Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeThe Multilingual Alignment Prism: Aligning Global and Local Preferences to Reduce Harm
A key concern with the concept of "alignment" is the implicit question of "alignment to what?". AI systems are increasingly used across the world, yet safety alignment is often focused on homogeneous monolingual settings. Additionally, preference training and safety measures often overfit to harms common in Western-centric datasets. Here, we explore the viability of different alignment approaches when balancing dual objectives: addressing and optimizing for a non-homogeneous set of languages and cultural preferences while minimizing both global and local harms. We collect the first set of human annotated red-teaming prompts in different languages distinguishing between global and local harm, which serve as a laboratory for understanding the reliability of alignment techniques when faced with preference distributions that are non-stationary across geographies and languages. While this setting is seldom covered by the literature to date, which primarily centers on English harm mitigation, it captures real-world interactions with AI systems around the world. We establish a new precedent for state-of-the-art alignment techniques across 6 languages with minimal degradation in general performance. Our work provides important insights into cross-lingual transfer and novel optimization approaches to safeguard AI systems designed to serve global populations.
Prompting4Debugging: Red-Teaming Text-to-Image Diffusion Models by Finding Problematic Prompts
Text-to-image diffusion models, e.g. Stable Diffusion (SD), lately have shown remarkable ability in high-quality content generation, and become one of the representatives for the recent wave of transformative AI. Nevertheless, such advance comes with an intensifying concern about the misuse of this generative technology, especially for producing copyrighted or NSFW (i.e. not safe for work) images. Although efforts have been made to filter inappropriate images/prompts or remove undesirable concepts/styles via model fine-tuning, the reliability of these safety mechanisms against diversified problematic prompts remains largely unexplored. In this work, we propose Prompting4Debugging (P4D) as a debugging and red-teaming tool that automatically finds problematic prompts for diffusion models to test the reliability of a deployed safety mechanism. We demonstrate the efficacy of our P4D tool in uncovering new vulnerabilities of SD models with safety mechanisms. Particularly, our result shows that around half of prompts in existing safe prompting benchmarks which were originally considered "safe" can actually be manipulated to bypass many deployed safety mechanisms, including concept removal, negative prompt, and safety guidance. Our findings suggest that, without comprehensive testing, the evaluations on limited safe prompting benchmarks can lead to a false sense of safety for text-to-image models.
GPTFUZZER: Red Teaming Large Language Models with Auto-Generated Jailbreak Prompts
Large language models (LLMs) have recently experienced tremendous popularity and are widely used from casual conversations to AI-driven programming. However, despite their considerable success, LLMs are not entirely reliable and can give detailed guidance on how to conduct harmful or illegal activities. While safety measures can reduce the risk of such outputs, adversarial jailbreak attacks can still exploit LLMs to produce harmful content. These jailbreak templates are typically manually crafted, making large-scale testing challenging. In this paper, we introduce GPTFuzz, a novel black-box jailbreak fuzzing framework inspired by the AFL fuzzing framework. Instead of manual engineering, GPTFuzz automates the generation of jailbreak templates for red-teaming LLMs. At its core, GPTFuzz starts with human-written templates as initial seeds, then mutates them to produce new templates. We detail three key components of GPTFuzz: a seed selection strategy for balancing efficiency and variability, mutate operators for creating semantically equivalent or similar sentences, and a judgment model to assess the success of a jailbreak attack. We evaluate GPTFuzz against various commercial and open-source LLMs, including ChatGPT, LLaMa-2, and Vicuna, under diverse attack scenarios. Our results indicate that GPTFuzz consistently produces jailbreak templates with a high success rate, surpassing human-crafted templates. Remarkably, GPTFuzz achieves over 90% attack success rates against ChatGPT and Llama-2 models, even with suboptimal initial seed templates. We anticipate that GPTFuzz will be instrumental for researchers and practitioners in examining LLM robustness and will encourage further exploration into enhancing LLM safety.
Red Teaming Language Model Detectors with Language Models
The prevalence and strong capability of large language models (LLMs) present significant safety and ethical risks if exploited by malicious users. To prevent the potentially deceptive usage of LLMs, recent works have proposed algorithms to detect LLM-generated text and protect LLMs. In this paper, we investigate the robustness and reliability of these LLM detectors under adversarial attacks. We study two types of attack strategies: 1) replacing certain words in an LLM's output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation. In both strategies, we leverage an auxiliary LLM to generate the word replacements or the instructional prompt. Different from previous works, we consider a challenging setting where the auxiliary LLM can also be protected by a detector. Experiments reveal that our attacks effectively compromise the performance of all detectors in the study with plausible generations, underscoring the urgent need to improve the robustness of LLM-generated text detection systems.
ASSERT: Automated Safety Scenario Red Teaming for Evaluating the Robustness of Large Language Models
As large language models are integrated into society, robustness toward a suite of prompts is increasingly important to maintain reliability in a high-variance environment.Robustness evaluations must comprehensively encapsulate the various settings in which a user may invoke an intelligent system. This paper proposes ASSERT, Automated Safety Scenario Red Teaming, consisting of three methods -- semantically aligned augmentation, target bootstrapping, and adversarial knowledge injection. For robust safety evaluation, we apply these methods in the critical domain of AI safety to algorithmically generate a test suite of prompts covering diverse robustness settings -- semantic equivalence, related scenarios, and adversarial. We partition our prompts into four safety domains for a fine-grained analysis of how the domain affects model performance. Despite dedicated safeguards in existing state-of-the-art models, we find statistically significant performance differences of up to 11% in absolute classification accuracy among semantically related scenarios and error rates of up to 19% absolute error in zero-shot adversarial settings, raising concerns for users' physical safety.
ASTRA: Autonomous Spatial-Temporal Red-teaming for AI Software Assistants
AI coding assistants like GitHub Copilot are rapidly transforming software development, but their safety remains deeply uncertain-especially in high-stakes domains like cybersecurity. Current red-teaming tools often rely on fixed benchmarks or unrealistic prompts, missing many real-world vulnerabilities. We present ASTRA, an automated agent system designed to systematically uncover safety flaws in AI-driven code generation and security guidance systems. ASTRA works in three stages: (1) it builds structured domain-specific knowledge graphs that model complex software tasks and known weaknesses; (2) it performs online vulnerability exploration of each target model by adaptively probing both its input space, i.e., the spatial exploration, and its reasoning processes, i.e., the temporal exploration, guided by the knowledge graphs; and (3) it generates high-quality violation-inducing cases to improve model alignment. Unlike prior methods, ASTRA focuses on realistic inputs-requests that developers might actually ask-and uses both offline abstraction guided domain modeling and online domain knowledge graph adaptation to surface corner-case vulnerabilities. Across two major evaluation domains, ASTRA finds 11-66% more issues than existing techniques and produces test cases that lead to 17% more effective alignment training, showing its practical value for building safer AI systems.
Gradient-Based Language Model Red Teaming
Red teaming is a common strategy for identifying weaknesses in generative language models (LMs), where adversarial prompts are produced that trigger an LM to generate unsafe responses. Red teaming is instrumental for both model alignment and evaluation, but is labor-intensive and difficult to scale when done by humans. In this paper, we present Gradient-Based Red Teaming (GBRT), a red teaming method for automatically generating diverse prompts that are likely to cause an LM to output unsafe responses. GBRT is a form of prompt learning, trained by scoring an LM response with a safety classifier and then backpropagating through the frozen safety classifier and LM to update the prompt. To improve the coherence of input prompts, we introduce two variants that add a realism loss and fine-tune a pretrained model to generate the prompts instead of learning the prompts directly. Our experiments show that GBRT is more effective at finding prompts that trigger an LM to generate unsafe responses than a strong reinforcement learning-based red teaming approach, and succeeds even when the LM has been fine-tuned to produce safer outputs.
