Notably, it allows an LLM agent to recover in scenarios where no relevant action exists in the predefined set or when existing actions fail due to unforeseen edge cases. At the time of writing, we hold the top position on the GAIA public leaderboard. Our code can be found in https://github.com/adobe-research/dynasaur{https://github.com/adobe-research/dynasaur}.
ThinkAct: Vision-Language-Action Reasoning via Reinforced Visual Latent Planning
Vision-language-action (VLA) reasoning tasks require agents to interpret multimodal instructions, perform long-horizon planning, and act adaptively in dynamic environments. Existing approaches typically train VLA models in an end-to-end fashion, directly mapping inputs to actions without explicit reasoning, which hinders their ability to plan over multiple steps or adapt to complex task variations. In this paper, we propose ThinkAct, a dual-system framework that bridges high-level reasoning with low-level action execution via reinforced visual latent planning. ThinkAct trains a multimodal LLM to generate embodied reasoning plans guided by reinforcing action-aligned visual rewards based on goal completion and trajectory consistency. These reasoning plans are compressed into a visual plan latent that conditions a downstream action model for robust action execution on target environments. Extensive experiments on embodied reasoning and robot manipulation benchmarks demonstrate that ThinkAct enables few-shot adaptation, long-horizon planning, and self-correction behaviors in complex embodied AI tasks.
MLLM as Retriever: Interactively Learning Multimodal Retrieval for Embodied Agents
MLLM agents demonstrate potential for complex embodied tasks by retrieving multimodal task-relevant trajectory data. However, current retrieval methods primarily focus on surface-level similarities of textual or visual cues in trajectories, neglecting their effectiveness for the specific task at hand. To address this issue, we propose a novel method, MLLM as ReTriever (MART), which enhances the performance of embodied agents by utilizing interaction data to fine-tune an MLLM retriever based on preference learning, such that the retriever fully considers the effectiveness of trajectories and prioritize them for unseen tasks. We also introduce Trajectory Abstraction, a mechanism that leverages MLLMs' summarization capabilities to represent trajectories with fewer tokens while preserving key information, enabling agents to better comprehend milestones in the trajectory. Experimental results across various environments demonstrate our method significantly improves task success rates in unseen scenes compared to baseline methods. This work presents a new paradigm for multimodal retrieval in embodied agents, by fine-tuning a general-purpose MLLM as the retriever to assess trajectory effectiveness. All benchmark task sets and simulator code modifications for action and observation spaces will be released.
ADAPT: Vision-Language Navigation with Modality-Aligned Action Prompts
Vision-Language Navigation (VLN) is a challenging task that requires an embodied agent to perform action-level modality alignment, i.e., make instruction-asked actions sequentially in complex visual environments. Most existing VLN agents learn the instruction-path data directly and cannot sufficiently explore action-level alignment knowledge inside the multi-modal inputs. In this paper, we propose modAlity-aligneD Action PrompTs (ADAPT), which provides the VLN agent with action prompts to enable the explicit learning of action-level modality alignment to pursue successful navigation. Specifically, an action prompt is defined as a modality-aligned pair of an image sub-prompt and a text sub-prompt, where the former is a single-view observation and the latter is a phrase like ''walk past the chair''. When starting navigation, the instruction-related action prompt set is retrieved from a pre-built action prompt base and passed through a prompt encoder to obtain the prompt feature. Then the prompt feature is concatenated with the original instruction feature and fed to a multi-layer transformer for action prediction. To collect high-quality action prompts into the prompt base, we use the Contrastive Language-Image Pretraining (CLIP) model which has powerful cross-modality alignment ability. A modality alignment loss and a sequential consistency loss are further introduced to enhance the alignment of the action prompt and enforce the agent to focus on the related prompt sequentially. Experimental results on both R2R and RxR show the superiority of ADAPT over state-of-the-art methods.
Learning Disentangled Identifiers for Action-Customized Text-to-Image Generation
This study focuses on a novel task in text-to-image (T2I) generation, namely action customization. The objective of this task is to learn the co-existing action from limited data and generalize it to unseen humans or even animals. Experimental results show that existing subject-driven customization methods fail to learn the representative characteristics of actions and struggle in decoupling actions from context features, including appearance. To overcome the preference for low-level features and the entanglement of high-level features, we propose an inversion-based method Action-Disentangled Identifier (ADI) to learn action-specific identifiers from the exemplar images. ADI first expands the semantic conditioning space by introducing layer-wise identifier tokens, thereby increasing the representational richness while distributing the inversion across different features. Then, to block the inversion of action-agnostic features, ADI extracts the gradient invariance from the constructed sample triples and masks the updates of irrelevant channels. To comprehensively evaluate the task, we present an ActionBench that includes a variety of actions, each accompanied by meticulously selected samples. Both quantitative and qualitative results show that our ADI outperforms existing baselines in action-customized T2I generation. Our project page is at https://adi-t2i.github.io/ADI.
Adapting Vision-Language Models for Evaluating World Models
World models -- generative models that simulate environment dynamics conditioned on past observations and actions -- are gaining prominence in planning, simulation, and embodied AI. However, evaluating their rollouts remains a fundamental challenge, requiring fine-grained, temporally grounded assessment of action alignment and semantic consistency -- capabilities not captured by existing metrics. Vision-Language Models (VLMs) have shown promise as automatic evaluators of generative content due to their strong multimodal reasoning abilities. Yet, their use in fine-grained, temporally sensitive evaluation tasks remains limited and requires targeted adaptation. We introduce a evaluation protocol targeting two recognition tasks -- action recognition and character recognition -- each assessed across binary, multiple-choice, and open-ended formats. To support this, we present UNIVERSE (UNIfied Vision-language Evaluator for Rollouts in Simulated Environments), a method for adapting VLMs to rollout evaluation under data and compute constraints. We conduct a large-scale study comparing full, partial, and parameter-efficient finetuning across task formats, context lengths, sampling strategies, and data compositions. The resulting unified evaluator matches the performance of task-specific baselines using a single checkpoint. Human studies confirm strong alignment with human judgments, establishing UNIVERSE as a scalable, semantics-aware evaluator for world models.
On the Relationship between Sentence Analogy Identification and Sentence Structure Encoding in Large Language Models
The ability of Large Language Models (LLMs) to encode syntactic and semantic structures of language is well examined in NLP. Additionally, analogy identification, in the form of word analogies are extensively studied in the last decade of language modeling literature. In this work we specifically look at how LLMs' abilities to capture sentence analogies (sentences that convey analogous meaning to each other) vary with LLMs' abilities to encode syntactic and semantic structures of sentences. Through our analysis, we find that LLMs' ability to identify sentence analogies is positively correlated with their ability to encode syntactic and semantic structures of sentences. Specifically, we find that the LLMs which capture syntactic structures better, also have higher abilities in identifying sentence analogies.
ACT-Bench: Towards Action Controllable World Models for Autonomous Driving
World models have emerged as promising neural simulators for autonomous driving, with the potential to supplement scarce real-world data and enable closed-loop evaluations. However, current research primarily evaluates these models based on visual realism or downstream task performance, with limited focus on fidelity to specific action instructions - a crucial property for generating targeted simulation scenes. Although some studies address action fidelity, their evaluations rely on closed-source mechanisms, limiting reproducibility. To address this gap, we develop an open-access evaluation framework, ACT-Bench, for quantifying action fidelity, along with a baseline world model, Terra. Our benchmarking framework includes a large-scale dataset pairing short context videos from nuScenes with corresponding future trajectory data, which provides conditional input for generating future video frames and enables evaluation of action fidelity for executed motions. Furthermore, Terra is trained on multiple large-scale trajectory-annotated datasets to enhance action fidelity. Leveraging this framework, we demonstrate that the state-of-the-art model does not fully adhere to given instructions, while Terra achieves improved action fidelity. All components of our benchmark framework will be made publicly available to support future research.
Position Paper: Agent AI Towards a Holistic Intelligence
Recent advancements in large foundation models have remarkably enhanced our understanding of sensory information in open-world environments. In leveraging the power of foundation models, it is crucial for AI research to pivot away from excessive reductionism and toward an emphasis on systems that function as cohesive wholes. Specifically, we emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions. The emerging field of Agent AI spans a wide range of existing embodied and agent-based multimodal interactions, including robotics, gaming, and healthcare systems, etc. In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model. On top of this idea, we discuss how agent AI exhibits remarkable capabilities across a variety of domains and tasks, challenging our understanding of learning and cognition. Furthermore, we discuss the potential of Agent AI from an interdisciplinary perspective, underscoring AI cognition and consciousness within scientific discourse. We believe that those discussions serve as a basis for future research directions and encourage broader societal engagement.
Accurately and Efficiently Interpreting Human-Robot Instructions of Varying Granularities
Humans can ground natural language commands to tasks at both abstract and fine-grained levels of specificity. For instance, a human forklift operator can be instructed to perform a high-level action, like "grab a pallet" or a low-level action like "tilt back a little bit." While robots are also capable of grounding language commands to tasks, previous methods implicitly assume that all commands and tasks reside at a single, fixed level of abstraction. Additionally, methods that do not use multiple levels of abstraction encounter inefficient planning and execution times as they solve tasks at a single level of abstraction with large, intractable state-action spaces closely resembling real world complexity. In this work, by grounding commands to all the tasks or subtasks available in a hierarchical planning framework, we arrive at a model capable of interpreting language at multiple levels of specificity ranging from coarse to more granular. We show that the accuracy of the grounding procedure is improved when simultaneously inferring the degree of abstraction in language used to communicate the task. Leveraging hierarchy also improves efficiency: our proposed approach enables a robot to respond to a command within one second on 90% of our tasks, while baselines take over twenty seconds on half the tasks. Finally, we demonstrate that a real, physical robot can ground commands at multiple levels of abstraction allowing it to efficiently plan different subtasks within the same planning hierarchy.
Shaking the foundations: delusions in sequence models for interaction and control
The recent phenomenal success of language models has reinvigorated machine learning research, and large sequence models such as transformers are being applied to a variety of domains. One important problem class that has remained relatively elusive however is purposeful adaptive behavior. Currently there is a common perception that sequence models "lack the understanding of the cause and effect of their actions" leading them to draw incorrect inferences due to auto-suggestive delusions. In this report we explain where this mismatch originates, and show that it can be resolved by treating actions as causal interventions. Finally, we show that in supervised learning, one can teach a system to condition or intervene on data by training with factual and counterfactual error signals respectively.
A Massive Scale Semantic Similarity Dataset of Historical English
A diversity of tasks use language models trained on semantic similarity data. While there are a variety of datasets that capture semantic similarity, they are either constructed from modern web data or are relatively small datasets created in the past decade by human annotators. This study utilizes a novel source, newly digitized articles from off-copyright, local U.S. newspapers, to assemble a massive-scale semantic similarity dataset spanning 70 years from 1920 to 1989 and containing nearly 400M positive semantic similarity pairs. Historically, around half of articles in U.S. local newspapers came from newswires like the Associated Press. While local papers reproduced articles from the newswire, they wrote their own headlines, which form abstractive summaries of the associated articles. We associate articles and their headlines by exploiting document layouts and language understanding. We then use deep neural methods to detect which articles are from the same underlying source, in the presence of substantial noise and abridgement. The headlines of reproduced articles form positive semantic similarity pairs. The resulting publicly available HEADLINES dataset is significantly larger than most existing semantic similarity datasets and covers a much longer span of time. It will facilitate the application of contrastively trained semantic similarity models to a variety of tasks, including the study of semantic change across space and time.
Learning to Assist Humans without Inferring Rewards
Assistive agents should make humans' lives easier. Classically, such assistance is studied through the lens of inverse reinforcement learning, where an assistive agent (e.g., a chatbot, a robot) infers a human's intention and then selects actions to help the human reach that goal. This approach requires inferring intentions, which can be difficult in high-dimensional settings. We build upon prior work that studies assistance through the lens of empowerment: an assistive agent aims to maximize the influence of the human's actions such that they exert a greater control over the environmental outcomes and can solve tasks in fewer steps. We lift the major limitation of prior work in this area--scalability to high-dimensional settings--with contrastive successor representations. We formally prove that these representations estimate a similar notion of empowerment to that studied by prior work and provide a ready-made mechanism for optimizing it. Empirically, our proposed method outperforms prior methods on synthetic benchmarks, and scales to Overcooked, a cooperative game setting. Theoretically, our work connects ideas from information theory, neuroscience, and reinforcement learning, and charts a path for representations to play a critical role in solving assistive problems.
Masked Diffusion with Task-awareness for Procedure Planning in Instructional Videos
A key challenge with procedure planning in instructional videos lies in how to handle a large decision space consisting of a multitude of action types that belong to various tasks. To understand real-world video content, an AI agent must proficiently discern these action types (e.g., pour milk, pour water, open lid, close lid, etc.) based on brief visual observation. Moreover, it must adeptly capture the intricate semantic relation of the action types and task goals, along with the variable action sequences. Recently, notable progress has been made via the integration of diffusion models and visual representation learning to address the challenge. However, existing models employ rudimentary mechanisms to utilize task information to manage the decision space. To overcome this limitation, we introduce a simple yet effective enhancement - a masked diffusion model. The introduced mask acts akin to a task-oriented attention filter, enabling the diffusion/denoising process to concentrate on a subset of action types. Furthermore, to bolster the accuracy of task classification, we harness more potent visual representation learning techniques. In particular, we learn a joint visual-text embedding, where a text embedding is generated by prompting a pre-trained vision-language model to focus on human actions. We evaluate the method on three public datasets and achieve state-of-the-art performance on multiple metrics. Code is available at https://github.com/ffzzy840304/Masked-PDPP.
Generating Robot Constitutions & Benchmarks for Semantic Safety
Until recently, robotics safety research was predominantly about collision avoidance and hazard reduction in the immediate vicinity of a robot. Since the advent of large vision and language models (VLMs), robots are now also capable of higher-level semantic scene understanding and natural language interactions with humans. Despite their known vulnerabilities (e.g. hallucinations or jail-breaking), VLMs are being handed control of robots capable of physical contact with the real world. This can lead to dangerous behaviors, making semantic safety for robots a matter of immediate concern. Our contributions in this paper are two fold: first, to address these emerging risks, we release the ASIMOV Benchmark, a large-scale and comprehensive collection of datasets for evaluating and improving semantic safety of foundation models serving as robot brains. Our data generation recipe is highly scalable: by leveraging text and image generation techniques, we generate undesirable situations from real-world visual scenes and human injury reports from hospitals. Secondly, we develop a framework to automatically generate robot constitutions from real-world data to steer a robot's behavior using Constitutional AI mechanisms. We propose a novel auto-amending process that is able to introduce nuances in written rules of behavior; this can lead to increased alignment with human preferences on behavior desirability and safety. We explore trade-offs between generality and specificity across a diverse set of constitutions of different lengths, and demonstrate that a robot is able to effectively reject unconstitutional actions. We measure a top alignment rate of 84.3% on the ASIMOV Benchmark using generated constitutions, outperforming no-constitution baselines and human-written constitutions. Data is available at asimov-benchmark.github.io
SINC: Spatial Composition of 3D Human Motions for Simultaneous Action Generation
Our goal is to synthesize 3D human motions given textual inputs describing simultaneous actions, for example 'waving hand' while 'walking' at the same time. We refer to generating such simultaneous movements as performing 'spatial compositions'. In contrast to temporal compositions that seek to transition from one action to another, spatial compositing requires understanding which body parts are involved in which action, to be able to move them simultaneously. Motivated by the observation that the correspondence between actions and body parts is encoded in powerful language models, we extract this knowledge by prompting GPT-3 with text such as "what are the body parts involved in the action <action name>?", while also providing the parts list and few-shot examples. Given this action-part mapping, we combine body parts from two motions together and establish the first automated method to spatially compose two actions. However, training data with compositional actions is always limited by the combinatorics. Hence, we further create synthetic data with this approach, and use it to train a new state-of-the-art text-to-motion generation model, called SINC ("SImultaneous actioN Compositions for 3D human motions"). In our experiments, that training with such GPT-guided synthetic data improves spatial composition generation over baselines. Our code is publicly available at https://sinc.is.tue.mpg.de/.
