Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeProgressive3D: Progressively Local Editing for Text-to-3D Content Creation with Complex Semantic Prompts
Recent text-to-3D generation methods achieve impressive 3D content creation capacity thanks to the advances in image diffusion models and optimizing strategies. However, current methods struggle to generate correct 3D content for a complex prompt in semantics, i.e., a prompt describing multiple interacted objects binding with different attributes. In this work, we propose a general framework named Progressive3D, which decomposes the entire generation into a series of locally progressive editing steps to create precise 3D content for complex prompts, and we constrain the content change to only occur in regions determined by user-defined region prompts in each editing step. Furthermore, we propose an overlapped semantic component suppression technique to encourage the optimization process to focus more on the semantic differences between prompts. Extensive experiments demonstrate that the proposed Progressive3D framework generates precise 3D content for prompts with complex semantics and is general for various text-to-3D methods driven by different 3D representations.
GLaMM: Pixel Grounding Large Multimodal Model
Large Multimodal Models (LMMs) extend Large Language Models to the vision domain. Initial efforts towards LMMs used holistic images and text prompts to generate ungrounded textual responses. Very recently, region-level LMMs have been used to generate visually grounded responses. However, they are limited to only referring a single object category at a time, require users to specify the regions in inputs, or cannot offer dense pixel-wise object grounding. In this work, we present Grounding LMM (GLaMM), the first model that can generate natural language responses seamlessly intertwined with corresponding object segmentation masks. GLaMM not only grounds objects appearing in the conversations but is flexible enough to accept both textual and optional visual prompts (region of interest) as input. This empowers users to interact with the model at various levels of granularity, both in textual and visual domains. Due to the lack of standard benchmarks for the novel setting of generating visually grounded detailed conversations, we introduce a comprehensive evaluation protocol with our curated grounded conversations. Our proposed Grounded Conversation Generation (GCG) task requires densely grounded concepts in natural scenes at a large-scale. To this end, we propose a densely annotated Grounding-anything Dataset (GranD) using our proposed automated annotation pipeline that encompasses 7.5M unique concepts grounded in a total of 810M regions available with segmentation masks. Besides GCG, GLaMM also performs effectively on several downstream tasks e.g., referring expression segmentation, image and region-level captioning and vision-language conversations. Project Page: https://mbzuai-oryx.github.io/groundingLMM.
BizGen: Advancing Article-level Visual Text Rendering for Infographics Generation
Recently, state-of-the-art text-to-image generation models, such as Flux and Ideogram 2.0, have made significant progress in sentence-level visual text rendering. In this paper, we focus on the more challenging scenarios of article-level visual text rendering and address a novel task of generating high-quality business content, including infographics and slides, based on user provided article-level descriptive prompts and ultra-dense layouts. The fundamental challenges are twofold: significantly longer context lengths and the scarcity of high-quality business content data. In contrast to most previous works that focus on a limited number of sub-regions and sentence-level prompts, ensuring precise adherence to ultra-dense layouts with tens or even hundreds of sub-regions in business content is far more challenging. We make two key technical contributions: (i) the construction of scalable, high-quality business content dataset, i.e., Infographics-650K, equipped with ultra-dense layouts and prompts by implementing a layer-wise retrieval-augmented infographic generation scheme; and (ii) a layout-guided cross attention scheme, which injects tens of region-wise prompts into a set of cropped region latent space according to the ultra-dense layouts, and refine each sub-regions flexibly during inference using a layout conditional CFG. We demonstrate the strong results of our system compared to previous SOTA systems such as Flux and SD3 on our BizEval prompt set. Additionally, we conduct thorough ablation experiments to verify the effectiveness of each component. We hope our constructed Infographics-650K and BizEval can encourage the broader community to advance the progress of business content generation.
StreamMultiDiffusion: Real-Time Interactive Generation with Region-Based Semantic Control
The enormous success of diffusion models in text-to-image synthesis has made them promising candidates for the next generation of end-user applications for image generation and editing. Previous works have focused on improving the usability of diffusion models by reducing the inference time or increasing user interactivity by allowing new, fine-grained controls such as region-based text prompts. However, we empirically find that integrating both branches of works is nontrivial, limiting the potential of diffusion models. To solve this incompatibility, we present StreamMultiDiffusion, the first real-time region-based text-to-image generation framework. By stabilizing fast inference techniques and restructuring the model into a newly proposed multi-prompt stream batch architecture, we achieve times 10 faster panorama generation than existing solutions, and the generation speed of 1.57 FPS in region-based text-to-image synthesis on a single RTX 2080 Ti GPU. Our solution opens up a new paradigm for interactive image generation named semantic palette, where high-quality images are generated in real-time from given multiple hand-drawn regions, encoding prescribed semantic meanings (e.g., eagle, girl). Our code and demo application are available at https://github.com/ironjr/StreamMultiDiffusion.
Dense Multimodal Alignment for Open-Vocabulary 3D Scene Understanding
Recent vision-language pre-training models have exhibited remarkable generalization ability in zero-shot recognition tasks. Previous open-vocabulary 3D scene understanding methods mostly focus on training 3D models using either image or text supervision while neglecting the collective strength of all modalities. In this work, we propose a Dense Multimodal Alignment (DMA) framework to densely co-embed different modalities into a common space for maximizing their synergistic benefits. Instead of extracting coarse view- or region-level text prompts, we leverage large vision-language models to extract complete category information and scalable scene descriptions to build the text modality, and take image modality as the bridge to build dense point-pixel-text associations. Besides, in order to enhance the generalization ability of the 2D model for downstream 3D tasks without compromising the open-vocabulary capability, we employ a dual-path integration approach to combine frozen CLIP visual features and learnable mask features. Extensive experiments show that our DMA method produces highly competitive open-vocabulary segmentation performance on various indoor and outdoor tasks.
Expressive Text-to-Image Generation with Rich Text
Plain text has become a prevalent interface for text-to-image synthesis. However, its limited customization options hinder users from accurately describing desired outputs. For example, plain text makes it hard to specify continuous quantities, such as the precise RGB color value or importance of each word. Furthermore, creating detailed text prompts for complex scenes is tedious for humans to write and challenging for text encoders to interpret. To address these challenges, we propose using a rich-text editor supporting formats such as font style, size, color, and footnote. We extract each word's attributes from rich text to enable local style control, explicit token reweighting, precise color rendering, and detailed region synthesis. We achieve these capabilities through a region-based diffusion process. We first obtain each word's region based on attention maps of a diffusion process using plain text. For each region, we enforce its text attributes by creating region-specific detailed prompts and applying region-specific guidance, and maintain its fidelity against plain-text generation through region-based injections. We present various examples of image generation from rich text and demonstrate that our method outperforms strong baselines with quantitative evaluations.
Training-free Regional Prompting for Diffusion Transformers
Diffusion models have demonstrated excellent capabilities in text-to-image generation. Their semantic understanding (i.e., prompt following) ability has also been greatly improved with large language models (e.g., T5, Llama). However, existing models cannot perfectly handle long and complex text prompts, especially when the text prompts contain various objects with numerous attributes and interrelated spatial relationships. While many regional prompting methods have been proposed for UNet-based models (SD1.5, SDXL), but there are still no implementations based on the recent Diffusion Transformer (DiT) architecture, such as SD3 and FLUX.1.In this report, we propose and implement regional prompting for FLUX.1 based on attention manipulation, which enables DiT with fined-grained compositional text-to-image generation capability in a training-free manner. Code is available at https://github.com/antonioo-c/Regional-Prompting-FLUX.
Anatomy-Guided Radiology Report Generation with Pathology-Aware Regional Prompts
Radiology reporting generative AI holds significant potential to alleviate clinical workloads and streamline medical care. However, achieving high clinical accuracy is challenging, as radiological images often feature subtle lesions and intricate structures. Existing systems often fall short, largely due to their reliance on fixed size, patch-level image features and insufficient incorporation of pathological information. This can result in the neglect of such subtle patterns and inconsistent descriptions of crucial pathologies. To address these challenges, we propose an innovative approach that leverages pathology-aware regional prompts to explicitly integrate anatomical and pathological information of various scales, significantly enhancing the precision and clinical relevance of generated reports. We develop an anatomical region detector that extracts features from distinct anatomical areas, coupled with a novel multi-label lesion detector that identifies global pathologies. Our approach emulates the diagnostic process of radiologists, producing clinically accurate reports with comprehensive diagnostic capabilities. Experimental results show that our model outperforms previous state-of-the-art methods on most natural language generation and clinical efficacy metrics, with formal expert evaluations affirming its potential to enhance radiology practice.
ART: Anonymous Region Transformer for Variable Multi-Layer Transparent Image Generation
Multi-layer image generation is a fundamental task that enables users to isolate, select, and edit specific image layers, thereby revolutionizing interactions with generative models. In this paper, we introduce the Anonymous Region Transformer (ART), which facilitates the direct generation of variable multi-layer transparent images based on a global text prompt and an anonymous region layout. Inspired by Schema theory suggests that knowledge is organized in frameworks (schemas) that enable people to interpret and learn from new information by linking it to prior knowledge.}, this anonymous region layout allows the generative model to autonomously determine which set of visual tokens should align with which text tokens, which is in contrast to the previously dominant semantic layout for the image generation task. In addition, the layer-wise region crop mechanism, which only selects the visual tokens belonging to each anonymous region, significantly reduces attention computation costs and enables the efficient generation of images with numerous distinct layers (e.g., 50+). When compared to the full attention approach, our method is over 12 times faster and exhibits fewer layer conflicts. Furthermore, we propose a high-quality multi-layer transparent image autoencoder that supports the direct encoding and decoding of the transparency of variable multi-layer images in a joint manner. By enabling precise control and scalable layer generation, ART establishes a new paradigm for interactive content creation.
M3DBench: Let's Instruct Large Models with Multi-modal 3D Prompts
Recently, 3D understanding has become popular to facilitate autonomous agents to perform further decisionmaking. However, existing 3D datasets and methods are often limited to specific tasks. On the other hand, recent progress in Large Language Models (LLMs) and Multimodal Language Models (MLMs) have demonstrated exceptional general language and imagery tasking performance. Therefore, it is interesting to unlock MLM's potential to be 3D generalist for wider tasks. However, current MLMs' research has been less focused on 3D tasks due to a lack of large-scale 3D instruction-following datasets. In this work, we introduce a comprehensive 3D instructionfollowing dataset called M3DBench, which possesses the following characteristics: 1) It supports general multimodal instructions interleaved with text, images, 3D objects, and other visual prompts. 2) It unifies diverse 3D tasks at both region and scene levels, covering a variety of fundamental abilities in real-world 3D environments. 3) It is a large-scale 3D instruction-following dataset with over 320k instruction-response pairs. Furthermore, we establish a new benchmark for assessing the performance of large models in understanding multi-modal 3D prompts. Extensive experiments demonstrate the effectiveness of our dataset and baseline, supporting general 3D-centric tasks, which can inspire future research.
RegionGPT: Towards Region Understanding Vision Language Model
Vision language models (VLMs) have experienced rapid advancements through the integration of large language models (LLMs) with image-text pairs, yet they struggle with detailed regional visual understanding due to limited spatial awareness of the vision encoder, and the use of coarse-grained training data that lacks detailed, region-specific captions. To address this, we introduce RegionGPT (short as RGPT), a novel framework designed for complex region-level captioning and understanding. RGPT enhances the spatial awareness of regional representation with simple yet effective modifications to existing visual encoders in VLMs. We further improve performance on tasks requiring a specific output scope by integrating task-guided instruction prompts during both training and inference phases, while maintaining the model's versatility for general-purpose tasks. Additionally, we develop an automated region caption data generation pipeline, enriching the training set with detailed region-level captions. We demonstrate that a universal RGPT model can be effectively applied and significantly enhancing performance across a range of region-level tasks, including but not limited to complex region descriptions, reasoning, object classification, and referring expressions comprehension.
Making Large Multimodal Models Understand Arbitrary Visual Prompts
While existing large vision-language multimodal models focus on whole image understanding, there is a prominent gap in achieving region-specific comprehension. Current approaches that use textual coordinates or spatial encodings often fail to provide a user-friendly interface for visual prompting. To address this challenge, we introduce a novel multimodal model capable of decoding arbitrary visual prompts. This allows users to intuitively mark images and interact with the model using natural cues like a "red bounding box" or "pointed arrow". Our simple design directly overlays visual markers onto the RGB image, eliminating the need for complex region encodings, yet achieves state-of-the-art performance on region-understanding tasks like Visual7W, PointQA, and Visual Commonsense Reasoning benchmark. Furthermore, we present ViP-Bench, a comprehensive benchmark to assess the capability of models in understanding visual prompts across multiple dimensions, enabling future research in this domain. Code, data, and model are publicly available.
One Prompt is not Enough: Automated Construction of a Mixture-of-Expert Prompts
Large Language Models (LLMs) exhibit strong generalization capabilities to novel tasks when prompted with language instructions and in-context demos. Since this ability sensitively depends on the quality of prompts, various methods have been explored to automate the instruction design. While these methods demonstrated promising results, they also restricted the searched prompt to one instruction. Such simplification significantly limits their capacity, as a single demo-free instruction might not be able to cover the entire complex problem space of the targeted task. To alleviate this issue, we adopt the Mixture-of-Expert paradigm and divide the problem space into a set of sub-regions; Each sub-region is governed by a specialized expert, equipped with both an instruction and a set of demos. A two-phase process is developed to construct the specialized expert for each region: (1) demo assignment: Inspired by the theoretical connection between in-context learning and kernel regression, we group demos into experts based on their semantic similarity; (2) instruction assignment: A region-based joint search of an instruction per expert complements the demos assigned to it, yielding a synergistic effect. The resulting method, codenamed Mixture-of-Prompts (MoP), achieves an average win rate of 81% against prior arts across several major benchmarks.
TIP-Editor: An Accurate 3D Editor Following Both Text-Prompts And Image-Prompts
Text-driven 3D scene editing has gained significant attention owing to its convenience and user-friendliness. However, existing methods still lack accurate control of the specified appearance and location of the editing result due to the inherent limitations of the text description. To this end, we propose a 3D scene editing framework, TIPEditor, that accepts both text and image prompts and a 3D bounding box to specify the editing region. With the image prompt, users can conveniently specify the detailed appearance/style of the target content in complement to the text description, enabling accurate control of the appearance. Specifically, TIP-Editor employs a stepwise 2D personalization strategy to better learn the representation of the existing scene and the reference image, in which a localization loss is proposed to encourage correct object placement as specified by the bounding box. Additionally, TIPEditor utilizes explicit and flexible 3D Gaussian splatting as the 3D representation to facilitate local editing while keeping the background unchanged. Extensive experiments have demonstrated that TIP-Editor conducts accurate editing following the text and image prompts in the specified bounding box region, consistently outperforming the baselines in editing quality, and the alignment to the prompts, qualitatively and quantitatively.
DAIC-WOZ: On the Validity of Using the Therapist's prompts in Automatic Depression Detection from Clinical Interviews
Automatic depression detection from conversational data has gained significant interest in recent years. The DAIC-WOZ dataset, interviews conducted by a human-controlled virtual agent, has been widely used for this task. Recent studies have reported enhanced performance when incorporating interviewer's prompts into the model. In this work, we hypothesize that this improvement might be mainly due to a bias present in these prompts, rather than the proposed architectures and methods. Through ablation experiments and qualitative analysis, we discover that models using interviewer's prompts learn to focus on a specific region of the interviews, where questions about past experiences with mental health issues are asked, and use them as discriminative shortcuts to detect depressed participants. In contrast, models using participant responses gather evidence from across the entire interview. Finally, to highlight the magnitude of this bias, we achieve a 0.90 F1 score by intentionally exploiting it, the highest result reported to date on this dataset using only textual information. Our findings underline the need for caution when incorporating interviewers' prompts into models, as they may inadvertently learn to exploit targeted prompts, rather than learning to characterize the language and behavior that are genuinely indicative of the patient's mental health condition.
Align and Prompt: Video-and-Language Pre-training with Entity Prompts
Video-and-language pre-training has shown promising improvements on various downstream tasks. Most previous methods capture cross-modal interactions with a transformer-based multimodal encoder, not fully addressing the misalignment between unimodal video and text features. Besides, learning fine-grained visual-language alignment usually requires off-the-shelf object detectors to provide object information, which is bottlenecked by the detector's limited vocabulary and expensive computation cost. We propose Align and Prompt: an efficient and effective video-and-language pre-training framework with better cross-modal alignment. First, we introduce a video-text contrastive (VTC) loss to align unimodal video-text features at the instance level, which eases the modeling of cross-modal interactions. Then, we propose a new visually-grounded pre-training task, prompting entity modeling (PEM), which aims to learn fine-grained region-entity alignment. To achieve this, we first introduce an entity prompter module, which is trained with VTC to produce the similarity between a video crop and text prompts instantiated with entity names. The PEM task then asks the model to predict the entity pseudo-labels (i.e~normalized similarity scores) for randomly-selected video crops. The resulting pre-trained model achieves state-of-the-art performance on both text-video retrieval and videoQA, outperforming prior work by a substantial margin. Our code and pre-trained models are available at https://github.com/salesforce/ALPRO.
PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts
PromptSource is a system for creating, sharing, and using natural language prompts. Prompts are functions that map an example from a dataset to a natural language input and target output. Using prompts to train and query language models is an emerging area in NLP that requires new tools that let users develop and refine these prompts collaboratively. PromptSource addresses the emergent challenges in this new setting with (1) a templating language for defining data-linked prompts, (2) an interface that lets users quickly iterate on prompt development by observing outputs of their prompts on many examples, and (3) a community-driven set of guidelines for contributing new prompts to a common pool. Over 2,000 prompts for roughly 170 datasets are already available in PromptSource. PromptSource is available at https://github.com/bigscience-workshop/promptsource.
YOLOE: Real-Time Seeing Anything
Object detection and segmentation are widely employed in computer vision applications, yet conventional models like YOLO series, while efficient and accurate, are limited by predefined categories, hindering adaptability in open scenarios. Recent open-set methods leverage text prompts, visual cues, or prompt-free paradigm to overcome this, but often compromise between performance and efficiency due to high computational demands or deployment complexity. In this work, we introduce YOLOE, which integrates detection and segmentation across diverse open prompt mechanisms within a single highly efficient model, achieving real-time seeing anything. For text prompts, we propose Re-parameterizable Region-Text Alignment (RepRTA) strategy. It refines pretrained textual embeddings via a re-parameterizable lightweight auxiliary network and enhances visual-textual alignment with zero inference and transferring overhead. For visual prompts, we present Semantic-Activated Visual Prompt Encoder (SAVPE). It employs decoupled semantic and activation branches to bring improved visual embedding and accuracy with minimal complexity. For prompt-free scenario, we introduce Lazy Region-Prompt Contrast (LRPC) strategy. It utilizes a built-in large vocabulary and specialized embedding to identify all objects, avoiding costly language model dependency. Extensive experiments show YOLOE's exceptional zero-shot performance and transferability with high inference efficiency and low training cost. Notably, on LVIS, with 3times less training cost and 1.4times inference speedup, YOLOE-v8-S surpasses YOLO-Worldv2-S by 3.5 AP. When transferring to COCO, YOLOE-v8-L achieves 0.6 AP^b and 0.4 AP^m gains over closed-set YOLOv8-L with nearly 4times less training time. Code and models are available at https://github.com/THU-MIG/yoloe.
Text-Driven Image Editing via Learnable Regions
Language has emerged as a natural interface for image editing. In this paper, we introduce a method for region-based image editing driven by textual prompts, without the need for user-provided masks or sketches. Specifically, our approach leverages an existing pretrained text-to-image model and introduces a bounding box generator to find the edit regions that are aligned with the textual prompts. We show that this simple approach enables flexible editing that is compatible with current image generation models, and is able to handle complex prompts featuring multiple objects, complex sentences or long paragraphs. We conduct an extensive user study to compare our method against state-of-the-art methods. Experiments demonstrate the competitive performance of our method in manipulating images with high fidelity and realism that align with the language descriptions provided. Our project webpage: https://yuanze-lin.me/LearnableRegions_page.
The All-Seeing Project: Towards Panoptic Visual Recognition and Understanding of the Open World
We present the All-Seeing (AS) project: a large-scale data and model for recognizing and understanding everything in the open world. Using a scalable data engine that incorporates human feedback and efficient models in the loop, we create a new dataset (AS-1B) with over 1 billion regions annotated with semantic tags, question-answering pairs, and detailed captions. It covers a wide range of 3.5 million common and rare concepts in the real world, and has 132.2 billion tokens that describe the concepts and their attributes. Leveraging this new dataset, we develop the All-Seeing model (ASM), a unified framework for panoptic visual recognition and understanding. The model is trained with open-ended language prompts and locations, which allows it to generalize to various vision and language tasks with remarkable zero-shot performance, including region-text retrieval, region recognition, captioning, and question-answering. We hope that this project can serve as a foundation for vision-language artificial general intelligence research. Models and the dataset shall be released at https://github.com/OpenGVLab/All-Seeing, and demo can be seen at https://huggingface.co/spaces/OpenGVLab/all-seeing.
ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models
In this work, we propose a training-free method to inject visual prompts into Multimodal Large Language Models (MLLMs) through test-time optimization of a learnable latent variable. We observe that attention, as the core module of MLLMs, connects text prompt tokens and visual tokens, ultimately determining the final results. Our approach involves adjusting visual tokens from the MLP output at test time, controlling the attention response to ensure text prompt tokens attend to visual tokens in referring regions. We optimize a learnable latent variable based on an energy function, enhancing the strength of referring regions in the attention map. This enables detailed region description and reasoning without the need for substantial training costs or model retraining. Our method offers a promising direction for integrating referring abilities into MLLMs, and supports referring with box, mask, scribble and point. The results demonstrate that our method exhibits out-of-domain generalization and interpretability.
MADiff: Text-Guided Fashion Image Editing with Mask Prediction and Attention-Enhanced Diffusion
Text-guided image editing model has achieved great success in general domain. However, directly applying these models to the fashion domain may encounter two issues: (1) Inaccurate localization of editing region; (2) Weak editing magnitude. To address these issues, the MADiff model is proposed. Specifically, to more accurately identify editing region, the MaskNet is proposed, in which the foreground region, densepose and mask prompts from large language model are fed into a lightweight UNet to predict the mask for editing region. To strengthen the editing magnitude, the Attention-Enhanced Diffusion Model is proposed, where the noise map, attention map, and the mask from MaskNet are fed into the proposed Attention Processor to produce a refined noise map. By integrating the refined noise map into the diffusion model, the edited image can better align with the target prompt. Given the absence of benchmarks in fashion image editing, we constructed a dataset named Fashion-E, comprising 28390 image-text pairs in the training set, and 2639 image-text pairs for four types of fashion tasks in the evaluation set. Extensive experiments on Fashion-E demonstrate that our proposed method can accurately predict the mask of editing region and significantly enhance editing magnitude in fashion image editing compared to the state-of-the-art methods.
DPDEdit: Detail-Preserved Diffusion Models for Multimodal Fashion Image Editing
Fashion image editing is a crucial tool for designers to convey their creative ideas by visualizing design concepts interactively. Current fashion image editing techniques, though advanced with multimodal prompts and powerful diffusion models, often struggle to accurately identify editing regions and preserve the desired garment texture detail. To address these challenges, we introduce a new multimodal fashion image editing architecture based on latent diffusion models, called Detail-Preserved Diffusion Models (DPDEdit). DPDEdit guides the fashion image generation of diffusion models by integrating text prompts, region masks, human pose images, and garment texture images. To precisely locate the editing region, we first introduce Grounded-SAM to predict the editing region based on the user's textual description, and then combine it with other conditions to perform local editing. To transfer the detail of the given garment texture into the target fashion image, we propose a texture injection and refinement mechanism. Specifically, this mechanism employs a decoupled cross-attention layer to integrate textual descriptions and texture images, and incorporates an auxiliary U-Net to preserve the high-frequency details of generated garment texture. Additionally, we extend the VITON-HD dataset using a multimodal large language model to generate paired samples with texture images and textual descriptions. Extensive experiments show that our DPDEdit outperforms state-of-the-art methods in terms of image fidelity and coherence with the given multimodal inputs.
LLMs Meet VLMs: Boost Open Vocabulary Object Detection with Fine-grained Descriptors
Inspired by the outstanding zero-shot capability of vision language models (VLMs) in image classification tasks, open-vocabulary object detection has attracted increasing interest by distilling the broad VLM knowledge into detector training. However, most existing open-vocabulary detectors learn by aligning region embeddings with categorical labels (e.g., bicycle) only, disregarding the capability of VLMs on aligning visual embeddings with fine-grained text description of object parts (e.g., pedals and bells). This paper presents DVDet, a Descriptor-Enhanced Open Vocabulary Detector that introduces conditional context prompts and hierarchical textual descriptors that enable precise region-text alignment as well as open-vocabulary detection training in general. Specifically, the conditional context prompt transforms regional embeddings into image-like representations that can be directly integrated into general open vocabulary detection training. In addition, we introduce large language models as an interactive and implicit knowledge repository which enables iterative mining and refining visually oriented textual descriptors for precise region-text alignment. Extensive experiments over multiple large-scale benchmarks show that DVDet outperforms the state-of-the-art consistently by large margins.
DreamEditor: Text-Driven 3D Scene Editing with Neural Fields
Neural fields have achieved impressive advancements in view synthesis and scene reconstruction. However, editing these neural fields remains challenging due to the implicit encoding of geometry and texture information. In this paper, we propose DreamEditor, a novel framework that enables users to perform controlled editing of neural fields using text prompts. By representing scenes as mesh-based neural fields, DreamEditor allows localized editing within specific regions. DreamEditor utilizes the text encoder of a pretrained text-to-Image diffusion model to automatically identify the regions to be edited based on the semantics of the text prompts. Subsequently, DreamEditor optimizes the editing region and aligns its geometry and texture with the text prompts through score distillation sampling [29]. Extensive experiments have demonstrated that DreamEditor can accurately edit neural fields of real-world scenes according to the given text prompts while ensuring consistency in irrelevant areas. DreamEditor generates highly realistic textures and geometry, significantly surpassing previous works in both quantitative and qualitative evaluations.