Attack Prompt Generation for Red Teaming and Defending Large Language Models
Large language models (LLMs) are susceptible to red teaming attacks, which can induce LLMs to generate harmful content. Previous research constructs attack prompts via manual or automatic methods, which have their own limitations on construction cost and quality. To address these issues, we propose an integrated approach that combines manual and automatic methods to economically generate high-quality attack prompts. Specifically, considering the impressive capabilities of newly emerged LLMs, we propose an attack framework to instruct LLMs to mimic human-generated prompts through in-context learning. Furthermore, we propose a defense framework that fine-tunes victim LLMs through iterative interactions with the attack framework to enhance their safety against red teaming attacks. Extensive experiments on different LLMs validate the effectiveness of our proposed attack and defense frameworks. Additionally, we release a series of attack prompts datasets named SAP with varying sizes, facilitating the safety evaluation and enhancement of more LLMs. Our code and dataset is available on https://github.com/Aatrox103/SAP .
ART: Automatic Red-teaming for Text-to-Image Models to Protect Benign Users
Large-scale pre-trained generative models are taking the world by storm, due to their abilities in generating creative content. Meanwhile, safeguards for these generative models are developed, to protect users' rights and safety, most of which are designed for large language models. Existing methods primarily focus on jailbreak and adversarial attacks, which mainly evaluate the model's safety under malicious prompts. Recent work found that manually crafted safe prompts can unintentionally trigger unsafe generations. To further systematically evaluate the safety risks of text-to-image models, we propose a novel Automatic Red-Teaming framework, ART. Our method leverages both vision language model and large language model to establish a connection between unsafe generations and their prompts, thereby more efficiently identifying the model's vulnerabilities. With our comprehensive experiments, we reveal the toxicity of the popular open-source text-to-image models. The experiments also validate the effectiveness, adaptability, and great diversity of ART. Additionally, we introduce three large-scale red-teaming datasets for studying the safety risks associated with text-to-image models. Datasets and models can be found in https://github.com/GuanlinLee/ART.
MART: Improving LLM Safety with Multi-round Automatic Red-Teaming
Red-teaming is a common practice for mitigating unsafe behaviors in Large Language Models (LLMs), which involves thoroughly assessing LLMs to identify potential flaws and addressing them with responsible and accurate responses. While effective, manual red-teaming is costly, and existing automatic red-teaming typically discovers safety risks without addressing them. In this paper, we propose a Multi-round Automatic Red-Teaming (MART) method, which incorporates both automatic adversarial prompt writing and safe response generation, significantly increasing red-teaming scalability and the safety of the target LLM. Specifically, an adversarial LLM and a target LLM interplay with each other in an iterative manner, where the adversarial LLM aims to generate challenging prompts that elicit unsafe responses from the target LLM, while the target LLM is fine-tuned with safety aligned data on these adversarial prompts. In each round, the adversarial LLM crafts better attacks on the updated target LLM, while the target LLM also improves itself through safety fine-tuning. On adversarial prompt benchmarks, the violation rate of an LLM with limited safety alignment reduces up to 84.7% after 4 rounds of MART, achieving comparable performance to LLMs with extensive adversarial prompt writing. Notably, model helpfulness on non-adversarial prompts remains stable throughout iterations, indicating the target LLM maintains strong performance on instruction following.
Ruby Teaming: Improving Quality Diversity Search with Memory for Automated Red Teaming
We propose Ruby Teaming, a method that improves on Rainbow Teaming by including a memory cache as its third dimension. The memory dimension provides cues to the mutator to yield better-quality prompts, both in terms of attack success rate (ASR) and quality diversity. The prompt archive generated by Ruby Teaming has an ASR of 74%, which is 20% higher than the baseline. In terms of quality diversity, Ruby Teaming outperforms Rainbow Teaming by 6% and 3% on Shannon's Evenness Index (SEI) and Simpson's Diversity Index (SDI), respectively.
Effective Red-Teaming of Policy-Adherent Agents
Task-oriented LLM-based agents are increasingly used in domains with strict policies, such as refund eligibility or cancellation rules. The challenge lies in ensuring that the agent consistently adheres to these rules and policies, appropriately refusing any request that would violate them, while still maintaining a helpful and natural interaction. This calls for the development of tailored design and evaluation methodologies to ensure agent resilience against malicious user behavior. We propose a novel threat model that focuses on adversarial users aiming to exploit policy-adherent agents for personal benefit. To address this, we present CRAFT, a multi-agent red-teaming system that leverages policy-aware persuasive strategies to undermine a policy-adherent agent in a customer-service scenario, outperforming conventional jailbreak methods such as DAN prompts, emotional manipulation, and coercive. Building upon the existing tau-bench benchmark, we introduce tau-break, a complementary benchmark designed to rigorously assess the agent's robustness against manipulative user behavior. Finally, we evaluate several straightforward yet effective defense strategies. While these measures provide some protection, they fall short, highlighting the need for stronger, research-driven safeguards to protect policy-adherent agents from adversarial attacks
Language Model Unalignment: Parametric Red-Teaming to Expose Hidden Harms and Biases
Red-teaming has been a widely adopted way to evaluate the harmfulness of Large Language Models (LLMs). It aims to jailbreak a model's safety behavior to make it act as a helpful agent disregarding the harmfulness of the query. Existing methods are primarily based on input text-based red-teaming such as adversarial prompts, low-resource prompts, or contextualized prompts to condition the model in a way to bypass its safe behavior. Bypassing the guardrails uncovers hidden harmful information and biases in the model that are left untreated or newly introduced by its safety training. However, prompt-based attacks fail to provide such a diagnosis owing to their low attack success rate, and applicability to specific models. In this paper, we present a new perspective on LLM safety research i.e., parametric red-teaming through Unalignment. It simply (instruction) tunes the model parameters to break model guardrails that are not deeply rooted in the model's behavior. Unalignment using as few as 100 examples can significantly bypass commonly referred to as CHATGPT, to the point where it responds with an 88% success rate to harmful queries on two safety benchmark datasets. On open-source models such as VICUNA-7B and LLAMA-2-CHAT 7B AND 13B, it shows an attack success rate of more than 91%. On bias evaluations, Unalignment exposes inherent biases in safety-aligned models such as CHATGPT and LLAMA- 2-CHAT where the model's responses are strongly biased and opinionated 64% of the time.
CoP: Agentic Red-teaming for Large Language Models using Composition of Principles
Recent advances in Large Language Models (LLMs) have spurred transformative applications in various domains, ranging from open-source to proprietary LLMs. However, jailbreak attacks, which aim to break safety alignment and user compliance by tricking the target LLMs into answering harmful and risky responses, are becoming an urgent concern. The practice of red-teaming for LLMs is to proactively explore potential risks and error-prone instances before the release of frontier AI technology. This paper proposes an agentic workflow to automate and scale the red-teaming process of LLMs through the Composition-of-Principles (CoP) framework, where human users provide a set of red-teaming principles as instructions to an AI agent to automatically orchestrate effective red-teaming strategies and generate jailbreak prompts. Distinct from existing red-teaming methods, our CoP framework provides a unified and extensible framework to encompass and orchestrate human-provided red-teaming principles to enable the automated discovery of new red-teaming strategies. When tested against leading LLMs, CoP reveals unprecedented safety risks by finding novel jailbreak prompts and improving the best-known single-turn attack success rate by up to 19.0 times.