SAME: Learning Generic Language-Guided Visual Navigation with State-Adaptive Mixture of Experts
The academic field of learning instruction-guided visual navigation can be generally categorized into high-level category-specific search and low-level language-guided navigation, depending on the granularity of language instruction, in which the former emphasizes the exploration process, while the latter concentrates on following detailed textual commands. Despite the differing focuses of these tasks, the underlying requirements of interpreting instructions, comprehending the surroundings, and inferring action decisions remain consistent. This paper consolidates diverse navigation tasks into a unified and generic framework -- we investigate the core difficulties of sharing general knowledge and exploiting task-specific capabilities in learning navigation and propose a novel State-Adaptive Mixture of Experts (SAME) model that effectively enables an agent to infer decisions based on different-granularity language and dynamic observations. Powered by SAME, we present a versatile agent capable of addressing seven navigation tasks simultaneously that outperforms or achieves highly comparable performance to task-specific agents.
Learning Action and Reasoning-Centric Image Editing from Videos and Simulations
An image editing model should be able to perform diverse edits, ranging from object replacement, changing attributes or style, to performing actions or movement, which require many forms of reasoning. Current general instruction-guided editing models have significant shortcomings with action and reasoning-centric edits. Object, attribute or stylistic changes can be learned from visually static datasets. On the other hand, high-quality data for action and reasoning-centric edits is scarce and has to come from entirely different sources that cover e.g. physical dynamics, temporality and spatial reasoning. To this end, we meticulously curate the AURORA Dataset (Action-Reasoning-Object-Attribute), a collection of high-quality training data, human-annotated and curated from videos and simulation engines. We focus on a key aspect of quality training data: triplets (source image, prompt, target image) contain a single meaningful visual change described by the prompt, i.e., truly minimal changes between source and target images. To demonstrate the value of our dataset, we evaluate an AURORA-finetuned model on a new expert-curated benchmark (AURORA-Bench) covering 8 diverse editing tasks. Our model significantly outperforms previous editing models as judged by human raters. For automatic evaluations, we find important flaws in previous metrics and caution their use for semantically hard editing tasks. Instead, we propose a new automatic metric that focuses on discriminative understanding. We hope that our efforts : (1) curating a quality training dataset and an evaluation benchmark, (2) developing critical evaluations, and (3) releasing a state-of-the-art model, will fuel further progress on general image editing.
Distilling Script Knowledge from Large Language Models for Constrained Language Planning
In everyday life, humans often plan their actions by following step-by-step instructions in the form of goal-oriented scripts. Previous work has exploited language models (LMs) to plan for abstract goals of stereotypical activities (e.g., "make a cake"), but leaves more specific goals with multi-facet constraints understudied (e.g., "make a cake for diabetics"). In this paper, we define the task of constrained language planning for the first time. We propose an overgenerate-then-filter approach to improve large language models (LLMs) on this task, and use it to distill a novel constrained language planning dataset, CoScript, which consists of 55,000 scripts. Empirical results demonstrate that our method significantly improves the constrained language planning ability of LLMs, especially on constraint faithfulness. Furthermore, CoScript is demonstrated to be quite effective in endowing smaller LMs with constrained language planning ability.
Efficient Alignment of Unconditioned Action Prior for Language-conditioned Pick and Place in Clutter
We study the task of language-conditioned pick and place in clutter, where a robot should grasp a target object in open clutter and move it to a specified place. Some approaches learn end-to-end policies with features from vision foundation models, requiring large datasets. Others combine foundation models in a zero-shot setting, suffering from cascading errors. In addition, they primarily leverage vision and language foundation models, focusing less on action priors. In this paper, we aim to develop an effective policy by integrating foundation priors from vision, language, and action. We propose A^2, an action prior alignment method that aligns unconditioned action priors with 3D vision-language priors by learning one attention layer. The alignment formulation enables our policy to train with less data and preserve zero-shot generalization capabilities. We show that a shared policy for both pick and place actions enhances the performance for each task, and introduce a policy adaptation scheme to accommodate the multi-modal nature of actions. Extensive experiments in simulation and the real-world show that our policy achieves higher task success rates with fewer steps for both pick and place tasks in clutter, effectively generalizing to unseen objects and language instructions. Videos and codes are available at https://xukechun.github.io/papers/A2.
Semantic Map-based Generation of Navigation Instructions
We are interested in the generation of navigation instructions, either in their own right or as training material for robotic navigation task. In this paper, we propose a new approach to navigation instruction generation by framing the problem as an image captioning task using semantic maps as visual input. Conventional approaches employ a sequence of panorama images to generate navigation instructions. Semantic maps abstract away from visual details and fuse the information in multiple panorama images into a single top-down representation, thereby reducing computational complexity to process the input. We present a benchmark dataset for instruction generation using semantic maps, propose an initial model and ask human subjects to manually assess the quality of generated instructions. Our initial investigations show promise in using semantic maps for instruction generation instead of a sequence of panorama images, but there is vast scope for improvement. We release the code for data preparation and model training at https://github.com/chengzu-li/VLGen.
Language-guided Human Motion Synthesis with Atomic Actions
Language-guided human motion synthesis has been a challenging task due to the inherent complexity and diversity of human behaviors. Previous methods face limitations in generalization to novel actions, often resulting in unrealistic or incoherent motion sequences. In this paper, we propose ATOM (ATomic mOtion Modeling) to mitigate this problem, by decomposing actions into atomic actions, and employing a curriculum learning strategy to learn atomic action composition. First, we disentangle complex human motions into a set of atomic actions during learning, and then assemble novel actions using the learned atomic actions, which offers better adaptability to new actions. Moreover, we introduce a curriculum learning training strategy that leverages masked motion modeling with a gradual increase in the mask ratio, and thus facilitates atomic action assembly. This approach mitigates the overfitting problem commonly encountered in previous methods while enforcing the model to learn better motion representations. We demonstrate the effectiveness of ATOM through extensive experiments, including text-to-motion and action-to-motion synthesis tasks. We further illustrate its superiority in synthesizing plausible and coherent text-guided human motion sequences.
WebWISE: Web Interface Control and Sequential Exploration with Large Language Models
The paper investigates using a Large Language Model (LLM) to automatically perform web software tasks using click, scroll, and text input operations. Previous approaches, such as reinforcement learning (RL) or imitation learning, are inefficient to train and task-specific. Our method uses filtered Document Object Model (DOM) elements as observations and performs tasks step-by-step, sequentially generating small programs based on the current observations. We use in-context learning, either benefiting from a single manually provided example, or an automatically generated example based on a successful zero-shot trial. We evaluate the proposed method on the MiniWob++ benchmark. With only one in-context example, our WebWISE method achieves similar or better performance than other methods that require many demonstrations or trials.
M^{3}: A Modular World Model over Streams of Tokens
Token-based world models emerged as a promising modular framework, modeling dynamics over token streams while optimizing tokenization separately. While successful in visual environments with discrete actions (e.g., Atari games), their broader applicability remains uncertain. In this paper, we introduce M^{3}, a modular world model that extends this framework, enabling flexible combinations of observation and action modalities through independent modality-specific components. M^{3} integrates several improvements from existing literature to enhance agent performance. Through extensive empirical evaluation across diverse benchmarks, M^{3} achieves state-of-the-art sample efficiency for planning-free world models. Notably, among these methods, it is the first to reach a human-level median score on Atari 100K, with superhuman performance on 13 games. We https://github.com/leor-c/M3{open-source our code and weights}.
From Intention to Execution: Probing the Generalization Boundaries of Vision-Language-Action Models
One promise that Vision-Language-Action (VLA) models hold over traditional imitation learning for robotics is to leverage the broad generalization capabilities of large Vision-Language Models (VLMs) to produce versatile, "generalist" robot policies. However, current evaluations of VLAs remain insufficient. Traditional imitation learning benchmarks are unsuitable due to the lack of language instructions. Emerging benchmarks for VLAs that incorporate language often come with limited evaluation tasks and do not intend to investigate how much VLM pretraining truly contributes to the generalization capabilities of the downstream robotic policy. Meanwhile, much research relies on real-world robot setups designed in isolation by different institutions, which creates a barrier for reproducibility and accessibility. To address this gap, we introduce a unified probing suite of 50 simulation-based tasks across 10 subcategories spanning language instruction, vision, and objects. We systematically evaluate several state-of-the-art VLA architectures on this suite to understand their generalization capability. Our results show that while VLM backbones endow VLAs with robust perceptual understanding and high level planning, which we refer to as good intentions, this does not reliably translate into precise motor execution: when faced with out-of-distribution observations, policies often exhibit coherent intentions, but falter in action execution. Moreover, finetuning on action data can erode the original VLM's generalist reasoning abilities. We release our task suite and evaluation code to serve as a standardized benchmark for future VLAs and to drive research on closing the perception-to-action gap. More information, including the source code, can be found at https://ai4ce.github.io/INT-ACT/
Action Flow Matching for Continual Robot Learning
Continual learning in robotics seeks systems that can constantly adapt to changing environments and tasks, mirroring human adaptability. A key challenge is refining dynamics models, essential for planning and control, while addressing issues such as safe adaptation, catastrophic forgetting, outlier management, data efficiency, and balancing exploration with exploitation -- all within task and onboard resource constraints. Towards this goal, we introduce a generative framework leveraging flow matching for online robot dynamics model alignment. Rather than executing actions based on a misaligned model, our approach refines planned actions to better match with those the robot would take if its model was well aligned. We find that by transforming the actions themselves rather than exploring with a misaligned model -- as is traditionally done -- the robot collects informative data more efficiently, thereby accelerating learning. Moreover, we validate that the method can handle an evolving and possibly imperfect model while reducing, if desired, the dependency on replay buffers or legacy model snapshots. We validate our approach using two platforms: an unmanned ground vehicle and a quadrotor. The results highlight the method's adaptability and efficiency, with a record 34.2\% higher task success rate, demonstrating its potential towards enabling continual robot learning. Code: https://github.com/AlejandroMllo/action_flow_matching.
Language Models, Agent Models, and World Models: The LAW for Machine Reasoning and Planning
Despite their tremendous success in many applications, large language models often fall short of consistent reasoning and planning in various (language, embodied, and social) scenarios, due to inherent limitations in their inference, learning, and modeling capabilities. In this position paper, we present a new perspective of machine reasoning, LAW, that connects the concepts of Language models, Agent models, and World models, for more robust and versatile reasoning capabilities. In particular, we propose that world and agent models are a better abstraction of reasoning, that introduces the crucial elements of deliberate human-like reasoning, including beliefs about the world and other agents, anticipation of consequences, goals/rewards, and strategic planning. Crucially, language models in LAW serve as a backend to implement the system or its elements and hence provide the computational power and adaptability. We review the recent studies that have made relevant progress and discuss future research directions towards operationalizing the LAW framework.
Visually-Grounded Planning without Vision: Language Models Infer Detailed Plans from High-level Instructions
The recently proposed ALFRED challenge task aims for a virtual robotic agent to complete complex multi-step everyday tasks in a virtual home environment from high-level natural language directives, such as "put a hot piece of bread on a plate". Currently, the best-performing models are able to complete less than 5% of these tasks successfully. In this work we focus on modeling the translation problem of converting natural language directives into detailed multi-step sequences of actions that accomplish those goals in the virtual environment. We empirically demonstrate that it is possible to generate gold multi-step plans from language directives alone without any visual input in 26% of unseen cases. When a small amount of visual information is incorporated, namely the starting location in the virtual environment, our best-performing GPT-2 model successfully generates gold command sequences in 58% of cases. Our results suggest that contextualized language models may provide strong visual semantic planning modules for grounded virtual agents.
KITE: Keypoint-Conditioned Policies for Semantic Manipulation
While natural language offers a convenient shared interface for humans and robots, enabling robots to interpret and follow language commands remains a longstanding challenge in manipulation. A crucial step to realizing a performant instruction-following robot is achieving semantic manipulation, where a robot interprets language at different specificities, from high-level instructions like "Pick up the stuffed animal" to more detailed inputs like "Grab the left ear of the elephant." To tackle this, we propose Keypoints + Instructions to Execution (KITE), a two-step framework for semantic manipulation which attends to both scene semantics (distinguishing between different objects in a visual scene) and object semantics (precisely localizing different parts within an object instance). KITE first grounds an input instruction in a visual scene through 2D image keypoints, providing a highly accurate object-centric bias for downstream action inference. Provided an RGB-D scene observation, KITE then executes a learned keypoint-conditioned skill to carry out the instruction. The combined precision of keypoints and parameterized skills enables fine-grained manipulation with generalization to scene and object variations. Empirically, we demonstrate KITE in 3 real-world environments: long-horizon 6-DoF tabletop manipulation, semantic grasping, and a high-precision coffee-making task. In these settings, KITE achieves a 75%, 70%, and 71% overall success rate for instruction-following, respectively. KITE outperforms frameworks that opt for pre-trained visual language models over keypoint-based grounding, or omit skills in favor of end-to-end visuomotor control, all while being trained from fewer or comparable amounts of demonstrations. Supplementary material, datasets, code, and videos can be found on our website: http://tinyurl.com/kite-site.
AXOLOTL'24 Shared Task on Multilingual Explainable Semantic Change Modeling
This paper describes the organization and findings of AXOLOTL'24, the first multilingual explainable semantic change modeling shared task. We present new sense-annotated diachronic semantic change datasets for Finnish and Russian which were employed in the shared task, along with a surprise test-only German dataset borrowed from an existing source. The setup of AXOLOTL'24 is new to the semantic change modeling field, and involves subtasks of identifying unknown (novel) senses and providing dictionary-like definitions to these senses. The methods of the winning teams are described and compared, thus paving a path towards explainability in computational approaches to historical change of meaning.