Controllable Segmentation-Based Text-Guided Style Editing
We present a novel approach for controllable, region-specific style editing driven by textual prompts. Building upon the state-space style alignment framework introduced by StyleMamba, our method integrates a semantic segmentation model into the style transfer pipeline. This allows users to selectively apply text-driven style changes to specific segments (e.g., ``turn the building into a cyberpunk tower'') while leaving other regions (e.g., ``people'' or ``trees'') unchanged. By incorporating region-wise condition vectors and a region-specific directional loss, our method achieves high-fidelity transformations that respect both semantic boundaries and user-driven style descriptions. Extensive experiments demonstrate that our approach can flexibly handle complex scene stylizations in real-world scenarios, improving control and quality over purely global style transfer methods.
SeFi-IDE: Semantic-Fidelity Identity Embedding for Personalized Diffusion-Based Generation
Advanced diffusion-based Text-to-Image (T2I) models, such as the Stable Diffusion Model, have made significant progress in generating diverse and high-quality images using text prompts alone. However, T2I models are unable to accurately map identities (IDs) when non-famous users require personalized image generation. The main problem is that existing T2I models do not learn the ID-image alignments of new users. The previous methods either failed to accurately fit the face region or lost the interactive generative ability with other existing concepts in T2I models (i.e., unable to generate other concepts described in given prompts such as scenes, actions, and facial attributes). In this paper, we focus on accurate and semantic-fidelity ID embedding into the Stable Diffusion Model for personalized generation. We address this challenge from two perspectives: face-wise region fitting, and semantic-fidelity token optimization. Specifically, we first visualize the attention overfit problem, and propose a face-wise attention loss to fit the face region instead of the whole target image. This key trick significantly enhances the ID accuracy and interactive generative ability with other existing concepts. Then, we optimize one ID representation as multiple per-stage tokens where each token contains two disentangled features. This expansion of the textual conditioning space enhances semantic-fidelity control. Extensive experiments validate that our results exhibit superior ID accuracy and manipulation ability compared to previous methods.
Brush Your Text: Synthesize Any Scene Text on Images via Diffusion Model
Recently, diffusion-based image generation methods are credited for their remarkable text-to-image generation capabilities, while still facing challenges in accurately generating multilingual scene text images. To tackle this problem, we propose Diff-Text, which is a training-free scene text generation framework for any language. Our model outputs a photo-realistic image given a text of any language along with a textual description of a scene. The model leverages rendered sketch images as priors, thus arousing the potential multilingual-generation ability of the pre-trained Stable Diffusion. Based on the observation from the influence of the cross-attention map on object placement in generated images, we propose a localized attention constraint into the cross-attention layer to address the unreasonable positioning problem of scene text. Additionally, we introduce contrastive image-level prompts to further refine the position of the textual region and achieve more accurate scene text generation. Experiments demonstrate that our method outperforms the existing method in both the accuracy of text recognition and the naturalness of foreground-background blending.
A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications
Prompt engineering has emerged as an indispensable technique for extending the capabilities of large language models (LLMs) and vision-language models (VLMs). This approach leverages task-specific instructions, known as prompts, to enhance model efficacy without modifying the core model parameters. Rather than updating the model parameters, prompts allow seamless integration of pre-trained models into downstream tasks by eliciting desired model behaviors solely based on the given prompt. Prompts can be natural language instructions that provide context to guide the model or learned vector representations that activate relevant knowledge. This burgeoning field has enabled success across various applications, from question-answering to commonsense reasoning. However, there remains a lack of systematic organization and understanding of the diverse prompt engineering methods and techniques. This survey paper addresses the gap by providing a structured overview of recent advancements in prompt engineering, categorized by application area. For each prompting approach, we provide a summary detailing the prompting methodology, its applications, the models involved, and the datasets utilized. We also delve into the strengths and limitations of each approach and include a taxonomy diagram and table summarizing datasets, models, and critical points of each prompting technique. This systematic analysis enables a better understanding of this rapidly developing field and facilitates future research by illuminating open challenges and opportunities for prompt engineering.
FINECAPTION: Compositional Image Captioning Focusing on Wherever You Want at Any Granularity
The advent of large Vision-Language Models (VLMs) has significantly advanced multimodal tasks, enabling more sophisticated and accurate reasoning across various applications, including image and video captioning, visual question answering, and cross-modal retrieval. Despite their superior capabilities, VLMs struggle with fine-grained image regional composition information perception. Specifically, they have difficulty accurately aligning the segmentation masks with the corresponding semantics and precisely describing the compositional aspects of the referred regions. However, compositionality - the ability to understand and generate novel combinations of known visual and textual components - is critical for facilitating coherent reasoning and understanding across modalities by VLMs. To address this issue, we propose FINECAPTION, a novel VLM that can recognize arbitrary masks as referential inputs and process high-resolution images for compositional image captioning at different granularity levels. To support this endeavor, we introduce COMPOSITIONCAP, a new dataset for multi-grained region compositional image captioning, which introduces the task of compositional attribute-aware regional image captioning. Empirical results demonstrate the effectiveness of our proposed model compared to other state-of-the-art VLMs. Additionally, we analyze the capabilities of current VLMs in recognizing various visual prompts for compositional region image captioning, highlighting areas for improvement in VLM design and training.
PRewrite: Prompt Rewriting with Reinforcement Learning
Prompt engineering is critical for the development of LLM-based applications. However, it is usually done manually in a "trial and error" fashion. This manual procedure can be time consuming, ineffective, and the generated prompts are, in a lot of cases, sub-optimal. Even for the prompts which seemingly work well, there is always a lingering question: can the prompts be made better with further modifications? To address these questions, in this paper, we investigate prompt engineering automation. We consider a specific use case scenario in which developers/users have drafted initial prompts, but lack the time/expertise to optimize them. We propose PRewrite, an automated tool to rewrite these drafts and to generate highly effective new prompts. PRewrite is based on the Reinforcement Learning (RL) framework which allows for end-to-end optimization and our design allows the RL search to happen in a large action space. The automated tool leverages manually crafted prompts as starting points which makes the rewriting procedure more guided and efficient. The generated prompts are human readable, and self-explanatory, unlike some of those in previous works. We conducted extensive experiments on diverse datasets and found that the prompts generated with this new method not only outperform professionally crafted prompts, but also prompts generated with other previously proposed methods.
Blended-NeRF: Zero-Shot Object Generation and Blending in Existing Neural Radiance Fields
Editing a local region or a specific object in a 3D scene represented by a NeRF is challenging, mainly due to the implicit nature of the scene representation. Consistently blending a new realistic object into the scene adds an additional level of difficulty. We present Blended-NeRF, a robust and flexible framework for editing a specific region of interest in an existing NeRF scene, based on text prompts or image patches, along with a 3D ROI box. Our method leverages a pretrained language-image model to steer the synthesis towards a user-provided text prompt or image patch, along with a 3D MLP model initialized on an existing NeRF scene to generate the object and blend it into a specified region in the original scene. We allow local editing by localizing a 3D ROI box in the input scene, and seamlessly blend the content synthesized inside the ROI with the existing scene using a novel volumetric blending technique. To obtain natural looking and view-consistent results, we leverage existing and new geometric priors and 3D augmentations for improving the visual fidelity of the final result. We test our framework both qualitatively and quantitatively on a variety of real 3D scenes and text prompts, demonstrating realistic multi-view consistent results with much flexibility and diversity compared to the baselines. Finally, we show the applicability of our framework for several 3D editing applications, including adding new objects to a scene, removing/replacing/altering existing objects, and texture conversion.
In-Context Brush: Zero-shot Customized Subject Insertion with Context-Aware Latent Space Manipulation
Recent advances in diffusion models have enhanced multimodal-guided visual generation, enabling customized subject insertion that seamlessly "brushes" user-specified objects into a given image guided by textual prompts. However, existing methods often struggle to insert customized subjects with high fidelity and align results with the user's intent through textual prompts. In this work, we propose "In-Context Brush", a zero-shot framework for customized subject insertion by reformulating the task within the paradigm of in-context learning. Without loss of generality, we formulate the object image and the textual prompts as cross-modal demonstrations, and the target image with the masked region as the query. The goal is to inpaint the target image with the subject aligning textual prompts without model tuning. Building upon a pretrained MMDiT-based inpainting network, we perform test-time enhancement via dual-level latent space manipulation: intra-head "latent feature shifting" within each attention head that dynamically shifts attention outputs to reflect the desired subject semantics and inter-head "attention reweighting" across different heads that amplifies prompt controllability through differential attention prioritization. Extensive experiments and applications demonstrate that our approach achieves superior identity preservation, text alignment, and image quality compared to existing state-of-the-art methods, without requiring dedicated training or additional data collection.
Cut-and-Paste: Subject-Driven Video Editing with Attention Control
This paper presents a novel framework termed Cut-and-Paste for real-word semantic video editing under the guidance of text prompt and additional reference image. While the text-driven video editing has demonstrated remarkable ability to generate highly diverse videos following given text prompts, the fine-grained semantic edits are hard to control by plain textual prompt only in terms of object details and edited region, and cumbersome long text descriptions are usually needed for the task. We therefore investigate subject-driven video editing for more precise control of both edited regions and background preservation, and fine-grained semantic generation. We achieve this goal by introducing an reference image as supplementary input to the text-driven video editing, which avoids racking your brain to come up with a cumbersome text prompt describing the detailed appearance of the object. To limit the editing area, we refer to a method of cross attention control in image editing and successfully extend it to video editing by fusing the attention map of adjacent frames, which strikes a balance between maintaining video background and spatio-temporal consistency. Compared with current methods, the whole process of our method is like ``cut" the source object to be edited and then ``paste" the target object provided by reference image. We demonstrate that our method performs favorably over prior arts for video editing under the guidance of text prompt and extra reference image, as measured by both quantitative and subjective evaluations.
MRGen: Diffusion-based Controllable Data Engine for MRI Segmentation towards Unannotated Modalities
Medical image segmentation has recently demonstrated impressive progress with deep neural networks, yet the heterogeneous modalities and scarcity of mask annotations limit the development of segmentation models on unannotated modalities. This paper investigates a new paradigm for leveraging generative models in medical applications: controllably synthesizing data for unannotated modalities, without requiring registered data pairs. Specifically, we make the following contributions in this paper: (i) we collect and curate a large-scale radiology image-text dataset, MedGen-1M, comprising modality labels, attributes, region, and organ information, along with a subset of organ mask annotations, to support research in controllable medical image generation; (ii) we propose a diffusion-based data engine, termed MRGen, which enables generation conditioned on text prompts and masks, synthesizing MR images for diverse modalities lacking mask annotations, to train segmentation models on unannotated modalities; (iii) we conduct extensive experiments across various modalities, illustrating that our data engine can effectively synthesize training samples and extend MRI segmentation towards unannotated modalities.
A Systematic Survey of Prompt Engineering on Vision-Language Foundation Models
Prompt engineering is a technique that involves augmenting a large pre-trained model with task-specific hints, known as prompts, to adapt the model to new tasks. Prompts can be created manually as natural language instructions or generated automatically as either natural language instructions or vector representations. Prompt engineering enables the ability to perform predictions based solely on prompts without updating model parameters, and the easier application of large pre-trained models in real-world tasks. In past years, Prompt engineering has been well-studied in natural language processing. Recently, it has also been intensively studied in vision-language modeling. However, there is currently a lack of a systematic overview of prompt engineering on pre-trained vision-language models. This paper aims to provide a comprehensive survey of cutting-edge research in prompt engineering on three types of vision-language models: multimodal-to-text generation models (e.g. Flamingo), image-text matching models (e.g. CLIP), and text-to-image generation models (e.g. Stable Diffusion). For each type of model, a brief model summary, prompting methods, prompting-based applications, and the corresponding responsibility and integrity issues are summarized and discussed. Furthermore, the commonalities and differences between prompting on vision-language models, language models, and vision models are also discussed. The challenges, future directions, and research opportunities are summarized to foster future research on this topic.
ChatGPT4PCG Competition: Character-like Level Generation for Science Birds
This paper presents the first ChatGPT4PCG Competition at the 2023 IEEE Conference on Games. The objective of this competition is for participants to create effective prompts for ChatGPT--enabling it to generate Science Birds levels with high stability and character-like qualities--fully using their creativity as well as prompt engineering skills. ChatGPT is a conversational agent developed by OpenAI. Science Birds is selected as the competition platform because designing an Angry Birds-like level is not a trivial task due to the in-game gravity; the quality of the levels is determined by their stability. To lower the entry barrier to the competition, we limit the task to the generation of capitalized English alphabetical characters. We also allow only a single prompt to be used for generating all the characters. Here, the quality of the generated levels is determined by their stability and similarity to the given characters. A sample prompt is provided to participants for their reference. An experiment is conducted to determine the effectiveness of several modified versions of this sample prompt on level stability and similarity by testing them on several characters. To the best of our knowledge, we believe that ChatGPT4PCG is the first competition of its kind and hope to inspire enthusiasm for prompt engineering in procedural content generation.
Enhancing Intent Understanding for Ambiguous prompt: A Human-Machine Co-Adaption Strategy
Today's image generation systems are capable of producing realistic and high-quality images. However, user prompts often contain ambiguities, making it difficult for these systems to interpret users' actual intentions. Consequently, many users must modify their prompts several times to ensure the generated images meet their expectations. While some methods focus on enhancing prompts to make the generated images fit user needs, the model is still hard to understand users' real needs, especially for non-expert users. In this research, we aim to enhance the visual parameter-tuning process, making the model user-friendly for individuals without specialized knowledge and better understand user needs. We propose a human-machine co-adaption strategy using mutual information between the user's prompts and the pictures under modification as the optimizing target to make the system better adapt to user needs. We find that an improved model can reduce the necessity for multiple rounds of adjustments. We also collect multi-round dialogue datasets with prompts and images pairs and user intent. Various experiments demonstrate the effectiveness of the proposed method in our proposed dataset. Our annotation tools and several examples of our dataset are available at https://zenodo.org/records/14876029 for easier review. We will make open source our full dataset and code.
Benchmarking Human and Automated Prompting in the Segment Anything Model
The remarkable capabilities of the Segment Anything Model (SAM) for tackling image segmentation tasks in an intuitive and interactive manner has sparked interest in the design of effective visual prompts. Such interest has led to the creation of automated point prompt selection strategies, typically motivated from a feature extraction perspective. However, there is still very little understanding of how appropriate these automated visual prompting strategies are, particularly when compared to humans, across diverse image domains. Additionally, the performance benefits of including such automated visual prompting strategies within the finetuning process of SAM also remains unexplored, as does the effect of interpretable factors like distance between the prompt points on segmentation performance. To bridge these gaps, we leverage a recently released visual prompting dataset, PointPrompt, and introduce a number of benchmarking tasks that provide an array of opportunities to improve the understanding of the way human prompts differ from automated ones and what underlying factors make for effective visual prompts. We demonstrate that the resulting segmentation scores obtained by humans are approximately 29% higher than those given by automated strategies and identify potential features that are indicative of prompting performance with R^2 scores over 0.5. Additionally, we demonstrate that performance when using automated methods can be improved by up to 68% via a finetuning approach. Overall, our experiments not only showcase the existing gap between human prompts and automated methods, but also highlight potential avenues through which this gap can be leveraged to improve effective visual prompt design. Further details along with the dataset links and codes are available at https://github.com/olivesgatech/PointPrompt
GeoSynth: Contextually-Aware High-Resolution Satellite Image Synthesis
We present GeoSynth, a model for synthesizing satellite images with global style and image-driven layout control. The global style control is via textual prompts or geographic location. These enable the specification of scene semantics or regional appearance respectively, and can be used together. We train our model on a large dataset of paired satellite imagery, with automatically generated captions, and OpenStreetMap data. We evaluate various combinations of control inputs, including different types of layout controls. Results demonstrate that our model can generate diverse, high-quality images and exhibits excellent zero-shot generalization. The code and model checkpoints are available at https://github.com/mvrl/GeoSynth.
PromptASR for contextualized ASR with controllable style
Prompts are crucial to large language models as they provide context information such as topic or logical relationships. Inspired by this, we propose PromptASR, a framework that integrates prompts in end-to-end automatic speech recognition (E2E ASR) systems to achieve contextualized ASR with controllable style of transcriptions. Specifically, a dedicated text encoder encodes the text prompts and the encodings are injected into the speech encoder by cross-attending the features from two modalities. When using the ground truth text from preceding utterances as content prompt, the proposed system achieves 21.9% and 6.8% relative word error rate reductions on a book reading dataset and an in-house dataset compared to a baseline ASR system. The system can also take word-level biasing lists as prompt to improve recognition accuracy on rare words. An additional style prompt can be given to the text encoder and guide the ASR system to output different styles of transcriptions. The code is available at icefall.
Self-regulating Prompts: Foundational Model Adaptation without Forgetting
Prompt learning has emerged as an efficient alternative for fine-tuning foundational models, such as CLIP, for various downstream tasks. Conventionally trained using the task-specific objective, i.e., cross-entropy loss, prompts tend to overfit downstream data distributions and find it challenging to capture task-agnostic general features from the frozen CLIP. This leads to the loss of the model's original generalization capability. To address this issue, our work introduces a self-regularization framework for prompting called PromptSRC (Prompting with Self-regulating Constraints). PromptSRC guides the prompts to optimize for both task-specific and task-agnostic general representations using a three-pronged approach by: (a) regulating prompted representations via mutual agreement maximization with the frozen model, (b) regulating with self-ensemble of prompts over the training trajectory to encode their complementary strengths, and (c) regulating with textual diversity to mitigate sample diversity imbalance with the visual branch. To the best of our knowledge, this is the first regularization framework for prompt learning that avoids overfitting by jointly attending to pre-trained model features, the training trajectory during prompting, and the textual diversity. PromptSRC explicitly steers the prompts to learn a representation space that maximizes performance on downstream tasks without compromising CLIP generalization. We perform extensive experiments on 4 benchmarks where PromptSRC overall performs favorably well compared to the existing methods. Our code and pre-trained models are publicly available at: https://github.com/muzairkhattak/PromptSRC.
Native vs Non-Native Language Prompting: A Comparative Analysis
Large language models (LLMs) have shown remarkable abilities in different fields, including standard Natural Language Processing (NLP) tasks. To elicit knowledge from LLMs, prompts play a key role, consisting of natural language instructions. Most open and closed source LLMs are trained on available labeled and unlabeled resources--digital content such as text, images, audio, and videos. Hence, these models have better knowledge for high-resourced languages but struggle with low-resourced languages. Since prompts play a crucial role in understanding their capabilities, the language used for prompts remains an important research question. Although there has been significant research in this area, it is still limited, and less has been explored for medium to low-resourced languages. In this study, we investigate different prompting strategies (native vs. non-native) on 11 different NLP tasks associated with 12 different Arabic datasets (9.7K data points). In total, we conducted 197 experiments involving 3 LLMs, 12 datasets, and 3 prompting strategies. Our findings suggest that, on average, the non-native prompt performs the best, followed by mixed and native prompts.
Locations of Characters in Narratives: Andersen and Persuasion Datasets
The ability of machines to grasp spatial understanding within narrative contexts is an intriguing aspect of reading comprehension that continues to be studied. Motivated by the goal to test the AI's competence in understanding the relationship between characters and their respective locations in narratives, we introduce two new datasets: Andersen and Persuasion. For the Andersen dataset, we selected fifteen children's stories from "Andersen's Fairy Tales" by Hans Christian Andersen and manually annotated the characters and their respective locations throughout each story. Similarly, for the Persuasion dataset, characters and their locations in the novel "Persuasion" by Jane Austen were also manually annotated. We used these datasets to prompt Large Language Models (LLMs). The prompts are created by extracting excerpts from the stories or the novel and combining them with a question asking the location of a character mentioned in that excerpt. Out of the five LLMs we tested, the best-performing one for the Andersen dataset accurately identified the location in 61.85% of the examples, while for the Persuasion dataset, the best-performing one did so in 56.06% of the cases.
Prompt Expansion for Adaptive Text-to-Image Generation
Text-to-image generation models are powerful but difficult to use. Users craft specific prompts to get better images, though the images can be repetitive. This paper proposes a Prompt Expansion framework that helps users generate high-quality, diverse images with less effort. The Prompt Expansion model takes a text query as input and outputs a set of expanded text prompts that are optimized such that when passed to a text-to-image model, generates a wider variety of appealing images. We conduct a human evaluation study that shows that images generated through Prompt Expansion are more aesthetically pleasing and diverse than those generated by baseline methods. Overall, this paper presents a novel and effective approach to improving the text-to-image generation experience.
Target Prompting for Information Extraction with Vision Language Model
The recent trend in the Large Vision and Language model has brought a new change in how information extraction systems are built. VLMs have set a new benchmark with their State-of-the-art techniques in understanding documents and building question-answering systems across various industries. They are significantly better at generating text from document images and providing accurate answers to questions. However, there are still some challenges in effectively utilizing these models to build a precise conversational system. General prompting techniques used with large language models are often not suitable for these specially designed vision language models. The output generated by such generic input prompts is ordinary and may contain information gaps when compared with the actual content of the document. To obtain more accurate and specific answers, a well-targeted prompt is required by the vision language model, along with the document image. In this paper, a technique is discussed called Target prompting, which focuses on explicitly targeting parts of document images and generating related answers from those specific regions only. The paper also covers the evaluation of response for each prompting technique using different user queries and input prompts.
Learning to Prompt for Open-Vocabulary Object Detection with Vision-Language Model
Recently, vision-language pre-training shows great potential in open-vocabulary object detection, where detectors trained on base classes are devised for detecting new classes. The class text embedding is firstly generated by feeding prompts to the text encoder of a pre-trained vision-language model. It is then used as the region classifier to supervise the training of a detector. The key element that leads to the success of this model is the proper prompt, which requires careful words tuning and ingenious design. To avoid laborious prompt engineering, there are some prompt representation learning methods being proposed for the image classification task, which however can only be sub-optimal solutions when applied to the detection task. In this paper, we introduce a novel method, detection prompt (DetPro), to learn continuous prompt representations for open-vocabulary object detection based on the pre-trained vision-language model. Different from the previous classification-oriented methods, DetPro has two highlights: 1) a background interpretation scheme to include the proposals in image background into the prompt training; 2) a context grading scheme to separate proposals in image foreground for tailored prompt training. We assemble DetPro with ViLD, a recent state-of-the-art open-world object detector, and conduct experiments on the LVIS as well as transfer learning on the Pascal VOC, COCO, Objects365 datasets. Experimental results show that our DetPro outperforms the baseline ViLD in all settings, e.g., +3.4 APbox and +3.0 APmask improvements on the novel classes of LVIS. Code and models are available at https://github.com/dyabel/detpro.
SpaText: Spatio-Textual Representation for Controllable Image Generation
Recent text-to-image diffusion models are able to generate convincing results of unprecedented quality. However, it is nearly impossible to control the shapes of different regions/objects or their layout in a fine-grained fashion. Previous attempts to provide such controls were hindered by their reliance on a fixed set of labels. To this end, we present SpaText - a new method for text-to-image generation using open-vocabulary scene control. In addition to a global text prompt that describes the entire scene, the user provides a segmentation map where each region of interest is annotated by a free-form natural language description. Due to lack of large-scale datasets that have a detailed textual description for each region in the image, we choose to leverage the current large-scale text-to-image datasets and base our approach on a novel CLIP-based spatio-textual representation, and show its effectiveness on two state-of-the-art diffusion models: pixel-based and latent-based. In addition, we show how to extend the classifier-free guidance method in diffusion models to the multi-conditional case and present an alternative accelerated inference algorithm. Finally, we offer several automatic evaluation metrics and use them, in addition to FID scores and a user study, to evaluate our method and show that it achieves state-of-the-art results on image generation with free-form textual scene control.
Investigating Prompt Engineering in Diffusion Models
With the spread of the use of Text2Img diffusion models such as DALL-E 2, Imagen, Mid Journey and Stable Diffusion, one challenge that artists face is selecting the right prompts to achieve the desired artistic output. We present techniques for measuring the effect that specific words and phrases in prompts have, and (in the Appendix) present guidance on the selection of prompts to produce desired effects.
Show or Tell? A Benchmark To Evaluate Visual and Textual Prompts in Semantic Segmentation
Prompt engineering has shown remarkable success with large language models, yet its systematic exploration in computer vision remains limited. In semantic segmentation, both textual and visual prompts offer distinct advantages: textual prompts through open-vocabulary methods allow segmentation of arbitrary categories, while visual reference prompts provide intuitive reference examples. However, existing benchmarks evaluate these modalities in isolation, without direct comparison under identical conditions. We present Show or Tell (SoT), a novel benchmark specifically designed to evaluate both visual and textual prompts for semantic segmentation across 14 datasets spanning 7 diverse domains (common scenes, urban, food, waste, parts, tools, and land-cover). We evaluate 5 open-vocabulary methods and 4 visual reference prompt approaches, adapting the latter to handle multi-class segmentation through a confidence-based mask merging strategy. Our extensive experiments reveal that open-vocabulary methods excel with common concepts easily described by text but struggle with complex domains like tools, while visual reference prompt methods achieve good average results but exhibit high variability depending on the input prompt. Through comprehensive quantitative and qualitative analysis, we identify the strengths and weaknesses of both prompting modalities, providing valuable insights to guide future research in vision foundation models for segmentation tasks.
Discovering the Hidden Vocabulary of DALLE-2
We discover that DALLE-2 seems to have a hidden vocabulary that can be used to generate images with absurd prompts. For example, it seems that Apoploe vesrreaitais means birds and Contarra ccetnxniams luryca tanniounons (sometimes) means bugs or pests. We find that these prompts are often consistent in isolation but also sometimes in combinations. We present our black-box method to discover words that seem random but have some correspondence to visual concepts. This creates important security and interpretability challenges.
Effects of Prompt Length on Domain-specific Tasks for Large Language Models
In recent years, Large Language Models have garnered significant attention for their strong performance in various natural language tasks, such as machine translation and question answering. These models demonstrate an impressive ability to generalize across diverse tasks. However, their effectiveness in tackling domain-specific tasks, such as financial sentiment analysis and monetary policy understanding, remains a topic of debate, as these tasks often require specialized knowledge and precise reasoning. To address such challenges, researchers design various prompts to unlock the models' abilities. By carefully crafting input prompts, researchers can guide these models to produce more accurate responses. Consequently, prompt engineering has become a key focus of study. Despite the advancements in both models and prompt engineering, the relationship between the two-specifically, how prompt design impacts models' ability to perform domain-specific tasks-remains underexplored. This paper aims to bridge this research gap.