FLIRT: Feedback Loop In-context Red Teaming
Warning: this paper contains content that may be inappropriate or offensive. As generative models become available for public use in various applications, testing and analyzing vulnerabilities of these models has become a priority. Here we propose an automatic red teaming framework that evaluates a given model and exposes its vulnerabilities against unsafe and inappropriate content generation. Our framework uses in-context learning in a feedback loop to red team models and trigger them into unsafe content generation. We propose different in-context attack strategies to automatically learn effective and diverse adversarial prompts for text-to-image models. Our experiments demonstrate that compared to baseline approaches, our proposed strategy is significantly more effective in exposing vulnerabilities in Stable Diffusion (SD) model, even when the latter is enhanced with safety features. Furthermore, we demonstrate that the proposed framework is effective for red teaming text-to-text models, resulting in significantly higher toxic response generation rate compared to previously reported numbers.
Curiosity-driven Red-teaming for Large Language Models
Large language models (LLMs) hold great potential for many natural language applications but risk generating incorrect or toxic content. To probe when an LLM generates unwanted content, the current paradigm is to recruit a red team of human testers to design input prompts (i.e., test cases) that elicit undesirable responses from LLMs. However, relying solely on human testers is expensive and time-consuming. Recent works automate red teaming by training a separate red team LLM with reinforcement learning (RL) to generate test cases that maximize the chance of eliciting undesirable responses from the target LLM. However, current RL methods are only able to generate a small number of effective test cases resulting in a low coverage of the span of prompts that elicit undesirable responses from the target LLM. To overcome this limitation, we draw a connection between the problem of increasing the coverage of generated test cases and the well-studied approach of curiosity-driven exploration that optimizes for novelty. Our method of curiosity-driven red teaming (CRT) achieves greater coverage of test cases while mantaining or increasing their effectiveness compared to existing methods. Our method, CRT successfully provokes toxic responses from LLaMA2 model that has been heavily fine-tuned using human preferences to avoid toxic outputs. Code is available at https://github.com/Improbable-AI/curiosity_redteam
Ferret: Faster and Effective Automated Red Teaming with Reward-Based Scoring Technique
In today's era, where large language models (LLMs) are integrated into numerous real-world applications, ensuring their safety and robustness is crucial for responsible AI usage. Automated red-teaming methods play a key role in this process by generating adversarial attacks to identify and mitigate potential vulnerabilities in these models. However, existing methods often struggle with slow performance, limited categorical diversity, and high resource demands. While Rainbow Teaming, a recent approach, addresses the diversity challenge by framing adversarial prompt generation as a quality-diversity search, it remains slow and requires a large fine-tuned mutator for optimal performance. To overcome these limitations, we propose Ferret, a novel approach that builds upon Rainbow Teaming by generating multiple adversarial prompt mutations per iteration and using a scoring function to rank and select the most effective adversarial prompt. We explore various scoring functions, including reward models, Llama Guard, and LLM-as-a-judge, to rank adversarial mutations based on their potential harm to improve the efficiency of the search for harmful mutations. Our results demonstrate that Ferret, utilizing a reward model as a scoring function, improves the overall attack success rate (ASR) to 95%, which is 46% higher than Rainbow Teaming. Additionally, Ferret reduces the time needed to achieve a 90% ASR by 15.2% compared to the baseline and generates adversarial prompts that are transferable i.e. effective on other LLMs of larger size. Our codes are available at https://github.com/declare-lab/ferret.
Multi-lingual Multi-turn Automated Red Teaming for LLMs
Language Model Models (LLMs) have improved dramatically in the past few years, increasing their adoption and the scope of their capabilities over time. A significant amount of work is dedicated to ``model alignment'', i.e., preventing LLMs to generate unsafe responses when deployed into customer-facing applications. One popular method to evaluate safety risks is red-teaming, where agents attempt to bypass alignment by crafting elaborate prompts that trigger unsafe responses from a model. Standard human-driven red-teaming is costly, time-consuming and rarely covers all the recent features (e.g., multi-lingual, multi-modal aspects), while proposed automation methods only cover a small subset of LLMs capabilities (i.e., English or single-turn). We present Multi-lingual Multi-turn Automated Red Teaming (MM-ART), a method to fully automate conversational, multi-lingual red-teaming operations and quickly identify prompts leading to unsafe responses. Through extensive experiments on different languages, we show the studied LLMs are on average 71\% more vulnerable after a 5-turn conversation in English than after the initial turn. For conversations in non-English languages, models display up to 195\% more safety vulnerabilities than the standard single-turn English approach, confirming the need for automated red-teaming methods matching LLMs capabilities.
CSRT: Evaluation and Analysis of LLMs using Code-Switching Red-Teaming Dataset
Recent studies in large language models (LLMs) shed light on their multilingual ability and safety, beyond conventional tasks in language modeling. Still, current benchmarks reveal their inability to comprehensively evaluate them and are excessively dependent on manual annotations. In this paper, we introduce code-switching red-teaming (CSRT), a simple yet effective red-teaming technique that simultaneously tests multilingual understanding and safety of LLMs. We release the CSRT dataset, which comprises 315 code-switching queries combining up to 10 languages and eliciting a wide range of undesirable behaviors. Through extensive experiments with ten state-of-the-art LLMs, we demonstrate that CSRT significantly outperforms existing multilingual red-teaming techniques, achieving 46.7% more attacks than existing methods in English. We analyze the harmful responses toward the CSRT dataset concerning various aspects under ablation studies with 16K samples, including but not limited to scaling laws, unsafe behavior categories, and input conditions for optimal data generation. Additionally, we validate the extensibility of CSRT, by generating code-switching attack prompts with monolingual data.
Explore, Establish, Exploit: Red Teaming Language Models from Scratch
Deploying Large language models (LLMs) can pose hazards from harmful outputs such as toxic or dishonest speech. Prior work has introduced tools that elicit harmful outputs in order to identify and mitigate these risks. While this is a valuable step toward securing language models, these approaches typically rely on a pre-existing classifier for undesired outputs. This limits their application to situations where the type of harmful behavior is known with precision beforehand. However, this skips a central challenge of red teaming: developing a contextual understanding of the behaviors that a model can exhibit. Furthermore, when such a classifier already exists, red teaming has limited marginal value because the classifier could simply be used to filter training data or model outputs. In this work, we consider red teaming under the assumption that the adversary is working from a high-level, abstract specification of undesired behavior. The red team is expected to refine/extend this specification and identify methods to elicit this behavior from the model. Our red teaming framework consists of three steps: 1) Exploring the model's behavior in the desired context; 2) Establishing a measurement of undesired behavior (e.g., a classifier trained to reflect human evaluations); and 3) Exploiting the model's flaws using this measure and an established red teaming methodology. We apply this approach to red team GPT-2 and GPT-3 models to systematically discover classes of prompts that elicit toxic and dishonest statements. In doing so, we also construct and release the CommonClaim dataset of 20,000 statements that have been labeled by human subjects as common-knowledge-true, common-knowledge-false, or neither. Code is available at https://github.com/thestephencasper/explore_establish_exploit_llms. CommonClaim is available at https://github.com/thestephencasper/common_claim.