On the Effectiveness of Retrieval, Alignment, and Replay in Manipulation
Imitation learning with visual observations is notoriously inefficient when addressed with end-to-end behavioural cloning methods. In this paper, we explore an alternative paradigm which decomposes reasoning into three phases. First, a retrieval phase, which informs the robot what it can do with an object. Second, an alignment phase, which informs the robot where to interact with the object. And third, a replay phase, which informs the robot how to interact with the object. Through a series of real-world experiments on everyday tasks, such as grasping, pouring, and inserting objects, we show that this decomposition brings unprecedented learning efficiency, and effective inter- and intra-class generalisation. Videos are available at https://www.robot-learning.uk/retrieval-alignment-replay.
Micro-Act: Mitigate Knowledge Conflict in Question Answering via Actionable Self-Reasoning
Retrieval-Augmented Generation (RAG) systems commonly suffer from Knowledge Conflicts, where retrieved external knowledge contradicts the inherent, parametric knowledge of large language models (LLMs). It adversely affects performance on downstream tasks such as question answering (QA). Existing approaches often attempt to mitigate conflicts by directly comparing two knowledge sources in a side-by-side manner, but this can overwhelm LLMs with extraneous or lengthy contexts, ultimately hindering their ability to identify and mitigate inconsistencies. To address this issue, we propose Micro-Act a framework with a hierarchical action space that automatically perceives context complexity and adaptively decomposes each knowledge source into a sequence of fine-grained comparisons. These comparisons are represented as actionable steps, enabling reasoning beyond the superficial context. Through extensive experiments on five benchmark datasets, Micro-Act consistently achieves significant increase in QA accuracy over state-of-the-art baselines across all 5 datasets and 3 conflict types, especially in temporal and semantic types where all baselines fail significantly. More importantly, Micro-Act exhibits robust performance on non-conflict questions simultaneously, highlighting its practical value in real-world RAG applications.
Navigation with Large Language Models: Semantic Guesswork as a Heuristic for Planning
Navigation in unfamiliar environments presents a major challenge for robots: while mapping and planning techniques can be used to build up a representation of the world, quickly discovering a path to a desired goal in unfamiliar settings with such methods often requires lengthy mapping and exploration. Humans can rapidly navigate new environments, particularly indoor environments that are laid out logically, by leveraging semantics -- e.g., a kitchen often adjoins a living room, an exit sign indicates the way out, and so forth. Language models can provide robots with such knowledge, but directly using language models to instruct a robot how to reach some destination can also be impractical: while language models might produce a narrative about how to reach some goal, because they are not grounded in real-world observations, this narrative might be arbitrarily wrong. Therefore, in this paper we study how the ``semantic guesswork'' produced by language models can be utilized as a guiding heuristic for planning algorithms. Our method, Language Frontier Guide (LFG), uses the language model to bias exploration of novel real-world environments by incorporating the semantic knowledge stored in language models as a search heuristic for planning with either topological or metric maps. We evaluate LFG in challenging real-world environments and simulated benchmarks, outperforming uninformed exploration and other ways of using language models.
MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset
To enable Large Language Models (LLMs) to function as conscious agents with generalizable reasoning capabilities, it is crucial that they possess the reasoning ability to comprehend situational changes (transitions) in distribution triggered by environmental factors or actions from other agents. Despite its fundamental significance, this ability remains underexplored due to the complexity of modeling infinite possible changes in an event and their associated distributions, coupled with the lack of benchmark data with situational transitions. Addressing these gaps, we propose a novel formulation of reasoning with distributional changes as a three-step discriminative process, termed as MetAphysical ReaSoning. We then introduce the first-ever benchmark, MARS, comprising three tasks corresponding to each step. These tasks systematically assess LLMs' capabilities in reasoning the plausibility of (i) changes in actions, (ii) states caused by changed actions, and (iii) situational transitions driven by changes in action. Extensive evaluations with 20 (L)LMs of varying sizes and methods indicate that all three tasks in this process pose significant challenges, even for state-of-the-art LLMs and LMs after fine-tuning. Further analyses reveal potential causes for the underperformance of LLMs and demonstrate that pre-training them on large-scale conceptualization taxonomies can potentially enhance their metaphysical reasoning capabilities. Our data and models are publicly accessible at https://github.com/HKUST-KnowComp/MARS.
Reinforcement Learning from Passive Data via Latent Intentions
Passive observational data, such as human videos, is abundant and rich in information, yet remains largely untapped by current RL methods. Perhaps surprisingly, we show that passive data, despite not having reward or action labels, can still be used to learn features that accelerate downstream RL. Our approach learns from passive data by modeling intentions: measuring how the likelihood of future outcomes change when the agent acts to achieve a particular task. We propose a temporal difference learning objective to learn about intentions, resulting in an algorithm similar to conventional RL, but which learns entirely from passive data. When optimizing this objective, our agent simultaneously learns representations of states, of policies, and of possible outcomes in an environment, all from raw observational data. Both theoretically and empirically, this scheme learns features amenable for value prediction for downstream tasks, and our experiments demonstrate the ability to learn from many forms of passive data, including cross-embodiment video data and YouTube videos.
On the Brittle Foundations of ReAct Prompting for Agentic Large Language Models
The reasoning abilities of Large Language Models (LLMs) remain a topic of debate. Some methods such as ReAct-based prompting, have gained popularity for claiming to enhance sequential decision-making abilities of agentic LLMs. However, it is unclear what is the source of improvement in LLM reasoning with ReAct based prompting. In this paper we examine these claims of ReAct based prompting in improving agentic LLMs for sequential decision-making. By introducing systematic variations to the input prompt we perform a sensitivity analysis along the claims of ReAct and find that the performance is minimally influenced by the "interleaving reasoning trace with action execution" or the content of the generated reasoning traces in ReAct, contrary to original claims and common usage. Instead, the performance of LLMs is driven by the similarity between input example tasks and queries, implicitly forcing the prompt designer to provide instance-specific examples which significantly increases the cognitive burden on the human. Our investigation shows that the perceived reasoning abilities of LLMs stem from the exemplar-query similarity and approximate retrieval rather than any inherent reasoning abilities.
ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy. While recent works equip reinforcement learning (RL)-based LRMs with retrieval capabilities, they suffer from overthinking and lack robustness in reasoning, reducing their effectiveness in question answering (QA) tasks. To address this, we propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations. Our solution includes a novel data construction framework with an upper bound on the reasoning chain length. Specifically, we first leverage an LRM to generate deliberate thinking, then select an action from a predefined action space (Search and Finish). For Search action, a query is executed against the RAG engine, where the result is returned as observation to guide reasoning steps later. This process iterates until a Finish action is chosen. Benefiting from ReaRAG's strong reasoning capabilities, our approach outperforms existing baselines on multi-hop QA. Further analysis highlights its strong reflective ability to recognize errors and refine its reasoning trajectory. Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG).
Vision-Language Models Provide Promptable Representations for Reinforcement Learning
Humans can quickly learn new behaviors by leveraging background world knowledge. In contrast, agents trained with reinforcement learning (RL) typically learn behaviors from scratch. We thus propose a novel approach that uses the vast amounts of general and indexable world knowledge encoded in vision-language models (VLMs) pre-trained on Internet-scale data for embodied RL. We initialize policies with VLMs by using them as promptable representations: embeddings that are grounded in visual observations and encode semantic features based on the VLM's internal knowledge, as elicited through prompts that provide task context and auxiliary information. We evaluate our approach on visually-complex, long horizon RL tasks in Minecraft and robot navigation in Habitat. We find that our policies trained on embeddings extracted from general-purpose VLMs outperform equivalent policies trained on generic, non-promptable image embeddings. We also find our approach outperforms instruction-following methods and performs comparably to domain-specific embeddings.
Localizing Active Objects from Egocentric Vision with Symbolic World Knowledge
The ability to actively ground task instructions from an egocentric view is crucial for AI agents to accomplish tasks or assist humans virtually. One important step towards this goal is to localize and track key active objects that undergo major state change as a consequence of human actions/interactions to the environment without being told exactly what/where to ground (e.g., localizing and tracking the `sponge` in video from the instruction "Dip the `sponge` into the bucket."). While existing works approach this problem from a pure vision perspective, we investigate to which extent the textual modality (i.e., task instructions) and their interaction with visual modality can be beneficial. Specifically, we propose to improve phrase grounding models' ability on localizing the active objects by: (1) learning the role of `objects undergoing change` and extracting them accurately from the instructions, (2) leveraging pre- and post-conditions of the objects during actions, and (3) recognizing the objects more robustly with descriptional knowledge. We leverage large language models (LLMs) to extract the aforementioned action-object knowledge, and design a per-object aggregation masking technique to effectively perform joint inference on object phrases and symbolic knowledge. We evaluate our framework on Ego4D and Epic-Kitchens datasets. Extensive experiments demonstrate the effectiveness of our proposed framework, which leads to>54% improvements in all standard metrics on the TREK-150-OPE-Det localization + tracking task, >7% improvements in all standard metrics on the TREK-150-OPE tracking task, and >3% improvements in average precision (AP) on the Ego4D SCOD task.
SayCanPay: Heuristic Planning with Large Language Models using Learnable Domain Knowledge
Large Language Models (LLMs) have demonstrated impressive planning abilities due to their vast "world knowledge". Yet, obtaining plans that are both feasible (grounded in affordances) and cost-effective (in plan length), remains a challenge, despite recent progress. This contrasts with heuristic planning methods that employ domain knowledge (formalized in action models such as PDDL) and heuristic search to generate feasible, optimal plans. Inspired by this, we propose to combine the power of LLMs and heuristic planning by leveraging the world knowledge of LLMs and the principles of heuristic search. Our approach, SayCanPay, employs LLMs to generate actions (Say) guided by learnable domain knowledge, that evaluates actions' feasibility (Can) and long-term reward/payoff (Pay), and heuristic search to select the best sequence of actions. Our contributions are (1) a novel framing of the LLM planning problem in the context of heuristic planning, (2) integrating grounding and cost-effective elements into the generated plans, and (3) using heuristic search over actions. Our extensive evaluations show that our model surpasses other LLM planning approaches.
Embodied Instruction Following in Unknown Environments
Enabling embodied agents to complete complex human instructions from natural language is crucial to autonomous systems in household services. Conventional methods can only accomplish human instructions in the known environment where all interactive objects are provided to the embodied agent, and directly deploying the existing approaches for the unknown environment usually generates infeasible plans that manipulate non-existing objects. On the contrary, we propose an embodied instruction following (EIF) method for complex tasks in the unknown environment, where the agent efficiently explores the unknown environment to generate feasible plans with existing objects to accomplish abstract instructions. Specifically, we build a hierarchical embodied instruction following framework including the high-level task planner and the low-level exploration controller with multimodal large language models. We then construct a semantic representation map of the scene with dynamic region attention to demonstrate the known visual clues, where the goal of task planning and scene exploration is aligned for human instruction. For the task planner, we generate the feasible step-by-step plans for human goal accomplishment according to the task completion process and the known visual clues. For the exploration controller, the optimal navigation or object interaction policy is predicted based on the generated step-wise plans and the known visual clues. The experimental results demonstrate that our method can achieve 45.09% success rate in 204 complex human instructions such as making breakfast and tidying rooms in large house-level scenes. Code and supplementary are available at https://gary3410.github.io/eif_unknown.
Shop-R1: Rewarding LLMs to Simulate Human Behavior in Online Shopping via Reinforcement Learning
Large Language Models (LLMs) have recently demonstrated strong potential in generating 'believable human-like' behavior in web environments. Prior work has explored augmenting training data with LLM-synthesized rationales and applying supervised fine-tuning (SFT) to enhance reasoning ability, which in turn can improve downstream action prediction. However, the performance of such approaches remains inherently bounded by the reasoning capabilities of the model used to generate the rationales. In this paper, we introduce Shop-R1, a novel reinforcement learning (RL) framework aimed at enhancing the reasoning ability of LLMs for simulation of real human behavior in online shopping environments Specifically, Shop-R1 decomposes the human behavior simulation task into two stages: rationale generation and action prediction, each guided by distinct reward signals. For rationale generation, we leverage internal model signals (e.g., logit distributions) to guide the reasoning process in a self-supervised manner. For action prediction, we propose a hierarchical reward structure with difficulty-aware scaling to prevent reward hacking and enable fine-grained reward assignment. This design evaluates both high-level action types and the correctness of fine-grained sub-action details (attributes and values), rewarding outputs proportionally to their difficulty. Experimental results show that our method achieves a relative improvement of over 65% compared to the baseline.
Universal Actions for Enhanced Embodied Foundation Models
Training on diverse, internet-scale data is a key factor in the success of recent large foundation models. Yet, using the same recipe for building embodied agents has faced noticeable difficulties. Despite the availability of many crowd-sourced embodied datasets, their action spaces often exhibit significant heterogeneity due to distinct physical embodiment and control interfaces for different robots, causing substantial challenges in developing embodied foundation models using cross-domain data. In this paper, we introduce UniAct, a new embodied foundation modeling framework operating in a tokenized Universal Action Space. Our learned universal actions capture the generic atomic behaviors across diverse robots by exploiting their shared structural features, and enable enhanced cross-domain data utilization and cross-embodiment generalizations by eliminating the notorious heterogeneity. The universal actions can be efficiently translated back to heterogeneous actionable commands by simply adding embodiment-specific details, from which fast adaptation to new robots becomes simple and straightforward. Our 0.5B instantiation of UniAct outperforms 14X larger SOTA embodied foundation models in extensive evaluations on various real-world and simulation robots, showcasing exceptional cross-embodiment control and adaptation capability, highlighting the crucial benefit of adopting universal actions. Project page: https://github.com/2toinf/UniAct
PreAct: Predicting Future in ReAct Enhances Agent's Planning Ability
Addressing the discrepancies between predictions and actual outcomes often aids individuals in expanding their thought processes and engaging in reflection, thereby facilitating reasoning in the correct direction. In this paper, we introduce PreAct, an agent framework that integrates prediction with reasoning and action. Leveraging the information provided by predictions, a large language model (LLM) based agent can offer more diversified and strategically oriented reasoning, which in turn leads to more effective actions that help the agent complete complex tasks. Our experiments demonstrate that PreAct outperforms the ReAct approach in accomplishing complex tasks and that PreAct can be co-enhanced when combined with Reflexion methods. We prompt the model with different numbers of historical predictions and find that historical predictions have a sustained positive effect on LLM planning. The differences in single-step reasoning between PreAct and ReAct show that PreAct indeed offers advantages in terms of diversity and strategic directivity over ReAct.