PromptDet: Towards Open-vocabulary Detection using Uncurated Images
The goal of this work is to establish a scalable pipeline for expanding an object detector towards novel/unseen categories, using zero manual annotations. To achieve that, we make the following four contributions: (i) in pursuit of generalisation, we propose a two-stage open-vocabulary object detector, where the class-agnostic object proposals are classified with a text encoder from pre-trained visual-language model; (ii) To pair the visual latent space (of RPN box proposals) with that of the pre-trained text encoder, we propose the idea of regional prompt learning to align the textual embedding space with regional visual object features; (iii) To scale up the learning procedure towards detecting a wider spectrum of objects, we exploit the available online resource via a novel self-training framework, which allows to train the proposed detector on a large corpus of noisy uncurated web images. Lastly, (iv) to evaluate our proposed detector, termed as PromptDet, we conduct extensive experiments on the challenging LVIS and MS-COCO dataset. PromptDet shows superior performance over existing approaches with fewer additional training images and zero manual annotations whatsoever. Project page with code: https://fcjian.github.io/promptdet.
Towards conversational assistants for health applications: using ChatGPT to generate conversations about heart failure
We explore the potential of ChatGPT (3.5-turbo and 4) to generate conversations focused on self-care strategies for African-American heart failure patients -- a domain with limited specialized datasets. To simulate patient-health educator dialogues, we employed four prompting strategies: domain, African American Vernacular English (AAVE), Social Determinants of Health (SDOH), and SDOH-informed reasoning. Conversations were generated across key self-care domains of food, exercise, and fluid intake, with varying turn lengths (5, 10, 15) and incorporated patient-specific SDOH attributes such as age, gender, neighborhood, and socioeconomic status. Our findings show that effective prompt design is essential. While incorporating SDOH and reasoning improves dialogue quality, ChatGPT still lacks the empathy and engagement needed for meaningful healthcare communication.
Prompting Depth Anything for 4K Resolution Accurate Metric Depth Estimation
Prompts play a critical role in unleashing the power of language and vision foundation models for specific tasks. For the first time, we introduce prompting into depth foundation models, creating a new paradigm for metric depth estimation termed Prompt Depth Anything. Specifically, we use a low-cost LiDAR as the prompt to guide the Depth Anything model for accurate metric depth output, achieving up to 4K resolution. Our approach centers on a concise prompt fusion design that integrates the LiDAR at multiple scales within the depth decoder. To address training challenges posed by limited datasets containing both LiDAR depth and precise GT depth, we propose a scalable data pipeline that includes synthetic data LiDAR simulation and real data pseudo GT depth generation. Our approach sets new state-of-the-arts on the ARKitScenes and ScanNet++ datasets and benefits downstream applications, including 3D reconstruction and generalized robotic grasping.
A Taxonomy of Prompt Modifiers for Text-To-Image Generation
Text-to-image generation has seen an explosion of interest since 2021. Today, beautiful and intriguing digital images and artworks can be synthesized from textual inputs ("prompts") with deep generative models. Online communities around text-to-image generation and AI generated art have quickly emerged. This paper identifies six types of prompt modifiers used by practitioners in the online community based on a 3-month ethnographic study. The novel taxonomy of prompt modifiers provides researchers a conceptual starting point for investigating the practice of text-to-image generation, but may also help practitioners of AI generated art improve their images. We further outline how prompt modifiers are applied in the practice of "prompt engineering." We discuss research opportunities of this novel creative practice in the field of Human-Computer Interaction (HCI). The paper concludes with a discussion of broader implications of prompt engineering from the perspective of Human-AI Interaction (HAI) in future applications beyond the use case of text-to-image generation and AI generated art.
Review of Large Vision Models and Visual Prompt Engineering
Visual prompt engineering is a fundamental technology in the field of visual and image Artificial General Intelligence, serving as a key component for achieving zero-shot capabilities. As the development of large vision models progresses, the importance of prompt engineering becomes increasingly evident. Designing suitable prompts for specific visual tasks has emerged as a meaningful research direction. This review aims to summarize the methods employed in the computer vision domain for large vision models and visual prompt engineering, exploring the latest advancements in visual prompt engineering. We present influential large models in the visual domain and a range of prompt engineering methods employed on these models. It is our hope that this review provides a comprehensive and systematic description of prompt engineering methods based on large visual models, offering valuable insights for future researchers in their exploration of this field.
Image Segmentation Using Text and Image Prompts
Image segmentation is usually addressed by training a model for a fixed set of object classes. Incorporating additional classes or more complex queries later is expensive as it requires re-training the model on a dataset that encompasses these expressions. Here we propose a system that can generate image segmentations based on arbitrary prompts at test time. A prompt can be either a text or an image. This approach enables us to create a unified model (trained once) for three common segmentation tasks, which come with distinct challenges: referring expression segmentation, zero-shot segmentation and one-shot segmentation. We build upon the CLIP model as a backbone which we extend with a transformer-based decoder that enables dense prediction. After training on an extended version of the PhraseCut dataset, our system generates a binary segmentation map for an image based on a free-text prompt or on an additional image expressing the query. We analyze different variants of the latter image-based prompts in detail. This novel hybrid input allows for dynamic adaptation not only to the three segmentation tasks mentioned above, but to any binary segmentation task where a text or image query can be formulated. Finally, we find our system to adapt well to generalized queries involving affordances or properties. Code is available at https://eckerlab.org/code/clipseg.
NeuroPrompts: An Adaptive Framework to Optimize Prompts for Text-to-Image Generation
Despite impressive recent advances in text-to-image diffusion models, obtaining high-quality images often requires prompt engineering by humans who have developed expertise in using them. In this work, we present NeuroPrompts, an adaptive framework that automatically enhances a user's prompt to improve the quality of generations produced by text-to-image models. Our framework utilizes constrained text decoding with a pre-trained language model that has been adapted to generate prompts similar to those produced by human prompt engineers. This approach enables higher-quality text-to-image generations and provides user control over stylistic features via constraint set specification. We demonstrate the utility of our framework by creating an interactive application for prompt enhancement and image generation using Stable Diffusion. Additionally, we conduct experiments utilizing a large dataset of human-engineered prompts for text-to-image generation and show that our approach automatically produces enhanced prompts that result in superior image quality. We make our code, a screencast video demo and a live demo instance of NeuroPrompts publicly available.
A User-Friendly Framework for Generating Model-Preferred Prompts in Text-to-Image Synthesis
Well-designed prompts have demonstrated the potential to guide text-to-image models in generating amazing images. Although existing prompt engineering methods can provide high-level guidance, it is challenging for novice users to achieve the desired results by manually entering prompts due to a discrepancy between novice-user-input prompts and the model-preferred prompts. To bridge the distribution gap between user input behavior and model training datasets, we first construct a novel Coarse-Fine Granularity Prompts dataset (CFP) and propose a novel User-Friendly Fine-Grained Text Generation framework (UF-FGTG) for automated prompt optimization. For CFP, we construct a novel dataset for text-to-image tasks that combines coarse and fine-grained prompts to facilitate the development of automated prompt generation methods. For UF-FGTG, we propose a novel framework that automatically translates user-input prompts into model-preferred prompts. Specifically, we propose a prompt refiner that continually rewrites prompts to empower users to select results that align with their unique needs. Meanwhile, we integrate image-related loss functions from the text-to-image model into the training process of text generation to generate model-preferred prompts. Additionally, we propose an adaptive feature extraction module to ensure diversity in the generated results. Experiments demonstrate that our approach is capable of generating more visually appealing and diverse images than previous state-of-the-art methods, achieving an average improvement of 5% across six quality and aesthetic metrics.
Prompts Should not be Seen as Secrets: Systematically Measuring Prompt Extraction Attack Success
The generations of large language models are commonly controlled through prompting techniques, where a user's query to the model is prefixed with a prompt that aims to guide the model's behaviour on the query. The prompts used by companies to guide their models are often treated as secrets, to be hidden from the user making the query. They have even been treated as commodities to be bought and sold. However, there has been anecdotal evidence showing that the prompts can be extracted by a user even when they are kept secret. In this paper, we present a framework for systematically measuring the success of prompt extraction attacks. In experiments with multiple sources of prompts and multiple underlying language models, we find that simple text-based attacks can in fact reveal prompts with high probability.
The Prompt Report: A Systematic Survey of Prompting Techniques
Generative Artificial Intelligence (GenAI) systems are being increasingly deployed across all parts of industry and research settings. Developers and end users interact with these systems through the use of prompting or prompt engineering. While prompting is a widespread and highly researched concept, there exists conflicting terminology and a poor ontological understanding of what constitutes a prompt due to the area's nascency. This paper establishes a structured understanding of prompts, by assembling a taxonomy of prompting techniques and analyzing their use. We present a comprehensive vocabulary of 33 vocabulary terms, a taxonomy of 58 text-only prompting techniques, and 40 techniques for other modalities. We further present a meta-analysis of the entire literature on natural language prefix-prompting.
Knowledge-Aware Prompt Tuning for Generalizable Vision-Language Models
Pre-trained vision-language models, e.g., CLIP, working with manually designed prompts have demonstrated great capacity of transfer learning. Recently, learnable prompts achieve state-of-the-art performance, which however are prone to overfit to seen classes, failing to generalize to unseen classes. In this paper, we propose a Knowledge-Aware Prompt Tuning (KAPT) framework for vision-language models. Our approach takes inspiration from human intelligence in which external knowledge is usually incorporated into recognizing novel categories of objects. Specifically, we design two complementary types of knowledge-aware prompts for the text encoder to leverage the distinctive characteristics of category-related external knowledge. The discrete prompt extracts the key information from descriptions of an object category, and the learned continuous prompt captures overall contexts. We further design an adaptation head for the visual encoder to aggregate salient attentive visual cues, which establishes discriminative and task-aware visual representations. We conduct extensive experiments on 11 widely-used benchmark datasets and the results verify the effectiveness in few-shot image classification, especially in generalizing to unseen categories. Compared with the state-of-the-art CoCoOp method, KAPT exhibits favorable performance and achieves an absolute gain of 3.22% on new classes and 2.57% in terms of harmonic mean.
ChatGPT4PCG 2 Competition: Prompt Engineering for Science Birds Level Generation
This paper presents the second ChatGPT4PCG competition at the 2024 IEEE Conference on Games. In this edition of the competition, we follow the first edition, but make several improvements and changes. We introduce a new evaluation metric along with allowing a more flexible format for participants' submissions and making several improvements to the evaluation pipeline. Continuing from the first edition, we aim to foster and explore the realm of prompt engineering (PE) for procedural content generation (PCG). While the first competition saw success, it was hindered by various limitations; we aim to mitigate these limitations in this edition. We introduce diversity as a new metric to discourage submissions aimed at producing repetitive structures. Furthermore, we allow submission of a Python program instead of a prompt text file for greater flexibility in implementing advanced PE approaches, which may require control flow, including conditions and iterations. We also make several improvements to the evaluation pipeline with a better classifier for similarity evaluation and better-performing function signatures. We thoroughly evaluate the effectiveness of the new metric and the improved classifier. Additionally, we perform an ablation study to select a function signature to instruct ChatGPT for level generation. Finally, we provide implementation examples of various PE techniques in Python and evaluate their preliminary performance. We hope this competition serves as a resource and platform for learning about PE and PCG in general.
TuneVLSeg: Prompt Tuning Benchmark for Vision-Language Segmentation Models
Vision-Language Models (VLMs) have shown impressive performance in vision tasks, but adapting them to new domains often requires expensive fine-tuning. Prompt tuning techniques, including textual, visual, and multimodal prompting, offer efficient alternatives by leveraging learnable prompts. However, their application to Vision-Language Segmentation Models (VLSMs) and evaluation under significant domain shifts remain unexplored. This work presents an open-source benchmarking framework, TuneVLSeg, to integrate various unimodal and multimodal prompt tuning techniques into VLSMs, making prompt tuning usable for downstream segmentation datasets with any number of classes. TuneVLSeg includes 6 prompt tuning strategies on various prompt depths used in 2 VLSMs totaling of 8 different combinations. We test various prompt tuning on 8 diverse medical datasets, including 3 radiology datasets (breast tumor, echocardiograph, chest X-ray pathologies) and 5 non-radiology datasets (polyp, ulcer, skin cancer), and two natural domain segmentation datasets. Our study found that textual prompt tuning struggles under significant domain shifts, from natural-domain images to medical data. Furthermore, visual prompt tuning, with fewer hyperparameters than multimodal prompt tuning, often achieves performance competitive to multimodal approaches, making it a valuable first attempt. Our work advances the understanding and applicability of different prompt-tuning techniques for robust domain-specific segmentation. The source code is available at https://github.com/naamiinepal/tunevlseg.
The language of prompting: What linguistic properties make a prompt successful?
The latest generation of LLMs can be prompted to achieve impressive zero-shot or few-shot performance in many NLP tasks. However, since performance is highly sensitive to the choice of prompts, considerable effort has been devoted to crowd-sourcing prompts or designing methods for prompt optimisation. Yet, we still lack a systematic understanding of how linguistic properties of prompts correlate with task performance. In this work, we investigate how LLMs of different sizes, pre-trained and instruction-tuned, perform on prompts that are semantically equivalent, but vary in linguistic structure. We investigate both grammatical properties such as mood, tense, aspect and modality, as well as lexico-semantic variation through the use of synonyms. Our findings contradict the common assumption that LLMs achieve optimal performance on lower perplexity prompts that reflect language use in pretraining or instruction-tuning data. Prompts transfer poorly between datasets or models, and performance cannot generally be explained by perplexity, word frequency, ambiguity or prompt length. Based on our results, we put forward a proposal for a more robust and comprehensive evaluation standard for prompting research.
What Do You Want? User-centric Prompt Generation for Text-to-image Synthesis via Multi-turn Guidance
The emergence of text-to-image synthesis (TIS) models has significantly influenced digital image creation by producing high-quality visuals from written descriptions. Yet these models heavily rely on the quality and specificity of textual prompts, posing a challenge for novice users who may not be familiar with TIS-model-preferred prompt writing. Existing solutions relieve this via automatic model-preferred prompt generation from user queries. However, this single-turn manner suffers from limited user-centricity in terms of result interpretability and user interactivity. To address these issues, we propose DialPrompt, a multi-turn dialogue-based TIS prompt generation model that emphasises user-centricity. DialPrompt is designed to follow a multi-turn guidance workflow, where in each round of dialogue the model queries user with their preferences on possible optimization dimensions before generating the final TIS prompt. To achieve this, we mined 15 essential dimensions for high-quality prompts from advanced users and curated a multi-turn dataset. Through training on this dataset, DialPrompt can improve interpretability by allowing users to understand the correlation between specific phrases and image attributes. Additionally, it enables greater user control and engagement in the prompt generation process, leading to more personalized and visually satisfying outputs. Experiments indicate that DialPrompt achieves a competitive result in the quality of synthesized images, outperforming existing prompt engineering approaches by 5.7%. Furthermore, in our user evaluation, DialPrompt outperforms existing approaches by 46.5% in user-centricity score and is rated 7.9/10 by 19 human reviewers.
Adaptive Prompting: Ad-hoc Prompt Composition for Social Bias Detection
Recent advances on instruction fine-tuning have led to the development of various prompting techniques for large language models, such as explicit reasoning steps. However, the success of techniques depends on various parameters, such as the task, language model, and context provided. Finding an effective prompt is, therefore, often a trial-and-error process. Most existing approaches to automatic prompting aim to optimize individual techniques instead of compositions of techniques and their dependence on the input. To fill this gap, we propose an adaptive prompting approach that predicts the optimal prompt composition ad-hoc for a given input. We apply our approach to social bias detection, a highly context-dependent task that requires semantic understanding. We evaluate it with three large language models on three datasets, comparing compositions to individual techniques and other baselines. The results underline the importance of finding an effective prompt composition. Our approach robustly ensures high detection performance, and is best in several settings. Moreover, first experiments on other tasks support its generalizability.
What does CLIP know about a red circle? Visual prompt engineering for VLMs
Large-scale Vision-Language Models, such as CLIP, learn powerful image-text representations that have found numerous applications, from zero-shot classification to text-to-image generation. Despite that, their capabilities for solving novel discriminative tasks via prompting fall behind those of large language models, such as GPT-3. Here we explore the idea of visual prompt engineering for solving computer vision tasks beyond classification by editing in image space instead of text. In particular, we discover an emergent ability of CLIP, where, by simply drawing a red circle around an object, we can direct the model's attention to that region, while also maintaining global information. We show the power of this simple approach by achieving state-of-the-art in zero-shot referring expressions comprehension and strong performance in keypoint localization tasks. Finally, we draw attention to some potential ethical concerns of large language-vision models.
Prompting Large Language Model for Machine Translation: A Case Study
Research on prompting has shown excellent performance with little or even no supervised training across many tasks. However, prompting for machine translation is still under-explored in the literature. We fill this gap by offering a systematic study on prompting strategies for translation, examining various factors for prompt template and demonstration example selection. We further explore the use of monolingual data and the feasibility of cross-lingual, cross-domain, and sentence-to-document transfer learning in prompting. Extensive experiments with GLM-130B (Zeng et al., 2022) as the testbed show that 1) the number and the quality of prompt examples matter, where using suboptimal examples degenerates translation; 2) several features of prompt examples, such as semantic similarity, show significant Spearman correlation with their prompting performance; yet, none of the correlations are strong enough; 3) using pseudo parallel prompt examples constructed from monolingual data via zero-shot prompting could improve translation; and 4) improved performance is achievable by transferring knowledge from prompt examples selected in other settings. We finally provide an analysis on the model outputs and discuss several problems that prompting still suffers from.
What You Say = What You Want? Teaching Humans to Articulate Requirements for LLMs
Prompting ChatGPT to achieve complex goals (e.g., creating a customer support chatbot) often demands meticulous prompt engineering, including aspects like fluent writing and chain-of-thought techniques. While emerging prompt optimizers can automatically refine many of these aspects, we argue that clearly conveying customized requirements (e.g., how to handle diverse inputs) remains a human-centric challenge. In this work, we introduce Requirement-Oriented Prompt Engineering (ROPE), a paradigm that focuses human attention on generating clear, complete requirements during prompting. We implement ROPE through an assessment and training suite that provides deliberate practice with LLM-generated feedback. In a study with 30 novices, we show that requirement-focused training doubles novices' prompting performance, significantly outperforming conventional prompt engineering training and prompt optimization. We also demonstrate that high-quality LLM outputs are directly tied to the quality of input requirements. Our work paves the way for more effective task delegation in human-LLM collaborative prompting.
PADA: Example-based Prompt Learning for on-the-fly Adaptation to Unseen Domains
Natural Language Processing algorithms have made incredible progress, but they still struggle when applied to out-of-distribution examples. We address a challenging and underexplored version of this domain adaptation problem, where an algorithm is trained on several source domains, and then applied to examples from unseen domains that are unknown at training time. Particularly, no examples, labeled or unlabeled, or any other knowledge about the target domain are available to the algorithm at training time. We present PADA: An example-based autoregressive Prompt learning algorithm for on-the-fly Any-Domain Adaptation, based on the T5 language model. Given a test example, PADA first generates a unique prompt for it and then, conditioned on this prompt, labels the example with respect to the NLP prediction task. PADA is trained to generate a prompt which is a token sequence of unrestricted length, consisting of Domain Related Features (DRFs) that characterize each of the source domains. Intuitively, the generated prompt is a unique signature that maps the test example to a semantic space spanned by the source domains. In experiments with 3 tasks (text classification and sequence tagging), for a total of 14 multi-source adaptation scenarios, PADA substantially outperforms strong baselines.
ChatGPT for Robotics: Design Principles and Model Abilities
This paper presents an experimental study regarding the use of OpenAI's ChatGPT for robotics applications. We outline a strategy that combines design principles for prompt engineering and the creation of a high-level function library which allows ChatGPT to adapt to different robotics tasks, simulators, and form factors. We focus our evaluations on the effectiveness of different prompt engineering techniques and dialog strategies towards the execution of various types of robotics tasks. We explore ChatGPT's ability to use free-form dialog, parse XML tags, and to synthesize code, in addition to the use of task-specific prompting functions and closed-loop reasoning through dialogues. Our study encompasses a range of tasks within the robotics domain, from basic logical, geometrical, and mathematical reasoning all the way to complex domains such as aerial navigation, manipulation, and embodied agents. We show that ChatGPT can be effective at solving several of such tasks, while allowing users to interact with it primarily via natural language instructions. In addition to these studies, we introduce an open-sourced research tool called PromptCraft, which contains a platform where researchers can collaboratively upload and vote on examples of good prompting schemes for robotics applications, as well as a sample robotics simulator with ChatGPT integration, making it easier for users to get started with using ChatGPT for robotics.
Bringing Characters to New Stories: Training-Free Theme-Specific Image Generation via Dynamic Visual Prompting
The stories and characters that captivate us as we grow up shape unique fantasy worlds, with images serving as the primary medium for visually experiencing these realms. Personalizing generative models through fine-tuning with theme-specific data has become a prevalent approach in text-to-image generation. However, unlike object customization, which focuses on learning specific objects, theme-specific generation encompasses diverse elements such as characters, scenes, and objects. Such diversity also introduces a key challenge: how to adaptively generate multi-character, multi-concept, and continuous theme-specific images (TSI). Moreover, fine-tuning approaches often come with significant computational overhead, time costs, and risks of overfitting. This paper explores a fundamental question: Can image generation models directly leverage images as contextual input, similarly to how large language models use text as context? To address this, we present T-Prompter, a novel training-free TSI method for generation. T-Prompter introduces visual prompting, a mechanism that integrates reference images into generative models, allowing users to seamlessly specify the target theme without requiring additional training. To further enhance this process, we propose a Dynamic Visual Prompting (DVP) mechanism, which iteratively optimizes visual prompts to improve the accuracy and quality of generated images. Our approach enables diverse applications, including consistent story generation, character design, realistic character generation, and style-guided image generation. Comparative evaluations against state-of-the-art personalization methods demonstrate that T-Prompter achieves significantly better results and excels in maintaining character identity preserving, style consistency and text alignment, offering a robust and flexible solution for theme-specific image generation.
SYNC-CLIP: Synthetic Data Make CLIP Generalize Better in Data-Limited Scenarios
Prompt learning is a powerful technique for transferring Vision-Language Models (VLMs) such as CLIP to downstream tasks. However, the prompt-based methods that are fine-tuned solely with base classes may struggle to generalize to novel classes in open-vocabulary scenarios, especially when data are limited. To address this issue, we propose an innovative approach called SYNC-CLIP that leverages SYNthetiC data for enhancing the generalization capability of CLIP. Based on the observation of the distribution shift between the real and synthetic samples, we treat real and synthetic samples as distinct domains and propose to optimize separate domain prompts to capture domain-specific information, along with the shared visual prompts to preserve the semantic consistency between two domains. By aligning the cross-domain features, the synthetic data from novel classes can provide implicit guidance to rebalance the decision boundaries. Experimental results on three model generalization tasks demonstrate that our method performs very competitively across various benchmarks. Notably, SYNC-CLIP outperforms the state-of-the-art competitor PromptSRC by an average improvement of 3.0% on novel classes across 11 datasets in open-vocabulary scenarios.
Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review
This paper delves into the pivotal role of prompt engineering in unleashing the capabilities of Large Language Models (LLMs). Prompt engineering is the process of structuring input text for LLMs and is a technique integral to optimizing the efficacy of LLMs. This survey elucidates foundational principles of prompt engineering, such as role-prompting, one-shot, and few-shot prompting, as well as more advanced methodologies such as the chain-of-thought and tree-of-thoughts prompting. The paper sheds light on how external assistance in the form of plugins can assist in this task, and reduce machine hallucination by retrieving external knowledge. We subsequently delineate prospective directions in prompt engineering research, emphasizing the need for a deeper understanding of structures and the role of agents in Artificial Intelligence-Generated Content (AIGC) tools. We discuss how to assess the efficacy of prompt methods from different perspectives and using different methods. Finally, we gather information about the application of prompt engineering in such fields as education and programming, showing its transformative potential. This comprehensive survey aims to serve as a friendly guide for anyone venturing through the big world of LLMs and prompt engineering.
SPRIG: Improving Large Language Model Performance by System Prompt Optimization
Large Language Models (LLMs) have shown impressive capabilities in many scenarios, but their performance depends, in part, on the choice of prompt. Past research has focused on optimizing prompts specific to a task. However, much less attention has been given to optimizing the general instructions included in a prompt, known as a system prompt. To address this gap, we propose SPRIG, an edit-based genetic algorithm that iteratively constructs prompts from prespecified components to maximize the model's performance in general scenarios. We evaluate the performance of system prompts on a collection of 47 different types of tasks to ensure generalizability. Our study finds that a single optimized system prompt performs on par with task prompts optimized for each individual task. Moreover, combining system and task-level optimizations leads to further improvement, which showcases their complementary nature. Experiments also reveal that the optimized system prompts generalize effectively across model families, parameter sizes, and languages. This study provides insights into the role of system-level instructions in maximizing LLM potential.
Plum: Prompt Learning using Metaheuristic
Since the emergence of large language models, prompt learning has become a popular method for optimizing and customizing these models. Special prompts, such as Chain-of-Thought, have even revealed previously unknown reasoning capabilities within these models. However, the progress of discovering effective prompts has been slow, driving a desire for general prompt optimization methods. Unfortunately, few existing prompt learning methods satisfy the criteria of being truly "general", i.e., automatic, discrete, black-box, gradient-free, and interpretable all at once. In this paper, we introduce metaheuristics, a branch of discrete non-convex optimization methods with over 100 options, as a promising approach to prompt learning. Within our paradigm, we test six typical methods: hill climbing, simulated annealing, genetic algorithms with/without crossover, tabu search, and harmony search, demonstrating their effectiveness in black-box prompt learning and Chain-of-Thought prompt tuning. Furthermore, we show that these methods can be used to discover more human-understandable prompts that were previously unknown, opening the door to a cornucopia of possibilities in prompt optimization. We release all the codes in https://github.com/research4pan/Plum.