SAGE-RT: Synthetic Alignment data Generation for Safety Evaluation and Red Teaming
We introduce Synthetic Alignment data Generation for Safety Evaluation and Red Teaming (SAGE-RT or SAGE) a novel pipeline for generating synthetic alignment and red-teaming data. Existing methods fall short in creating nuanced and diverse datasets, providing necessary control over the data generation and validation processes, or require large amount of manually generated seed data. SAGE addresses these limitations by using a detailed taxonomy to produce safety-alignment and red-teaming data across a wide range of topics. We generated 51,000 diverse and in-depth prompt-response pairs, encompassing over 1,500 topics of harmfulness and covering variations of the most frequent types of jailbreaking prompts faced by large language models (LLMs). We show that the red-teaming data generated through SAGE jailbreaks state-of-the-art LLMs in more than 27 out of 32 sub-categories, and in more than 58 out of 279 leaf-categories (sub-sub categories). The attack success rate for GPT-4o, GPT-3.5-turbo is 100% over the sub-categories of harmfulness. Our approach avoids the pitfalls of synthetic safety-training data generation such as mode collapse and lack of nuance in the generation pipeline by ensuring a detailed coverage of harmful topics using iterative expansion of the topics and conditioning the outputs on the generated raw-text. This method can be used to generate red-teaming and alignment data for LLM Safety completely synthetically to make LLMs safer or for red-teaming the models over a diverse range of topics.
Jailbreaking Commercial Black-Box LLMs with Explicitly Harmful Prompts
Evaluating jailbreak attacks is challenging when prompts are not overtly harmful or fail to induce harmful outputs. Unfortunately, many existing red-teaming datasets contain such unsuitable prompts. To evaluate attacks accurately, these datasets need to be assessed and cleaned for maliciousness. However, existing malicious content detection methods rely on either manual annotation, which is labor-intensive, or large language models (LLMs), which have inconsistent accuracy in harmful types. To balance accuracy and efficiency, we propose a hybrid evaluation framework named MDH (Malicious content Detection based on LLMs with Human assistance) that combines LLM-based annotation with minimal human oversight, and apply it to dataset cleaning and detection of jailbroken responses. Furthermore, we find that well-crafted developer messages can significantly boost jailbreak success, leading us to propose two new strategies: D-Attack, which leverages context simulation, and DH-CoT, which incorporates hijacked chains of thought. The Codes, datasets, judgements, and detection results will be released in github repository: https://github.com/AlienZhang1996/DH-CoT.
AdvPrompter: Fast Adaptive Adversarial Prompting for LLMs
While recently Large Language Models (LLMs) have achieved remarkable successes, they are vulnerable to certain jailbreaking attacks that lead to generation of inappropriate or harmful content. Manual red-teaming requires finding adversarial prompts that cause such jailbreaking, e.g. by appending a suffix to a given instruction, which is inefficient and time-consuming. On the other hand, automatic adversarial prompt generation often leads to semantically meaningless attacks that can easily be detected by perplexity-based filters, may require gradient information from the TargetLLM, or do not scale well due to time-consuming discrete optimization processes over the token space. In this paper, we present a novel method that uses another LLM, called the AdvPrompter, to generate human-readable adversarial prompts in seconds, sim800times faster than existing optimization-based approaches. We train the AdvPrompter using a novel algorithm that does not require access to the gradients of the TargetLLM. This process alternates between two steps: (1) generating high-quality target adversarial suffixes by optimizing the AdvPrompter predictions, and (2) low-rank fine-tuning of the AdvPrompter with the generated adversarial suffixes. The trained AdvPrompter generates suffixes that veil the input instruction without changing its meaning, such that the TargetLLM is lured to give a harmful response. Experimental results on popular open source TargetLLMs show state-of-the-art results on the AdvBench dataset, that also transfer to closed-source black-box LLM APIs. Further, we demonstrate that by fine-tuning on a synthetic dataset generated by AdvPrompter, LLMs can be made more robust against jailbreaking attacks while maintaining performance, i.e. high MMLU scores.
Agent Smith: A Single Image Can Jailbreak One Million Multimodal LLM Agents Exponentially Fast
A multimodal large language model (MLLM) agent can receive instructions, capture images, retrieve histories from memory, and decide which tools to use. Nonetheless, red-teaming efforts have revealed that adversarial images/prompts can jailbreak an MLLM and cause unaligned behaviors. In this work, we report an even more severe safety issue in multi-agent environments, referred to as infectious jailbreak. It entails the adversary simply jailbreaking a single agent, and without any further intervention from the adversary, (almost) all agents will become infected exponentially fast and exhibit harmful behaviors. To validate the feasibility of infectious jailbreak, we simulate multi-agent environments containing up to one million LLaVA-1.5 agents, and employ randomized pair-wise chat as a proof-of-concept instantiation for multi-agent interaction. Our results show that feeding an (infectious) adversarial image into the memory of any randomly chosen agent is sufficient to achieve infectious jailbreak. Finally, we derive a simple principle for determining whether a defense mechanism can provably restrain the spread of infectious jailbreak, but how to design a practical defense that meets this principle remains an open question to investigate. Our project page is available at https://sail-sg.github.io/Agent-Smith/.
GASP: Efficient Black-Box Generation of Adversarial Suffixes for Jailbreaking LLMs
Large Language Models (LLMs) have shown impressive proficiency across a range of natural language processing tasks yet remain vulnerable to adversarial prompts, known as jailbreak attacks, carefully designed to elicit harmful responses from LLMs. Traditional methods rely on manual heuristics, which suffer from limited generalizability. While being automatic, optimization-based attacks often produce unnatural jailbreak prompts that are easy to detect by safety filters or require high computational overhead due to discrete token optimization. Witnessing the limitations of existing jailbreak methods, we introduce Generative Adversarial Suffix Prompter (GASP), a novel framework that combines human-readable prompt generation with Latent Bayesian Optimization (LBO) to improve adversarial suffix creation in a fully black-box setting. GASP leverages LBO to craft adversarial suffixes by efficiently exploring continuous embedding spaces, gradually optimizing the model to improve attack efficacy while balancing prompt coherence through a targeted iterative refinement procedure. Our experiments show that GASP can generate natural jailbreak prompts, significantly improving attack success rates, reducing training times, and accelerating inference speed, thus making it an efficient and scalable solution for red-teaming LLMs.
Weak-to-Strong Jailbreaking on Large Language Models
Although significant efforts have been dedicated to aligning large language models (LLMs), red-teaming reports suggest that these carefully aligned LLMs could still be jailbroken through adversarial prompts, tuning, or decoding. Upon examining the jailbreaking vulnerability of aligned LLMs, we observe that the decoding distributions of jailbroken and aligned models differ only in the initial generations. This observation motivates us to propose the weak-to-strong jailbreaking attack, where adversaries can utilize smaller unsafe/aligned LLMs (e.g., 7B) to guide jailbreaking against significantly larger aligned LLMs (e.g., 70B). To jailbreak, one only needs to additionally decode two smaller LLMs once, which involves minimal computation and latency compared to decoding the larger LLMs. The efficacy of this attack is demonstrated through experiments conducted on five models from three different organizations. Our study reveals a previously unnoticed yet efficient way of jailbreaking, exposing an urgent safety issue that needs to be considered when aligning LLMs. As an initial attempt, we propose a defense strategy to protect against such attacks, but creating more advanced defenses remains challenging. The code for replicating the method is available at https://github.com/XuandongZhao/weak-to-strong
PurpCode: Reasoning for Safer Code Generation
We introduce PurpCode, the first post-training recipe for training safe code reasoning models towards generating secure code and defending against malicious cyberactivities. PurpCode trains a reasoning model in two stages: (i) Rule Learning, which explicitly teaches the model to reference cybersafety rules to generate vulnerability-free code and to avoid facilitating malicious cyberactivities; and (ii) Reinforcement Learning, which optimizes model safety and preserves model utility through diverse, multi-objective reward mechanisms. To empower the training pipelines with comprehensive cybersafety data, we conduct internal red-teaming to synthesize comprehensive and high-coverage prompts based on real-world tasks for inducing unsafe cyberactivities in the model. Based on PurpCode, we develop a reasoning-based coding model, namely PurpCode-32B, which demonstrates state-of-the-art cybersafety, outperforming various frontier models. Meanwhile, our alignment method decreases the model overrefusal rates in both general and cybersafety-specific scenarios, while preserving model utility in both code generation and common security knowledge.