SmartAgent: Chain-of-User-Thought for Embodied Personalized Agent in Cyber World
Recent advances in embodied agents with multimodal perception and reasoning capabilities based on large vision-language models (LVLMs), excel in autonomously interacting either real or cyber worlds, helping people make intelligent decisions in complex environments. However, the current works are normally optimized by golden action trajectories or ideal task-oriented solutions toward a definitive goal. This paradigm considers limited user-oriented factors, which could be the reason for their performance reduction in a wide range of personal assistant applications. To address this, we propose Chain-of-User-Thought (COUT), a novel embodied reasoning paradigm that takes a chain of thought from basic action thinking to explicit and implicit personalized preference thought to incorporate personalized factors into autonomous agent learning. To target COUT, we introduce SmartAgent, an agent framework perceiving cyber environments and reasoning personalized requirements as 1) interacting with GUI to access an item pool, 2) generating users' explicit requirements implied by previous actions, and 3) recommending items to fulfill users' implicit requirements. To demonstrate SmartAgent's capabilities, we also create a brand-new dataset SmartSpot that offers a full-stage personalized action-involved environment. To our best knowledge, our work is the first to formulate the COUT process, serving as a preliminary attempt towards embodied personalized agent learning. Our extensive experiments on SmartSpot illuminate SmartAgent's functionality among a series of embodied and personalized sub-tasks. We will release code and data upon paper notification at https://github.com/tsinghua-fib-lab/SmartAgent.
Interactive Natural Language Processing
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.
TartuNLP @ AXOLOTL-24: Leveraging Classifier Output for New Sense Detection in Lexical Semantics
We present our submission to the AXOLOTL-24 shared task. The shared task comprises two subtasks: identifying new senses that words gain with time (when comparing newer and older time periods) and producing the definitions for the identified new senses. We implemented a conceptually simple and computationally inexpensive solution to both subtasks. We trained adapter-based binary classification models to match glosses with usage examples and leveraged the probability output of the models to identify novel senses. The same models were used to match examples of novel sense usages with Wiktionary definitions. Our submission attained third place on the first subtask and the first place on the second subtask.
Are distributional representations ready for the real world? Evaluating word vectors for grounded perceptual meaning
Distributional word representation methods exploit word co-occurrences to build compact vector encodings of words. While these representations enjoy widespread use in modern natural language processing, it is unclear whether they accurately encode all necessary facets of conceptual meaning. In this paper, we evaluate how well these representations can predict perceptual and conceptual features of concrete concepts, drawing on two semantic norm datasets sourced from human participants. We find that several standard word representations fail to encode many salient perceptual features of concepts, and show that these deficits correlate with word-word similarity prediction errors. Our analyses provide motivation for grounded and embodied language learning approaches, which may help to remedy these deficits.
MMInA: Benchmarking Multihop Multimodal Internet Agents
Autonomous embodied agents live on an Internet of multimedia websites. Can they hop around multimodal websites to complete complex user tasks? Existing benchmarks fail to assess them in a realistic, evolving environment for their embodiment across websites. To answer this question, we present MMInA, a multihop and multimodal benchmark to evaluate the embodied agents for compositional Internet tasks, with several appealing properties: 1) Evolving real-world multimodal websites. Our benchmark uniquely operates on evolving real-world websites, ensuring a high degree of realism and applicability to natural user tasks. Our data includes 1,050 human-written tasks covering various domains such as shopping and travel, with each task requiring the agent to autonomously extract multimodal information from web pages as observations; 2) Multihop web browsing. Our dataset features naturally compositional tasks that require information from or actions on multiple websites to solve, to assess long-range reasoning capabilities on web tasks; 3) Holistic evaluation. We propose a novel protocol for evaluating an agent's progress in completing multihop tasks. We experiment with both standalone (multimodal) language models and heuristic-based web agents. Extensive experiments demonstrate that while long-chain multihop web tasks are easy for humans, they remain challenging for state-of-the-art web agents. We identify that agents are more likely to fail on the early hops when solving tasks of more hops, which results in lower task success rates. To address this issue, we propose a simple memory augmentation approach replaying past action trajectories to reflect. Our method significantly improved both the single-hop and multihop web browsing abilities of agents. See our code and data at https://mmina.cliangyu.com
ACT-JEPA: Joint-Embedding Predictive Architecture Improves Policy Representation Learning
Learning efficient representations for decision-making policies is a challenge in imitation learning (IL). Current IL methods require expert demonstrations, which are expensive to collect. Consequently, they often have underdeveloped world models. Self-supervised learning (SSL) offers an alternative by allowing models to learn from diverse, unlabeled data, including failures. However, SSL methods often operate in raw input space, making them inefficient. In this work, we propose ACT-JEPA, a novel architecture that integrates IL and SSL to enhance policy representations. We train a policy to predict (1) action sequences and (2) abstract observation sequences. The first objective uses action chunking to improve action prediction and reduce compounding errors. The second objective extends this idea of chunking by predicting abstract observation sequences. We utilize Joint-Embedding Predictive Architecture to predict in abstract representation space, allowing the model to filter out irrelevant details, improve efficiency, and develop a robust world model. Our experiments show that ACT-JEPA improves the quality of representations by learning temporal environment dynamics. Additionally, the model's ability to predict abstract observation sequences results in representations that effectively generalize to action sequence prediction. ACT-JEPA performs on par with established baselines across a range of decision-making tasks.
SPINE: Online Semantic Planning for Missions with Incomplete Natural Language Specifications in Unstructured Environments
As robots become increasingly capable, users will want to describe high-level missions and have robots infer the relevant details. because pre-built maps are difficult to obtain in many realistic settings, accomplishing such missions will require the robot to map and plan online. while many semantic planning methods operate online, they are typically designed for well specified missions such as object search or exploration. recently, large language models (LLMs) have demonstrated powerful contextual reasoning abilities over a range of robotic tasks described in natural language. however, existing LLM-enabled planners typically do not consider online planning or complex missions; rather, relevant subtasks and semantics are provided by a pre-built map or a user. we address these limitations via spine, an online planner for missions with incomplete mission specifications provided in natural language. the planner uses an LLM to reason about subtasks implied by the mission specification and then realizes these subtasks in a receding horizon framework. tasks are automatically validated for safety and refined online with new map observations. we evaluate spine in simulation and real-world settings with missions that require multiple steps of semantic reasoning and exploration in cluttered outdoor environments of over 20,000m^2. compared to baselines that use existing LLM-enabled planning approaches, our method is over twice as efficient in terms of time and distance, requires less user interactions, and does not require a full map. Additional resources are provided at: https://zacravichandran.github.io/SPINE.
Towards Adaptive Mechanism Activation in Language Agent
Language Agent could be endowed with different mechanisms for autonomous task accomplishment. Current agents typically rely on fixed mechanisms or a set of mechanisms activated in a predefined order, limiting their adaptation to varied potential task solution structures. To this end, this paper proposes Adaptive Language Agent Mechanism Activation Learning with Self-Exploration (ALAMA), which focuses on optimizing mechanism activation adaptability without reliance on expert models. Initially, it builds a harmonized agent framework (UniAct) to Unify different mechanisms via Actions. Then it leverages a training-efficient optimization method based on self-exploration to enable the UniAct to adaptively activate the appropriate mechanisms according to the potential characteristics of the task. Experimental results demonstrate significant improvements in downstream agent tasks, affirming the effectiveness of our approach in facilitating more dynamic and context-sensitive mechanism activation.
Action Inference by Maximising Evidence: Zero-Shot Imitation from Observation with World Models
Unlike most reinforcement learning agents which require an unrealistic amount of environment interactions to learn a new behaviour, humans excel at learning quickly by merely observing and imitating others. This ability highly depends on the fact that humans have a model of their own embodiment that allows them to infer the most likely actions that led to the observed behaviour. In this paper, we propose Action Inference by Maximising Evidence (AIME) to replicate this behaviour using world models. AIME consists of two distinct phases. In the first phase, the agent learns a world model from its past experience to understand its own body by maximising the ELBO. While in the second phase, the agent is given some observation-only demonstrations of an expert performing a novel task and tries to imitate the expert's behaviour. AIME achieves this by defining a policy as an inference model and maximising the evidence of the demonstration under the policy and world model. Our method is "zero-shot" in the sense that it does not require further training for the world model or online interactions with the environment after given the demonstration. We empirically validate the zero-shot imitation performance of our method on the Walker and Cheetah embodiment of the DeepMind Control Suite and find it outperforms the state-of-the-art baselines. Code is available at: https://github.com/argmax-ai/aime.
Can a Gorilla Ride a Camel? Learning Semantic Plausibility from Text
Modeling semantic plausibility requires commonsense knowledge about the world and has been used as a testbed for exploring various knowledge representations. Previous work has focused specifically on modeling physical plausibility and shown that distributional methods fail when tested in a supervised setting. At the same time, distributional models, namely large pretrained language models, have led to improved results for many natural language understanding tasks. In this work, we show that these pretrained language models are in fact effective at modeling physical plausibility in the supervised setting. We therefore present the more difficult problem of learning to model physical plausibility directly from text. We create a training set by extracting attested events from a large corpus, and we provide a baseline for training on these attested events in a self-supervised manner and testing on a physical plausibility task. We believe results could be further improved by injecting explicit commonsense knowledge into a distributional model.
Zero-Shot Continuous Prompt Transfer: Generalizing Task Semantics Across Language Models
Prompt tuning in natural language processing (NLP) has become an increasingly popular method for adapting large language models to specific tasks. However, the transferability of these prompts, especially continuous prompts, between different models remains a challenge. In this work, we propose a zero-shot continuous prompt transfer method, where source prompts are encoded into relative space and the corresponding target prompts are searched for transferring to target models. Experimental results confirm the effectiveness of our method, showing that 'task semantics' in continuous prompts can be generalized across various language models. Moreover, we find that combining 'task semantics' from multiple source models can further enhance the generalizability of transfer.
Interpretable Word Sense Representations via Definition Generation: The Case of Semantic Change Analysis
We propose using automatically generated natural language definitions of contextualised word usages as interpretable word and word sense representations. Given a collection of usage examples for a target word, and the corresponding data-driven usage clusters (i.e., word senses), a definition is generated for each usage with a specialised Flan-T5 language model, and the most prototypical definition in a usage cluster is chosen as the sense label. We demonstrate how the resulting sense labels can make existing approaches to semantic change analysis more interpretable, and how they can allow users -- historical linguists, lexicographers, or social scientists -- to explore and intuitively explain diachronic trajectories of word meaning. Semantic change analysis is only one of many possible applications of the `definitions as representations' paradigm. Beyond being human-readable, contextualised definitions also outperform token or usage sentence embeddings in word-in-context semantic similarity judgements, making them a new promising type of lexical representation for NLP.
VLABench: A Large-Scale Benchmark for Language-Conditioned Robotics Manipulation with Long-Horizon Reasoning Tasks
General-purposed embodied agents are designed to understand the users' natural instructions or intentions and act precisely to complete universal tasks. Recently, methods based on foundation models especially Vision-Language-Action models (VLAs) have shown a substantial potential to solve language-conditioned manipulation (LCM) tasks well. However, existing benchmarks do not adequately meet the needs of VLAs and relative algorithms. To better define such general-purpose tasks in the context of LLMs and advance the research in VLAs, we present VLABench, an open-source benchmark for evaluating universal LCM task learning. VLABench provides 100 carefully designed categories of tasks, with strong randomization in each category of task and a total of 2000+ objects. VLABench stands out from previous benchmarks in four key aspects: 1) tasks requiring world knowledge and common sense transfer, 2) natural language instructions with implicit human intentions rather than templates, 3) long-horizon tasks demanding multi-step reasoning, and 4) evaluation of both action policies and language model capabilities. The benchmark assesses multiple competencies including understanding of mesh\&texture, spatial relationship, semantic instruction, physical laws, knowledge transfer and reasoning, etc. To support the downstream finetuning, we provide high-quality training data collected via an automated framework incorporating heuristic skills and prior information. The experimental results indicate that both the current state-of-the-art pretrained VLAs and the workflow based on VLMs face challenges in our tasks.
NS3: Neuro-Symbolic Semantic Code Search
Semantic code search is the task of retrieving a code snippet given a textual description of its functionality. Recent work has been focused on using similarity metrics between neural embeddings of text and code. However, current language models are known to struggle with longer, compositional text, and multi-step reasoning. To overcome this limitation, we propose supplementing the query sentence with a layout of its semantic structure. The semantic layout is used to break down the final reasoning decision into a series of lower-level decisions. We use a Neural Module Network architecture to implement this idea. We compare our model - NS3 (Neuro-Symbolic Semantic Search) - to a number of baselines, including state-of-the-art semantic code retrieval methods, and evaluate on two datasets - CodeSearchNet and Code Search and Question Answering. We demonstrate that our approach results in more precise code retrieval, and we study the effectiveness of our modular design when handling compositional queries.
Embodied-RAG: General non-parametric Embodied Memory for Retrieval and Generation
There is no limit to how much a robot might explore and learn, but all of that knowledge needs to be searchable and actionable. Within language research, retrieval augmented generation (RAG) has become the workhouse of large-scale non-parametric knowledge, however existing techniques do not directly transfer to the embodied domain, which is multimodal, data is highly correlated, and perception requires abstraction. To address these challenges, we introduce Embodied-RAG, a framework that enhances the foundational model of an embodied agent with a non-parametric memory system capable of autonomously constructing hierarchical knowledge for both navigation and language generation. Embodied-RAG handles a full range of spatial and semantic resolutions across diverse environments and query types, whether for a specific object or a holistic description of ambiance. At its core, Embodied-RAG's memory is structured as a semantic forest, storing language descriptions at varying levels of detail. This hierarchical organization allows the system to efficiently generate context-sensitive outputs across different robotic platforms. We demonstrate that Embodied-RAG effectively bridges RAG to the robotics domain, successfully handling over 200 explanation and navigation queries across 19 environments, highlighting its promise for general-purpose non-parametric system for embodied agents.
TANGO: Training-free Embodied AI Agents for Open-world Tasks
Large Language Models (LLMs) have demonstrated excellent capabilities in composing various modules together to create programs that can perform complex reasoning tasks on images. In this paper, we propose TANGO, an approach that extends the program composition via LLMs already observed for images, aiming to integrate those capabilities into embodied agents capable of observing and acting in the world. Specifically, by employing a simple PointGoal Navigation model combined with a memory-based exploration policy as a foundational primitive for guiding an agent through the world, we show how a single model can address diverse tasks without additional training. We task an LLM with composing the provided primitives to solve a specific task, using only a few in-context examples in the prompt. We evaluate our approach on three key Embodied AI tasks: Open-Set ObjectGoal Navigation, Multi-Modal Lifelong Navigation, and Open Embodied Question Answering, achieving state-of-the-art results without any specific fine-tuning in challenging zero-shot scenarios.
Investigating and Improving Counter-Stereotypical Action Relation in Text-to-Image Diffusion Models
Text-to-image diffusion models consistently fail at generating counter-stereotypical action relationships (e.g., "mouse chasing cat"), defaulting to frequent stereotypes even when explicitly prompted otherwise. Through systematic investigation, we discover this limitation stems from distributional biases rather than inherent model constraints. Our key insight reveals that while models fail on rare compositions when their inversions are common, they can successfully generate similar intermediate compositions (e.g., "mouse chasing boy"). To test this hypothesis, we develop a Role-Bridging Decomposition framework that leverages these intermediates to gradually teach rare relationships without architectural modifications. We introduce ActionBench, a comprehensive benchmark specifically designed to evaluate action-based relationship generation across stereotypical and counter-stereotypical configurations. Our experiments validate that intermediate compositions indeed facilitate counter-stereotypical generation, with both automatic metrics and human evaluations showing significant improvements over existing approaches. This work not only identifies fundamental biases in current text-to-image systems but demonstrates a promising direction for addressing them through compositional reasoning.