DreamDistribution: Prompt Distribution Learning for Text-to-Image Diffusion Models
The popularization of Text-to-Image (T2I) diffusion models enables the generation of high-quality images from text descriptions. However, generating diverse customized images with reference visual attributes remains challenging. This work focuses on personalizing T2I diffusion models at a more abstract concept or category level, adapting commonalities from a set of reference images while creating new instances with sufficient variations. We introduce a solution that allows a pretrained T2I diffusion model to learn a set of soft prompts, enabling the generation of novel images by sampling prompts from the learned distribution. These prompts offer text-guided editing capabilities and additional flexibility in controlling variation and mixing between multiple distributions. We also show the adaptability of the learned prompt distribution to other tasks, such as text-to-3D. Finally we demonstrate effectiveness of our approach through quantitative analysis including automatic evaluation and human assessment. Project website: https://briannlongzhao.github.io/DreamDistribution
Tailored Visions: Enhancing Text-to-Image Generation with Personalized Prompt Rewriting
Despite significant progress in the field, it is still challenging to create personalized visual representations that align closely with the desires and preferences of individual users. This process requires users to articulate their ideas in words that are both comprehensible to the models and accurately capture their vision, posing difficulties for many users. In this paper, we tackle this challenge by leveraging historical user interactions with the system to enhance user prompts. We propose a novel approach that involves rewriting user prompts based on a newly collected large-scale text-to-image dataset with over 300k prompts from 3115 users. Our rewriting model enhances the expressiveness and alignment of user prompts with their intended visual outputs. Experimental results demonstrate the superiority of our methods over baseline approaches, as evidenced in our new offline evaluation method and online tests. Our code and dataset are available at https://github.com/zzjchen/Tailored-Visions .
PromptCap: Prompt-Guided Image Captioning for VQA with GPT-3
Knowledge-based visual question answering (VQA) involves questions that require world knowledge beyond the image to yield the correct answer. Large language models (LMs) like GPT-3 are particularly helpful for this task because of their strong knowledge retrieval and reasoning capabilities. To enable LM to understand images, prior work uses a captioning model to convert images into text. However, when summarizing an image in a single caption sentence, which visual entities to describe are often underspecified. Generic image captions often miss visual details essential for the LM to answer visual questions correctly. To address this challenge, we propose PromptCap (Prompt-guided image Captioning), a captioning model designed to serve as a better connector between images and black-box LMs. Different from generic captions, PromptCap takes a natural-language prompt to control the visual entities to describe in the generated caption. The prompt contains a question that the caption should aid in answering. To avoid extra annotation, PromptCap is trained by examples synthesized with GPT-3 and existing datasets. We demonstrate PromptCap's effectiveness on an existing pipeline in which GPT-3 is prompted with image captions to carry out VQA. PromptCap outperforms generic captions by a large margin and achieves state-of-the-art accuracy on knowledge-based VQA tasks (60.4% on OK-VQA and 59.6% on A-OKVQA). Zero-shot results on WebQA show that PromptCap generalizes well to unseen domains.
The Next Chapter: A Study of Large Language Models in Storytelling
To enhance the quality of generated stories, recent story generation models have been investigating the utilization of higher-level attributes like plots or commonsense knowledge. The application of prompt-based learning with large language models (LLMs), exemplified by GPT-3, has exhibited remarkable performance in diverse natural language processing (NLP) tasks. This paper conducts a comprehensive investigation, utilizing both automatic and human evaluation, to compare the story generation capacity of LLMs with recent models across three datasets with variations in style, register, and length of stories. The results demonstrate that LLMs generate stories of significantly higher quality compared to other story generation models. Moreover, they exhibit a level of performance that competes with human authors, albeit with the preliminary observation that they tend to replicate real stories in situations involving world knowledge, resembling a form of plagiarism.
Evaluation is all you need. Prompting Generative Large Language Models for Annotation Tasks in the Social Sciences. A Primer using Open Models
This paper explores the use of open generative Large Language Models (LLMs) for annotation tasks in the social sciences. The study highlights the challenges associated with proprietary models, such as limited reproducibility and privacy concerns, and advocates for the adoption of open (source) models that can be operated on independent devices. Two examples of annotation tasks, sentiment analysis in tweets and identification of leisure activities in childhood aspirational essays are provided. The study evaluates the performance of different prompting strategies and models (neural-chat-7b-v3-2, Starling-LM-7B-alpha, openchat_3.5, zephyr-7b-alpha and zephyr-7b-beta). The results indicate the need for careful validation and tailored prompt engineering. The study highlights the advantages of open models for data privacy and reproducibility.
MaPLe: Multi-modal Prompt Learning
Pre-trained vision-language (V-L) models such as CLIP have shown excellent generalization ability to downstream tasks. However, they are sensitive to the choice of input text prompts and require careful selection of prompt templates to perform well. Inspired by the Natural Language Processing (NLP) literature, recent CLIP adaptation approaches learn prompts as the textual inputs to fine-tune CLIP for downstream tasks. We note that using prompting to adapt representations in a single branch of CLIP (language or vision) is sub-optimal since it does not allow the flexibility to dynamically adjust both representation spaces on a downstream task. In this work, we propose Multi-modal Prompt Learning (MaPLe) for both vision and language branches to improve alignment between the vision and language representations. Our design promotes strong coupling between the vision-language prompts to ensure mutual synergy and discourages learning independent uni-modal solutions. Further, we learn separate prompts across different early stages to progressively model the stage-wise feature relationships to allow rich context learning. We evaluate the effectiveness of our approach on three representative tasks of generalization to novel classes, new target datasets and unseen domain shifts. Compared with the state-of-the-art method Co-CoOp, MaPLe exhibits favorable performance and achieves an absolute gain of 3.45% on novel classes and 2.72% on overall harmonic-mean, averaged over 11 diverse image recognition datasets. Our code and pre-trained models are available at https://github.com/muzairkhattak/multimodal-prompt-learning.
Text-driven Prompt Generation for Vision-Language Models in Federated Learning
Prompt learning for vision-language models, e.g., CoOp, has shown great success in adapting CLIP to different downstream tasks, making it a promising solution for federated learning due to computational reasons. Existing prompt learning techniques replace hand-crafted text prompts with learned vectors that offer improvements on seen classes, but struggle to generalize to unseen classes. Our work addresses this challenge by proposing Federated Text-driven Prompt Generation (FedTPG), which learns a unified prompt generation network across multiple remote clients in a scalable manner. The prompt generation network is conditioned on task-related text input, thus is context-aware, making it suitable to generalize for both seen and unseen classes. Our comprehensive empirical evaluations on nine diverse image classification datasets show that our method is superior to existing federated prompt learning methods, that achieve overall better generalization on both seen and unseen classes and is also generalizable to unseen datasets.
Harnessing the Power of Prompt-based Techniques for Generating School-Level Questions using Large Language Models
Designing high-quality educational questions is a challenging and time-consuming task. In this work, we propose a novel approach that utilizes prompt-based techniques to generate descriptive and reasoning-based questions. However, current question-answering (QA) datasets are inadequate for conducting our experiments on prompt-based question generation (QG) in an educational setting. Therefore, we curate a new QG dataset called EduProbe for school-level subjects, by leveraging the rich content of NCERT textbooks. We carefully annotate this dataset as quadruples of 1) Context: a segment upon which the question is formed; 2) Long Prompt: a long textual cue for the question (i.e., a longer sequence of words or phrases, covering the main theme of the context); 3) Short Prompt: a short textual cue for the question (i.e., a condensed representation of the key information or focus of the context); 4) Question: a deep question that aligns with the context and is coherent with the prompts. We investigate several prompt-based QG methods by fine-tuning pre-trained transformer-based large language models (LLMs), namely PEGASUS, T5, MBART, and BART. Moreover, we explore the performance of two general-purpose pre-trained LLMs such as Text-Davinci-003 and GPT-3.5-Turbo without any further training. By performing automatic evaluation, we show that T5 (with long prompt) outperforms all other models, but still falls short of the human baseline. Under human evaluation criteria, TextDavinci-003 usually shows better results than other models under various prompt settings. Even in the case of human evaluation criteria, QG models mostly fall short of the human baseline. Our code and dataset are available at: https://github.com/my625/PromptQG
PromptSet: A Programmer's Prompting Dataset
The rise of capabilities expressed by large language models has been quickly followed by the integration of the same complex systems into application level logic. Algorithms, programs, systems, and companies are built around structured prompting to black box models where the majority of the design and implementation lies in capturing and quantifying the `agent mode'. The standard way to shape a closed language model is to prime it for a specific task with a tailored prompt, often initially handwritten by a human. The textual prompts co-evolve with the codebase, taking shape over the course of project life as artifacts which must be reviewed and maintained, just as the traditional code files might be. Unlike traditional code, we find that prompts do not receive effective static testing and linting to prevent runtime issues. In this work, we present a novel dataset called PromptSet, with more than 61,000 unique developer prompts used in open source Python programs. We perform analysis on this dataset and introduce the notion of a static linter for prompts. Released with this publication is a HuggingFace dataset and a Github repository to recreate collection and processing efforts, both under the name pisterlabs/promptset.
Automatic Prompt Selection for Large Language Models
Large Language Models (LLMs) can perform various natural language processing tasks with suitable instruction prompts. However, designing effective prompts manually is challenging and time-consuming. Existing methods for automatic prompt optimization either lack flexibility or efficiency. In this paper, we propose an effective approach to automatically select the optimal prompt for a given input from a finite set of synthetic candidate prompts. Our approach consists of three steps: (1) clustering the training data and generating candidate prompts for each cluster using an LLM-based prompt generator; (2) synthesizing a dataset of input-prompt-output tuples for training a prompt evaluator to rank the prompts based on their relevance to the input; (3) using the prompt evaluator to select the best prompt for a new input at test time. Our approach balances prompt generality-specificity and eliminates the need for resource-intensive training and inference. It demonstrates competitive performance on zero-shot question-answering datasets: GSM8K, MultiArith, and AQuA.
Complexity-Based Prompting for Multi-Step Reasoning
We study the task of prompting large-scale language models to perform multi-step reasoning. Existing work shows that when prompted with a chain of thoughts (CoT), sequences of short sentences describing intermediate reasoning steps towards a final answer, large language models can generate new reasoning chains and predict answers for new inputs. A central question is which reasoning examples make the most effective prompts. In this work, we propose complexity-based prompting, a simple and effective example selection scheme for multi-step reasoning. We show that prompts with higher reasoning complexity, i.e., chains with more reasoning steps, achieve substantially better performance on multi-step reasoning tasks over strong baselines. We further extend our complexity-based criteria from prompting (selecting inputs) to decoding (selecting outputs), where we sample multiple reasoning chains from the model, then choose the majority of generated answers from complex reasoning chains (over simple chains). When used to prompt GPT-3 and Codex, our approach substantially improves multi-step reasoning accuracy and achieves new state-of-the-art (SOTA) performance on three math benchmarks (GSM8K, MultiArith, and MathQA) and two BigBenchHard tasks (Date Understanding and Penguins), with an average +5.3 and up to +18 accuracy improvements. Compared with existing example selection schemes like manual tuning or retrieval-based selection, selection based on reasoning complexity is intuitive, easy to implement, and annotation-efficient. Further results demonstrate the robustness of performance gains from complex prompts under format perturbation and distribution shift.
Self-Supervised Prompt Optimization
Well-designed prompts are crucial for enhancing Large language models' (LLMs) reasoning capabilities while aligning their outputs with task requirements across diverse domains. However, manually designed prompts require expertise and iterative experimentation. While existing prompt optimization methods aim to automate this process, they rely heavily on external references such as ground truth or by humans, limiting their applicability in real-world scenarios where such data is unavailable or costly to obtain. To address this, we propose Self-Supervised Prompt Optimization (SPO), a cost-efficient framework that discovers effective prompts for both closed and open-ended tasks without requiring external reference. Motivated by the observations that prompt quality manifests directly in LLM outputs and LLMs can effectively assess adherence to task requirements, we derive evaluation and optimization signals purely from output comparisons. Specifically, SPO selects superior prompts through pairwise output comparisons evaluated by an LLM evaluator, followed by an LLM optimizer that aligns outputs with task requirements. Extensive experiments demonstrate that SPO outperforms state-of-the-art prompt optimization methods, achieving comparable or superior results with significantly lower costs (e.g., 1.1% to 5.6% of existing methods) and fewer samples (e.g., three samples). The code is available at https://github.com/geekan/MetaGPT.
Prompt Recursive Search: A Living Framework with Adaptive Growth in LLM Auto-Prompting
Large Language Models (LLMs) exhibit remarkable proficiency in addressing a diverse array of tasks within the Natural Language Processing (NLP) domain, with various prompt design strategies significantly augmenting their capabilities. However, these prompts, while beneficial, each possess inherent limitations. The primary prompt design methodologies are twofold: The first, exemplified by the Chain of Thought (CoT), involves manually crafting prompts specific to individual datasets, hence termed Expert-Designed Prompts (EDPs). Once these prompts are established, they are unalterable, and their effectiveness is capped by the expertise of the human designers. When applied to LLMs, the static nature of EDPs results in a uniform approach to both simple and complex problems within the same dataset, leading to the inefficient use of tokens for straightforward issues. The second method involves prompts autonomously generated by the LLM, known as LLM-Derived Prompts (LDPs), which provide tailored solutions to specific problems, mitigating the limitations of EDPs. However, LDPs may encounter a decline in performance when tackling complex problems due to the potential for error accumulation during the solution planning process. To address these challenges, we have conceived a novel Prompt Recursive Search (PRS) framework that leverages the LLM to generate solutions specific to the problem, thereby conserving tokens. The framework incorporates an assessment of problem complexity and an adjustable structure, ensuring a reduction in the likelihood of errors. We have substantiated the efficacy of PRS framework through extensive experiments using LLMs with different numbers of parameters across a spectrum of datasets in various domains. Compared to the CoT method, the PRS method has increased the accuracy on the BBH dataset by 8% using Llama3-7B model, achieving a 22% improvement.
Zero-shot Cross-lingual Transfer of Prompt-based Tuning with a Unified Multilingual Prompt
Prompt-based tuning has been proven effective for pretrained language models (PLMs). While most of the existing work focuses on the monolingual prompts, we study the multilingual prompts for multilingual PLMs, especially in the zero-shot cross-lingual setting. To alleviate the effort of designing different prompts for multiple languages, we propose a novel model that uses a unified prompt for all languages, called UniPrompt. Different from the discrete prompts and soft prompts, the unified prompt is model-based and language-agnostic. Specifically, the unified prompt is initialized by a multilingual PLM to produce language-independent representation, after which is fused with the text input. During inference, the prompts can be pre-computed so that no extra computation cost is needed. To collocate with the unified prompt, we propose a new initialization method for the target label word to further improve the model's transferability across languages. Extensive experiments show that our proposed methods can significantly outperform the strong baselines across different languages. We release data and code to facilitate future research.
System Prompt Optimization with Meta-Learning
Large Language Models (LLMs) have shown remarkable capabilities, with optimizing their input prompts playing a pivotal role in maximizing their performance. However, while LLM prompts consist of both the task-agnostic system prompts and task-specific user prompts, existing work on prompt optimization has focused on user prompts specific to individual queries or tasks, and largely overlooked the system prompt that is, once optimized, applicable across different tasks and domains. Motivated by this, we introduce the novel problem of bilevel system prompt optimization, whose objective is to design system prompts that are robust to diverse user prompts and transferable to unseen tasks. To tackle this problem, we then propose a meta-learning framework, which meta-learns the system prompt by optimizing it over various user prompts across multiple datasets, while simultaneously updating the user prompts in an iterative manner to ensure synergy between them. We conduct experiments on 14 unseen datasets spanning 5 different domains, on which we show that our approach produces system prompts that generalize effectively to diverse user prompts. Also, our findings reveal that the optimized system prompt enables rapid adaptation even to unseen tasks, requiring fewer optimization steps for test-time user prompts while achieving improved performance.
Reasoning with Language Model Prompting: A Survey
Reasoning, as an essential ability for complex problem-solving, can provide back-end support for various real-world applications, such as medical diagnosis, negotiation, etc. This paper provides a comprehensive survey of cutting-edge research on reasoning with language model prompting. We introduce research works with comparisons and summaries and provide systematic resources to help beginners. We also discuss the potential reasons for emerging such reasoning abilities and highlight future research directions. Resources are available at https://github.com/zjunlp/Prompt4ReasoningPapers (updated periodically).
AMPO: Automatic Multi-Branched Prompt Optimization
Prompt engineering is very important to enhance the performance of large language models (LLMs). When dealing with complex issues, prompt engineers tend to distill multiple patterns from examples and inject relevant solutions to optimize the prompts, achieving satisfying results. However, existing automatic prompt optimization techniques are only limited to producing single flow instructions, struggling with handling diverse patterns. In this paper, we present AMPO, an automatic prompt optimization method that can iteratively develop a multi-branched prompt using failure cases as feedback. Our goal is to explore a novel way of structuring prompts with multi-branches to better handle multiple patterns in complex tasks, for which we introduce three modules: Pattern Recognition, Branch Adjustment, and Branch Pruning. In experiments across five tasks, AMPO consistently achieves the best results. Additionally, our approach demonstrates significant optimization efficiency due to our adoption of a minimal search strategy.
ChatGPT Prompt Patterns for Improving Code Quality, Refactoring, Requirements Elicitation, and Software Design
This paper presents prompt design techniques for software engineering, in the form of patterns, to solve common problems when using large language models (LLMs), such as ChatGPT to automate common software engineering activities, such as ensuring code is decoupled from third-party libraries and simulating a web application API before it is implemented. This paper provides two contributions to research on using LLMs for software engineering. First, it provides a catalog of patterns for software engineering that classifies patterns according to the types of problems they solve. Second, it explores several prompt patterns that have been applied to improve requirements elicitation, rapid prototyping, code quality, refactoring, and system design.
TIPO: Text to Image with Text Presampling for Prompt Optimization
TIPO (Text to Image with text pre-sampling for Prompt Optimization) is an innovative framework designed to enhance text-to-image (T2I) generation by language model (LM) for automatic prompt engineering. By refining and extending user-provided prompts, TIPO bridges the gap between simple inputs and the detailed prompts required for high-quality image generation. Unlike previous approaches that rely on Large Language Models (LLMs) or reinforcement learning (RL), TIPO adjusts user input prompts with the distribution of a trained prompt dataset, eliminating the need for complex runtime cost via lightweight model. This pre-sampling approach enables efficient and scalable prompt optimization, grounded in the model's training distribution. Experimental results demonstrate TIPO's effectiveness in improving aesthetic scores, reducing image corruption, and better aligning generated images with dataset distributions. These findings highlight the critical role of prompt engineering in T2I systems and open avenues for broader applications of automatic prompt refinement.
Prompting Frameworks for Large Language Models: A Survey
Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at https://github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.
WorldSmith: Iterative and Expressive Prompting for World Building with a Generative AI
Crafting a rich and unique environment is crucial for fictional world-building, but can be difficult to achieve since illustrating a world from scratch requires time and significant skill. We investigate the use of recent multi-modal image generation systems to enable users iteratively visualize and modify elements of their fictional world using a combination of text input, sketching, and region-based filling. WorldSmith enables novice world builders to quickly visualize a fictional world with layered edits and hierarchical compositions. Through a formative study (4 participants) and first-use study (13 participants) we demonstrate that WorldSmith offers more expressive interactions with prompt-based models. With this work, we explore how creatives can be empowered to leverage prompt-based generative AI as a tool in their creative process, beyond current "click-once" prompting UI paradigms.
GenAssist: Making Image Generation Accessible
Blind and low vision (BLV) creators use images to communicate with sighted audiences. However, creating or retrieving images is challenging for BLV creators as it is difficult to use authoring tools or assess image search results. Thus, creators limit the types of images they create or recruit sighted collaborators. While text-to-image generation models let creators generate high-fidelity images based on a text description (i.e. prompt), it is difficult to assess the content and quality of generated images. We present GenAssist, a system to make text-to-image generation accessible. Using our interface, creators can verify whether generated image candidates followed the prompt, access additional details in the image not specified in the prompt, and skim a summary of similarities and differences between image candidates. To power the interface, GenAssist uses a large language model to generate visual questions, vision-language models to extract answers, and a large language model to summarize the results. Our study with 12 BLV creators demonstrated that GenAssist enables and simplifies the process of image selection and generation, making visual authoring more accessible to all.
Large Language Models Might Not Care What You Are Saying: Prompt Format Beats Descriptions
With the help of in-context learning (ICL), large language models (LLMs) have achieved impressive performance across various tasks. However, the function of descriptive instructions during ICL remains under-explored. In this work, we propose an ensemble prompt framework to describe the selection criteria of multiple in-context examples, and preliminary experiments on machine translation (MT) across six translation directions confirm that this framework boosts ICL perfromance. But to our surprise, LLMs might not necessarily care what the descriptions actually say, and the performance gain is primarily caused by the ensemble format, since the framework could lead to improvement even with random descriptive nouns. We further apply this new ensemble prompt on a range of commonsense, math, logical reasoning and hallucination tasks with three LLMs and achieve promising results, suggesting again that designing a proper prompt format would be much more effective and efficient than paying effort into specific descriptions. Our code will be publicly available once this paper is published.
GREATERPROMPT: A Unified, Customizable, and High-Performing Open-Source Toolkit for Prompt Optimization
LLMs have gained immense popularity among researchers and the general public for its impressive capabilities on a variety of tasks. Notably, the efficacy of LLMs remains significantly dependent on the quality and structure of the input prompts, making prompt design a critical factor for their performance. Recent advancements in automated prompt optimization have introduced diverse techniques that automatically enhance prompts to better align model outputs with user expectations. However, these methods often suffer from the lack of standardization and compatibility across different techniques, limited flexibility in customization, inconsistent performance across model scales, and they often exclusively rely on expensive proprietary LLM APIs. To fill in this gap, we introduce GREATERPROMPT, a novel framework that democratizes prompt optimization by unifying diverse methods under a unified, customizable API while delivering highly effective prompts for different tasks. Our framework flexibly accommodates various model scales by leveraging both text feedback-based optimization for larger LLMs and internal gradient-based optimization for smaller models to achieve powerful and precise prompt improvements. Moreover, we provide a user-friendly Web UI that ensures accessibility for non-expert users, enabling broader adoption and enhanced performance across various user groups and application scenarios. GREATERPROMPT is available at https://github.com/psunlpgroup/GreaterPrompt via GitHub, PyPI, and web user interfaces.
Q&A Prompts: Discovering Rich Visual Clues through Mining Question-Answer Prompts for VQA requiring Diverse World Knowledge
With the breakthrough of multi-modal large language models, answering complex visual questions that demand advanced reasoning abilities and world knowledge has become a much more important testbed for developing AI models than ever. However, equipping AI models with robust cross-modality reasoning ability remains challenging since the cognition scheme of humans has not been understood systematically. In this paper, we believe that if we can collect visual clues in the given image as much as possible, we will recognize the image more accurately, understand the question better, recall relevant knowledge more easily, and finally reason out the answer. We discover these rich visual clues by mining question-answer pairs in images and sending them into multi-modal large language models as prompts. We call the proposed method Q&A Prompts. Specifically, we first use the image-answer pairs and the corresponding questions in the training set as inputs and outputs to train a visual question generation model. Then, we use an image tagging model to identify various instances and send packaged image-tag pairs into the visual question generation model to generate relevant questions with the extracted image tags as answers. Finally, we encode these generated question-answer pairs as prompts with a visual-aware prompting module and send them into pre-trained multi-modal large language models to reason out the final answers. Experimental results show that, compared with state-of-the-art methods, our Q&A Prompts achieves substantial improvements on the challenging visual question answering datasets requiring reasoning over diverse world knowledge, such as OK-VQA and A-OKVQA.
PromptAgent: Strategic Planning with Language Models Enables Expert-level Prompt Optimization
Highly effective, task-specific prompts are often heavily engineered by experts to integrate detailed instructions and domain insights based on a deep understanding of both instincts of large language models (LLMs) and the intricacies of the target task. However, automating the generation of such expert-level prompts remains elusive. Existing prompt optimization methods tend to overlook the depth of domain knowledge and struggle to efficiently explore the vast space of expert-level prompts. Addressing this, we present PromptAgent, an optimization method that autonomously crafts prompts equivalent in quality to those handcrafted by experts. At its core, PromptAgent views prompt optimization as a strategic planning problem and employs a principled planning algorithm, rooted in Monte Carlo tree search, to strategically navigate the expert-level prompt space. Inspired by human-like trial-and-error exploration, PromptAgent induces precise expert-level insights and in-depth instructions by reflecting on model errors and generating constructive error feedback. Such a novel framework allows the agent to iteratively examine intermediate prompts (states), refine them based on error feedbacks (actions), simulate future rewards, and search for high-reward paths leading to expert prompts. We apply PromptAgent to 12 tasks spanning three practical domains: BIG-Bench Hard (BBH), as well as domain-specific and general NLP tasks, showing it significantly outperforms strong Chain-of-Thought and recent prompt optimization baselines. Extensive analyses emphasize its capability to craft expert-level, detailed, and domain-insightful prompts with great efficiency and generalizability.
Large Language Model Prompt Chaining for Long Legal Document Classification
Prompting is used to guide or steer a language model in generating an appropriate response that is consistent with the desired outcome. Chaining is a strategy used to decompose complex tasks into smaller, manageable components. In this study, we utilize prompt chaining for extensive legal document classification tasks, which present difficulties due to their intricate domain-specific language and considerable length. Our approach begins with the creation of a concise summary of the original document, followed by a semantic search for related exemplar texts and their corresponding annotations from a training corpus. Finally, we prompt for a label - based on the task - to assign, by leveraging the in-context learning from the few-shot prompt. We demonstrate that through prompt chaining, we can not only enhance the performance over zero-shot, but also surpass the micro-F1 score achieved by larger models, such as ChatGPT zero-shot, using smaller models.
Prompt Framework for Role-playing: Generation and Evaluation
Large language models (LLM) have demonstrated remarkable abilities in generating natural language, understanding user instruction, and mimicking human language use. These capabilities have garnered considerable interest in applications such as role-playing. However, the process of collecting individual role scripts (or profiles) data and manually evaluating the performance can be costly. We introduce a framework that uses prompts to leverage the state-of-the-art (SOTA) LLMs to construct role-playing dialogue datasets and evaluate the role-playing performance. Additionally, we employ recall-oriented evaluation Rouge-L metric to support the result of the LLM evaluator.
Prompt Space Optimizing Few-shot Reasoning Success with Large Language Models
Prompt engineering is an essential technique for enhancing the abilities of large language models (LLMs) by providing explicit and specific instructions. It enables LLMs to excel in various tasks, such as arithmetic reasoning, question answering, summarization, relation extraction, machine translation, and sentiment analysis. Researchers have been actively exploring different prompt engineering strategies, such as Chain of Thought (CoT), Zero-CoT, and In-context learning. However, an unresolved problem arises from the fact that current approaches lack a solid theoretical foundation for determining optimal prompts. To address this issue in prompt engineering, we propose a new and effective approach called Prompt Space. Our methodology utilizes text embeddings to obtain basis vectors by matrix decomposition, and then constructs a space for representing all prompts. Prompt Space significantly outperforms state-of-the-art prompt paradigms on ten public reasoning benchmarks. Notably, without the help of the CoT method and the prompt "Let's think step by step", Prompt Space shows superior performance over the few-shot method. Overall, our approach provides a robust and fundamental theoretical framework for selecting simple and effective prompts. This advancement marks a significant step towards improving prompt engineering for a wide variety of applications in LLMs.