Jailbreaking as a Reward Misspecification Problem
The widespread adoption of large language models (LLMs) has raised concerns about their safety and reliability, particularly regarding their vulnerability to adversarial attacks. In this paper, we propose a novel perspective that attributes this vulnerability to reward misspecification during the alignment process. We introduce a metric ReGap to quantify the extent of reward misspecification and demonstrate its effectiveness and robustness in detecting harmful backdoor prompts. Building upon these insights, we present ReMiss, a system for automated red teaming that generates adversarial prompts against various target aligned LLMs. ReMiss achieves state-of-the-art attack success rates on the AdvBench benchmark while preserving the human readability of the generated prompts. Detailed analysis highlights the unique advantages brought by the proposed reward misspecification objective compared to previous methods.
Jailbreak-R1: Exploring the Jailbreak Capabilities of LLMs via Reinforcement Learning
As large language models (LLMs) grow in power and influence, ensuring their safety and preventing harmful output becomes critical. Automated red teaming serves as a tool to detect security vulnerabilities in LLMs without manual labor. However, most existing methods struggle to balance the effectiveness and diversity of red-team generated attack prompts. To address this challenge, we propose \ourapproach, a novel automated red teaming training framework that utilizes reinforcement learning to explore and generate more effective attack prompts while balancing their diversity. Specifically, it consists of three training stages: (1) Cold Start: The red team model is supervised and fine-tuned on a jailbreak dataset obtained through imitation learning. (2) Warm-up Exploration: The model is trained in jailbreak instruction following and exploration, using diversity and consistency as reward signals. (3) Enhanced Jailbreak: Progressive jailbreak rewards are introduced to gradually enhance the jailbreak performance of the red-team model. Extensive experiments on a variety of LLMs show that \ourapproach effectively balances the diversity and effectiveness of jailbreak prompts compared to existing methods. Our work significantly improves the efficiency of red team exploration and provides a new perspective on automated red teaming.
Red Teaming GPT-4V: Are GPT-4V Safe Against Uni/Multi-Modal Jailbreak Attacks?
Various jailbreak attacks have been proposed to red-team Large Language Models (LLMs) and revealed the vulnerable safeguards of LLMs. Besides, some methods are not limited to the textual modality and extend the jailbreak attack to Multimodal Large Language Models (MLLMs) by perturbing the visual input. However, the absence of a universal evaluation benchmark complicates the performance reproduction and fair comparison. Besides, there is a lack of comprehensive evaluation of closed-source state-of-the-art (SOTA) models, especially MLLMs, such as GPT-4V. To address these issues, this work first builds a comprehensive jailbreak evaluation dataset with 1445 harmful questions covering 11 different safety policies. Based on this dataset, extensive red-teaming experiments are conducted on 11 different LLMs and MLLMs, including both SOTA proprietary models and open-source models. We then conduct a deep analysis of the evaluated results and find that (1) GPT4 and GPT-4V demonstrate better robustness against jailbreak attacks compared to open-source LLMs and MLLMs. (2) Llama2 and Qwen-VL-Chat are more robust compared to other open-source models. (3) The transferability of visual jailbreak methods is relatively limited compared to textual jailbreak methods. The dataset and code can be found here https://anonymous.4open.science/r/red_teaming_gpt4-C1CE/README.md .
Red Teaming Visual Language Models
VLMs (Vision-Language Models) extend the capabilities of LLMs (Large Language Models) to accept multimodal inputs. Since it has been verified that LLMs can be induced to generate harmful or inaccurate content through specific test cases (termed as Red Teaming), how VLMs perform in similar scenarios, especially with their combination of textual and visual inputs, remains a question. To explore this problem, we present a novel red teaming dataset RTVLM, which encompasses 10 subtasks (e.g., image misleading, multi-modal jail-breaking, face fairness, etc) under 4 primary aspects (faithfulness, privacy, safety, fairness). Our RTVLM is the first red-teaming dataset to benchmark current VLMs in terms of these 4 different aspects. Detailed analysis shows that 10 prominent open-sourced VLMs struggle with the red teaming in different degrees and have up to 31% performance gap with GPT-4V. Additionally, we simply apply red teaming alignment to LLaVA-v1.5 with Supervised Fine-tuning (SFT) using RTVLM, and this bolsters the models' performance with 10% in RTVLM test set, 13% in MM-Hal, and without noticeable decline in MM-Bench, overpassing other LLaVA-based models with regular alignment data. This reveals that current open-sourced VLMs still lack red teaming alignment. Our code and datasets will be open-source.
Red-Teaming the Stable Diffusion Safety Filter
Stable Diffusion is a recent open-source image generation model comparable to proprietary models such as DALLE, Imagen, or Parti. Stable Diffusion comes with a safety filter that aims to prevent generating explicit images. Unfortunately, the filter is obfuscated and poorly documented. This makes it hard for users to prevent misuse in their applications, and to understand the filter's limitations and improve it. We first show that it is easy to generate disturbing content that bypasses the safety filter. We then reverse-engineer the filter and find that while it aims to prevent sexual content, it ignores violence, gore, and other similarly disturbing content. Based on our analysis, we argue safety measures in future model releases should strive to be fully open and properly documented to stimulate security contributions from the community.
Operationalizing a Threat Model for Red-Teaming Large Language Models (LLMs)
Creating secure and resilient applications with large language models (LLM) requires anticipating, adjusting to, and countering unforeseen threats. Red-teaming has emerged as a critical technique for identifying vulnerabilities in real-world LLM implementations. This paper presents a detailed threat model and provides a systematization of knowledge (SoK) of red-teaming attacks on LLMs. We develop a taxonomy of attacks based on the stages of the LLM development and deployment process and extract various insights from previous research. In addition, we compile methods for defense and practical red-teaming strategies for practitioners. By delineating prominent attack motifs and shedding light on various entry points, this paper provides a framework for improving the security and robustness of LLM-based systems.
Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI
As generative AI, particularly large language models (LLMs), become increasingly integrated into production applications, new attack surfaces and vulnerabilities emerge and put a focus on adversarial threats in natural language and multi-modal systems. Red-teaming has gained importance in proactively identifying weaknesses in these systems, while blue-teaming works to protect against such adversarial attacks. Despite growing academic interest in adversarial risks for generative AI, there is limited guidance tailored for practitioners to assess and mitigate these challenges in real-world environments. To address this, our contributions include: (1) a practical examination of red- and blue-teaming strategies for securing generative AI, (2) identification of key challenges and open questions in defense development and evaluation, and (3) the Attack Atlas, an intuitive framework that brings a practical approach to analyzing single-turn input attacks, placing it at the forefront for practitioners. This work aims to bridge the gap between academic insights and practical security measures for the protection of generative AI systems.