Cognitive Architectures for Language Agents
Recent efforts have augmented large language models (LLMs) with external resources (e.g., the Internet) or internal control flows (e.g., prompt chaining) for tasks requiring grounding or reasoning, leading to a new class of language agents. While these agents have achieved substantial empirical success, we lack a systematic framework to organize existing agents and plan future developments. In this paper, we draw on the rich history of cognitive science and symbolic artificial intelligence to propose Cognitive Architectures for Language Agents (CoALA). CoALA describes a language agent with modular memory components, a structured action space to interact with internal memory and external environments, and a generalized decision-making process to choose actions. We use CoALA to retrospectively survey and organize a large body of recent work, and prospectively identify actionable directions towards more capable agents. Taken together, CoALA contextualizes today's language agents within the broader history of AI and outlines a path towards language-based general intelligence.
In-Context Reinforcement Learning for Variable Action Spaces
Recently, it has been shown that transformers pre-trained on diverse datasets with multi-episode contexts can generalize to new reinforcement learning tasks in-context. A key limitation of previously proposed models is their reliance on a predefined action space size and structure. The introduction of a new action space often requires data re-collection and model re-training, which can be costly for some applications. In our work, we show that it is possible to mitigate this issue by proposing the Headless-AD model that, despite being trained only once, is capable of generalizing to discrete action spaces of variable size, semantic content and order. By experimenting with Bernoulli and contextual bandits, as well as a gridworld environment, we show that Headless-AD exhibits significant capability to generalize to action spaces it has never encountered, even outperforming specialized models trained for a specific set of actions on several environment configurations.
The Code2Text Challenge: Text Generation in Source Code Libraries
We propose a new shared task for tactical data-to-text generation in the domain of source code libraries. Specifically, we focus on text generation of function descriptions from example software projects. Data is drawn from existing resources used for studying the related problem of semantic parser induction (Richardson and Kuhn, 2017b; Richardson and Kuhn, 2017a), and spans a wide variety of both natural languages and programming languages. In this paper, we describe these existing resources, which will serve as training and development data for the task, and discuss plans for building new independent test sets.
Diffusion-Based Co-Speech Gesture Generation Using Joint Text and Audio Representation
This paper describes a system developed for the GENEA (Generation and Evaluation of Non-verbal Behaviour for Embodied Agents) Challenge 2023. Our solution builds on an existing diffusion-based motion synthesis model. We propose a contrastive speech and motion pretraining (CSMP) module, which learns a joint embedding for speech and gesture with the aim to learn a semantic coupling between these modalities. The output of the CSMP module is used as a conditioning signal in the diffusion-based gesture synthesis model in order to achieve semantically-aware co-speech gesture generation. Our entry achieved highest human-likeness and highest speech appropriateness rating among the submitted entries. This indicates that our system is a promising approach to achieve human-like co-speech gestures in agents that carry semantic meaning.
FLIN: A Flexible Natural Language Interface for Web Navigation
AI assistants can now carry out tasks for users by directly interacting with website UIs. Current semantic parsing and slot-filling techniques cannot flexibly adapt to many different websites without being constantly re-trained. We propose FLIN, a natural language interface for web navigation that maps user commands to concept-level actions (rather than low-level UI actions), thus being able to flexibly adapt to different websites and handle their transient nature. We frame this as a ranking problem: given a user command and a webpage, FLIN learns to score the most relevant navigation instruction (involving action and parameter values). To train and evaluate FLIN, we collect a dataset using nine popular websites from three domains. Our results show that FLIN was able to adapt to new websites in a given domain.
BAGEL: Bootstrapping Agents by Guiding Exploration with Language
Following natural language instructions by executing actions in digital environments (e.g. web-browsers and REST APIs) is a challenging task for language model (LM) agents. Unfortunately, LM agents often fail to generalize to new environments without human demonstrations. This work presents BAGEL, a method for bootstrapping LM agents without human supervision. BAGEL converts a seed set of randomly explored trajectories or synthetic instructions, into demonstrations, via round-trips between two noisy LM components: an LM labeler which converts a trajectory into a synthetic instruction, and a zero-shot LM agent which maps the synthetic instruction into a refined trajectory. By performing these round-trips iteratively, BAGEL quickly converts the initial distribution of trajectories towards those that are well-described by natural language. We use BAGEL demonstrations to adapt a zero shot LM agent at test time via in-context learning over retrieved demonstrations, and find improvements of over 2-13% absolute on ToolQA and MiniWob++, with up to 13x reduction in execution failures.
SemEval-2017 Task 1: Semantic Textual Similarity - Multilingual and Cross-lingual Focused Evaluation
Semantic Textual Similarity (STS) measures the meaning similarity of sentences. Applications include machine translation (MT), summarization, generation, question answering (QA), short answer grading, semantic search, dialog and conversational systems. The STS shared task is a venue for assessing the current state-of-the-art. The 2017 task focuses on multilingual and cross-lingual pairs with one sub-track exploring MT quality estimation (MTQE) data. The task obtained strong participation from 31 teams, with 17 participating in all language tracks. We summarize performance and review a selection of well performing methods. Analysis highlights common errors, providing insight into the limitations of existing models. To support ongoing work on semantic representations, the STS Benchmark is introduced as a new shared training and evaluation set carefully selected from the corpus of English STS shared task data (2012-2017).
Grounding Multimodal LLMs to Embodied Agents that Ask for Help with Reinforcement Learning
Embodied agents operating in real-world environments must interpret ambiguous and under-specified human instructions. A capable household robot should recognize ambiguity and ask relevant clarification questions to infer the user intent accurately, leading to more effective task execution. To study this problem, we introduce the Ask-to-Act task, where an embodied agent must fetch a specific object instance given an ambiguous instruction in a home environment. The agent must strategically ask minimal, yet relevant, clarification questions to resolve ambiguity while navigating under partial observability. To solve this problem, we propose a novel approach that fine-tunes multimodal large language models (MLLMs) as vision-language-action (VLA) policies using online reinforcement learning (RL) with LLM-generated rewards. Our method eliminates the need for large-scale human demonstrations or manually engineered rewards for training such agents. We benchmark against strong zero-shot baselines, including GPT-4o, and supervised fine-tuned MLLMs, on our task. Our results demonstrate that our RL-finetuned MLLM outperforms all baselines by a significant margin (19.1-40.3%), generalizing well to novel scenes and tasks. To the best of our knowledge, this is the first demonstration of adapting MLLMs as VLA agents that can act and ask for help using LLM-generated rewards with online RL.
Exploring Spatial Schema Intuitions in Large Language and Vision Models
Despite the ubiquity of large language models (LLMs) in AI research, the question of embodiment in LLMs remains underexplored, distinguishing them from embodied systems in robotics where sensory perception directly informs physical action. Our investigation navigates the intriguing terrain of whether LLMs, despite their non-embodied nature, effectively capture implicit human intuitions about fundamental, spatial building blocks of language. We employ insights from spatial cognitive foundations developed through early sensorimotor experiences, guiding our exploration through the reproduction of three psycholinguistic experiments. Surprisingly, correlations between model outputs and human responses emerge, revealing adaptability without a tangible connection to embodied experiences. Notable distinctions include polarized language model responses and reduced correlations in vision language models. This research contributes to a nuanced understanding of the interplay between language, spatial experiences, and the computations made by large language models. More at https://cisnlp.github.io/Spatial_Schemas/
Meaning Representations from Trajectories in Autoregressive Models
We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text. This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model. Moreover, unlike vector-based representations, distribution-based representations can also model asymmetric relations (e.g., direction of logical entailment, hypernym/hyponym relations) by using algebraic operations between likelihood functions. These ideas are grounded in distributional perspectives on semantics and are connected to standard constructions in automata theory, but to our knowledge they have not been applied to modern language models. We empirically show that the representations obtained from large models align well with human annotations, outperform other zero-shot and prompt-free methods on semantic similarity tasks, and can be used to solve more complex entailment and containment tasks that standard embeddings cannot handle. Finally, we extend our method to represent data from different modalities (e.g., image and text) using multimodal autoregressive models. Our code is available at: https://github.com/tianyu139/meaning-as-trajectories
Vision-Language-Action Models: Concepts, Progress, Applications and Challenges
Vision-Language-Action (VLA) models mark a transformative advancement in artificial intelligence, aiming to unify perception, natural language understanding, and embodied action within a single computational framework. This foundational review presents a comprehensive synthesis of recent advancements in Vision-Language-Action models, systematically organized across five thematic pillars that structure the landscape of this rapidly evolving field. We begin by establishing the conceptual foundations of VLA systems, tracing their evolution from cross-modal learning architectures to generalist agents that tightly integrate vision-language models (VLMs), action planners, and hierarchical controllers. Our methodology adopts a rigorous literature review framework, covering over 80 VLA models published in the past three years. Key progress areas include architectural innovations, parameter-efficient training strategies, and real-time inference accelerations. We explore diverse application domains such as humanoid robotics, autonomous vehicles, medical and industrial robotics, precision agriculture, and augmented reality navigation. The review further addresses major challenges across real-time control, multimodal action representation, system scalability, generalization to unseen tasks, and ethical deployment risks. Drawing from the state-of-the-art, we propose targeted solutions including agentic AI adaptation, cross-embodiment generalization, and unified neuro-symbolic planning. In our forward-looking discussion, we outline a future roadmap where VLA models, VLMs, and agentic AI converge to power socially aligned, adaptive, and general-purpose embodied agents. This work serves as a foundational reference for advancing intelligent, real-world robotics and artificial general intelligence. >Vision-language-action, Agentic AI, AI Agents, Vision-language Models
Interactive Language: Talking to Robots in Real Time
We present a framework for building interactive, real-time, natural language-instructable robots in the real world, and we open source related assets (dataset, environment, benchmark, and policies). Trained with behavioral cloning on a dataset of hundreds of thousands of language-annotated trajectories, a produced policy can proficiently execute an order of magnitude more commands than previous works: specifically we estimate a 93.5% success rate on a set of 87,000 unique natural language strings specifying raw end-to-end visuo-linguo-motor skills in the real world. We find that the same policy is capable of being guided by a human via real-time language to address a wide range of precise long-horizon rearrangement goals, e.g. "make a smiley face out of blocks". The dataset we release comprises nearly 600,000 language-labeled trajectories, an order of magnitude larger than prior available datasets. We hope the demonstrated results and associated assets enable further advancement of helpful, capable, natural-language-interactable robots. See videos at https://interactive-language.github.io.
End-to-End Learning of Semantic Grasping
We consider the task of semantic robotic grasping, in which a robot picks up an object of a user-specified class using only monocular images. Inspired by the two-stream hypothesis of visual reasoning, we present a semantic grasping framework that learns object detection, classification, and grasp planning in an end-to-end fashion. A "ventral stream" recognizes object class while a "dorsal stream" simultaneously interprets the geometric relationships necessary to execute successful grasps. We leverage the autonomous data collection capabilities of robots to obtain a large self-supervised dataset for training the dorsal stream, and use semi-supervised label propagation to train the ventral stream with only a modest amount of human supervision. We experimentally show that our approach improves upon grasping systems whose components are not learned end-to-end, including a baseline method that uses bounding box detection. Furthermore, we show that jointly training our model with auxiliary data consisting of non-semantic grasping data, as well as semantically labeled images without grasp actions, has the potential to substantially improve semantic grasping performance.
Manipulate by Seeing: Creating Manipulation Controllers from Pre-Trained Representations
The field of visual representation learning has seen explosive growth in the past years, but its benefits in robotics have been surprisingly limited so far. Prior work uses generic visual representations as a basis to learn (task-specific) robot action policies (e.g., via behavior cloning). While the visual representations do accelerate learning, they are primarily used to encode visual observations. Thus, action information has to be derived purely from robot data, which is expensive to collect! In this work, we present a scalable alternative where the visual representations can help directly infer robot actions. We observe that vision encoders express relationships between image observations as distances (e.g., via embedding dot product) that could be used to efficiently plan robot behavior. We operationalize this insight and develop a simple algorithm for acquiring a distance function and dynamics predictor, by fine-tuning a pre-trained representation on human collected video sequences. The final method is able to substantially outperform traditional robot learning baselines (e.g., 70% success v.s. 50% for behavior cloning on pick-place) on a suite of diverse real-world manipulation tasks. It can also generalize to novel objects, without using any robot demonstrations during train time. For visualizations of the learned policies please check: https://agi-labs.github.io/manipulate-by-seeing/.
Action abstractions for amortized sampling
As trajectories sampled by policies used by reinforcement learning (RL) and generative flow networks (GFlowNets) grow longer, credit assignment and exploration become more challenging, and the long planning horizon hinders mode discovery and generalization. The challenge is particularly pronounced in entropy-seeking RL methods, such as generative flow networks, where the agent must learn to sample from a structured distribution and discover multiple high-reward states, each of which take many steps to reach. To tackle this challenge, we propose an approach to incorporate the discovery of action abstractions, or high-level actions, into the policy optimization process. Our approach involves iteratively extracting action subsequences commonly used across many high-reward trajectories and `chunking' them into a single action that is added to the action space. In empirical evaluation on synthetic and real-world environments, our approach demonstrates improved sample efficiency performance in discovering diverse high-reward objects, especially on harder exploration problems. We also observe that the abstracted high-order actions are interpretable, capturing the latent structure of the reward landscape of the action space. This work provides a cognitively motivated approach to action abstraction in RL and is the first demonstration of hierarchical planning in amortized sequential sampling.
Spatial Reasoning and Planning for Deep Embodied Agents
Humans can perform complex tasks with long-term objectives by planning, reasoning, and forecasting outcomes of actions. For embodied agents to achieve similar capabilities, they must gain knowledge of the environment transferable to novel scenarios with a limited budget of additional trial and error. Learning-based approaches, such as deep RL, can discover and take advantage of inherent regularities and characteristics of the application domain from data, and continuously improve their performances, however at a cost of large amounts of training data. This thesis explores the development of data-driven techniques for spatial reasoning and planning tasks, focusing on enhancing learning efficiency, interpretability, and transferability across novel scenarios. Four key contributions are made. 1) CALVIN, a differential planner that learns interpretable models of the world for long-term planning. It successfully navigated partially observable 3D environments, such as mazes and indoor rooms, by learning the rewards and state transitions from expert demonstrations. 2) SOAP, an RL algorithm that discovers options unsupervised for long-horizon tasks. Options segment a task into subtasks and enable consistent execution of the subtask. SOAP showed robust performances on history-conditional corridor tasks as well as classical benchmarks such as Atari. 3) LangProp, a code optimisation framework using LLMs to solve embodied agent problems that require reasoning by treating code as learnable policies. The framework successfully generated interpretable code with comparable or superior performance to human-written experts in the CARLA autonomous driving benchmark. 4) Voggite, an embodied agent with a vision-to-action transformer backend that solves complex tasks in Minecraft. It achieved third place in the MineRL BASALT Competition by identifying action triggers to segment tasks into multiple stages.