Exploring EFL students' prompt engineering in human-AI story writing: an Activity Theory perspective
This study applies Activity Theory to investigate how English as a foreign language (EFL) students prompt generative artificial intelligence (AI) tools during short story writing. Sixty-seven Hong Kong secondary school students created generative-AI tools using open-source language models and wrote short stories with them. The study collected and analyzed the students' generative-AI tools, short stories, and written reflections on their conditions or purposes for prompting. The research identified three main themes regarding the purposes for which students prompt generative-AI tools during short story writing: a lack of awareness of purposes, overcoming writer's block, and developing, expanding, and improving the story. The study also identified common characteristics of students' activity systems, including the sophistication of their generative-AI tools, the quality of their stories, and their school's overall academic achievement level, for their prompting of generative-AI tools for the three purposes during short story writing. The study's findings suggest that teachers should be aware of students' purposes for prompting generative-AI tools to provide tailored instructions and scaffolded guidance. The findings may also help designers provide differentiated instructions for users at various levels of story development when using a generative-AI tool.
Mixture of Prompt Learning for Vision Language Models
As powerful pre-trained vision-language models (VLMs) like CLIP gain prominence, numerous studies have attempted to combine VLMs for downstream tasks. Among these, prompt learning has been validated as an effective method for adapting to new tasks, which only requiring a small number of parameters. However, current prompt learning methods face two challenges: first, a single soft prompt struggles to capture the diverse styles and patterns within a dataset; second, fine-tuning soft prompts is prone to overfitting. To address these challenges, we propose a mixture of soft prompt learning method incorporating a routing module. This module is able to capture a dataset's varied styles and dynamically selects the most suitable prompts for each instance. Additionally, we introduce a novel gating mechanism to ensure the router selects prompts based on their similarity to hard prompt templates, which both retaining knowledge from hard prompts and improving selection accuracy. We also implement semantically grouped text-level supervision, initializing each soft prompt with the token embeddings of manually designed templates from its group and applied a contrastive loss between the resulted text feature and hard prompt encoded text feature. This supervision ensures that the text features derived from soft prompts remain close to those from their corresponding hard prompts, preserving initial knowledge and mitigating overfitting. Our method has been validated on 11 datasets, demonstrating evident improvements in few-shot learning, domain generalization, and base-to-new generalization scenarios compared to existing baselines. The code will be available at https://anonymous.4open.science/r/mocoop-6387
Do LLMs Work on Charts? Designing Few-Shot Prompts for Chart Question Answering and Summarization
A number of tasks have been proposed recently to facilitate easy access to charts such as chart QA and summarization. The dominant paradigm to solve these tasks has been to fine-tune a pretrained model on the task data. However, this approach is not only expensive but also not generalizable to unseen tasks. On the other hand, large language models (LLMs) have shown impressive generalization capabilities to unseen tasks with zero- or few-shot prompting. However, their application to chart-related tasks is not trivial as these tasks typically involve considering not only the underlying data but also the visual features in the chart image. We propose PromptChart, a multimodal few-shot prompting framework with LLMs for chart-related applications. By analyzing the tasks carefully, we have come up with a set of prompting guidelines for each task to elicit the best few-shot performance from LLMs. We further propose a strategy to inject visual information into the prompts. Our experiments on three different chart-related information consumption tasks show that with properly designed prompts LLMs can excel on the benchmarks, achieving state-of-the-art.
Human Learning by Model Feedback: The Dynamics of Iterative Prompting with Midjourney
Generating images with a Text-to-Image model often requires multiple trials, where human users iteratively update their prompt based on feedback, namely the output image. Taking inspiration from cognitive work on reference games and dialogue alignment, this paper analyzes the dynamics of the user prompts along such iterations. We compile a dataset of iterative interactions of human users with Midjourney. Our analysis then reveals that prompts predictably converge toward specific traits along these iterations. We further study whether this convergence is due to human users, realizing they missed important details, or due to adaptation to the model's ``preferences'', producing better images for a specific language style. We show initial evidence that both possibilities are at play. The possibility that users adapt to the model's preference raises concerns about reusing user data for further training. The prompts may be biased towards the preferences of a specific model, rather than align with human intentions and natural manner of expression.
Benchmarking Arabic AI with Large Language Models
With large Foundation Models (FMs), language technologies (AI in general) are entering a new paradigm: eliminating the need for developing large-scale task-specific datasets and supporting a variety of tasks through set-ups ranging from zero-shot to few-shot learning. However, understanding FMs capabilities requires a systematic benchmarking effort by comparing FMs performance with the state-of-the-art (SOTA) task-specific models. With that goal, past work focused on the English language and included a few efforts with multiple languages. Our study contributes to ongoing research by evaluating FMs performance for standard Arabic NLP and Speech processing, including a range of tasks from sequence tagging to content classification across diverse domains. We start with zero-shot learning using GPT-3.5-turbo, Whisper, and USM, addressing 33 unique tasks using 59 publicly available datasets resulting in 96 test setups. For a few tasks, FMs performs on par or exceeds the performance of the SOTA models but for the majority it under-performs. Given the importance of prompt for the FMs performance, we discuss our prompt strategies in detail and elaborate on our findings. Our future work on Arabic AI will explore few-shot prompting, expand the range of tasks, and investigate additional open-source models.
Segment Anyword: Mask Prompt Inversion for Open-Set Grounded Segmentation
Open-set image segmentation poses a significant challenge because existing methods often demand extensive training or fine-tuning and generally struggle to segment unified objects consistently across diverse text reference expressions. Motivated by this, we propose Segment Anyword, a novel training-free visual concept prompt learning approach for open-set language grounded segmentation that relies on token-level cross-attention maps from a frozen diffusion model to produce segmentation surrogates or mask prompts, which are then refined into targeted object masks. Initial prompts typically lack coherence and consistency as the complexity of the image-text increases, resulting in suboptimal mask fragments. To tackle this issue, we further introduce a novel linguistic-guided visual prompt regularization that binds and clusters visual prompts based on sentence dependency and syntactic structural information, enabling the extraction of robust, noise-tolerant mask prompts, and significant improvements in segmentation accuracy. The proposed approach is effective, generalizes across different open-set segmentation tasks, and achieves state-of-the-art results of 52.5 (+6.8 relative) mIoU on Pascal Context 59, 67.73 (+25.73 relative) cIoU on gRefCOCO, and 67.4 (+1.1 relative to fine-tuned methods) mIoU on GranDf, which is the most complex open-set grounded segmentation task in the field.
MultiPrompter: Cooperative Prompt Optimization with Multi-Agent Reinforcement Learning
Recently, there has been an increasing interest in automated prompt optimization based on reinforcement learning (RL). This approach offers important advantages, such as generating interpretable prompts and being compatible with black-box foundation models. However, the substantial prompt space size poses challenges for RL-based methods, often leading to suboptimal policy convergence. This paper introduces MultiPrompter, a new framework that views prompt optimization as a cooperative game between prompters which take turns composing a prompt together. Our cooperative prompt optimization effectively reduces the problem size and helps prompters learn optimal prompts. We test our method on the text-to-image task and show its ability to generate higher-quality images than baselines.
Promptor: A Conversational and Autonomous Prompt Generation Agent for Intelligent Text Entry Techniques
Text entry is an essential task in our day-to-day digital interactions. Numerous intelligent features have been developed to streamline this process, making text entry more effective, efficient, and fluid. These improvements include sentence prediction and user personalization. However, as deep learning-based language models become the norm for these advanced features, the necessity for data collection and model fine-tuning increases. These challenges can be mitigated by harnessing the in-context learning capability of large language models such as GPT-3.5. This unique feature allows the language model to acquire new skills through prompts, eliminating the need for data collection and fine-tuning. Consequently, large language models can learn various text prediction techniques. We initially showed that, for a sentence prediction task, merely prompting GPT-3.5 surpassed a GPT-2 backed system and is comparable with a fine-tuned GPT-3.5 model, with the latter two methods requiring costly data collection, fine-tuning and post-processing. However, the task of prompting large language models to specialize in specific text prediction tasks can be challenging, particularly for designers without expertise in prompt engineering. To address this, we introduce Promptor, a conversational prompt generation agent designed to engage proactively with designers. Promptor can automatically generate complex prompts tailored to meet specific needs, thus offering a solution to this challenge. We conducted a user study involving 24 participants creating prompts for three intelligent text entry tasks, half of the participants used Promptor while the other half designed prompts themselves. The results show that Promptor-designed prompts result in a 35% increase in similarity and 22% in coherence over those by designers.
Learning How to Ask: Querying LMs with Mixtures of Soft Prompts
Natural-language prompts have recently been used to coax pretrained language models into performing other AI tasks, using a fill-in-the-blank paradigm (Petroni et al., 2019) or a few-shot extrapolation paradigm (Brown et al., 2020). For example, language models retain factual knowledge from their training corpora that can be extracted by asking them to "fill in the blank" in a sentential prompt. However, where does this prompt come from? We explore the idea of learning prompts by gradient descent -- either fine-tuning prompts taken from previous work, or starting from random initialization. Our prompts consist of "soft words," i.e., continuous vectors that are not necessarily word type embeddings from the language model. Furthermore, for each task, we optimize a mixture of prompts, learning which prompts are most effective and how to ensemble them. Across multiple English LMs and tasks, our approach hugely outperforms previous methods, showing that the implicit factual knowledge in language models was previously underestimated. Moreover, this knowledge is cheap to elicit: random initialization is nearly as good as informed initialization.
Prompt Risk Control: A Rigorous Framework for Responsible Deployment of Large Language Models
The recent explosion in the capabilities of large language models has led to a wave of interest in how best to prompt a model to perform a given task. While it may be tempting to simply choose a prompt based on average performance on a validation set, this can lead to a deployment where unexpectedly poor responses are generated, especially for the worst-off users. To mitigate this prospect, we propose Prompt Risk Control, a lightweight framework for selecting a prompt based on rigorous upper bounds on families of informative risk measures. We offer methods for producing bounds on a diverse set of metrics, including quantities that measure worst-case responses and disparities in generation quality across the population of users. In addition, we extend the underlying statistical bounding techniques to accommodate the possibility of distribution shifts in deployment. Experiments on applications such as open-ended chat, medical question summarization, and code generation highlight how such a framework can foster responsible deployment by reducing the risk of the worst outcomes.
Generate rather than Retrieve: Large Language Models are Strong Context Generators
Knowledge-intensive tasks, such as open-domain question answering (QA), require access to a large amount of world or domain knowledge. A common approach for knowledge-intensive tasks is to employ a retrieve-then-read pipeline that first retrieves a handful of relevant contextual documents from an external corpus such as Wikipedia and then predicts an answer conditioned on the retrieved documents. In this paper, we present a novel perspective for solving knowledge-intensive tasks by replacing document retrievers with large language model generators. We call our method generate-then-read (GenRead), which first prompts a large language model to generate contextutal documents based on a given question, and then reads the generated documents to produce the final answer. Furthermore, we propose a novel clustering-based prompting method that selects distinct prompts, resulting in the generated documents that cover different perspectives, leading to better recall over acceptable answers. We conduct extensive experiments on three different knowledge-intensive tasks, including open-domain QA, fact checking, and dialogue system. Notably, GenRead achieves 71.6 and 54.4 exact match scores on TriviaQA and WebQ, significantly outperforming the state-of-the-art retrieve-then-read pipeline DPR-FiD by +4.0 and +3.9, without retrieving any documents from any external knowledge source. Lastly, we demonstrate the model performance can be further improved by combining retrieval and generation. Our code and generated documents can be found at https://github.com/wyu97/GenRead.
Text Promptable Surgical Instrument Segmentation with Vision-Language Models
In this paper, we propose a novel text promptable surgical instrument segmentation approach to overcome challenges associated with diversity and differentiation of surgical instruments in minimally invasive surgeries. We redefine the task as text promptable, thereby enabling a more nuanced comprehension of surgical instruments and adaptability to new instrument types. Inspired by recent advancements in vision-language models, we leverage pretrained image and text encoders as our model backbone and design a text promptable mask decoder consisting of attention- and convolution-based prompting schemes for surgical instrument segmentation prediction. Our model leverages multiple text prompts for each surgical instrument through a new mixture of prompts mechanism, resulting in enhanced segmentation performance. Additionally, we introduce a hard instrument area reinforcement module to improve image feature comprehension and segmentation precision. Extensive experiments on EndoVis2017 and EndoVis2018 datasets demonstrate our model's superior performance and promising generalization capability. To our knowledge, this is the first implementation of a promptable approach to surgical instrument segmentation, offering significant potential for practical application in the field of robotic-assisted surgery.
What does a platypus look like? Generating customized prompts for zero-shot image classification
Open-vocabulary models are a promising new paradigm for image classification. Unlike traditional classification models, open-vocabulary models classify among any arbitrary set of categories specified with natural language during inference. This natural language, called "prompts", typically consists of a set of hand-written templates (e.g., "a photo of a {}") which are completed with each of the category names. This work introduces a simple method to generate higher accuracy prompts, without relying on any explicit knowledge of the task domain and with far fewer hand-constructed sentences. To achieve this, we combine open-vocabulary models with large language models (LLMs) to create Customized Prompts via Language models (CuPL, pronounced "couple"). In particular, we leverage the knowledge contained in LLMs in order to generate many descriptive sentences that contain important discriminating characteristics of the image categories. This allows the model to place a greater importance on these regions in the image when making predictions. We find that this straightforward and general approach improves accuracy on a range of zero-shot image classification benchmarks, including over one percentage point gain on ImageNet. Finally, this simple baseline requires no additional training and remains completely zero-shot. Code available at https://github.com/sarahpratt/CuPL.
GROVE: A Retrieval-augmented Complex Story Generation Framework with A Forest of Evidence
Conditional story generation is significant in human-machine interaction, particularly in producing stories with complex plots. While Large language models (LLMs) perform well on multiple NLP tasks, including story generation, it is challenging to generate stories with both complex and creative plots. Existing methods often rely on detailed prompts to guide LLMs to meet target conditions, which inadvertently restrict the creative potential of the generated stories. We argue that leveraging information from exemplary human-written stories facilitates generating more diverse plotlines. Delving deeper into story details helps build complex and credible plots. In this paper, we propose a retrieval-auGmented stoRy generation framework with a fOrest of eVidEnce (GROVE) to enhance stories' complexity. We build a retrieval repository for target conditions to produce few-shot examples to prompt LLMs. Additionally, we design an ``asking-why'' prompting scheme that extracts a forest of evidence, providing compensation for the ambiguities that may occur in the generated story. This iterative process uncovers underlying story backgrounds. Finally, we select the most fitting chains of evidence from the evidence forest and integrate them into the generated story, thereby enhancing the narrative's complexity and credibility. Experimental results and numerous examples verify the effectiveness of our method.
BiomedCoOp: Learning to Prompt for Biomedical Vision-Language Models
Recent advancements in vision-language models (VLMs), such as CLIP, have demonstrated substantial success in self-supervised representation learning for vision tasks. However, effectively adapting VLMs to downstream applications remains challenging, as their accuracy often depends on time-intensive and expertise-demanding prompt engineering, while full model fine-tuning is costly. This is particularly true for biomedical images, which, unlike natural images, typically suffer from limited annotated datasets, unintuitive image contrasts, and nuanced visual features. Recent prompt learning techniques, such as Context Optimization (CoOp) intend to tackle these issues, but still fall short in generalizability. Meanwhile, explorations in prompt learning for biomedical image analysis are still highly limited. In this work, we propose BiomedCoOp, a novel prompt learning framework that enables efficient adaptation of BiomedCLIP for accurate and highly generalizable few-shot biomedical image classification. Our approach achieves effective prompt context learning by leveraging semantic consistency with average prompt ensembles from Large Language Models (LLMs) and knowledge distillation with a statistics-based prompt selection strategy. We conducted comprehensive validation of our proposed framework on 11 medical datasets across 9 modalities and 10 organs against existing state-of-the-art methods, demonstrating significant improvements in both accuracy and generalizability. The code is publicly available at https://github.com/HealthX-Lab/BiomedCoOp.
Prompt-CAM: Making Vision Transformers Interpretable for Fine-Grained Analysis
We present a simple approach to make pre-trained Vision Transformers (ViTs) interpretable for fine-grained analysis, aiming to identify and localize the traits that distinguish visually similar categories, such as bird species. Pre-trained ViTs, such as DINO, have demonstrated remarkable capabilities in extracting localized, discriminative features. However, saliency maps like Grad-CAM often fail to identify these traits, producing blurred, coarse heatmaps that highlight entire objects instead. We propose a novel approach, Prompt Class Attention Map (Prompt-CAM), to address this limitation. Prompt-CAM learns class-specific prompts for a pre-trained ViT and uses the corresponding outputs for classification. To correctly classify an image, the true-class prompt must attend to unique image patches not present in other classes' images (i.e., traits). As a result, the true class's multi-head attention maps reveal traits and their locations. Implementation-wise, Prompt-CAM is almost a ``free lunch,'' requiring only a modification to the prediction head of Visual Prompt Tuning (VPT). This makes Prompt-CAM easy to train and apply, in stark contrast to other interpretable methods that require designing specific models and training processes. Extensive empirical studies on a dozen datasets from various domains (e.g., birds, fishes, insects, fungi, flowers, food, and cars) validate the superior interpretation capability of Prompt-CAM. The source code and demo are available at https://github.com/Imageomics/Prompt_CAM.
LGD: Leveraging Generative Descriptions for Zero-Shot Referring Image Segmentation
Zero-shot referring image segmentation aims to locate and segment the target region based on a referring expression, with the primary challenge of aligning and matching semantics across visual and textual modalities without training. Previous works address this challenge by utilizing Vision-Language Models and mask proposal networks for region-text matching. However, this paradigm may lead to incorrect target localization due to the inherent ambiguity and diversity of free-form referring expressions. To alleviate this issue, we present LGD (Leveraging Generative Descriptions), a framework that utilizes the advanced language generation capabilities of Multi-Modal Large Language Models to enhance region-text matching performance in Vision-Language Models. Specifically, we first design two kinds of prompts, the attribute prompt and the surrounding prompt, to guide the Multi-Modal Large Language Models in generating descriptions related to the crucial attributes of the referent object and the details of surrounding objects, referred to as attribute description and surrounding description, respectively. Secondly, three visual-text matching scores are introduced to evaluate the similarity between instance-level visual features and textual features, which determines the mask most associated with the referring expression. The proposed method achieves new state-of-the-art performance on three public datasets RefCOCO, RefCOCO+ and RefCOCOg, with maximum improvements of 9.97% in oIoU and 11.29% in mIoU compared to previous methods.
KAHANI: Culturally-Nuanced Visual Storytelling Pipeline for Non-Western Cultures
Large Language Models (LLMs) and Text-To-Image (T2I) models have demonstrated the ability to generate compelling text and visual stories. However, their outputs are predominantly aligned with the sensibilities of the Global North, often resulting in an outsider's gaze on other cultures. As a result, non-Western communities have to put extra effort into generating culturally specific stories. To address this challenge, we developed a visual storytelling pipeline called KAHANI that generates culturally grounded visual stories for non-Western cultures. Our pipeline leverages off-the-shelf models GPT-4 Turbo and Stable Diffusion XL (SDXL). By using Chain of Thought (CoT) and T2I prompting techniques, we capture the cultural context from user's prompt and generate vivid descriptions of the characters and scene compositions. To evaluate the effectiveness of KAHANI, we conducted a comparative user study with ChatGPT-4 (with DALL-E3) in which participants from different regions of India compared the cultural relevance of stories generated by the two tools. Results from the qualitative and quantitative analysis performed on the user study showed that KAHANI was able to capture and incorporate more Culturally Specific Items (CSIs) compared to ChatGPT-4. In terms of both its cultural competence and visual story generation quality, our pipeline outperformed ChatGPT-4 in 27 out of the 36 comparisons.
LoGoPrompt: Synthetic Text Images Can Be Good Visual Prompts for Vision-Language Models
Prompt engineering is a powerful tool used to enhance the performance of pre-trained models on downstream tasks. For example, providing the prompt ``Let's think step by step" improved GPT-3's reasoning accuracy to 63% on MutiArith while prompting ``a photo of" filled with a class name enables CLIP to achieve 80\% zero-shot accuracy on ImageNet. While previous research has explored prompt learning for the visual modality, analyzing what constitutes a good visual prompt specifically for image recognition is limited. In addition, existing visual prompt tuning methods' generalization ability is worse than text-only prompting tuning. This paper explores our key insight: synthetic text images are good visual prompts for vision-language models! To achieve that, we propose our LoGoPrompt, which reformulates the classification objective to the visual prompt selection and addresses the chicken-and-egg challenge of first adding synthetic text images as class-wise visual prompts or predicting the class first. Without any trainable visual prompt parameters, experimental results on 16 datasets demonstrate that our method consistently outperforms state-of-the-art methods in few-shot learning, base-to-new generalization, and domain generalization.
Concept-Guided Prompt Learning for Generalization in Vision-Language Models
Contrastive Language-Image Pretraining (CLIP) model has exhibited remarkable efficacy in establishing cross-modal connections between texts and images, yielding impressive performance across a broad spectrum of downstream applications through fine-tuning. However, for generalization tasks, the current fine-tuning methods for CLIP, such as CoOp and CoCoOp, demonstrate relatively low performance on some fine-grained datasets. We recognize the underlying reason is that these previous methods only projected global features into the prompt, neglecting the various visual concepts, such as colors, shapes, and sizes, which are naturally transferable across domains and play a crucial role in generalization tasks. To address this issue, in this work, we propose Concept-Guided Prompt Learning (CPL) for vision-language models. Specifically, we leverage the well-learned knowledge of CLIP to create a visual concept cache to enable concept-guided prompting. In order to refine the text features, we further develop a projector that transforms multi-level visual features into text features. We observe that this concept-guided prompt learning approach is able to achieve enhanced consistency between visual and linguistic modalities. Extensive experimental results demonstrate that our CPL method significantly improves generalization capabilities compared to the current state-of-the-art methods.
OpenPrompt: An Open-source Framework for Prompt-learning
Prompt-learning has become a new paradigm in modern natural language processing, which directly adapts pre-trained language models (PLMs) to cloze-style prediction, autoregressive modeling, or sequence to sequence generation, resulting in promising performances on various tasks. However, no standard implementation framework of prompt-learning is proposed yet, and most existing prompt-learning codebases, often unregulated, only provide limited implementations for specific scenarios. Since there are many details such as templating strategy, initializing strategy, and verbalizing strategy, etc. need to be considered in prompt-learning, practitioners face impediments to quickly adapting the desired prompt learning methods to their applications. In this paper, we present {OpenPrompt}, a unified easy-to-use toolkit to conduct prompt-learning over PLMs. OpenPrompt is a research-friendly framework that is equipped with efficiency, modularity, and extendibility, and its combinability allows the freedom to combine different PLMs, task formats, and prompting modules in a unified paradigm. Users could expediently deploy prompt-learning frameworks and evaluate the generalization of them on different NLP tasks without constraints. OpenPrompt is publicly released at { https://github.com/thunlp/OpenPrompt}.
ProgPrompt: Generating Situated Robot Task Plans using Large Language Models
Task planning can require defining myriad domain knowledge about the world in which a robot needs to act. To ameliorate that effort, large language models (LLMs) can be used to score potential next actions during task planning, and even generate action sequences directly, given an instruction in natural language with no additional domain information. However, such methods either require enumerating all possible next steps for scoring, or generate free-form text that may contain actions not possible on a given robot in its current context. We present a programmatic LLM prompt structure that enables plan generation functional across situated environments, robot capabilities, and tasks. Our key insight is to prompt the LLM with program-like specifications of the available actions and objects in an environment, as well as with example programs that can be executed. We make concrete recommendations about prompt structure and generation constraints through ablation experiments, demonstrate state of the art success rates in VirtualHome household tasks, and deploy our method on a physical robot arm for tabletop tasks. Website at progprompt.github.io
Self-Prompt Tuning: Enable Autonomous Role-Playing in LLMs
Recent advancements in LLMs have showcased their remarkable role-playing capabilities, able to accurately simulate the dialogue styles and cognitive processes of various roles based on different instructions and contexts. Studies indicate that assigning LLMs the roles of experts, a strategy known as role-play prompting, can enhance their performance in the corresponding domains. However, the prompt needs to be manually designed for the given problem, requiring certain expertise and iterative modifications. To this end, we propose self-prompt tuning, making LLMs themselves generate role-play prompts through fine-tuning. Leveraging the LIMA dataset as our foundational corpus, we employ GPT-4 to annotate role-play prompts for each data points, resulting in the creation of the LIMA-Role dataset. We then fine-tune LLMs like Llama-2-7B and Mistral-7B on LIMA-Role. Consequently, the self-prompt tuned LLMs can automatically generate expert role prompts for any given question. We extensively evaluate self-prompt tuned LLMs on widely used NLP benchmarks and open-ended question test. Our empirical results illustrate that self-prompt tuned LLMs outperform standard instruction tuned baselines across most datasets. This highlights the great potential of utilizing fine-tuning to enable LLMs to self-prompt, thereby automating complex prompting strategies. We release the dataset, models, and code at this https://anonymous.4open.science/r/Self-Prompt-Tuning-739E/{url}.
Black Box Adversarial Prompting for Foundation Models
Prompting interfaces allow users to quickly adjust the output of generative models in both vision and language. However, small changes and design choices in the prompt can lead to significant differences in the output. In this work, we develop a black-box framework for generating adversarial prompts for unstructured image and text generation. These prompts, which can be standalone or prepended to benign prompts, induce specific behaviors into the generative process, such as generating images of a particular object or generating high perplexity text.
Exploring Prompt Engineering: A Systematic Review with SWOT Analysis
In this paper, we conduct a comprehensive SWOT analysis of prompt engineering techniques within the realm of Large Language Models (LLMs). Emphasizing linguistic principles, we examine various techniques to identify their strengths, weaknesses, opportunities, and threats. Our findings provide insights into enhancing AI interactions and improving language model comprehension of human prompts. The analysis covers techniques including template-based approaches and fine-tuning, addressing the problems and challenges associated with each. The conclusion offers future research directions aimed at advancing the effectiveness of prompt engineering in optimizing human-machine communication.