Red teaming ChatGPT via Jailbreaking: Bias, Robustness, Reliability and Toxicity
Recent breakthroughs in natural language processing (NLP) have permitted the synthesis and comprehension of coherent text in an open-ended way, therefore translating the theoretical algorithms into practical applications. The large language models (LLMs) have significantly impacted businesses such as report summarization software and copywriters. Observations indicate, however, that LLMs may exhibit social prejudice and toxicity, posing ethical and societal dangers of consequences resulting from irresponsibility. Large-scale benchmarks for accountable LLMs should consequently be developed. Although several empirical investigations reveal the existence of a few ethical difficulties in advanced LLMs, there is little systematic examination and user study of the risks and harmful behaviors of current LLM usage. To further educate future efforts on constructing ethical LLMs responsibly, we perform a qualitative research method called ``red teaming'' on OpenAI's ChatGPTIn this paper, ChatGPT refers to the version released on Dec 15th. to better understand the practical features of ethical dangers in recent LLMs. We analyze ChatGPT comprehensively from four perspectives: 1) Bias 2) Reliability 3) Robustness 4) Toxicity. In accordance with our stated viewpoints, we empirically benchmark ChatGPT on multiple sample datasets. We find that a significant number of ethical risks cannot be addressed by existing benchmarks, and hence illustrate them via additional case studies. In addition, we examine the implications of our findings on AI ethics and harmal behaviors of ChatGPT, as well as future problems and practical design considerations for responsible LLMs. We believe that our findings may give light on future efforts to determine and mitigate the ethical hazards posed by machines in LLM applications.
AgentPoison: Red-teaming LLM Agents via Poisoning Memory or Knowledge Bases
LLM agents have demonstrated remarkable performance across various applications, primarily due to their advanced capabilities in reasoning, utilizing external knowledge and tools, calling APIs, and executing actions to interact with environments. Current agents typically utilize a memory module or a retrieval-augmented generation (RAG) mechanism, retrieving past knowledge and instances with similar embeddings from knowledge bases to inform task planning and execution. However, the reliance on unverified knowledge bases raises significant concerns about their safety and trustworthiness. To uncover such vulnerabilities, we propose a novel red teaming approach AgentPoison, the first backdoor attack targeting generic and RAG-based LLM agents by poisoning their long-term memory or RAG knowledge base. In particular, we form the trigger generation process as a constrained optimization to optimize backdoor triggers by mapping the triggered instances to a unique embedding space, so as to ensure that whenever a user instruction contains the optimized backdoor trigger, the malicious demonstrations are retrieved from the poisoned memory or knowledge base with high probability. In the meantime, benign instructions without the trigger will still maintain normal performance. Unlike conventional backdoor attacks, AgentPoison requires no additional model training or fine-tuning, and the optimized backdoor trigger exhibits superior transferability, in-context coherence, and stealthiness. Extensive experiments demonstrate AgentPoison's effectiveness in attacking three types of real-world LLM agents: RAG-based autonomous driving agent, knowledge-intensive QA agent, and healthcare EHRAgent. On each agent, AgentPoison achieves an average attack success rate higher than 80% with minimal impact on benign performance (less than 1%) with a poison rate less than 0.1%.
Auto-RT: Automatic Jailbreak Strategy Exploration for Red-Teaming Large Language Models
Automated red-teaming has become a crucial approach for uncovering vulnerabilities in large language models (LLMs). However, most existing methods focus on isolated safety flaws, limiting their ability to adapt to dynamic defenses and uncover complex vulnerabilities efficiently. To address this challenge, we propose Auto-RT, a reinforcement learning framework that automatically explores and optimizes complex attack strategies to effectively uncover security vulnerabilities through malicious queries. Specifically, we introduce two key mechanisms to reduce exploration complexity and improve strategy optimization: 1) Early-terminated Exploration, which accelerate exploration by focusing on high-potential attack strategies; and 2) Progressive Reward Tracking algorithm with intermediate downgrade models, which dynamically refine the search trajectory toward successful vulnerability exploitation. Extensive experiments across diverse LLMs demonstrate that, by significantly improving exploration efficiency and automatically optimizing attack strategies, Auto-RT detects a boarder range of vulnerabilities, achieving a faster detection speed and 16.63\% higher success rates compared to existing methods.
DiveR-CT: Diversity-enhanced Red Teaming with Relaxing Constraints
Recent advances in large language models (LLMs) have made them indispensable, raising significant concerns over managing their safety. Automated red teaming offers a promising alternative to the labor-intensive and error-prone manual probing for vulnerabilities, providing more consistent and scalable safety evaluations. However, existing approaches often compromise diversity by focusing on maximizing attack success rate. Additionally, methods that decrease the cosine similarity from historical embeddings with semantic diversity rewards lead to novelty stagnation as history grows. To address these issues, we introduce DiveR-CT, which relaxes conventional constraints on the objective and semantic reward, granting greater freedom for the policy to enhance diversity. Our experiments demonstrate DiveR-CT's marked superiority over baselines by 1) generating data that perform better in various diversity metrics across different attack success rate levels, 2) better-enhancing resiliency in blue team models through safety tuning based on collected data, 3) allowing dynamic control of objective weights for reliable and controllable attack success rates, and 4) reducing susceptibility to reward overoptimization. Project details and code can be found at https://andrewzh112.github.io/#diverct.
HarmBench: A Standardized Evaluation Framework for Automated Red Teaming and Robust Refusal
Automated red teaming holds substantial promise for uncovering and mitigating the risks associated with the malicious use of large language models (LLMs), yet the field lacks a standardized evaluation framework to rigorously assess new methods. To address this issue, we introduce HarmBench, a standardized evaluation framework for automated red teaming. We identify several desirable properties previously unaccounted for in red teaming evaluations and systematically design HarmBench to meet these criteria. Using HarmBench, we conduct a large-scale comparison of 18 red teaming methods and 33 target LLMs and defenses, yielding novel insights. We also introduce a highly efficient adversarial training method that greatly enhances LLM robustness across a wide range of attacks, demonstrating how HarmBench enables codevelopment of attacks and defenses. We open source HarmBench at https://github.com/centerforaisafety/HarmBench.
Embodied Red Teaming for Auditing Robotic Foundation Models
Language-conditioned robot models have the potential to enable robots to perform a wide range of tasks based on natural language instructions. However, assessing their safety and effectiveness remains challenging because it is difficult to test all the different ways a single task can be phrased. Current benchmarks have two key limitations: they rely on a limited set of human-generated instructions, missing many challenging cases, and focus only on task performance without assessing safety, such as avoiding damage. To address these gaps, we introduce Embodied Red Teaming (ERT), a new evaluation method that generates diverse and challenging instructions to test these models. ERT uses automated red teaming techniques with Vision Language Models (VLMs) to create contextually grounded, difficult instructions. Experimental results show that state-of-the-art language-conditioned robot models fail or behave unsafely on ERT-generated instructions, underscoring the shortcomings of current benchmarks in evaluating real-world performance and safety. Code and videos are available at: https://s-karnik.github.io/embodied-red-team-project-page.
RedCoder: Automated Multi-Turn Red Teaming for Code LLMs
Large Language Models (LLMs) for code generation (i.e., Code LLMs) have demonstrated impressive capabilities in AI-assisted software development and testing. However, recent studies have shown that these models are prone to generating vulnerable or even malicious code under adversarial settings. Existing red-teaming approaches rely on extensive human effort, limiting their scalability and practicality, and generally overlook the interactive nature of real-world AI-assisted programming, which often unfolds over multiple turns. To bridge these gaps, we present RedCoder, a red-teaming agent that engages victim models in multi-turn conversation to elicit vulnerable code. The pipeline to construct RedCoder begins with a multi-agent gaming process that simulates adversarial interactions, yielding a set of prototype conversations and an arsenal of reusable attack strategies. We then fine-tune an LLM on these prototype conversations to serve as the backbone of RedCoder. Once deployed, RedCoder autonomously engages Code LLMs in multi-turn conversations, dynamically retrieving relevant strategies from the arsenal to steer the dialogue toward vulnerability-inducing outputs. Experiments across multiple Code LLMs show that our approach outperforms prior single-turn and multi-turn red-team methods in inducing vulnerabilities in code generation, offering a scalable and effective tool for evaluating the security boundaries of modern code-generation systems.