Evaluating the Moral Beliefs Encoded in LLMs
This paper presents a case study on the design, administration, post-processing, and evaluation of surveys on large language models (LLMs). It comprises two components: (1) A statistical method for eliciting beliefs encoded in LLMs. We introduce statistical measures and evaluation metrics that quantify the probability of an LLM "making a choice", the associated uncertainty, and the consistency of that choice. (2) We apply this method to study what moral beliefs are encoded in different LLMs, especially in ambiguous cases where the right choice is not obvious. We design a large-scale survey comprising 680 high-ambiguity moral scenarios (e.g., "Should I tell a white lie?") and 687 low-ambiguity moral scenarios (e.g., "Should I stop for a pedestrian on the road?"). Each scenario includes a description, two possible actions, and auxiliary labels indicating violated rules (e.g., "do not kill"). We administer the survey to 28 open- and closed-source LLMs. We find that (a) in unambiguous scenarios, most models "choose" actions that align with commonsense. In ambiguous cases, most models express uncertainty. (b) Some models are uncertain about choosing the commonsense action because their responses are sensitive to the question-wording. (c) Some models reflect clear preferences in ambiguous scenarios. Specifically, closed-source models tend to agree with each other.
LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments
Recent advances in Large Language Models (LLMs) have shown inspiring achievements in constructing autonomous agents that rely on language descriptions as inputs. However, it remains unclear how well LLMs can function as few-shot or zero-shot embodied agents in dynamic interactive environments. To address this gap, we introduce LangSuitE, a versatile and simulation-free testbed featuring 6 representative embodied tasks in textual embodied worlds. Compared with previous LLM-based testbeds, LangSuitE (i) offers adaptability to diverse environments without multiple simulation engines, (ii) evaluates agents' capacity to develop ``internalized world knowledge'' with embodied observations, and (iii) allows easy customization of communication and action strategies. To address the embodiment challenge, we devise a novel chain-of-thought (CoT) schema, EmMem, which summarizes embodied states w.r.t. history information. Comprehensive benchmark results illustrate challenges and insights of embodied planning. LangSuitE represents a significant step toward building embodied generalists in the context of language models.
ROCKET-2: Steering Visuomotor Policy via Cross-View Goal Alignment
We aim to develop a goal specification method that is semantically clear, spatially sensitive, and intuitive for human users to guide agent interactions in embodied environments. Specifically, we propose a novel cross-view goal alignment framework that allows users to specify target objects using segmentation masks from their own camera views rather than the agent's observations. We highlight that behavior cloning alone fails to align the agent's behavior with human intent when the human and agent camera views differ significantly. To address this, we introduce two auxiliary objectives: cross-view consistency loss and target visibility loss, which explicitly enhance the agent's spatial reasoning ability. According to this, we develop ROCKET-2, a state-of-the-art agent trained in Minecraft, achieving an improvement in the efficiency of inference 3x to 6x. We show ROCKET-2 can directly interpret goals from human camera views for the first time, paving the way for better human-agent interaction.
ThingTalk: An Extensible, Executable Representation Language for Task-Oriented Dialogues
Task-oriented conversational agents rely on semantic parsers to translate natural language to formal representations. In this paper, we propose the design and rationale of the ThingTalk formal representation, and how the design improves the development of transactional task-oriented agents. ThingTalk is built on four core principles: (1) representing user requests directly as executable statements, covering all the functionality of the agent, (2) representing dialogues formally and succinctly to support accurate contextual semantic parsing, (3) standardizing types and interfaces to maximize reuse between agents, and (4) allowing multiple, independently-developed agents to be composed in a single virtual assistant. ThingTalk is developed as part of the Genie Framework that allows developers to quickly build transactional agents given a database and APIs. We compare ThingTalk to existing representations: SMCalFlow, SGD, TreeDST. Compared to the others, the ThingTalk design is both more general and more cost-effective. Evaluated on the MultiWOZ benchmark, using ThingTalk and associated tools yields a new state of the art accuracy of 79% turn-by-turn.
SCHEMA: State CHangEs MAtter for Procedure Planning in Instructional Videos
We study the problem of procedure planning in instructional videos, which aims to make a goal-oriented sequence of action steps given partial visual state observations. The motivation of this problem is to learn a structured and plannable state and action space. Recent works succeeded in sequence modeling of steps with only sequence-level annotations accessible during training, which overlooked the roles of states in the procedures. In this work, we point out that State CHangEs MAtter (SCHEMA) for procedure planning in instructional videos. We aim to establish a more structured state space by investigating the causal relations between steps and states in procedures. Specifically, we explicitly represent each step as state changes and track the state changes in procedures. For step representation, we leveraged the commonsense knowledge in large language models (LLMs) to describe the state changes of steps via our designed chain-of-thought prompting. For state change tracking, we align visual state observations with language state descriptions via cross-modal contrastive learning, and explicitly model the intermediate states of the procedure using LLM-generated state descriptions. Experiments on CrossTask, COIN, and NIV benchmark datasets demonstrate that our proposed SCHEMA model achieves state-of-the-art performance and obtains explainable visualizations.
Boosting Search Engines with Interactive Agents
This paper presents first successful steps in designing search agents that learn meta-strategies for iterative query refinement in information-seeking tasks. Our approach uses machine reading to guide the selection of refinement terms from aggregated search results. Agents are then empowered with simple but effective search operators to exert fine-grained and transparent control over queries and search results. We develop a novel way of generating synthetic search sessions, which leverages the power of transformer-based language models through (self-)supervised learning. We also present a reinforcement learning agent with dynamically constrained actions that learns interactive search strategies from scratch. Our search agents obtain retrieval and answer quality performance comparable to recent neural methods, using only a traditional term-based BM25 ranking function and interpretable discrete reranking and filtering actions.
Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence
We propose a novel approach for learning interchangeable tokens in language models to obtain an extendable vocabulary that can generalize to new tokens. Our method is designed to address alpha-equivalence, the principle that renaming bound variables in a syntactic expression preserves semantics. This property arises in many formal languages such as temporal logics, in which all proposition symbols represent the same concept but are distinguishable from each other. To handle such tokens, we develop a dual-part embedding approach. The first part is shared across all interchangeable tokens, thereby enforcing that they represent the same core concept. The second part is randomly generated for each token, which enables distinguishability. We evaluate our method in a Transformer encoder-decoder model on two tasks: solving linear temporal logic formulae and copying with extendable vocabulary. Our method demonstrates promising generalization capabilities in addition to introducing a favorable inductive bias for alpha-equivalence.
NaVILA: Legged Robot Vision-Language-Action Model for Navigation
This paper proposes to solve the problem of Vision-and-Language Navigation with legged robots, which not only provides a flexible way for humans to command but also allows the robot to navigate through more challenging and cluttered scenes. However, it is non-trivial to translate human language instructions all the way to low-level leg joint actions. We propose NaVILA, a 2-level framework that unifies a Vision-Language-Action model (VLA) with locomotion skills. Instead of directly predicting low-level actions from VLA, NaVILA first generates mid-level actions with spatial information in the form of language, (e.g., "moving forward 75cm"), which serves as an input for a visual locomotion RL policy for execution. NaVILA substantially improves previous approaches on existing benchmarks. The same advantages are demonstrated in our newly developed benchmarks with IsaacLab, featuring more realistic scenes, low-level controls, and real-world robot experiments. We show more results at https://navila-bot.github.io/
Hybrid Semantic Search: Unveiling User Intent Beyond Keywords
This paper addresses the limitations of traditional keyword-based search in understanding user intent and introduces a novel hybrid search approach that leverages the strengths of non-semantic search engines, Large Language Models (LLMs), and embedding models. The proposed system integrates keyword matching, semantic vector embeddings, and LLM-generated structured queries to deliver highly relevant and contextually appropriate search results. By combining these complementary methods, the hybrid approach effectively captures both explicit and implicit user intent.The paper further explores techniques to optimize query execution for faster response times and demonstrates the effectiveness of this hybrid search model in producing comprehensive and accurate search outcomes.
ConsNet: Learning Consistency Graph for Zero-Shot Human-Object Interaction Detection
We consider the problem of Human-Object Interaction (HOI) Detection, which aims to locate and recognize HOI instances in the form of <human, action, object> in images. Most existing works treat HOIs as individual interaction categories, thus can not handle the problem of long-tail distribution and polysemy of action labels. We argue that multi-level consistencies among objects, actions and interactions are strong cues for generating semantic representations of rare or previously unseen HOIs. Leveraging the compositional and relational peculiarities of HOI labels, we propose ConsNet, a knowledge-aware framework that explicitly encodes the relations among objects, actions and interactions into an undirected graph called consistency graph, and exploits Graph Attention Networks (GATs) to propagate knowledge among HOI categories as well as their constituents. Our model takes visual features of candidate human-object pairs and word embeddings of HOI labels as inputs, maps them into visual-semantic joint embedding space and obtains detection results by measuring their similarities. We extensively evaluate our model on the challenging V-COCO and HICO-DET datasets, and results validate that our approach outperforms state-of-the-arts under both fully-supervised and zero-shot settings. Code is available at https://github.com/yeliudev/ConsNet.
Exploiting Twitter as Source of Large Corpora of Weakly Similar Pairs for Semantic Sentence Embeddings
Semantic sentence embeddings are usually supervisedly built minimizing distances between pairs of embeddings of sentences labelled as semantically similar by annotators. Since big labelled datasets are rare, in particular for non-English languages, and expensive, recent studies focus on unsupervised approaches that require not-paired input sentences. We instead propose a language-independent approach to build large datasets of pairs of informal texts weakly similar, without manual human effort, exploiting Twitter's intrinsic powerful signals of relatedness: replies and quotes of tweets. We use the collected pairs to train a Transformer model with triplet-like structures, and we test the generated embeddings on Twitter NLP similarity tasks (PIT and TURL) and STSb. We also introduce four new sentence ranking evaluation benchmarks of informal texts, carefully extracted from the initial collections of tweets, proving not only that our best model learns classical Semantic Textual Similarity, but also excels on tasks where pairs of sentences are not exact paraphrases. Ablation studies reveal how increasing the corpus size influences positively the results, even at 2M samples, suggesting that bigger collections of Tweets still do not contain redundant information about semantic similarities.
Experimenting with Transitive Verbs in a DisCoCat
Formal and distributional semantic models offer complementary benefits in modeling meaning. The categorical compositional distributional (DisCoCat) model of meaning of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) combines aspected of both to provide a general framework in which meanings of words, obtained distributionally, are composed using methods from the logical setting to form sentence meaning. Concrete consequences of this general abstract setting and applications to empirical data are under active study (Grefenstette et al., arxiv:1101.0309; Grefenstette and Sadrzadeh, arXiv:1106.4058v1 [cs.CL]). . In this paper, we extend this study by examining transitive verbs, represented as matrices in a DisCoCat. We discuss three ways of constructing such matrices, and evaluate each method in a disambiguation task developed by Grefenstette and Sadrzadeh (arXiv:1106.4058v1 [cs.CL]).
3D-VLA: A 3D Vision-Language-Action Generative World Model
Recent vision-language-action (VLA) models rely on 2D inputs, lacking integration with the broader realm of the 3D physical world. Furthermore, they perform action prediction by learning a direct mapping from perception to action, neglecting the vast dynamics of the world and the relations between actions and dynamics. In contrast, human beings are endowed with world models that depict imagination about future scenarios to plan actions accordingly. To this end, we propose 3D-VLA by introducing a new family of embodied foundation models that seamlessly link 3D perception, reasoning, and action through a generative world model. Specifically, 3D-VLA is built on top of a 3D-based large language model (LLM), and a set of interaction tokens is introduced to engage with the embodied environment. Furthermore, to inject generation abilities into the model, we train a series of embodied diffusion models and align them into the LLM for predicting the goal images and point clouds. To train our 3D-VLA, we curate a large-scale 3D embodied instruction dataset by extracting vast 3D-related information from existing robotics datasets. Our experiments on held-in datasets demonstrate that 3D-VLA significantly improves the reasoning, multimodal generation, and planning capabilities in embodied environments, showcasing its potential in real-world applications.
SemDeDup: Data-efficient learning at web-scale through semantic deduplication
Progress in machine learning has been driven in large part by massive increases in data. However, large web-scale datasets such as LAION are largely uncurated beyond searches for exact duplicates, potentially leaving much redundancy. Here, we introduce SemDeDup, a method which leverages embeddings from pre-trained models to identify and remove semantic duplicates: data pairs which are semantically similar, but not exactly identical. Removing semantic duplicates preserves performance and speeds up learning. Analyzing a subset of LAION, we show that SemDeDup can remove 50% of the data with minimal performance loss, effectively halving training time. Moreover, performance increases out of distribution. Also, analyzing language models trained on C4, a partially curated dataset, we show that SemDeDup improves over prior approaches while providing efficiency gains. SemDeDup provides an example of how simple ways of leveraging quality embeddings can be used to make models learn faster with less data.
SynWorld: Virtual Scenario Synthesis for Agentic Action Knowledge Refinement
In the interaction between agents and their environments, agents expand their capabilities by planning and executing actions. However, LLM-based agents face substantial challenges when deployed in novel environments or required to navigate unconventional action spaces. To empower agents to autonomously explore environments, optimize workflows, and enhance their understanding of actions, we propose SynWorld, a framework that allows agents to synthesize possible scenarios with multi-step action invocation within the action space and perform Monte Carlo Tree Search (MCTS) exploration to effectively refine their action knowledge in the current environment. Our experiments demonstrate that SynWorld is an effective and general approach to learning action knowledge in new environments. Code is available at https://github.com/zjunlp/SynWorld.
From Interaction to Impact: Towards Safer AI Agents Through Understanding and Evaluating UI Operation Impacts
With advances in generative AI, there is increasing work towards creating autonomous agents that can manage daily tasks by operating user interfaces (UIs). While prior research has studied the mechanics of how AI agents might navigate UIs and understand UI structure, the effects of agents and their autonomous actions-particularly those that may be risky or irreversible-remain under-explored. In this work, we investigate the real-world impacts and consequences of UI actions by AI agents. We began by developing a taxonomy of the impacts of UI actions through a series of workshops with domain experts. Following this, we conducted a data synthesis study to gather realistic UI screen traces and action data that users perceive as impactful. We then used our impact categories to annotate our collected data and data repurposed from existing UI navigation datasets. Our quantitative evaluations of different large language models (LLMs) and variants demonstrate how well different LLMs can understand the impacts of UI actions that might be taken by an agent. We show that our taxonomy enhances the reasoning capabilities of these LLMs for understanding the impacts of UI actions, but our findings also reveal significant gaps in their ability to reliably classify more nuanced or complex categories of impact.