À-la-carte Prompt Tuning (APT): Combining Distinct Data Via Composable Prompting
We introduce \`A-la-carte Prompt Tuning (APT), a transformer-based scheme to tune prompts on distinct data so that they can be arbitrarily composed at inference time. The individual prompts can be trained in isolation, possibly on different devices, at different times, and on different distributions or domains. Furthermore each prompt only contains information about the subset of data it was exposed to during training. During inference, models can be assembled based on arbitrary selections of data sources, which we call "\`a-la-carte learning". \`A-la-carte learning enables constructing bespoke models specific to each user's individual access rights and preferences. We can add or remove information from the model by simply adding or removing the corresponding prompts without retraining from scratch. We demonstrate that \`a-la-carte built models achieve accuracy within 5% of models trained on the union of the respective sources, with comparable cost in terms of training and inference time. For the continual learning benchmarks Split CIFAR-100 and CORe50, we achieve state-of-the-art performance.
PromptMRG: Diagnosis-Driven Prompts for Medical Report Generation
Automatic medical report generation (MRG) is of great research value as it has the potential to relieve radiologists from the heavy burden of report writing. Despite recent advancements, accurate MRG remains challenging due to the need for precise clinical understanding and the identification of clinical findings. Moreover, the imbalanced distribution of diseases makes the challenge even more pronounced, as rare diseases are underrepresented in training data, making their diagnostic performance unreliable. To address these challenges, we propose diagnosis-driven prompts for medical report generation (PromptMRG), a novel framework that aims to improve the diagnostic accuracy of MRG with the guidance of diagnosis-aware prompts. Specifically, PromptMRG is based on encoder-decoder architecture with an extra disease classification branch. When generating reports, the diagnostic results from the classification branch are converted into token prompts to explicitly guide the generation process. To further improve the diagnostic accuracy, we design cross-modal feature enhancement, which retrieves similar reports from the database to assist the diagnosis of a query image by leveraging the knowledge from a pre-trained CLIP. Moreover, the disease imbalanced issue is addressed by applying an adaptive logit-adjusted loss to the classification branch based on the individual learning status of each disease, which overcomes the barrier of text decoder's inability to manipulate disease distributions. Experiments on two MRG benchmarks show the effectiveness of the proposed method, where it obtains state-of-the-art clinical efficacy performance on both datasets.
Intent-based Prompt Calibration: Enhancing prompt optimization with synthetic boundary cases
Prompt engineering is a challenging and important task due to the high sensitivity of Large Language Models (LLMs) to the given prompt and the inherent ambiguity of a textual task instruction. Automatic prompt engineering is essential to achieve optimized performance from LLMs. Recent studies have demonstrated the capabilities of LLMs to automatically conduct prompt engineering by employing a meta-prompt that incorporates the outcomes of the last trials and proposes an improved prompt. However, this requires a high-quality benchmark to compare different prompts, which is difficult and expensive to acquire in many real-world use cases. In this work, we introduce a new method for automatic prompt engineering, using a calibration process that iteratively refines the prompt to the user intent. During the optimization process, the system jointly generates synthetic data of boundary use cases and optimizes the prompt according to the generated dataset. We demonstrate the effectiveness of our method with respect to strong proprietary models on real-world tasks such as moderation and generation. Our method outperforms state-of-the-art methods with a limited number of annotated samples. Furthermore, we validate the advantages of each one of the system's key components. Our system is built in a modular way, facilitating easy adaptation to other tasks. The code is available https://github.com/Eladlev/AutoPrompt{here}.
Identification of Systematic Errors of Image Classifiers on Rare Subgroups
Despite excellent average-case performance of many image classifiers, their performance can substantially deteriorate on semantically coherent subgroups of the data that were under-represented in the training data. These systematic errors can impact both fairness for demographic minority groups as well as robustness and safety under domain shift. A major challenge is to identify such subgroups with subpar performance when the subgroups are not annotated and their occurrence is very rare. We leverage recent advances in text-to-image models and search in the space of textual descriptions of subgroups ("prompts") for subgroups where the target model has low performance on the prompt-conditioned synthesized data. To tackle the exponentially growing number of subgroups, we employ combinatorial testing. We denote this procedure as PromptAttack as it can be interpreted as an adversarial attack in a prompt space. We study subgroup coverage and identifiability with PromptAttack in a controlled setting and find that it identifies systematic errors with high accuracy. Thereupon, we apply PromptAttack to ImageNet classifiers and identify novel systematic errors on rare subgroups.
Prompt-Free Diffusion: Taking "Text" out of Text-to-Image Diffusion Models
Text-to-image (T2I) research has grown explosively in the past year, owing to the large-scale pre-trained diffusion models and many emerging personalization and editing approaches. Yet, one pain point persists: the text prompt engineering, and searching high-quality text prompts for customized results is more art than science. Moreover, as commonly argued: "an image is worth a thousand words" - the attempt to describe a desired image with texts often ends up being ambiguous and cannot comprehensively cover delicate visual details, hence necessitating more additional controls from the visual domain. In this paper, we take a bold step forward: taking "Text" out of a pre-trained T2I diffusion model, to reduce the burdensome prompt engineering efforts for users. Our proposed framework, Prompt-Free Diffusion, relies on only visual inputs to generate new images: it takes a reference image as "context", an optional image structural conditioning, and an initial noise, with absolutely no text prompt. The core architecture behind the scene is Semantic Context Encoder (SeeCoder), substituting the commonly used CLIP-based or LLM-based text encoder. The reusability of SeeCoder also makes it a convenient drop-in component: one can also pre-train a SeeCoder in one T2I model and reuse it for another. Through extensive experiments, Prompt-Free Diffusion is experimentally found to (i) outperform prior exemplar-based image synthesis approaches; (ii) perform on par with state-of-the-art T2I models using prompts following the best practice; and (iii) be naturally extensible to other downstream applications such as anime figure generation and virtual try-on, with promising quality. Our code and models are open-sourced at https://github.com/SHI-Labs/Prompt-Free-Diffusion.
Towards Unified Conversational Recommender Systems via Knowledge-Enhanced Prompt Learning
Conversational recommender systems (CRS) aim to proactively elicit user preference and recommend high-quality items through natural language conversations. Typically, a CRS consists of a recommendation module to predict preferred items for users and a conversation module to generate appropriate responses. To develop an effective CRS, it is essential to seamlessly integrate the two modules. Existing works either design semantic alignment strategies, or share knowledge resources and representations between the two modules. However, these approaches still rely on different architectures or techniques to develop the two modules, making it difficult for effective module integration. To address this problem, we propose a unified CRS model named UniCRS based on knowledge-enhanced prompt learning. Our approach unifies the recommendation and conversation subtasks into the prompt learning paradigm, and utilizes knowledge-enhanced prompts based on a fixed pre-trained language model (PLM) to fulfill both subtasks in a unified approach. In the prompt design, we include fused knowledge representations, task-specific soft tokens, and the dialogue context, which can provide sufficient contextual information to adapt the PLM for the CRS task. Besides, for the recommendation subtask, we also incorporate the generated response template as an important part of the prompt, to enhance the information interaction between the two subtasks. Extensive experiments on two public CRS datasets have demonstrated the effectiveness of our approach.
Enhancing CLIP with GPT-4: Harnessing Visual Descriptions as Prompts
Contrastive pretrained large Vision-Language Models (VLMs) like CLIP have revolutionized visual representation learning by providing good performance on downstream datasets. VLMs are 0-shot adapted to a downstream dataset by designing prompts that are relevant to the dataset. Such prompt engineering makes use of domain expertise and a validation dataset. Meanwhile, recent developments in generative pretrained models like GPT-4 mean they can be used as advanced internet search tools. They can also be manipulated to provide visual information in any structure. In this work, we show that GPT-4 can be used to generate text that is visually descriptive and how this can be used to adapt CLIP to downstream tasks. We show considerable improvements in 0-shot transfer accuracy on specialized fine-grained datasets like EuroSAT (~7%), DTD (~7%), SUN397 (~4.6%), and CUB (~3.3%) when compared to CLIP's default prompt. We also design a simple few-shot adapter that learns to choose the best possible sentences to construct generalizable classifiers that outperform the recently proposed CoCoOP by ~2% on average and by over 4% on 4 specialized fine-grained datasets. We will release the code, prompts, and auxiliary text dataset upon acceptance.
PRE: Vision-Language Prompt Learning with Reparameterization Encoder
Large pre-trained vision-language models such as CLIP have demonstrated great potential in zero-shot transferability to downstream tasks. However, to attain optimal performance, the manual selection of prompts is necessary to improve alignment between the downstream image distribution and the textual class descriptions. This manual prompt engineering is the major challenge for deploying such models in practice since it requires domain expertise and is extremely time-consuming. To avoid non-trivial prompt engineering, recent work Context Optimization (CoOp) introduced the concept of prompt learning to the vision domain using learnable textual tokens. While CoOp can achieve substantial improvements over manual prompts, its learned context is worse generalizable to wider unseen classes within the same dataset. In this work, we present Prompt Learning with Reparameterization Encoder (PRE) - a simple and efficient method that enhances the generalization ability of the learnable prompt to unseen classes while maintaining the capacity to learn Base classes. Instead of directly optimizing the prompts, PRE employs a prompt encoder to reparameterize the input prompt embeddings, enhancing the exploration of task-specific knowledge from few-shot samples. Experiments and extensive ablation studies on 8 benchmarks demonstrate that our approach is an efficient method for prompt learning. Specifically, PRE achieves a notable enhancement of 5.60% in average accuracy on New classes and 3% in Harmonic mean compared to CoOp in the 16-shot setting, all achieved within a good training time.
Minstrel: Structural Prompt Generation with Multi-Agents Coordination for Non-AI Experts
LLMs have demonstrated commendable performance across diverse domains. Nevertheless, formulating high-quality prompts to assist them in their work poses a challenge for non-AI experts. Existing research in prompt engineering suggests somewhat scattered optimization principles and designs empirically dependent prompt optimizers. Unfortunately, these endeavors lack a structural design, incurring high learning costs and it is not conducive to the iterative updating of prompts, especially for non-AI experts. Inspired by structured reusable programming languages, we propose LangGPT, a structural prompt design framework. Furthermore, we introduce Minstrel, a multi-generative agent system with reflection to automate the generation of structural prompts. Experiments and the case study illustrate that structural prompts generated by Minstrel or written manually significantly enhance the performance of LLMs. Furthermore, we analyze the ease of use of structural prompts through a user survey in our online community.
Hard Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Discovery
The strength of modern generative models lies in their ability to be controlled through text-based prompts. Typical "hard" prompts are made from interpretable words and tokens, and must be hand-crafted by humans. There are also "soft" prompts, which consist of continuous feature vectors. These can be discovered using powerful optimization methods, but they cannot be easily interpreted, re-used across models, or plugged into a text-based interface. We describe an approach to robustly optimize hard text prompts through efficient gradient-based optimization. Our approach automatically generates hard text-based prompts for both text-to-image and text-to-text applications. In the text-to-image setting, the method creates hard prompts for diffusion models, allowing API users to easily generate, discover, and mix and match image concepts without prior knowledge on how to prompt the model. In the text-to-text setting, we show that hard prompts can be automatically discovered that are effective in tuning LMs for classification.
Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs
Reasoning is a fundamental component for achieving language understanding. Among the multiple types of reasoning, conditional reasoning, the ability to draw different conclusions depending on some condition, has been understudied in large language models (LLMs). Recent prompting methods, such as chain of thought, have significantly improved LLMs on reasoning tasks. Nevertheless, there is still little understanding of what triggers reasoning abilities in LLMs. We hypothesize that code prompts can trigger conditional reasoning in LLMs trained on text and code. We propose a chain of prompts that transforms a natural language problem into code and prompts the LLM with the generated code. Our experiments find that code prompts exhibit a performance boost between 2.6 and 7.7 points on GPT 3.5 across multiple datasets requiring conditional reasoning. We then conduct experiments to discover how code prompts elicit conditional reasoning abilities and through which features. We observe that prompts need to contain natural language text accompanied by high-quality code that closely represents the semantics of the instance text. Furthermore, we show that code prompts are more efficient, requiring fewer demonstrations, and that they trigger superior state tracking of variables or key entities.
Learning to Transfer Prompts for Text Generation
Pretrained language models (PLMs) have made remarkable progress in text generation tasks via fine-tuning. While, it is challenging to fine-tune PLMs in a data-scarce situation. Therefore, it is non-trivial to develop a general and lightweight model that can adapt to various text generation tasks based on PLMs. To fulfill this purpose, the recent prompt-based learning offers a potential solution. In this paper, we improve this technique and propose a novel prompt-based method (PTG) for text generation in a transferable setting. First, PTG learns a set of source prompts for various source generation tasks and then transfers these prompts as target prompts to perform target generation tasks. To consider both task- and instance-level information, we design an adaptive attention mechanism to derive the target prompts. For each data instance, PTG learns a specific target prompt by attending to highly relevant source prompts. In extensive experiments, PTG yields competitive or better results than fine-tuning methods. We release our source prompts as an open resource, where users can add or reuse them to improve new text generation tasks for future research. Code and data can be available at https://github.com/RUCAIBox/Transfer-Prompts-for-Text-Generation.
Active Prompting with Chain-of-Thought for Large Language Models
The increasing scale of large language models (LLMs) brings emergent abilities to various complex tasks requiring reasoning, such as arithmetic and commonsense reasoning. It is known that the effective design of task-specific prompts is critical for LLMs' ability to produce high-quality answers. In particular, an effective approach for complex question-and-answer tasks is example-based prompting with chain-of-thought (CoT) reasoning, which significantly improves the performance of LLMs. However, current CoT methods rely on a fixed set of human-annotated exemplars, which are not necessarily the most effective examples for different tasks. This paper proposes a new method, Active-Prompt, to adapt LLMs to different tasks with task-specific example prompts (annotated with human-designed CoT reasoning). For this purpose, we propose a solution to the key problem of determining which questions are the most important and helpful ones to annotate from a pool of task-specific queries. By borrowing ideas from the related problem of uncertainty-based active learning, we introduce several metrics to characterize the uncertainty so as to select the most uncertain questions for annotation. Experimental results demonstrate the superiority of our proposed method, achieving state-of-the-art on eight complex reasoning tasks. Further analyses of different uncertainty metrics, pool sizes, zero-shot learning, and accuracy-uncertainty relationship demonstrate the effectiveness of our method. Our code will be available at https://github.com/shizhediao/active-prompt.
Diversity-Aware Meta Visual Prompting
We present Diversity-Aware Meta Visual Prompting~(DAM-VP), an efficient and effective prompting method for transferring pre-trained models to downstream tasks with frozen backbone. A challenging issue in visual prompting is that image datasets sometimes have a large data diversity whereas a per-dataset generic prompt can hardly handle the complex distribution shift toward the original pretraining data distribution properly. To address this issue, we propose a dataset Diversity-Aware prompting strategy whose initialization is realized by a Meta-prompt. Specifically, we cluster the downstream dataset into small homogeneity subsets in a diversity-adaptive way, with each subset has its own prompt optimized separately. Such a divide-and-conquer design reduces the optimization difficulty greatly and significantly boosts the prompting performance. Furthermore, all the prompts are initialized with a meta-prompt, which is learned across several datasets. It is a bootstrapped paradigm, with the key observation that the prompting knowledge learned from previous datasets could help the prompt to converge faster and perform better on a new dataset. During inference, we dynamically select a proper prompt for each input, based on the feature distance between the input and each subset. Through extensive experiments, our DAM-VP demonstrates superior efficiency and effectiveness, clearly surpassing previous prompting methods in a series of downstream datasets for different pretraining models. Our code is available at: https://github.com/shikiw/DAM-VP.
Large Language Models in the Workplace: A Case Study on Prompt Engineering for Job Type Classification
This case study investigates the task of job classification in a real-world setting, where the goal is to determine whether an English-language job posting is appropriate for a graduate or entry-level position. We explore multiple approaches to text classification, including supervised approaches such as traditional models like Support Vector Machines (SVMs) and state-of-the-art deep learning methods such as DeBERTa. We compare them with Large Language Models (LLMs) used in both few-shot and zero-shot classification settings. To accomplish this task, we employ prompt engineering, a technique that involves designing prompts to guide the LLMs towards the desired output. Specifically, we evaluate the performance of two commercially available state-of-the-art GPT-3.5-based language models, text-davinci-003 and gpt-3.5-turbo. We also conduct a detailed analysis of the impact of different aspects of prompt engineering on the model's performance. Our results show that, with a well-designed prompt, a zero-shot gpt-3.5-turbo classifier outperforms all other models, achieving a 6% increase in Precision@95% Recall compared to the best supervised approach. Furthermore, we observe that the wording of the prompt is a critical factor in eliciting the appropriate "reasoning" in the model, and that seemingly minor aspects of the prompt significantly affect the model's performance.
Grounded Text-to-Image Synthesis with Attention Refocusing
Driven by scalable diffusion models trained on large-scale paired text-image datasets, text-to-image synthesis methods have shown compelling results. However, these models still fail to precisely follow the text prompt when multiple objects, attributes, and spatial compositions are involved in the prompt. In this paper, we identify the potential reasons in both the cross-attention and self-attention layers of the diffusion model. We propose two novel losses to refocus the attention maps according to a given layout during the sampling process. We perform comprehensive experiments on the DrawBench and HRS benchmarks using layouts synthesized by Large Language Models, showing that our proposed losses can be integrated easily and effectively into existing text-to-image methods and consistently improve their alignment between the generated images and the text prompts.
Teaching LLMs How to Learn with Contextual Fine-Tuning
Prompting Large Language Models (LLMs), or providing context on the expected model of operation, is an effective way to steer the outputs of such models to satisfy human desiderata after they have been trained. But in rapidly evolving domains, there is often need to fine-tune LLMs to improve either the kind of knowledge in their memory or their abilities to perform open ended reasoning in new domains. When human's learn new concepts, we often do so by linking the new material that we are studying to concepts we have already learned before. To that end, we ask, "can prompting help us teach LLMs how to learn". In this work, we study a novel generalization of instruction tuning, called contextual fine-tuning, to fine-tune LLMs. Our method leverages instructional prompts designed to mimic human cognitive strategies in learning and problem-solving to guide the learning process during training, aiming to improve the model's interpretation and understanding of domain-specific knowledge. We empirically demonstrate that this simple yet effective modification improves the ability of LLMs to be fine-tuned rapidly on new datasets both within the medical and financial domains.
Prompt Design and Engineering: Introduction and Advanced Methods
Prompt design and engineering has become an important discipline in just the past few months. In this paper, we provide an introduction to the main concepts and design approaches. We also provide more advanced techniques all the way to those needed to design LLM-based agents. We finish by providing a list of existing tools for prompt engineering.
PromptTTS: Controllable Text-to-Speech with Text Descriptions
Using a text description as prompt to guide the generation of text or images (e.g., GPT-3 or DALLE-2) has drawn wide attention recently. Beyond text and image generation, in this work, we explore the possibility of utilizing text descriptions to guide speech synthesis. Thus, we develop a text-to-speech (TTS) system (dubbed as PromptTTS) that takes a prompt with both style and content descriptions as input to synthesize the corresponding speech. Specifically, PromptTTS consists of a style encoder and a content encoder to extract the corresponding representations from the prompt, and a speech decoder to synthesize speech according to the extracted style and content representations. Compared with previous works in controllable TTS that require users to have acoustic knowledge to understand style factors such as prosody and pitch, PromptTTS is more user-friendly since text descriptions are a more natural way to express speech style (e.g., ''A lady whispers to her friend slowly''). Given that there is no TTS dataset with prompts, to benchmark the task of PromptTTS, we construct and release a dataset containing prompts with style and content information and the corresponding speech. Experiments show that PromptTTS can generate speech with precise style control and high speech quality. Audio samples and our dataset are publicly available.
Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study in Medicine
Generalist foundation models such as GPT-4 have displayed surprising capabilities in a wide variety of domains and tasks. Yet, there is a prevalent assumption that they cannot match specialist capabilities of fine-tuned models. For example, most explorations to date on medical competency benchmarks have leveraged domain-specific training, as exemplified by efforts on BioGPT and Med-PaLM. We build on a prior study of GPT-4's capabilities on medical challenge benchmarks in the absence of special training. Rather than using simple prompting to highlight the model's out-of-the-box capabilities, we perform a systematic exploration of prompt engineering. We find that prompting innovation can unlock deeper specialist capabilities and show that GPT-4 easily tops prior leading results for medical benchmarks. The prompting methods we explore are general purpose, and make no specific use of domain expertise, removing the need for expert-curated content. Our experimental design carefully controls for overfitting during the prompt engineering process. We introduce Medprompt, based on a composition of several prompting strategies. With Medprompt, GPT-4 achieves state-of-the-art results on all nine of the benchmark datasets in the MultiMedQA suite. The method outperforms leading specialist models such as Med-PaLM 2 by a significant margin with an order of magnitude fewer calls to the model. Steering GPT-4 with Medprompt achieves a 27% reduction in error rate on the MedQA dataset over the best methods to date achieved with specialist models and surpasses a score of 90% for the first time. Beyond medical problems, we show the power of Medprompt to generalize to other domains and provide evidence for the broad applicability of the approach via studies of the strategy on exams in electrical engineering, machine learning, philosophy, accounting, law, nursing, and clinical psychology.
Interpreting User Requests in the Context of Natural Language Standing Instructions
Users of natural language interfaces, generally powered by Large Language Models (LLMs),often must repeat their preferences each time they make a similar request. To alleviate this, we propose including some of a user's preferences and instructions in natural language -- collectively termed standing instructions -- as additional context for such interfaces. For example, when a user states I'm hungry, their previously expressed preference for Persian food will be automatically added to the LLM prompt, so as to influence the search for relevant restaurants. We develop NLSI, a language-to-program dataset consisting of over 2.4K dialogues spanning 17 domains, where each dialogue is paired with a user profile (a set of users specific standing instructions) and corresponding structured representations (API calls). A key challenge in NLSI is to identify which subset of the standing instructions is applicable to a given dialogue. NLSI contains diverse phenomena, from simple preferences to interdependent instructions such as triggering a hotel search whenever the user is booking tickets to an event. We conduct experiments on NLSI using prompting with large language models and various retrieval approaches, achieving a maximum of 44.7% exact match on API prediction. Our results demonstrate the challenges in identifying the relevant standing instructions and their interpretation into API calls.
Likelihood as a Performance Gauge for Retrieval-Augmented Generation
Recent work finds that retrieval-augmented generation with large language models is prone to be influenced by the order of retrieved documents in the context. However, the lack of in-depth analysis limits the use of this phenomenon for prompt engineering in practice. In this study, we posit that likelihoods serve as an effective gauge for language model performance. Through experiments on two question-answering datasets with a variety of state-of-the-art language models, we reveal correlations between answer accuracy and the likelihood of the question at both the corpus level and the instance level. In addition, we find that question likelihood can also indicate the position of the task-relevant information in the context. Based on these findings, we propose two methods that use question likelihood as a gauge for selecting and constructing prompts that lead to better performance. We demonstrate their effectiveness with experiments. In addition, our likelihood-based methods are efficient, as they only need to compute the likelihood of the input, requiring much fewer language model passes than heuristic prompt engineering methods that require generating responses. Our analysis deepens our understanding of how input prompts affect model performance and provides a promising direction for efficient prompt optimization.
Unsupervised Prompt Learning for Vision-Language Models
Contrastive vision-language models like CLIP have shown great progress in transfer learning. In the inference stage, the proper text description, also known as prompt, needs to be carefully designed to correctly classify the given images. In order to avoid laborious prompt engineering, recent works such as CoOp, CLIP-Adapter and Tip-Adapter propose to adapt vision-language models for downstream image recognition tasks on a small set of labeled data. Though promising improvements are achieved, requiring labeled data from the target datasets may restrict the scalability. In this paper, we explore a different scenario, in which the labels of the target datasets are unprovided, and we present an unsupervised prompt learning (UPL) approach to avoid prompt engineering while simultaneously improving transfer performance of CLIP-like vision-language models. As far as we know, UPL is the first work to introduce unsupervised learning into prompt learning. Experimentally, our UPL outperforms original CLIP with prompt engineering on ImageNet as well as other 10 datasets. An enhanced version of UPL is even competitive with the 8-shot CoOp and the 8-shot TIP-Adapter on most datasets. Code and models are available at https://github.com/tonyhuang2022/UPL.
WonderJourney: Going from Anywhere to Everywhere
We introduce WonderJourney, a modularized framework for perpetual 3D scene generation. Unlike prior work on view generation that focuses on a single type of scenes, we start at any user-provided location (by a text description or an image) and generate a journey through a long sequence of diverse yet coherently connected 3D scenes. We leverage an LLM to generate textual descriptions of the scenes in this journey, a text-driven point cloud generation pipeline to make a compelling and coherent sequence of 3D scenes, and a large VLM to verify the generated scenes. We show compelling, diverse visual results across various scene types and styles, forming imaginary "wonderjourneys". Project website: https://kovenyu.com/WonderJourney/
Tokenize Anything via Prompting
We present a unified, promptable model capable of simultaneously segmenting, recognizing, and captioning anything. Unlike SAM, we aim to build a versatile region representation in the wild via visual prompting. To achieve this, we train a generalizable model with massive segmentation masks, e.g., SA-1B masks, and semantic priors from a pre-trained CLIP model with 5 billion parameters. Specifically, we construct a promptable image decoder by adding a semantic token to each mask token. The semantic token is responsible for learning the semantic priors in a predefined concept space. Through joint optimization of segmentation on mask tokens and concept prediction on semantic tokens, our model exhibits strong regional recognition and localization capabilities. For example, an additional 38M-parameter causal text decoder trained from scratch sets a new record with a CIDEr score of 150.7 on the Visual Genome region captioning task. We believe this model can be a versatile region-level image tokenizer, capable of encoding general-purpose region context for a broad range of perception tasks. Code and models are available at https://github.com/baaivision/tokenize-anything.
Evaluating Large Language Model Creativity from a Literary Perspective
This paper assesses the potential for large language models (LLMs) to serve as assistive tools in the creative writing process, by means of a single, in-depth case study. In the course of the study, we develop interactive and multi-voice prompting strategies that interleave background descriptions (scene setting, plot elements), instructions that guide composition, samples of text in the target style, and critical discussion of the given samples. We qualitatively evaluate the results from a literary critical perspective, as well as from the standpoint of computational creativity (a sub-field of artificial intelligence). Our findings lend support to the view that the sophistication of the results that can be achieved with an LLM mirrors the sophistication of the prompting.