Summon a Demon and Bind it: A Grounded Theory of LLM Red Teaming
Engaging in the deliberate generation of abnormal outputs from Large Language Models (LLMs) by attacking them is a novel human activity. This paper presents a thorough exposition of how and why people perform such attacks, defining LLM red-teaming based on extensive and diverse evidence. Using a formal qualitative methodology, we interviewed dozens of practitioners from a broad range of backgrounds, all contributors to this novel work of attempting to cause LLMs to fail. We focused on the research questions of defining LLM red teaming, uncovering the motivations and goals for performing the activity, and characterizing the strategies people use when attacking LLMs. Based on the data, LLM red teaming is defined as a limit-seeking, non-malicious, manual activity, which depends highly on a team-effort and an alchemist mindset. It is highly intrinsically motivated by curiosity, fun, and to some degrees by concerns for various harms of deploying LLMs. We identify a taxonomy of 12 strategies and 35 different techniques of attacking LLMs. These findings are presented as a comprehensive grounded theory of how and why people attack large language models: LLM red teaming.
Medical Red Teaming Protocol of Language Models: On the Importance of User Perspectives in Healthcare Settings
As the performance of large language models (LLMs) continues to advance, their adoption is expanding across a wide range of domains, including the medical field. The integration of LLMs into medical applications raises critical safety concerns, particularly due to their use by users with diverse roles, e.g. patients and clinicians, and the potential for model's outputs to directly affect human health. Despite the domain-specific capabilities of medical LLMs, prior safety evaluations have largely focused only on general safety benchmarks. In this paper, we introduce a safety evaluation protocol tailored to the medical domain in both patient user and clinician user perspectives, alongside general safety assessments and quantitatively analyze the safety of medical LLMs. We bridge a gap in the literature by building the PatientSafetyBench containing 466 samples over 5 critical categories to measure safety from the perspective of the patient. We apply our red-teaming protocols on the MediPhi model collection as a case study. To our knowledge, this is the first work to define safety evaluation criteria for medical LLMs through targeted red-teaming taking three different points of view - patient, clinician, and general user - establishing a foundation for safer deployment in medical domains.
Lessons From Red Teaming 100 Generative AI Products
In recent years, AI red teaming has emerged as a practice for probing the safety and security of generative AI systems. Due to the nascency of the field, there are many open questions about how red teaming operations should be conducted. Based on our experience red teaming over 100 generative AI products at Microsoft, we present our internal threat model ontology and eight main lessons we have learned: 1. Understand what the system can do and where it is applied 2. You don't have to compute gradients to break an AI system 3. AI red teaming is not safety benchmarking 4. Automation can help cover more of the risk landscape 5. The human element of AI red teaming is crucial 6. Responsible AI harms are pervasive but difficult to measure 7. LLMs amplify existing security risks and introduce new ones 8. The work of securing AI systems will never be complete By sharing these insights alongside case studies from our operations, we offer practical recommendations aimed at aligning red teaming efforts with real world risks. We also highlight aspects of AI red teaming that we believe are often misunderstood and discuss open questions for the field to consider.
AttackGNN: Red-Teaming GNNs in Hardware Security Using Reinforcement Learning
Machine learning has shown great promise in addressing several critical hardware security problems. In particular, researchers have developed novel graph neural network (GNN)-based techniques for detecting intellectual property (IP) piracy, detecting hardware Trojans (HTs), and reverse engineering circuits, to name a few. These techniques have demonstrated outstanding accuracy and have received much attention in the community. However, since these techniques are used for security applications, it is imperative to evaluate them thoroughly and ensure they are robust and do not compromise the security of integrated circuits. In this work, we propose AttackGNN, the first red-team attack on GNN-based techniques in hardware security. To this end, we devise a novel reinforcement learning (RL) agent that generates adversarial examples, i.e., circuits, against the GNN-based techniques. We overcome three challenges related to effectiveness, scalability, and generality to devise a potent RL agent. We target five GNN-based techniques for four crucial classes of problems in hardware security: IP piracy, detecting/localizing HTs, reverse engineering, and hardware obfuscation. Through our approach, we craft circuits that fool all GNNs considered in this work. For instance, to evade IP piracy detection, we generate adversarial pirated circuits that fool the GNN-based defense into classifying our crafted circuits as not pirated. For attacking HT localization GNN, our attack generates HT-infested circuits that fool the defense on all tested circuits. We obtain a similar 100% success rate against GNNs for all classes of problems.
CulturalTeaming: AI-Assisted Interactive Red-Teaming for Challenging LLMs' (Lack of) Multicultural Knowledge
Frontier large language models (LLMs) are developed by researchers and practitioners with skewed cultural backgrounds and on datasets with skewed sources. However, LLMs' (lack of) multicultural knowledge cannot be effectively assessed with current methods for developing benchmarks. Existing multicultural evaluations primarily rely on expensive and restricted human annotations or potentially outdated internet resources. Thus, they struggle to capture the intricacy, dynamics, and diversity of cultural norms. LLM-generated benchmarks are promising, yet risk propagating the same biases they are meant to measure. To synergize the creativity and expert cultural knowledge of human annotators and the scalability and standardizability of LLM-based automation, we introduce CulturalTeaming, an interactive red-teaming system that leverages human-AI collaboration to build truly challenging evaluation dataset for assessing the multicultural knowledge of LLMs, while improving annotators' capabilities and experiences. Our study reveals that CulturalTeaming's various modes of AI assistance support annotators in creating cultural questions, that modern LLMs fail at, in a gamified manner. Importantly, the increased level of AI assistance (e.g., LLM-generated revision hints) empowers users to create more difficult questions with enhanced perceived creativity of themselves, shedding light on the promises of involving heavier AI assistance in modern evaluation dataset creation procedures. Through a series of 1-hour workshop sessions, we gather CULTURALBENCH-V0.1, a compact yet high-quality evaluation dataset with users' red-teaming attempts, that different families of modern LLMs perform with accuracy ranging from 37.7% to 72.2%, revealing a notable gap in LLMs' multicultural proficiency.
Beyond Benchmarks: Dynamic, Automatic And Systematic Red-Teaming Agents For Trustworthy Medical Language Models
Ensuring the safety and reliability of large language models (LLMs) in clinical practice is critical to prevent patient harm and promote trustworthy healthcare applications of AI. However, LLMs are advancing so rapidly that static safety benchmarks often become obsolete upon publication, yielding only an incomplete and sometimes misleading picture of model trustworthiness. We demonstrate that a Dynamic, Automatic, and Systematic (DAS) red-teaming framework that continuously stress-tests LLMs can reveal significant weaknesses of current LLMs across four safety-critical domains: robustness, privacy, bias/fairness, and hallucination. A suite of adversarial agents is applied to autonomously mutate test cases, identify/evolve unsafe-triggering strategies, and evaluate responses, uncovering vulnerabilities in real time without human intervention. Applying DAS to 15 proprietary and open-source LLMs revealed a stark contrast between static benchmark performance and vulnerability under adversarial pressure. Despite a median MedQA accuracy exceeding 80\%, 94\% of previously correct answers failed our dynamic robustness tests. We observed similarly high failure rates across other domains: privacy leaks were elicited in 86\% of scenarios, cognitive-bias priming altered clinical recommendations in 81\% of fairness tests, and we identified hallucination rates exceeding 66\% in widely used models. Such profound residual risks are incompatible with routine clinical practice. By converting red-teaming from a static checklist into a dynamic stress-test audit, DAS red-teaming offers the surveillance that hospitals/regulators/technology vendors require as LLMs become embedded in patient chatbots, decision-support dashboards, and broader healthcare workflows. Our framework delivers an evolvable, scalable, and reliable safeguard for the next generation of medical AI.