Visual Goal-Step Inference using wikiHow
Understanding what sequence of steps are needed to complete a goal can help artificial intelligence systems reason about human activities. Past work in NLP has examined the task of goal-step inference for text. We introduce the visual analogue. We propose the Visual Goal-Step Inference (VGSI) task, where a model is given a textual goal and must choose which of four images represents a plausible step towards that goal. With a new dataset harvested from wikiHow consisting of 772,277 images representing human actions, we show that our task is challenging for state-of-the-art multimodal models. Moreover, the multimodal representation learned from our data can be effectively transferred to other datasets like HowTo100m, increasing the VGSI accuracy by 15 - 20%. Our task will facilitate multimodal reasoning about procedural events.
SemGrasp: Semantic Grasp Generation via Language Aligned Discretization
Generating natural human grasps necessitates consideration of not just object geometry but also semantic information. Solely depending on object shape for grasp generation confines the applications of prior methods in downstream tasks. This paper presents a novel semantic-based grasp generation method, termed SemGrasp, which generates a static human grasp pose by incorporating semantic information into the grasp representation. We introduce a discrete representation that aligns the grasp space with semantic space, enabling the generation of grasp postures in accordance with language instructions. A Multimodal Large Language Model (MLLM) is subsequently fine-tuned, integrating object, grasp, and language within a unified semantic space. To facilitate the training of SemGrasp, we have compiled a large-scale, grasp-text-aligned dataset named CapGrasp, featuring about 260k detailed captions and 50k diverse grasps. Experimental findings demonstrate that SemGrasp efficiently generates natural human grasps in alignment with linguistic intentions. Our code, models, and dataset are available publicly at: https://kailinli.github.io/SemGrasp.
CLIP4MC: An RL-Friendly Vision-Language Model for Minecraft
One of the essential missions in the AI research community is to build an autonomous embodied agent that can attain high-level performance across a wide spectrum of tasks. However, acquiring reward/penalty in all open-ended tasks is unrealistic, making the Reinforcement Learning (RL) training procedure impossible. In this paper, we propose a novel cross-modal contrastive learning framework architecture, CLIP4MC, aiming to learn an RL-friendly vision-language model that serves as a reward function for open-ended tasks. Therefore, no further task-specific reward design is needed. Intuitively, it is more reasonable for the model to address the similarity between the video snippet and the language prompt at both the action and entity levels. To this end, a motion encoder is proposed to capture the motion embeddings across different intervals. The correlation scores are then used to construct the auxiliary reward signal for RL agents. Moreover, we construct a neat YouTube dataset based on the large-scale YouTube database provided by MineDojo. Specifically, two rounds of filtering operations guarantee that the dataset covers enough essential information and that the video-text pair is highly correlated. Empirically, we show that the proposed method achieves better performance on RL tasks compared with baselines.
UbiPhysio: Support Daily Functioning, Fitness, and Rehabilitation with Action Understanding and Feedback in Natural Language
We introduce UbiPhysio, a milestone framework that delivers fine-grained action description and feedback in natural language to support people's daily functioning, fitness, and rehabilitation activities. This expert-like capability assists users in properly executing actions and maintaining engagement in remote fitness and rehabilitation programs. Specifically, the proposed UbiPhysio framework comprises a fine-grained action descriptor and a knowledge retrieval-enhanced feedback module. The action descriptor translates action data, represented by a set of biomechanical movement features we designed based on clinical priors, into textual descriptions of action types and potential movement patterns. Building on physiotherapeutic domain knowledge, the feedback module provides clear and engaging expert feedback. We evaluated UbiPhysio's performance through extensive experiments with data from 104 diverse participants, collected in a home-like setting during 25 types of everyday activities and exercises. We assessed the quality of the language output under different tuning strategies using standard benchmarks. We conducted a user study to gather insights from clinical physiotherapists and potential users about our framework. Our initial tests show promise for deploying UbiPhysio in real-life settings without specialized devices.
Is Prompt All You Need? No. A Comprehensive and Broader View of Instruction Learning
Task semantics can be expressed by a set of input-to-output examples or a piece of textual instruction. Conventional machine learning approaches for natural language processing (NLP) mainly rely on the availability of large-scale sets of task-specific examples. Two issues arise: first, collecting task-specific labeled examples does not apply to scenarios where tasks may be too complicated or costly to annotate, or the system is required to handle a new task immediately; second, this is not user-friendly since end-users are probably more willing to provide task description rather than a set of examples before using the system. Therefore, the community is paying increasing interest in a new supervision-seeking paradigm for NLP: learning from task instructions. Despite its impressive progress, there are some common issues that the community struggles with. This survey paper tries to summarize and provide insights into the current research on instruction learning, particularly by answering the following questions: (i) What is task instruction, and what instruction types exist? (ii) How to model instructions? (iii) What factors influence and explain the instructions' performance? (iv) What challenges remain in instruction learning? To our knowledge, this is the first comprehensive survey about textual instructions.
TACO: Learning Multi-modal Action Models with Synthetic Chains-of-Thought-and-Action
While open-source multi-modal language models perform well on simple question answering tasks, they often fail on complex questions that require multiple capabilities, such as fine-grained recognition, visual grounding, and reasoning, and that demand multi-step solutions. We present TACO, a family of multi-modal large action models designed to improve performance on such complex, multi-step, and multi-modal tasks. During inference, TACO produces chains-of-thought-and-action (CoTA), executes intermediate steps by invoking external tools such as OCR, depth estimation and calculator, then integrates both the thoughts and action outputs to produce coherent responses. To train TACO, we create a large dataset of over 1M synthetic CoTA traces generated with GPT-4o and Python programs. We then experiment with various data filtering and mixing techniques and obtain a final subset of 293K high-quality CoTA examples. This dataset enables TACO to learn complex reasoning and action paths, surpassing existing models trained on instruction tuning data with only direct answers. Our model TACO outperforms the instruction-tuned baseline across 8 benchmarks, achieving a 3.6% improvement on average, with gains of up to 15% in MMVet tasks involving OCR, mathematical reasoning, and spatial reasoning. Training on high-quality CoTA traces sets a new standard for complex multi-modal reasoning, highlighting the need for structured, multi-step instruction tuning in advancing open-source mutli-modal models' capabilities.
InstructRAG: Leveraging Retrieval-Augmented Generation on Instruction Graphs for LLM-Based Task Planning
Recent advancements in large language models (LLMs) have enabled their use as agents for planning complex tasks. Existing methods typically rely on a thought-action-observation (TAO) process to enhance LLM performance, but these approaches are often constrained by the LLMs' limited knowledge of complex tasks. Retrieval-augmented generation (RAG) offers new opportunities by leveraging external databases to ground generation in retrieved information. In this paper, we identify two key challenges (enlargability and transferability) in applying RAG to task planning. We propose InstructRAG, a novel solution within a multi-agent meta-reinforcement learning framework, to address these challenges. InstructRAG includes a graph to organize past instruction paths (sequences of correct actions), an RL-Agent with Reinforcement Learning to expand graph coverage for enlargability, and an ML-Agent with Meta-Learning to improve task generalization for transferability. The two agents are trained end-to-end to optimize overall planning performance. Our experiments on four widely used task planning datasets demonstrate that InstructRAG significantly enhances performance and adapts efficiently to new tasks, achieving up to a 19.2% improvement over the best existing approach.
Scaling Autonomous Agents via Automatic Reward Modeling And Planning
Large language models (LLMs) have demonstrated remarkable capabilities across a range of text-generation tasks. However, LLMs still struggle with problems requiring multi-step decision-making and environmental feedback, such as online shopping, scientific reasoning, and mathematical problem-solving. Unlike pure text data, collecting large-scale decision-making data is challenging. Moreover, many powerful LLMs are only accessible through APIs, which hinders their fine-tuning for agent tasks due to cost and complexity. To address LLM agents' limitations, we propose a framework that can automatically learn a reward model from the environment without human annotations. This model can be used to evaluate the action trajectories of LLM agents and provide heuristics for task planning. Specifically, our approach involves employing one LLM-based agent to navigate an environment randomly, generating diverse action trajectories. Subsequently, a separate LLM is leveraged to assign a task intent and synthesize a negative response alongside the correct response for each trajectory. These triplets (task intent, positive response, and negative response) are then utilized as training data to optimize a reward model capable of scoring action trajectories. The effectiveness and generalizability of our framework are demonstrated through evaluations conducted on different agent benchmarks. In conclusion, our proposed framework represents a significant advancement in enhancing LLM agents' decision-making capabilities. By automating the learning of reward models, we overcome the challenges of data scarcity and API limitations, potentially revolutionizing the application of LLMs in complex and interactive environments. This research paves the way for more sophisticated AI agents capable of tackling a wide range of real-world problems requiring multi-step decision-making.
Intent Induction from Conversations for Task-Oriented Dialogue Track at DSTC 11
With increasing demand for and adoption of virtual assistants, recent work has investigated ways to accelerate bot schema design through the automatic induction of intents or the induction of slots and dialogue states. However, a lack of dedicated benchmarks and standardized evaluation has made progress difficult to track and comparisons between systems difficult to make. This challenge track, held as part of the Eleventh Dialog Systems Technology Challenge, introduces a benchmark that aims to evaluate methods for the automatic induction of customer intents in a realistic setting of customer service interactions between human agents and customers. We propose two subtasks for progressively tackling the automatic induction of intents and corresponding evaluation methodologies. We then present three datasets suitable for evaluating the tasks and propose simple baselines. Finally, we summarize the submissions and results of the challenge track, for which we received submissions from 34 teams.
Synatra: Turning Indirect Knowledge into Direct Demonstrations for Digital Agents at Scale
LLMs can now act as autonomous agents that interact with digital environments and complete specific objectives (e.g., arranging an online meeting). However, accuracy is still far from satisfactory, partly due to a lack of large-scale, direct demonstrations for digital tasks. Obtaining supervised data from humans is costly, and automatic data collection through exploration or reinforcement learning relies on complex environmental and content setup, resulting in datasets that lack comprehensive coverage of various scenarios. On the other hand, there is abundant knowledge that may indirectly assist task completion, such as online tutorials that were created for human consumption. In this work, we present Synatra, an approach that effectively transforms this indirect knowledge into direct supervision at scale. We define different types of indirect knowledge, and carefully study the available sources to obtain it, methods to encode the structure of direct demonstrations, and finally methods to transform indirect knowledge into direct demonstrations. We use 100k such synthetically-created demonstrations to finetune a 7B CodeLlama, and demonstrate that the resulting agent surpasses all comparably sized models on three web-based task benchmarks Mind2Web, MiniWoB++ and WebArena, as well as surpassing GPT-3.5 on WebArena and Mind2Web. In addition, while synthetic demonstrations prove to be only 3% the cost of human demonstrations (at $0.031 each), we show that the synthetic demonstrations can be more effective than an identical number of human demonstrations collected from limited domains.
Dynamic Normativity: Necessary and Sufficient Conditions for Value Alignment
The critical inquiry pervading the realm of Philosophy, and perhaps extending its influence across all Humanities disciplines, revolves around the intricacies of morality and normativity. Surprisingly, in recent years, this thematic thread has woven its way into an unexpected domain, one not conventionally associated with pondering "what ought to be": the field of artificial intelligence (AI) research. Central to morality and AI, we find "alignment", a problem related to the challenges of expressing human goals and values in a manner that artificial systems can follow without leading to unwanted adversarial effects. More explicitly and with our current paradigm of AI development in mind, we can think of alignment as teaching human values to non-anthropomorphic entities trained through opaque, gradient-based learning techniques. This work addresses alignment as a technical-philosophical problem that requires solid philosophical foundations and practical implementations that bring normative theory to AI system development. To accomplish this, we propose two sets of necessary and sufficient conditions that, we argue, should be considered in any alignment process. While necessary conditions serve as metaphysical and metaethical roots that pertain to the permissibility of alignment, sufficient conditions establish a blueprint for aligning AI systems under a learning-based paradigm. After laying such foundations, we present implementations of this approach by using state-of-the-art techniques and methods for aligning general-purpose language systems. We call this framework Dynamic Normativity. Its central thesis is that any alignment process under a learning paradigm that cannot fulfill its necessary and sufficient conditions will fail in producing aligned systems.
Prioritized Semantic Learning for Zero-shot Instance Navigation
We study zero-shot instance navigation, in which the agent navigates to a specific object without using object annotations for training. Previous object navigation approaches apply the image-goal navigation (ImageNav) task (go to the location of an image) for pretraining, and transfer the agent to achieve object goals using a vision-language model. However, these approaches lead to issues of semantic neglect, where the model fails to learn meaningful semantic alignments. In this paper, we propose a Prioritized Semantic Learning (PSL) method to improve the semantic understanding ability of navigation agents. Specifically, a semantic-enhanced PSL agent is proposed and a prioritized semantic training strategy is introduced to select goal images that exhibit clear semantic supervision and relax the reward function from strict exact view matching. At inference time, a semantic expansion inference scheme is designed to preserve the same granularity level of the goal semantic as training. Furthermore, for the popular HM3D environment, we present an Instance Navigation (InstanceNav) task that requires going to a specific object instance with detailed descriptions, as opposed to the Object Navigation (ObjectNav) task where the goal is defined merely by the object category. Our PSL agent outperforms the previous state-of-the-art by 66% on zero-shot ObjectNav in terms of success rate and is also superior on the new InstanceNav task. Code will be released at https://github.com/XinyuSun/PSL-InstanceNav.
Teaching Embodied Reinforcement Learning Agents: Informativeness and Diversity of Language Use
In real-world scenarios, it is desirable for embodied agents to have the ability to leverage human language to gain explicit or implicit knowledge for learning tasks. Despite recent progress, most previous approaches adopt simple low-level instructions as language inputs, which may not reflect natural human communication. It's not clear how to incorporate rich language use to facilitate task learning. To address this question, this paper studies different types of language inputs in facilitating reinforcement learning (RL) embodied agents. More specifically, we examine how different levels of language informativeness (i.e., feedback on past behaviors and future guidance) and diversity (i.e., variation of language expressions) impact agent learning and inference. Our empirical results based on four RL benchmarks demonstrate that agents trained with diverse and informative language feedback can achieve enhanced generalization and fast adaptation to new tasks. These findings highlight the pivotal role of language use in teaching embodied agents new tasks in an open world. Project website: https://github.com/sled-group/Teachable_RL
Multi-Step Dialogue Workflow Action Prediction
In task-oriented dialogue, a system often needs to follow a sequence of actions, called a workflow, that complies with a set of guidelines in order to complete a task. In this paper, we propose the novel problem of multi-step workflow action prediction, in which the system predicts multiple future workflow actions. Accurate prediction of multiple steps allows for multi-turn automation, which can free up time to focus on more complex tasks. We propose three modeling approaches that are simple to implement yet lead to more action automation: 1) fine-tuning on a training dataset, 2) few-shot in-context learning leveraging retrieval and large language model prompting, and 3) zero-shot graph traversal, which aggregates historical action sequences into a graph for prediction. We show that multi-step action prediction produces features that improve accuracy on downstream dialogue tasks like predicting task success, and can increase automation of steps by 20% without requiring as much feedback from a human overseeing the system.