Automatic Prompt Optimization Techniques: Exploring the Potential for Synthetic Data Generation
Artificial Intelligence (AI) advancement is heavily dependent on access to large-scale, high-quality training data. However, in specialized domains such as healthcare, data acquisition faces significant constraints due to privacy regulations, ethical considerations, and limited availability. While synthetic data generation offers a promising solution, conventional approaches typically require substantial real data for training generative models. The emergence of large-scale prompt-based models presents new opportunities for synthetic data generation without direct access to protected data. However, crafting effective prompts for domain-specific data generation remains challenging, and manual prompt engineering proves insufficient for achieving output with sufficient precision and authenticity. We review recent developments in automatic prompt optimization, following PRISMA guidelines. We analyze six peer-reviewed studies published between 2020 and 2024 that focus on automatic data-free prompt optimization methods. Our analysis reveals three approaches: feedback-driven, error-based, and control-theoretic. Although all approaches demonstrate promising capabilities in prompt refinement and adaptation, our findings suggest the need for an integrated framework that combines complementary optimization techniques to enhance synthetic data generation while minimizing manual intervention. We propose future research directions toward developing robust, iterative prompt optimization frameworks capable of improving the quality of synthetic data. This advancement can be particularly crucial for sensitive fields and in specialized domains where data access is restricted, potentially transforming how we approach synthetic data generation for AI development.
Prompt Cache: Modular Attention Reuse for Low-Latency Inference
We present Prompt Cache, an approach for accelerating inference for large language models (LLM) by reusing attention states across different LLM prompts. Many input prompts have overlapping text segments, such as system messages, prompt templates, and documents provided for context. Our key insight is that by precomputing and storing the attention states of these frequently occurring text segments on the inference server, we can efficiently reuse them when these segments appear in user prompts. Prompt Cache employs a schema to explicitly define such reusable text segments, called prompt modules. The schema ensures positional accuracy during attention state reuse and provides users with an interface to access cached states in their prompt. Using a prototype implementation, we evaluate Prompt Cache across several LLMs. We show that Prompt Cache significantly reduce latency in time-to-first-token, especially for longer prompts such as document-based question answering and recommendations. The improvements range from 8x for GPU-based inference to 60x for CPU-based inference, all while maintaining output accuracy and without the need for model parameter modifications.
Least-to-Most Prompting Enables Complex Reasoning in Large Language Models
Chain-of-thought prompting has demonstrated remarkable performance on various natural language reasoning tasks. However, it tends to perform poorly on tasks which requires solving problems harder than the exemplars shown in the prompts. To overcome this challenge of easy-to-hard generalization, we propose a novel prompting strategy, least-to-most prompting. The key idea in this strategy is to break down a complex problem into a series of simpler subproblems and then solve them in sequence. Solving each subproblem is facilitated by the answers to previously solved subproblems. Our experimental results on tasks related to symbolic manipulation, compositional generalization, and math reasoning reveal that least-to-most prompting is capable of generalizing to more difficult problems than those seen in the prompts. A notable finding is that when the GPT-3 code-davinci-002 model is used with least-to-most prompting, it can solve the compositional generalization benchmark SCAN in any split (including length split) with an accuracy of at least 99% using just 14 exemplars, compared to only 16% accuracy with chain-of-thought prompting. This is particularly noteworthy because neural-symbolic models in the literature that specialize in solving SCAN are trained on the entire training set containing over 15,000 examples. We have included prompts for all the tasks in the Appendix.
Principled Instructions Are All You Need for Questioning LLaMA-1/2, GPT-3.5/4
This paper introduces 26 guiding principles designed to streamline the process of querying and prompting large language models. Our goal is to simplify the underlying concepts of formulating questions for various scales of large language models, examining their abilities, and enhancing user comprehension on the behaviors of different scales of large language models when feeding into different prompts. Extensive experiments are conducted on LLaMA-1/2 (7B, 13B and 70B), GPT-3.5/4 to verify the effectiveness of the proposed principles on instructions and prompts design. We hope that this work provides a better guide for researchers working on the prompting of large language models. Project page is available at https://github.com/VILA-Lab/ATLAS.
Is GPT-4 a reliable rater? Evaluating Consistency in GPT-4 Text Ratings
This study investigates the consistency of feedback ratings generated by OpenAI's GPT-4, a state-of-the-art artificial intelligence language model, across multiple iterations, time spans and stylistic variations. The model rated responses to tasks within the Higher Education (HE) subject domain of macroeconomics in terms of their content and style. Statistical analysis was conducted in order to learn more about the interrater reliability, consistency of the ratings across iterations and the correlation between ratings in terms of content and style. The results revealed a high interrater reliability with ICC scores ranging between 0.94 and 0.99 for different timespans, suggesting that GPT-4 is capable of generating consistent ratings across repetitions with a clear prompt. Style and content ratings show a high correlation of 0.87. When applying a non-adequate style the average content ratings remained constant, while style ratings decreased, which indicates that the large language model (LLM) effectively distinguishes between these two criteria during evaluation. The prompt used in this study is furthermore presented and explained. Further research is necessary to assess the robustness and reliability of AI models in various use cases.
Localized Zeroth-Order Prompt Optimization
The efficacy of large language models (LLMs) in understanding and generating natural language has aroused a wide interest in developing prompt-based methods to harness the power of black-box LLMs. Existing methodologies usually prioritize a global optimization for finding the global optimum, which however will perform poorly in certain tasks. This thus motivates us to re-think the necessity of finding a global optimum in prompt optimization. To answer this, we conduct a thorough empirical study on prompt optimization and draw two major insights. Contrasting with the rarity of global optimum, local optima are usually prevalent and well-performed, which can be more worthwhile for efficient prompt optimization (Insight I). The choice of the input domain, covering both the generation and the representation of prompts, affects the identification of well-performing local optima (Insight II). Inspired by these insights, we propose a novel algorithm, namely localized zeroth-order prompt optimization (ZOPO), which incorporates a Neural Tangent Kernel-based derived Gaussian process into standard zeroth-order optimization for an efficient search of well-performing local optima in prompt optimization. Remarkably, ZOPO outperforms existing baselines in terms of both the optimization performance and the query efficiency, which we demonstrate through extensive experiments.
Prompt-Guided Mask Proposal for Two-Stage Open-Vocabulary Segmentation
We tackle the challenge of open-vocabulary segmentation, where we need to identify objects from a wide range of categories in different environments, using text prompts as our input. To overcome this challenge, existing methods often use multi-modal models like CLIP, which combine image and text features in a shared embedding space to bridge the gap between limited and extensive vocabulary recognition, resulting in a two-stage approach: In the first stage, a mask generator takes an input image to generate mask proposals, and the in the second stage the target mask is picked based on the query. However, the expected target mask may not exist in the generated mask proposals, which leads to an unexpected output mask. In our work, we propose a novel approach named Prompt-guided Mask Proposal (PMP) where the mask generator takes the input text prompts and generates masks guided by these prompts. Compared with mask proposals generated without input prompts, masks generated by PMP are better aligned with the input prompts. To realize PMP, we designed a cross-attention mechanism between text tokens and query tokens which is capable of generating prompt-guided mask proposals after each decoding. We combined our PMP with several existing works employing a query-based segmentation backbone and the experiments on five benchmark datasets demonstrate the effectiveness of this approach, showcasing significant improvements over the current two-stage models (1% ~ 3% absolute performance gain in terms of mIOU). The steady improvement in performance across these benchmarks indicates the effective generalization of our proposed lightweight prompt-aware method.
Parameter-efficient Prompt Learning for 3D Point Cloud Understanding
This paper presents a parameter-efficient prompt tuning method, named PPT, to adapt a large multi-modal model for 3D point cloud understanding. Existing strategies are quite expensive in computation and storage, and depend on time-consuming prompt engineering. We address the problems from three aspects. Firstly, a PromptLearner module is devised to replace hand-crafted prompts with learnable contexts to automate the prompt tuning process. Then, we lock the pre-trained backbone instead of adopting the full fine-tuning paradigm to substantially improve the parameter efficiency. Finally, a lightweight PointAdapter module is arranged near target tasks to enhance prompt tuning for 3D point cloud understanding. Comprehensive experiments are conducted to demonstrate the superior parameter and data efficiency of the proposed method.Meanwhile, we obtain new records on 4 public datasets and multiple 3D tasks, i.e., point cloud recognition, few-shot learning, and part segmentation. The implementation is available at https://github.com/auniquesun/PPT.
On Meta-Prompting
Certain statistical models are capable of interpreting input strings as instructions, or prompts, and carry out tasks based on them. Many approaches to prompting and pre-training these models involve the automated generation of these prompts. We call these approaches meta-prompting, or prompting to obtain prompts. We propose a theoretical framework based on category theory to generalize and describe them. This framework is flexible enough to account for LLM stochasticity; and allows us to obtain formal results around task agnosticity and equivalence of various meta-prompting approaches. We experiment with meta-prompting in two active areas of model research: creativity and ideation. We find that user preference favors (p < 0.01) the prompts generated under meta-prompting, as well as their corresponding outputs, over a series of hardcoded baseline prompts that include the original task prompt. Using our framework, we argue that meta-prompting is more effective than basic prompting at generating desirable outputs.
SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with Large Language Models
Diffusion models, which have emerged to become popular text-to-image generation models, can produce high-quality and content-rich images guided by textual prompts. However, there are limitations to semantic understanding and commonsense reasoning in existing models when the input prompts are concise narrative, resulting in low-quality image generation. To improve the capacities for narrative prompts, we propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models. To reach this goal, we first collect and annotate a new dataset SURD which consists of more than 57,000 semantically corrected multi-modal samples. Each sample contains a simple narrative prompt, a complex keyword-based prompt, and a high-quality image. Then, we align the semantic representation of narrative prompts to the complex prompts and transfer knowledge of large language models (LLMs) to our SUR-adapter via knowledge distillation so that it can acquire the powerful semantic understanding and reasoning capabilities to build a high-quality textual semantic representation for text-to-image generation. We conduct experiments by integrating multiple LLMs and popular pre-trained diffusion models to show the effectiveness of our approach in enabling diffusion models to understand and reason concise natural language without image quality degradation. Our approach can make text-to-image diffusion models easier to use with better user experience, which demonstrates our approach has the potential for further advancing the development of user-friendly text-to-image generation models by bridging the semantic gap between simple narrative prompts and complex keyword-based prompts.
PRompt Optimization in Multi-Step Tasks (PROMST): Integrating Human Feedback and Heuristic-based Sampling
Prompt optimization aims to find the best prompt to a large language model (LLM) for a given task. LLMs have been successfully used to help find and improve prompt candidates for single-step tasks. However, realistic tasks for agents are multi-step and introduce new challenges: (1) Prompt content is likely to be more extensive and complex, making it more difficult for LLMs to analyze errors, (2) the impact of an individual step is difficult to evaluate, and (3) different people may have varied preferences about task execution. While humans struggle to optimize prompts, they are good at providing feedback about LLM outputs; we therefore introduce a new LLM-driven discrete prompt optimization framework PRompt Optimization in Multi-Step Tasks (PROMST) that incorporates human-designed feedback rules to automatically offer direct suggestions for improvement. We also use an extra learned heuristic model that predicts prompt performance to efficiently sample from prompt candidates. This approach significantly outperforms both human-engineered prompts and several other prompt optimization methods across 11 representative multi-step tasks (an average 10.6\%-29.3\% improvement to current best methods on five LLMs respectively). We believe our work can serve as a benchmark for automatic prompt optimization for LLM-driven multi-step tasks. Datasets and Codes are available at https://github.com/yongchao98/PROMST. Project Page is available at https://yongchao98.github.io/MIT-REALM-PROMST.
Contrastive Demonstration Tuning for Pre-trained Language Models
Pretrained language models can be effectively stimulated by textual prompts or demonstrations, especially in low-data scenarios. Recent works have focused on automatically searching discrete or continuous prompts or optimized verbalizers, yet studies for the demonstration are still limited. Concretely, the demonstration examples are crucial for an excellent final performance of prompt-tuning. In this paper, we propose a novel pluggable, extensible, and efficient approach named contrastive demonstration tuning, which is free of demonstration sampling. Furthermore, the proposed approach can be: (i) Plugged into any previous prompt-tuning approaches; (ii) Extended to widespread classification tasks with a large number of categories. Experimental results on 16 datasets illustrate that our method integrated with previous approaches LM-BFF and P-tuning can yield better performance. Code is available in https://github.com/zjunlp/PromptKG/tree/main/research/Demo-Tuning.
Does Prompt Formatting Have Any Impact on LLM Performance?
In the realm of Large Language Models (LLMs), prompt optimization is crucial for model performance. Although previous research has explored aspects like rephrasing prompt contexts, using various prompting techniques (like in-context learning and chain-of-thought), and ordering few-shot examples, our understanding of LLM sensitivity to prompt templates remains limited. Therefore, this paper examines the impact of different prompt templates on LLM performance. We formatted the same contexts into various human-readable templates, including plain text, Markdown, JSON, and YAML, and evaluated their impact across tasks like natural language reasoning, code generation, and translation using OpenAI's GPT models. Experiments show that GPT-3.5-turbo's performance varies by up to 40\% in a code translation task depending on the prompt template, while larger models like GPT-4 are more robust to these variations. Our analysis highlights the need to reconsider the use of fixed prompt templates, as different formats can significantly affect model performance.
KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction
Recently, prompt-tuning has achieved promising results for specific few-shot classification tasks. The core idea of prompt-tuning is to insert text pieces (i.e., templates) into the input and transform a classification task into a masked language modeling problem. However, for relation extraction, determining an appropriate prompt template requires domain expertise, and it is cumbersome and time-consuming to obtain a suitable label word. Furthermore, there exists abundant semantic and prior knowledge among the relation labels that cannot be ignored. To this end, we focus on incorporating knowledge among relation labels into prompt-tuning for relation extraction and propose a Knowledge-aware Prompt-tuning approach with synergistic optimization (KnowPrompt). Specifically, we inject latent knowledge contained in relation labels into prompt construction with learnable virtual type words and answer words. Then, we synergistically optimize their representation with structured constraints. Extensive experimental results on five datasets with standard and low-resource settings demonstrate the effectiveness of our approach. Our code and datasets are available in https://github.com/zjunlp/KnowPrompt for reproducibility.
Keyframer: Empowering Animation Design using Large Language Models
Large language models (LLMs) have the potential to impact a wide range of creative domains, but the application of LLMs to animation is underexplored and presents novel challenges such as how users might effectively describe motion in natural language. In this paper, we present Keyframer, a design tool for animating static images (SVGs) with natural language. Informed by interviews with professional animation designers and engineers, Keyframer supports exploration and refinement of animations through the combination of prompting and direct editing of generated output. The system also enables users to request design variants, supporting comparison and ideation. Through a user study with 13 participants, we contribute a characterization of user prompting strategies, including a taxonomy of semantic prompt types for describing motion and a 'decomposed' prompting style where users continually adapt their goals in response to generated output.We share how direct editing along with prompting enables iteration beyond one-shot prompting interfaces common in generative tools today. Through this work, we propose how LLMs might empower a range of audiences to engage with animation creation.
MAMMAL -- Molecular Aligned Multi-Modal Architecture and Language
Drug discovery typically consists of multiple steps, including identifying a target protein key to a disease's etiology, validating that interacting with this target could prevent symptoms or cure the disease, discovering a small molecule or biologic therapeutic to interact with it, and optimizing the candidate molecule through a complex landscape of required properties. Drug discovery related tasks often involve prediction and generation while considering multiple entities that potentially interact, which poses a challenge for typical AI models. For this purpose we present MAMMAL - Molecular Aligned Multi-Modal Architecture and Language - a method that we applied to create a versatile multi-task foundation model ibm/biomed.omics.bl.sm.ma-ted-458m that learns from large-scale biological datasets (2 billion samples) across diverse modalities, including proteins, small molecules, and genes. We introduce a prompt syntax that supports a wide range of classification, regression, and generation tasks. It allows combining different modalities and entity types as inputs and/or outputs. Our model handles combinations of tokens and scalars and enables the generation of small molecules and proteins, property prediction, and transcriptomic lab test predictions. We evaluated the model on 11 diverse downstream tasks spanning different steps within a typical drug discovery pipeline, where it reaches new SOTA in 9 tasks and is comparable to SOTA in 2 tasks. This performance is achieved while using a unified architecture serving all tasks, in contrast to the original SOTA performance achieved using tailored architectures. The model code and pretrained weights are publicly available at https://github.com/BiomedSciAI/biomed-multi-alignment and https://huggingface.co/ibm/biomed.omics.bl.sm.ma-ted-458m.
In-Context Learning Unlocked for Diffusion Models
We present Prompt Diffusion, a framework for enabling in-context learning in diffusion-based generative models. Given a pair of task-specific example images, such as depth from/to image and scribble from/to image, and a text guidance, our model automatically understands the underlying task and performs the same task on a new query image following the text guidance. To achieve this, we propose a vision-language prompt that can model a wide range of vision-language tasks and a diffusion model that takes it as input. The diffusion model is trained jointly over six different tasks using these prompts. The resulting Prompt Diffusion model is the first diffusion-based vision-language foundation model capable of in-context learning. It demonstrates high-quality in-context generation on the trained tasks and generalizes effectively to new, unseen vision tasks with their respective prompts. Our model also shows compelling text-guided image editing results. Our framework, with code publicly available at https://github.com/Zhendong-Wang/Prompt-Diffusion, aims to facilitate research into in-context learning for computer vision.
RePrompt: Reasoning-Augmented Reprompting for Text-to-Image Generation via Reinforcement Learning
Despite recent progress in text-to-image (T2I) generation, existing models often struggle to faithfully capture user intentions from short and under-specified prompts. While prior work has attempted to enhance prompts using large language models (LLMs), these methods frequently generate stylistic or unrealistic content due to insufficient grounding in visual semantics and real-world composition. Inspired by recent advances in reasoning for language model, we propose RePrompt, a novel reprompting framework that introduces explicit reasoning into the prompt enhancement process via reinforcement learning. Instead of relying on handcrafted rules or stylistic rewrites, our method trains a language model to generate structured, self-reflective prompts by optimizing for image-level outcomes. The tailored reward models assesse the generated images in terms of human preference, semantic alignment, and visual composition, providing indirect supervision to refine prompt generation. Our approach enables end-to-end training without human-annotated data. Experiments on GenEval and T2I-Compbench show that RePrompt significantly boosts spatial layout fidelity and compositional generalization across diverse T2I backbones, establishing new state-of-the-art results.
Guiding Large Language Models via Directional Stimulus Prompting
We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs. Instead of directly adjusting LLMs, our method employs a small tunable policy model (e.g., T5) to generate an auxiliary directional stimulus prompt for each input instance. These directional stimulus prompts act as nuanced, instance-specific hints and clues to guide LLMs in generating desired outcomes, such as including specific keywords in the generated summary. Our approach sidesteps the challenges of direct LLM tuning by optimizing the policy model to explore directional stimulus prompts that align LLMs with desired behaviors. The policy model can be optimized through 1) supervised fine-tuning using labeled data and 2) reinforcement learning from offline or online rewards based on the LLM's output. We assess our method across summarization, dialogue response generation, and chain-of-thought reasoning tasks. Our experiments demonstrate that the framework consistently improves LLMs' (e.g., ChatGPT, Codex, InstructGPT) performance on these supervised tasks using minimal labeled data. Notably, using just 80 dialogues on the MultiWOZ dataset, our approach enhances ChatGPT's performance by an impressive 41.4%, matching or surpassing some fully supervised start-of-the-art models. Additionally, the instance-specific chain-of-thought prompt generated by our approach improves InstructGPT's reasoning accuracy compared to human-crafted or automatically generated prompts. The code and data are publicly available at https://github.com/Leezekun/Directional-Stimulus-Prompting.
DOSA: A Dataset of Social Artifacts from Different Indian Geographical Subcultures
Generative models are increasingly being used in various applications, such as text generation, commonsense reasoning, and question-answering. To be effective globally, these models must be aware of and account for local socio-cultural contexts, making it necessary to have benchmarks to evaluate the models for their cultural familiarity. Since the training data for LLMs is web-based and the Web is limited in its representation of information, it does not capture knowledge present within communities that are not on the Web. Thus, these models exacerbate the inequities, semantic misalignment, and stereotypes from the Web. There has been a growing call for community-centered participatory research methods in NLP. In this work, we respond to this call by using participatory research methods to introduce DOSA, the first community-generated Dataset of 615 Social Artifacts, by engaging with 260 participants from 19 different Indian geographic subcultures. We use a gamified framework that relies on collective sensemaking to collect the names and descriptions of these artifacts such that the descriptions semantically align with the shared sensibilities of the individuals from those cultures. Next, we benchmark four popular LLMs and find that they show significant variation across regional sub-cultures in their ability to infer the artifacts.
TAPO: Task-Referenced Adaptation for Prompt Optimization
Prompt engineering can significantly improve the performance of large language models (LLMs), with automated prompt optimization (APO) gaining significant attention due to the time-consuming and laborious nature of manual prompt design. However, much of the existing work in APO overlooks task-specific characteristics, resulting in prompts that lack domain specificity and are not well-suited for task-specific optimization. In this paper, we introduce TAPO, a multitask-aware prompt optimization framework composed of three key modules. First, a task-aware metric selection module is proposed to enhance task-specific prompt generation capabilities. Second, we present a multi-metrics evaluation module to jointly evaluate prompts from multiple perspectives. Third, an evolution-based optimization framework is introduced for automatic prompt refinement, which improves adaptability across various tasks. Extensive experiments on six datasets demonstrate the effectiveness of our approach, and our code is publicly available.
PAS: Data-Efficient Plug-and-Play Prompt Augmentation System
In recent years, the rise of Large Language Models (LLMs) has spurred a growing demand for plug-and-play AI systems. Among the various AI techniques, prompt engineering stands out as particularly significant. However, users often face challenges in writing prompts due to the steep learning curve and significant time investment, and existing automatic prompt engineering (APE) models can be difficult to use. To address this issue, we propose PAS, an LLM-based plug-and-play APE system. PAS utilizes LLMs trained on high-quality, automatically generated prompt complementary datasets, resulting in exceptional performance. In comprehensive benchmarks, PAS achieves state-of-the-art (SoTA) results compared to previous APE models, with an average improvement of 6.09 points. Moreover, PAS is highly efficient, achieving SoTA performance with only 9000 data points. Additionally, PAS can autonomously generate prompt augmentation data without requiring additional human labor. Its flexibility also allows it to be compatible with all existing LLMs and applicable to a wide range of tasks. PAS excels in human evaluations, underscoring its suitability as a plug-in for users. This combination of high performance, efficiency, and flexibility makes PAS a valuable system for enhancing the usability and effectiveness of LLMs through improved prompt engineering.
Prompt-A-Video: Prompt Your Video Diffusion Model via Preference-Aligned LLM
Text-to-video models have made remarkable advancements through optimization on high-quality text-video pairs, where the textual prompts play a pivotal role in determining quality of output videos. However, achieving the desired output often entails multiple revisions and iterative inference to refine user-provided prompts. Current automatic methods for refining prompts encounter challenges such as Modality-Inconsistency, Cost-Discrepancy, and Model-Unaware when applied to text-to-video diffusion models. To address these problem, we introduce an LLM-based prompt adaptation framework, termed as Prompt-A-Video, which excels in crafting Video-Centric, Labor-Free and Preference-Aligned prompts tailored to specific video diffusion model. Our approach involves a meticulously crafted two-stage optimization and alignment system. Initially, we conduct a reward-guided prompt evolution pipeline to automatically create optimal prompts pool and leverage them for supervised fine-tuning (SFT) of the LLM. Then multi-dimensional rewards are employed to generate pairwise data for the SFT model, followed by the direct preference optimization (DPO) algorithm to further facilitate preference alignment. Through extensive experimentation and comparative analyses, we validate the effectiveness of Prompt-A-Video across diverse generation models, highlighting its potential to push the boundaries of video generation.
Analogy Generation by Prompting Large Language Models: A Case Study of InstructGPT
We propose a novel application of prompting Pre-trained Language Models (PLMs) to generate analogies and study how to design effective prompts for two task settings: generating a source concept analogous to a given target concept (aka Analogous Concept Generation or ACG), and generating an explanation of the similarity between a given pair of target concept and source concept (aka Analogous Explanation Generation or AEG). We found that it is feasible to prompt InstructGPT to generate meaningful analogies and the best prompts tend to be precise imperative statements especially with a low temperature setting. We also systematically analyzed the sensitivity of the InstructGPT model to prompt design, temperature, and injected spelling errors, and found that the model is particularly sensitive to certain variations (e.g., questions vs. imperative statements). Further, we conducted human evaluation on 1.4k of the generated analogies and found that the quality of generations varies substantially by model size. The largest InstructGPT model can achieve human-level performance at generating meaningful analogies for a given target while there is still room for improvement on the AEG task.
PromptRPA: Generating Robotic Process Automation on Smartphones from Textual Prompts
Robotic Process Automation (RPA) offers a valuable solution for efficiently automating tasks on the graphical user interface (GUI), by emulating human interactions, without modifying existing code. However, its broader adoption is constrained by the need for expertise in both scripting languages and workflow design. To address this challenge, we present PromptRPA, a system designed to comprehend various task-related textual prompts (e.g., goals, procedures), thereby generating and performing corresponding RPA tasks. PromptRPA incorporates a suite of intelligent agents that mimic human cognitive functions, specializing in interpreting user intent, managing external information for RPA generation, and executing operations on smartphones. The agents can learn from user feedback and continuously improve their performance based on the accumulated knowledge. Experimental results indicated a performance jump from a 22.28% success rate in the baseline to 95.21% with PromptRPA, requiring an average of 1.66 user interventions for each new task. PromptRPA presents promising applications in fields such as tutorial creation, smart assistance, and customer service.
Repository-Level Prompt Generation for Large Language Models of Code
With the success of large language models (LLMs) of code and their use as code assistants (e.g. Codex used in GitHub Copilot), techniques for introducing domain-specific knowledge in the prompt design process become important. In this work, we propose a framework called Repo-Level Prompt Generator that learns to generate example-specific prompts using prompt proposals. The prompt proposals take context from the entire repository, thereby incorporating both the structure of the repository and the context from other relevant files (e.g. imports, parent class files). Our technique doesn't require any access to the weights of the LLM, making it applicable in cases where we only have black-box access to the LLM. We conduct experiments on the task of single-line code-autocompletion using code repositories taken from Google Code archives. We demonstrate that an oracle constructed from our prompt proposals gives a remarkably high relative improvement of 36% over Codex, showing the quality of these proposals. Further, we show that when we train a model to predict a prompt proposal, we can achieve significant performance gains over Codex and other baselines. We release our code, data, and trained checkpoints at: https://github.com/shrivastavadisha/repo_level_prompt_generation.
Large Language Models as Optimizers
Optimization is ubiquitous. While derivative-based algorithms have been powerful tools for various problems, the absence of gradient imposes challenges on many real-world applications. In this work, we propose Optimization by PROmpting (OPRO), a simple and effective approach to leverage large language models (LLMs) as optimizers, where the optimization task is described in natural language. In each optimization step, the LLM generates new solutions from the prompt that contains previously generated solutions with their values, then the new solutions are evaluated and added to the prompt for the next optimization step. We first showcase OPRO on linear regression and traveling salesman problems, then move on to prompt optimization where the goal is to find instructions that maximize the task accuracy. With a variety of LLMs, we demonstrate that the best prompts optimized by OPRO outperform human-designed prompts by up to 8% on GSM8K, and by up to 50% on Big-Bench Hard tasks.
APT-Pipe: A Prompt-Tuning Tool for Social Data Annotation using ChatGPT
Recent research has highlighted the potential of LLM applications, like ChatGPT, for performing label annotation on social computing text. However, it is already well known that performance hinges on the quality of the input prompts. To address this, there has been a flurry of research into prompt tuning -- techniques and guidelines that attempt to improve the quality of prompts. Yet these largely rely on manual effort and prior knowledge of the dataset being annotated. To address this limitation, we propose APT-Pipe, an automated prompt-tuning pipeline. APT-Pipe aims to automatically tune prompts to enhance ChatGPT's text classification performance on any given dataset. We implement APT-Pipe and test it across twelve distinct text classification datasets. We find that prompts tuned by APT-Pipe help ChatGPT achieve higher weighted F1-score on nine out of twelve experimented datasets, with an improvement of 7.01% on average. We further highlight APT-Pipe's flexibility as a framework by showing how it can be extended to support additional tuning mechanisms.
GOPro: Generate and Optimize Prompts in CLIP using Self-Supervised Learning
Large-scale foundation models, such as CLIP, have demonstrated remarkable success in visual recognition tasks by embedding images in a semantically rich space. Self-supervised learning (SSL) has also shown promise in improving visual recognition by learning invariant features. However, the combination of CLIP with SSL is found to face challenges due to the multi-task framework that blends CLIP's contrastive loss and SSL's loss, including difficulties with loss weighting and inconsistency among different views of images in CLIP's output space. To overcome these challenges, we propose a prompt learning-based model called GOPro, which is a unified framework that ensures similarity between various augmented views of input images in a shared image-text embedding space, using a pair of learnable image and text projectors atop CLIP, to promote invariance and generalizability. To automatically learn such prompts, we leverage the visual content and style primitives extracted from pre-trained CLIP and adapt them to the target task. In addition to CLIP's cross-domain contrastive loss, we introduce a visual contrastive loss and a novel prompt consistency loss, considering the different views of the images. GOPro is trained end-to-end on all three loss objectives, combining the strengths of CLIP and SSL in a principled manner. Empirical evaluations demonstrate that GOPro outperforms the state-of-the-art prompting techniques on three challenging domain generalization tasks across multiple benchmarks by a significant margin. Our code is available at https://github.com/mainaksingha01/GOPro.
GoT-R1: Unleashing Reasoning Capability of MLLM for Visual Generation with Reinforcement Learning
Visual generation models have made remarkable progress in creating realistic images from text prompts, yet struggle with complex prompts that specify multiple objects with precise spatial relationships and attributes. Effective handling of such prompts requires explicit reasoning about the semantic content and spatial layout. We present GoT-R1, a framework that applies reinforcement learning to enhance semantic-spatial reasoning in visual generation. Building upon the Generation Chain-of-Thought approach, GoT-R1 enables models to autonomously discover effective reasoning strategies beyond predefined templates through carefully designed reinforcement learning. To achieve this, we propose a dual-stage multi-dimensional reward framework that leverages MLLMs to evaluate both the reasoning process and final output, enabling effective supervision across the entire generation pipeline. The reward system assesses semantic alignment, spatial accuracy, and visual quality in a unified approach. Experimental results demonstrate significant improvements on T2I-CompBench benchmark, particularly in compositional tasks involving precise spatial relationships and attribute binding. GoT-R1 advances the state-of-the-art in image generation by successfully transferring sophisticated reasoning capabilities to the visual generation domain. To facilitate future research, we make our code and pretrained models publicly available at https://github.com/gogoduan/GoT-R1.
Solving and Generating NPR Sunday Puzzles with Large Language Models
We explore the ability of large language models to solve and generate puzzles from the NPR Sunday Puzzle game show using PUZZLEQA, a dataset comprising 15 years of on-air puzzles. We evaluate four large language models using PUZZLEQA, in both multiple choice and free response formats, and explore two prompt engineering techniques to improve free response performance: chain-of-thought reasoning and prompt summarization. We find that state-of-the-art large language models can solve many PUZZLEQA puzzles: the best model, GPT-3.5, achieves 50.2% loose accuracy. However, in our few-shot puzzle generation experiment, we find no evidence that models can generate puzzles: GPT-3.5 generates puzzles with answers that do not conform to the generated rules. Puzzle generation remains a challenging task for future work.
Improving Generalization of Image Captioning with Unsupervised Prompt Learning
Pretrained visual-language models have demonstrated impressive zero-shot abilities in image captioning, when accompanied by hand-crafted prompts. Meanwhile, hand-crafted prompts utilize human prior knowledge to guide the model. However, due to the diversity between different domains, such hand-crafted prompt that provide invariant prior knowledge may result in mode collapse for some domains. Some researches attempted to incorporate expert knowledge and instruction datasets, but the results were costly and led to hallucinations. In this paper, we propose an unsupervised prompt learning method to improve Generalization of Image Captioning (GeneIC), which learns a domain-specific prompt vector for the target domain without requiring annotated data. GeneIC aligns visual and language modalities with a pre-trained Contrastive Language-Image Pre-Training (CLIP) model, thus optimizing the domain-specific prompt vector from two aspects: attribute and semantic consistency. Specifically, GeneIC first generates attribute-transferred images with differing attributes, while retaining semantic similarity with original images. Then, GeneIC uses CLIP to measure the similarity between the images and the generated sentences. By exploring the variable and invariant features in the original images and attribute-transferred images, attribute consistency constrains the attribute change direction of both images and sentences to learn domain-specific knowledge. The semantic consistency directly measures the similarity between the generated sentences and images to ensure the accuracy and comprehensiveness of the generated sentences. Consequently, GeneIC only optimizes the prompt vectors, which effectively retains the knowledge in the large model and introduces domain-specific knowledge.
Demystifying optimized prompts in language models
Modern language models (LMs) are not robust to out-of-distribution inputs. Machine generated (``optimized'') prompts can be used to modulate LM outputs and induce specific behaviors while appearing completely uninterpretable. In this work, we investigate the composition of optimized prompts, as well as the mechanisms by which LMs parse and build predictions from optimized prompts. We find that optimized prompts primarily consist of punctuation and noun tokens which are more rare in the training data. Internally, optimized prompts are clearly distinguishable from natural language counterparts based on sparse subsets of the model's activations. Across various families of instruction-tuned models, optimized prompts follow a similar path in how their representations form through the network.
Large Language Models Are Also Good Prototypical Commonsense Reasoners
Commonsense reasoning is a pivotal skill for large language models, yet it presents persistent challenges in specific tasks requiring this competence. Traditional fine-tuning approaches can be resource-intensive and potentially compromise a model's generalization capacity. Furthermore, state-of-the-art language models like GPT-3.5 and Claude are primarily accessible through API calls, which makes fine-tuning models challenging. To address these challenges, we draw inspiration from the outputs of large models for tailored tasks and semi-automatically developed a set of novel prompts from several perspectives, including task-relevance, supportive evidence generation (e.g. chain-of-thought and knowledge), diverse path decoding to aid the model. Experimental results on ProtoQA dataset demonstrate that with better designed prompts we can achieve the new state-of-art(SOTA) on the ProtoQA leaderboard, improving the Max Answer@1 score by 8%, Max Incorrect@1 score by 4% (breakthrough 50% for the first time) compared to the previous SOTA model and achieved an improvement on StrategyQA and CommonsenseQA2.0 (3% and 1%, respectively). Furthermore, with the generated Chain-of-Thought and knowledge, we can improve the interpretability of the model while also surpassing the previous SOTA models. We hope that our work can provide insight for the NLP community to develop better prompts and explore the potential of large language models for more complex reasoning tasks.
This Land is {Your, My} Land: Evaluating Geopolitical Biases in Language Models
Do the Spratly Islands belong to China, the Philippines, or Vietnam? A pretrained large language model (LLM) may answer differently if asked in the languages of each claimant country: Chinese, Tagalog, or Vietnamese. This contrasts with a multilingual human, who would likely answer consistently. In this paper, we show that LLMs recall certain geographical knowledge inconsistently when queried in different languages -- a phenomenon we term geopolitical bias. As a targeted case study, we consider territorial disputes, an inherently controversial and multilingual task. We introduce BorderLines, a dataset of territorial disputes which covers 251 territories, each associated with a set of multiple-choice questions in the languages of each claimant country (49 languages in total). We also propose a suite of evaluation metrics to precisely quantify bias and consistency in responses across different languages. We then evaluate various multilingual LLMs on our dataset and metrics to probe their internal knowledge and use the proposed metrics to discover numerous inconsistencies in how these models respond in different languages. Finally, we explore several prompt modification strategies, aiming to either amplify or mitigate geopolitical bias, which highlights how brittle LLMs are and how they tailor their responses depending on cues from the interaction context. Our code and data are available at https://github.com/manestay/borderlines
DiSa: Directional Saliency-Aware Prompt Learning for Generalizable Vision-Language Models
Prompt learning has emerged as a powerful paradigm for adapting vision-language models such as CLIP to downstream tasks. However, existing methods often overfit to seen data, leading to significant performance degradation when generalizing to novel classes or unseen domains. To address this limitation, we propose DiSa, a Directional Saliency-Aware Prompt Learning framework that integrates two complementary regularization strategies to enhance generalization. First, our Cross-Interactive Regularization (CIR) fosters cross-modal alignment by enabling cooperative learning between prompted and frozen encoders. Within CIR, a saliency-aware masking strategy guides the image encoder to prioritize semantically critical image regions, reducing reliance on less informative patches. Second, we introduce a directional regularization strategy that aligns visual embeddings with class-wise prototype features in a directional manner to prioritize consistency in feature orientation over strict proximity. This approach ensures robust generalization by leveraging stable prototype directions derived from class-mean statistics. Extensive evaluations on 11 diverse image classification benchmarks demonstrate that DiSa consistently outperforms state-of-the-art prompt learning methods across various settings, including base-to-novel generalization, cross-dataset transfer, domain generalization, and few-shot learning.
RNR: Teaching Large Language Models to Follow Roles and Rules
Instruction fine-tuning (IFT) elicits instruction following capabilities and steers the behavior of large language models (LLMs) via supervised learning. However, existing models trained on open-source IFT datasets only have the ability to follow instructions from users, and often fail to follow complex role and rules specified by developers, a.k.a. system prompts. The ability to follow these roles and rules is essential for deployment, as it ensures that the model safely interacts with users within developer defined guidelines. To improve such role and rule following ability, we propose \model, an automated data generation pipeline that generates diverse roles and rules from existing IFT instructions, along with corresponding responses. This data can then be used to train models that follow complex system prompts. The models are evaluated on our newly created benchmarks for role and rule following ability, as well as standard instruction-following benchmarks and general NLP tasks. Our framework significantly improves role and rule following capability in LLMs, as evidenced by over 25% increase in pass-rate on rule adherence, i.e. following all requirements, in our experiments with the Alpaca and Ultrachat datasets. Moreover, our models achieves this increase without any regression on popular instruction following benchmarks.
POND: Multi-Source Time Series Domain Adaptation with Information-Aware Prompt Tuning
Time series domain adaptation stands as a pivotal and intricate challenge with diverse applications, including but not limited to human activity recognition, sleep stage classification, and machine fault diagnosis. Despite the numerous domain adaptation techniques proposed to tackle this complex problem, they primarily focus on domain adaptation from a single source domain. Yet, it is more crucial to investigate domain adaptation from multiple domains due to the potential for greater improvements. To address this, three important challenges need to be overcome: 1). The lack of exploration to utilize domain-specific information for domain adaptation, 2). The difficulty to learn domain-specific information that changes over time, and 3). The difficulty to evaluate learned domain-specific information. In order to tackle these challenges simultaneously, in this paper, we introduce PrOmpt-based domaiN Discrimination (POND), the first framework to utilize prompts for time series domain adaptation. Specifically, to address Challenge 1, we extend the idea of prompt tuning to time series analysis and learn prompts to capture common and domain-specific information from all source domains. To handle Challenge 2, we introduce a conditional module for each source domain to generate prompts from time series input data. For Challenge 3, we propose two criteria to select good prompts, which are used to choose the most suitable source domain for domain adaptation. The efficacy and robustness of our proposed POND model are extensively validated through experiments across 50 scenarios encompassing four datasets. Experimental results demonstrate that our proposed POND model outperforms all state-of-the-art comparison methods by up to 66% on the F1-score.
Boosting Text-To-Image Generation via Multilingual Prompting in Large Multimodal Models
Previous work on augmenting large multimodal models (LMMs) for text-to-image (T2I) generation has focused on enriching the input space of in-context learning (ICL). This includes providing a few demonstrations and optimizing image descriptions to be more detailed and logical. However, as demand for more complex and flexible image descriptions grows, enhancing comprehension of input text within the ICL paradigm remains a critical yet underexplored area. In this work, we extend this line of research by constructing parallel multilingual prompts aimed at harnessing the multilingual capabilities of LMMs. More specifically, we translate the input text into several languages and provide the models with both the original text and the translations. Experiments on two LMMs across 3 benchmarks show that our method, PMT2I, achieves superior performance in general, compositional, and fine-grained assessments, especially in human preference alignment. Additionally, with its advantage of generating more diverse images, PMT2I significantly outperforms baseline prompts when incorporated with reranking methods. Our code and parallel multilingual data can be found at https://github.com/takagi97/PMT2I.
OSLoPrompt: Bridging Low-Supervision Challenges and Open-Set Domain Generalization in CLIP
We introduce Low-Shot Open-Set Domain Generalization (LSOSDG), a novel paradigm unifying low-shot learning with open-set domain generalization (ODG). While prompt-based methods using models like CLIP have advanced DG, they falter in low-data regimes (e.g., 1-shot) and lack precision in detecting open-set samples with fine-grained semantics related to training classes. To address these challenges, we propose OSLOPROMPT, an advanced prompt-learning framework for CLIP with two core innovations. First, to manage limited supervision across source domains and improve DG, we introduce a domain-agnostic prompt-learning mechanism that integrates adaptable domain-specific cues and visually guided semantic attributes through a novel cross-attention module, besides being supported by learnable domain- and class-generic visual prompts to enhance cross-modal adaptability. Second, to improve outlier rejection during inference, we classify unfamiliar samples as "unknown" and train specialized prompts with systematically synthesized pseudo-open samples that maintain fine-grained relationships to known classes, generated through a targeted query strategy with off-the-shelf foundation models. This strategy enhances feature learning, enabling our model to detect open samples with varied granularity more effectively. Extensive evaluations across five benchmarks demonstrate that OSLOPROMPT establishes a new state-of-the-art in LSOSDG, significantly outperforming existing methods.
Revealing Fine-Grained Values and Opinions in Large Language Models
Uncovering latent values and opinions in large language models (LLMs) can help identify biases and mitigate potential harm. Recently, this has been approached by presenting LLMs with survey questions and quantifying their stances towards morally and politically charged statements. However, the stances generated by LLMs can vary greatly depending on how they are prompted, and there are many ways to argue for or against a given position. In this work, we propose to address this by analysing a large and robust dataset of 156k LLM responses to the 62 propositions of the Political Compass Test (PCT) generated by 6 LLMs using 420 prompt variations. We perform coarse-grained analysis of their generated stances and fine-grained analysis of the plain text justifications for those stances. For fine-grained analysis, we propose to identify tropes in the responses: semantically similar phrases that are recurrent and consistent across different prompts, revealing patterns in the text that a given LLM is prone to produce. We find that demographic features added to prompts significantly affect outcomes on the PCT, reflecting bias, as well as disparities between the results of tests when eliciting closed-form vs. open domain responses. Additionally, patterns in the plain text rationales via tropes show that similar justifications are repeatedly generated across models and prompts even with disparate stances.
CharacterChat: Supporting the Creation of Fictional Characters through Conversation and Progressive Manifestation with a Chatbot
We present CharacterChat, a concept and chatbot to support writers in creating fictional characters. Concretely, writers progressively turn the bot into their imagined character through conversation. We iteratively developed CharacterChat in a user-centred approach, starting with a survey on character creation with writers (N=30), followed by two qualitative user studies (N=7 and N=8). Our prototype combines two modes: (1) Guided prompts help writers define character attributes (e.g. User: "Your name is Jane."), including suggestions for attributes (e.g. Bot: "What is my main motivation?") and values, realised as a rule-based system with a concept network. (2) Open conversation with the chatbot helps writers explore their character and get inspiration, realised with a language model that takes into account the defined character attributes. Our user studies reveal benefits particularly for early stages of character creation, and challenges due to limited conversational capabilities. We conclude with lessons learned and ideas for future work.
Diversity of Thought Improves Reasoning Abilities of Large Language Models
Large language models (LLMs) are documented to struggle in settings that require complex reasoning. Nevertheless, instructing the model to break down the problem into smaller reasoning steps (Wei et al., 2022), or ensembling various generations through modifying decoding steps (Wang et al., 2023) boosts performance. Current methods assume that the input prompt is fixed and expect the decoding strategies to introduce the diversity needed for ensembling. In this work, we relax this assumption and discuss how one can create and leverage variations of the input prompt as a means to diversity of thought to improve model performance. We propose a method that automatically improves prompt diversity by soliciting feedback from the LLM to ideate approaches that fit for the problem. We then ensemble the diverse prompts in our method DIV-SE (DIVerse reasoning path Self-Ensemble) across multiple inference calls. We also propose a cost-effective alternative where diverse prompts are used within a single inference call; we call this IDIV-SE (In-call DIVerse reasoning path Self-Ensemble). Under a fixed generation budget, DIV-SE and IDIV-SE outperform the previously discussed baselines using both GPT-3.5 and GPT-4 on several reasoning benchmarks, without modifying the decoding process. Additionally, DIV-SE advances state-of-the-art performance on recent planning benchmarks (Valmeekam et al., 2023), exceeding the highest previously reported accuracy by at least 29.6 percentage points on the most challenging 4/5 Blocksworld task. Our results shed light on how to enforce prompt diversity toward LLM reasoning and thereby improve the pareto frontier of the accuracy-cost trade-off.
Read-only Prompt Optimization for Vision-Language Few-shot Learning
In recent years, prompt tuning has proven effective in adapting pre-trained vision-language models to downstream tasks. These methods aim to adapt the pre-trained models by introducing learnable prompts while keeping pre-trained weights frozen. However, learnable prompts can affect the internal representation within the self-attention module, which may negatively impact performance variance and generalization, especially in data-deficient settings. To address these issues, we propose a novel approach, Read-only Prompt Optimization (RPO). RPO leverages masked attention to prevent the internal representation shift in the pre-trained model. Further, to facilitate the optimization of RPO, the read-only prompts are initialized based on special tokens of the pre-trained model. Our extensive experiments demonstrate that RPO outperforms CLIP and CoCoOp in base-to-new generalization and domain generalization while displaying better robustness. Also, the proposed method achieves better generalization on extremely data-deficient settings, while improving parameter efficiency and computational overhead. Code is available at https://github.com/mlvlab/RPO.
Social Biases through the Text-to-Image Generation Lens
Text-to-Image (T2I) generation is enabling new applications that support creators, designers, and general end users of productivity software by generating illustrative content with high photorealism starting from a given descriptive text as a prompt. Such models are however trained on massive amounts of web data, which surfaces the peril of potential harmful biases that may leak in the generation process itself. In this paper, we take a multi-dimensional approach to studying and quantifying common social biases as reflected in the generated images, by focusing on how occupations, personality traits, and everyday situations are depicted across representations of (perceived) gender, age, race, and geographical location. Through an extensive set of both automated and human evaluation experiments we present findings for two popular T2I models: DALLE-v2 and Stable Diffusion. Our results reveal that there exist severe occupational biases of neutral prompts majorly excluding groups of people from results for both models. Such biases can get mitigated by increasing the amount of specification in the prompt itself, although the prompting mitigation will not address discrepancies in image quality or other usages of the model or its representations in other scenarios. Further, we observe personality traits being associated with only a limited set of people at the intersection of race, gender, and age. Finally, an analysis of geographical location representations on everyday situations (e.g., park, food, weddings) shows that for most situations, images generated through default location-neutral prompts are closer and more similar to images generated for locations of United States and Germany.
Compositional Semantic Parsing with Large Language Models
Humans can reason compositionally when presented with new tasks. Previous research shows that appropriate prompting techniques enable large language models (LLMs) to solve artificial compositional generalization tasks such as SCAN. In this work, we identify additional challenges in more realistic semantic parsing tasks with larger vocabulary and refine these prompting techniques to address them. Our best method is based on least-to-most prompting: it decomposes the problem using prompting-based syntactic parsing, then uses this decomposition to select appropriate exemplars and to sequentially generate the semantic parse. This method allows us to set a new state of the art for CFQ while requiring only 1% of the training data used by traditional approaches. Due to the general nature of our approach, we expect similar efforts will lead to new results in other tasks and domains, especially for knowledge-intensive applications.
Multi-modal Attribute Prompting for Vision-Language Models
Large pre-trained Vision-Language Models (VLMs), like CLIP, exhibit strong generalization ability to downstream tasks but struggle in few-shot scenarios. Existing prompting techniques primarily focus on global text and image representations, yet overlooking multi-modal attribute characteristics. This limitation hinders the model's ability to perceive fine-grained visual details and restricts its generalization ability to a broader range of unseen classes. To address this issue, we propose a Multi-modal Attribute Prompting method (MAP) by jointly exploring textual attribute prompting, visual attribute prompting, and attribute-level alignment. The proposed MAP enjoys several merits. First, we introduce learnable visual attribute prompts enhanced by textual attribute semantics to adaptively capture visual attributes for images from unknown categories, boosting fine-grained visual perception capabilities for CLIP. Second, the proposed attribute-level alignment complements the global alignment to enhance the robustness of cross-modal alignment for open-vocabulary objects. To our knowledge, this is the first work to establish cross-modal attribute-level alignment for CLIP-based few-shot adaptation. Extensive experimental results on 11 datasets demonstrate that our method performs favorably against state-of-the-art approaches.
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing
This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website http://pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.
Beyond Captioning: Task-Specific Prompting for Improved VLM Performance in Mathematical Reasoning
Vision-Language Models (VLMs) have transformed tasks requiring visual and reasoning abilities, such as image retrieval and Visual Question Answering (VQA). Despite their success, VLMs face significant challenges with tasks involving geometric reasoning, algebraic problem-solving, and counting. These limitations stem from difficulties effectively integrating multiple modalities and accurately interpreting geometry-related tasks. Various works claim that introducing a captioning pipeline before VQA tasks enhances performance. We incorporated this pipeline for tasks involving geometry, algebra, and counting. We found that captioning results are not generalizable, specifically with larger VLMs primarily trained on downstream QnA tasks showing random performance on math-related challenges. However, we present a promising alternative: task-based prompting, enriching the prompt with task-specific guidance. This approach shows promise and proves more effective than direct captioning methods for math-heavy problems.
LangGPT: Rethinking Structured Reusable Prompt Design Framework for LLMs from the Programming Language
LLMs have demonstrated commendable performance across diverse domains. Nevertheless, formulating high-quality prompts to instruct LLMs proficiently poses a challenge for non-AI experts. Existing research in prompt engineering suggests somewhat scattered optimization principles and designs empirically dependent prompt optimizers. Unfortunately, these endeavors lack a structured design template, incurring high learning costs and resulting in low reusability. In addition, it is not conducive to the iterative updating of prompts. Inspired by structured reusable programming languages, we propose LangGPT, a dual-layer prompt design framework as the programming language for LLMs. LangGPT has an easy-to-learn normative structure and provides an extended structure for migration and reuse. Experiments illustrate that LangGPT significantly enhances the performance of LLMs. Moreover, the case study shows that LangGPT leads LLMs to generate higher-quality responses. Furthermore, we analyzed the ease of use and reusability of LangGPT through a user survey in our online community.
ORACLE: Leveraging Mutual Information for Consistent Character Generation with LoRAs in Diffusion Models
Text-to-image diffusion models have recently taken center stage as pivotal tools in promoting visual creativity across an array of domains such as comic book artistry, children's literature, game development, and web design. These models harness the power of artificial intelligence to convert textual descriptions into vivid images, thereby enabling artists and creators to bring their imaginative concepts to life with unprecedented ease. However, one of the significant hurdles that persist is the challenge of maintaining consistency in character generation across diverse contexts. Variations in textual prompts, even if minor, can yield vastly different visual outputs, posing a considerable problem in projects that require a uniform representation of characters throughout. In this paper, we introduce a novel framework designed to produce consistent character representations from a single text prompt across diverse settings. Through both quantitative and qualitative analyses, we demonstrate that our framework outperforms existing methods in generating characters with consistent visual identities, underscoring its potential to transform creative industries. By addressing the critical challenge of character consistency, we not only enhance the practical utility of these models but also broaden the horizons for artistic and creative expression.
PromptWizard: Task-Aware Prompt Optimization Framework
Large language models (LLMs) have transformed AI across diverse domains, with prompting being central to their success in guiding model outputs. However, manual prompt engineering is both labor-intensive and domain-specific, necessitating the need for automated solutions. We introduce PromptWizard, a novel, fully automated framework for discrete prompt optimization, utilizing a self-evolving, self-adapting mechanism. Through a feedback-driven critique and synthesis process, PromptWizard achieves an effective balance between exploration and exploitation, iteratively refining both prompt instructions and in-context examples to generate human-readable, task-specific prompts. This guided approach systematically improves prompt quality, resulting in superior performance across 45 tasks. PromptWizard excels even with limited training data, smaller LLMs, and various LLM architectures. Additionally, our cost analysis reveals a substantial reduction in API calls, token usage, and overall cost, demonstrating PromptWizard's efficiency, scalability, and advantages over existing prompt optimization strategies.