PhiloBERTA: A Transformer-Based Cross-Lingual Analysis of Greek and Latin Lexicons
We present PhiloBERTA, a cross-lingual transformer model that measures semantic relationships between ancient Greek and Latin lexicons. Through analysis of selected term pairs from classical texts, we use contextual embeddings and angular similarity metrics to identify precise semantic alignments. Our results show that etymologically related pairs demonstrate significantly higher similarity scores, particularly for abstract philosophical concepts such as epist\=em\=e (scientia) and dikaiosyn\=e (iustitia). Statistical analysis reveals consistent patterns in these relationships (p = 0.012), with etymologically related pairs showing remarkably stable semantic preservation compared to control pairs. These findings establish a quantitative framework for examining how philosophical concepts moved between Greek and Latin traditions, offering new methods for classical philological research.
Contrastive Learning with Logic-driven Data Augmentation for Logical Reasoning over Text
Pre-trained large language model (LLM) is under exploration to perform NLP tasks that may require logical reasoning. Logic-driven data augmentation for representation learning has been shown to improve the performance of tasks requiring logical reasoning, but most of these data rely on designed templates and therefore lack generalization. In this regard, we propose an AMR-based logical equivalence-driven data augmentation method (AMR-LE) for generating logically equivalent data. Specifically, we first parse a text into the form of an AMR graph, next apply four logical equivalence laws (contraposition, double negation, commutative and implication laws) on the AMR graph to construct a logically equivalent/inequivalent AMR graph, and then convert it into a logically equivalent/inequivalent sentence. To help the model to better learn these logical equivalence laws, we propose a logical equivalence-driven contrastive learning training paradigm, which aims to distinguish the difference between logical equivalence and inequivalence. Our AMR-LE (Ensemble) achieves #2 on the ReClor leaderboard https://eval.ai/web/challenges/challenge-page/503/leaderboard/1347 . Our model shows better performance on seven downstream tasks, including ReClor, LogiQA, MNLI, MRPC, RTE, QNLI, and QQP. The source code and dataset are public at https://github.com/Strong-AI-Lab/Logical-Equivalence-driven-AMR-Data-Augmentation-for-Representation-Learning .
Zero-Shot Retrieval with Search Agents and Hybrid Environments
Learning to search is the task of building artificial agents that learn to autonomously use a search box to find information. So far, it has been shown that current language models can learn symbolic query reformulation policies, in combination with traditional term-based retrieval, but fall short of outperforming neural retrievers. We extend the previous learning to search setup to a hybrid environment, which accepts discrete query refinement operations, after a first-pass retrieval step via a dual encoder. Experiments on the BEIR task show that search agents, trained via behavioral cloning, outperform the underlying search system based on a combined dual encoder retriever and cross encoder reranker. Furthermore, we find that simple heuristic Hybrid Retrieval Environments (HRE) can improve baseline performance by several nDCG points. The search agent based on HRE (HARE) matches state-of-the-art performance, balanced in both zero-shot and in-domain evaluations, via interpretable actions, and at twice the speed.
LEGO: Learning EGOcentric Action Frame Generation via Visual Instruction Tuning
Generating instructional images of human daily actions from an egocentric viewpoint serves a key step towards efficient skill transfer. In this paper, we introduce a novel problem -- egocentric action frame generation. The goal is to synthesize the action frame conditioning on the user prompt question and an input egocentric image that captures user's environment. Notably, existing egocentric datasets lack the detailed annotations that describe the execution of actions. Additionally, the diffusion-based image manipulation models fail to control the state change of an action within the corresponding egocentric image pixel space. To this end, we finetune a visual large language model (VLLM) via visual instruction tuning for curating the enriched action descriptions to address our proposed problem. Moreover, we propose to Learn EGOcentric (LEGO) action frame generation using image and text embeddings from VLLM as additional conditioning. We validate our proposed model on two egocentric datasets -- Ego4D and Epic-Kitchens. Our experiments show prominent improvement over prior image manipulation models in both quantitative and qualitative evaluation. We also conduct detailed ablation studies and analysis to provide insights on our method.
KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents
Large Language Models (LLMs) have demonstrated great potential in complex reasoning tasks, yet they fall short when tackling more sophisticated challenges, especially when interacting with environments through generating executable actions. This inadequacy primarily stems from the lack of built-in action knowledge in language agents, which fails to effectively guide the planning trajectories during task solving and results in planning hallucination. To address this issue, we introduce KnowAgent, a novel approach designed to enhance the planning capabilities of LLMs by incorporating explicit action knowledge. Specifically, KnowAgent employs an action knowledge base and a knowledgeable self-learning strategy to constrain the action path during planning, enabling more reasonable trajectory synthesis, and thereby enhancing the planning performance of language agents. Experimental results on HotpotQA and ALFWorld based on various backbone models demonstrate that KnowAgent can achieve comparable or superior performance to existing baselines. Further analysis indicates the effectiveness of KnowAgent in terms of planning hallucinations mitigation. Code is available in https://github.com/zjunlp/KnowAgent.
Towards A Unified Agent with Foundation Models
Language Models and Vision Language Models have recently demonstrated unprecedented capabilities in terms of understanding human intentions, reasoning, scene understanding, and planning-like behaviour, in text form, among many others. In this work, we investigate how to embed and leverage such abilities in Reinforcement Learning (RL) agents. We design a framework that uses language as the core reasoning tool, exploring how this enables an agent to tackle a series of fundamental RL challenges, such as efficient exploration, reusing experience data, scheduling skills, and learning from observations, which traditionally require separate, vertically designed algorithms. We test our method on a sparse-reward simulated robotic manipulation environment, where a robot needs to stack a set of objects. We demonstrate substantial performance improvements over baselines in exploration efficiency and ability to reuse data from offline datasets, and illustrate how to reuse learned skills to solve novel tasks or imitate videos of human experts.
CARTIER: Cartographic lAnguage Reasoning Targeted at Instruction Execution for Robots
This work explores the capacity of large language models (LLMs) to address problems at the intersection of spatial planning and natural language interfaces for navigation.Our focus is on following relatively complex instructions that are more akin to natural conversation than traditional explicit procedural directives seen in robotics. Unlike most prior work, where navigation directives are provided as imperative commands (e.g., go to the fridge), we examine implicit directives within conversational interactions. We leverage the 3D simulator AI2Thor to create complex and repeatable scenarios at scale, and augment it by adding complex language queries for 40 object types. We demonstrate that a robot can better parse descriptive language queries than existing methods by using an LLM to interpret the user interaction in the context of a list of the objects in the scene.
ICAL: Continual Learning of Multimodal Agents by Transforming Trajectories into Actionable Insights
Large-scale generative language and vision-language models (LLMs and VLMs) excel in few-shot in-context learning for decision making and instruction following. However, they require high-quality exemplar demonstrations to be included in their context window. In this work, we ask: Can LLMs and VLMs generate their own prompt examples from generic, sub-optimal demonstrations? We propose In-Context Abstraction Learning (ICAL), a method that builds a memory of multimodal experience insights from sub-optimal demonstrations and human feedback. Given a noisy demonstration in a new domain, VLMs abstract the trajectory into a general program by fixing inefficient actions and annotating cognitive abstractions: task relationships, object state changes, temporal subgoals, and task construals. These abstractions are refined and adapted interactively through human feedback while the agent attempts to execute the trajectory in a similar environment. The resulting abstractions, when used as exemplars in the prompt, significantly improve decision-making in retrieval-augmented LLM and VLM agents. Our ICAL agent surpasses the state-of-the-art in dialogue-based instruction following in TEACh, multimodal web agents in VisualWebArena, and action anticipation in Ego4D. In TEACh, we achieve a 12.6% improvement in goal-condition success. In VisualWebArena, our task success rate improves over the SOTA from 14.3% to 22.7%. In Ego4D action forecasting, we improve over few-shot GPT-4V and remain competitive with supervised models. We show finetuning our retrieval-augmented in-context agent yields additional improvements. Our approach significantly reduces reliance on expert-crafted examples and consistently outperforms in-context learning from action plans that lack such insights.
Analyzing Transformer Dynamics as Movement through Embedding Space
Transformer based language models exhibit intelligent behaviors such as understanding natural language, recognizing patterns, acquiring knowledge, reasoning, planning, reflecting and using tools. This paper explores how their underlying mechanics give rise to intelligent behaviors. Towards that end, we propose framing Transformer dynamics as movement through embedding space. Examining Transformers through this perspective reveals key insights, establishing a Theory of Transformers: 1) Intelligent behaviours map to paths in Embedding Space which, the Transformer random-walks through during inferencing. 2) LM training learns a probability distribution over all possible paths. `Intelligence' is learnt by assigning higher probabilities to paths representing intelligent behaviors. No learning can take place in-context; context only narrows the subset of paths sampled during decoding. 5) The Transformer is a self-mapping composition function, folding a context sequence into a context-vector such that it's proximity to a token-vector reflects its co-occurrence and conditioned probability. Thus, the physical arrangement of vectors in Embedding Space determines path probabilities. 6) Context vectors are composed by aggregating features of the sequence's tokens via a process we call the encoding walk. Attention contributes a - potentially redundant - association-bias to this process. 7) This process is comprised of two principal operation types: filtering (data independent) and aggregation (data dependent). This generalization unifies Transformers with other sequence models. Building upon this foundation, we formalize a popular semantic interpretation of embeddings into a ``concept-space theory'' and find some evidence of it's validity.
Language Models Trained to do Arithmetic Predict Human Risky and Intertemporal Choice
The observed similarities in the behavior of humans and Large Language Models (LLMs) have prompted researchers to consider the potential of using LLMs as models of human cognition. However, several significant challenges must be addressed before LLMs can be legitimately regarded as cognitive models. For instance, LLMs are trained on far more data than humans typically encounter, and may have been directly trained on human data in specific cognitive tasks or aligned with human preferences. Consequently, the origins of these behavioral similarities are not well understood. In this paper, we propose a novel way to enhance the utility of LLMs as cognitive models. This approach involves (i) leveraging computationally equivalent tasks that both an LLM and a rational agent need to master for solving a cognitive problem and (ii) examining the specific task distributions required for an LLM to exhibit human-like behaviors. We apply this approach to decision-making -- specifically risky and intertemporal choice -- where the key computationally equivalent task is the arithmetic of expected value calculations. We show that an LLM pretrained on an ecologically valid arithmetic dataset, which we call Arithmetic-GPT, predicts human behavior better than many traditional cognitive models. Pretraining LLMs on ecologically valid arithmetic datasets is sufficient to produce a strong correspondence between these models and human decision-making. Our results also suggest that LLMs used as cognitive models should be carefully investigated via ablation studies of the pretraining data.
InSpire: Vision-Language-Action Models with Intrinsic Spatial Reasoning
Leveraging pretrained Vision-Language Models (VLMs) to map language instruction and visual observations to raw low-level actions, Vision-Language-Action models (VLAs) hold great promise for achieving general-purpose robotic systems. Despite their advancements, existing VLAs tend to spuriously correlate task-irrelevant visual features with actions, limiting their generalization capacity beyond the training data. To tackle this challenge, we propose Intrinsic Spatial Reasoning (InSpire), a simple yet effective approach that mitigates the adverse effects of spurious correlations by boosting the spatial reasoning ability of VLAs. Specifically, InSpire redirects the VLA's attention to task-relevant factors by prepending the question "In which direction is the [object] relative to the robot?" to the language instruction and aligning the answer "right/left/up/down/front/back/grasped" and predicted actions with the ground-truth. Notably, InSpire can be used as a plugin to enhance existing autoregressive VLAs, requiring no extra training data or interaction with other large models. Extensive experimental results in both simulation and real-world environments demonstrate the effectiveness and flexibility of our approach. Our code, pretrained models and demos are publicly available at: https://Koorye.github.io/proj/Inspire.
Automatic Design of Semantic Similarity Ensembles Using Grammatical Evolution
Semantic similarity measures are widely used in natural language processing to catalyze various computer-related tasks. However, no single semantic similarity measure is the most appropriate for all tasks, and researchers often use ensemble strategies to ensure performance. This research work proposes a method for automatically designing semantic similarity ensembles. In fact, our proposed method uses grammatical evolution, for the first time, to automatically select and aggregate measures from a pool of candidates to create an ensemble that maximizes correlation to human judgment. The method is evaluated on several benchmark datasets and compared to state-of-the-art ensembles, showing that it can significantly improve similarity assessment accuracy and outperform existing methods in some cases. As a result, our research demonstrates the potential of using grammatical evolution to automatically compare text and prove the benefits of using ensembles for semantic similarity tasks. The source code that illustrates our approach can be downloaded from https://github.com/jorge-martinez-gil/sesige.
Reinforcing Language Agents via Policy Optimization with Action Decomposition
Language models as intelligent agents push the boundaries of sequential decision-making agents but struggle with limited knowledge of environmental dynamics and exponentially huge action space. Recent efforts like GLAM and TWOSOME manually constrain the action space to a restricted subset and employ reinforcement learning to align agents' knowledge with specific environments. However, they overlook fine-grained credit assignments for intra-action tokens, which is essential for efficient language agent optimization, and rely on human's prior knowledge to restrict action space. This paper proposes decomposing language agent optimization from the action level to the token level, offering finer supervision for each intra-action token and manageable optimization complexity in environments with unrestricted action spaces. Beginning with the simplification of flattening all actions, we theoretically explore the discrepancies between action-level optimization and this naive token-level optimization. We then derive the Bellman backup with Action Decomposition (BAD) to integrate credit assignments for both intra-action and inter-action tokens, effectively eliminating the discrepancies. Implementing BAD within the PPO algorithm, we introduce Policy Optimization with Action Decomposition (POAD). POAD benefits from a finer-grained credit assignment process and lower optimization complexity, leading to enhanced learning efficiency and generalization abilities in aligning language agents with interactive environments. We validate POAD across diverse testbeds, with results affirming the advantages of our approach and the correctness of our theoretical analysis.
Goal Representations for Instruction Following: A Semi-Supervised Language Interface to Control
Our goal is for robots to follow natural language instructions like "put the towel next to the microwave." But getting large amounts of labeled data, i.e. data that contains demonstrations of tasks labeled with the language instruction, is prohibitive. In contrast, obtaining policies that respond to image goals is much easier, because any autonomous trial or demonstration can be labeled in hindsight with its final state as the goal. In this work, we contribute a method that taps into joint image- and goal- conditioned policies with language using only a small amount of language data. Prior work has made progress on this using vision-language models or by jointly training language-goal-conditioned policies, but so far neither method has scaled effectively to real-world robot tasks without significant human annotation. Our method achieves robust performance in the real world by learning an embedding from the labeled data that aligns language not to the goal image, but rather to the desired change between the start and goal images that the instruction corresponds to. We then train a policy on this embedding: the policy benefits from all the unlabeled data, but the aligned embedding provides an interface for language to steer the policy. We show instruction following across a variety of manipulation tasks in different scenes, with generalization to language instructions outside of the labeled data. Videos and code for our approach can be found on our website: http://tiny.cc/grif .