AutoRedTeamer: Autonomous Red Teaming with Lifelong Attack Integration
As large language models (LLMs) become increasingly capable, security and safety evaluation are crucial. While current red teaming approaches have made strides in assessing LLM vulnerabilities, they often rely heavily on human input and lack comprehensive coverage of emerging attack vectors. This paper introduces AutoRedTeamer, a novel framework for fully automated, end-to-end red teaming against LLMs. AutoRedTeamer combines a multi-agent architecture with a memory-guided attack selection mechanism to enable continuous discovery and integration of new attack vectors. The dual-agent framework consists of a red teaming agent that can operate from high-level risk categories alone to generate and execute test cases and a strategy proposer agent that autonomously discovers and implements new attacks by analyzing recent research. This modular design allows AutoRedTeamer to adapt to emerging threats while maintaining strong performance on existing attack vectors. We demonstrate AutoRedTeamer's effectiveness across diverse evaluation settings, achieving 20% higher attack success rates on HarmBench against Llama-3.1-70B while reducing computational costs by 46% compared to existing approaches. AutoRedTeamer also matches the diversity of human-curated benchmarks in generating test cases, providing a comprehensive, scalable, and continuously evolving framework for evaluating the security of AI systems.
UDora: A Unified Red Teaming Framework against LLM Agents by Dynamically Hijacking Their Own Reasoning
Large Language Model (LLM) agents equipped with external tools have become increasingly powerful for complex tasks such as web shopping, automated email replies, and financial trading. However, these advancements amplify the risks of adversarial attacks, especially when agents can access sensitive external functionalities. Nevertheless, manipulating LLM agents into performing targeted malicious actions or invoking specific tools remains challenging, as these agents extensively reason or plan before executing final actions. In this work, we present UDora, a unified red teaming framework designed for LLM agents that dynamically hijacks the agent's reasoning processes to compel malicious behavior. Specifically, UDora first generates the model's reasoning trace for the given task, then automatically identifies optimal points within this trace to insert targeted perturbations. The resulting perturbed reasoning is then used as a surrogate response for optimization. By iteratively applying this process, the LLM agent will then be induced to undertake designated malicious actions or to invoke specific malicious tools. Our approach demonstrates superior effectiveness compared to existing methods across three LLM agent datasets. The code is available at https://github.com/AI-secure/UDora.
AART: AI-Assisted Red-Teaming with Diverse Data Generation for New LLM-powered Applications
Adversarial testing of large language models (LLMs) is crucial for their safe and responsible deployment. We introduce a novel approach for automated generation of adversarial evaluation datasets to test the safety of LLM generations on new downstream applications. We call it AI-assisted Red-Teaming (AART) - an automated alternative to current manual red-teaming efforts. AART offers a data generation and augmentation pipeline of reusable and customizable recipes that reduce human effort significantly and enable integration of adversarial testing earlier in new product development. AART generates evaluation datasets with high diversity of content characteristics critical for effective adversarial testing (e.g. sensitive and harmful concepts, specific to a wide range of cultural and geographic regions and application scenarios). The data generation is steered by AI-assisted recipes to define, scope and prioritize diversity within the application context. This feeds into a structured LLM-generation process that scales up evaluation priorities. Compared to some state-of-the-art tools, AART shows promising results in terms of concept coverage and data quality.
PyRIT: A Framework for Security Risk Identification and Red Teaming in Generative AI System
Generative Artificial Intelligence (GenAI) is becoming ubiquitous in our daily lives. The increase in computational power and data availability has led to a proliferation of both single- and multi-modal models. As the GenAI ecosystem matures, the need for extensible and model-agnostic risk identification frameworks is growing. To meet this need, we introduce the Python Risk Identification Toolkit (PyRIT), an open-source framework designed to enhance red teaming efforts in GenAI systems. PyRIT is a model- and platform-agnostic tool that enables red teamers to probe for and identify novel harms, risks, and jailbreaks in multimodal generative AI models. Its composable architecture facilitates the reuse of core building blocks and allows for extensibility to future models and modalities. This paper details the challenges specific to red teaming generative AI systems, the development and features of PyRIT, and its practical applications in real-world scenarios.
Against The Achilles' Heel: A Survey on Red Teaming for Generative Models
Generative models are rapidly gaining popularity and being integrated into everyday applications, raising concerns over their safe use as various vulnerabilities are exposed. In light of this, the field of red teaming is undergoing fast-paced growth, highlighting the need for a comprehensive survey covering the entire pipeline and addressing emerging topics. Our extensive survey, which examines over 120 papers, introduces a taxonomy of fine-grained attack strategies grounded in the inherent capabilities of language models. Additionally, we have developed the "searcher" framework to unify various automatic red teaming approaches. Moreover, our survey covers novel areas including multimodal attacks and defenses, risks around LLM-based agents, overkill of harmless queries, and the balance between harmlessness and helpfulness.
TRIDENT: Enhancing Large Language Model Safety with Tri-Dimensional Diversified Red-Teaming Data Synthesis
Large Language Models (LLMs) excel in various natural language processing tasks but remain vulnerable to generating harmful content or being exploited for malicious purposes. Although safety alignment datasets have been introduced to mitigate such risks through supervised fine-tuning (SFT), these datasets often lack comprehensive risk coverage. Most existing datasets focus primarily on lexical diversity while neglecting other critical dimensions. To address this limitation, we propose a novel analysis framework to systematically measure the risk coverage of alignment datasets across three essential dimensions: Lexical Diversity, Malicious Intent, and Jailbreak Tactics. We further introduce TRIDENT, an automated pipeline that leverages persona-based, zero-shot LLM generation to produce diverse and comprehensive instructions spanning these dimensions. Each harmful instruction is paired with an ethically aligned response, resulting in two datasets: TRIDENT-Core, comprising 26,311 examples, and TRIDENT-Edge, with 18,773 examples. Fine-tuning Llama 3.1-8B on TRIDENT-Edge demonstrates substantial improvements, achieving an average 14.29% reduction in Harm Score, and a 20% decrease in Attack Success Rate compared to the best-performing baseline model fine-tuned on the WildBreak dataset.
ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming
When building Large Language Models (LLMs), it is paramount to bear safety in mind and protect them with guardrails. Indeed, LLMs should never generate content promoting or normalizing harmful, illegal, or unethical behavior that may contribute to harm to individuals or society. This principle applies to both normal and adversarial use. In response, we introduce ALERT, a large-scale benchmark to assess safety based on a novel fine-grained risk taxonomy. It is designed to evaluate the safety of LLMs through red teaming methodologies and consists of more than 45k instructions categorized using our novel taxonomy. By subjecting LLMs to adversarial testing scenarios, ALERT aims to identify vulnerabilities, inform improvements, and enhance the overall safety of the language models. Furthermore, the fine-grained taxonomy enables researchers to perform an in-depth evaluation that also helps one to assess the alignment with various policies. In our experiments, we extensively evaluate 10 popular open- and closed-source LLMs and demonstrate that many of them still struggle to attain reasonable levels of safety.
RED QUEEN: Safeguarding Large Language Models against Concealed Multi-Turn Jailbreaking
The rapid progress of Large Language Models (LLMs) has opened up new opportunities across various domains and applications; yet it also presents challenges related to potential misuse. To mitigate such risks, red teaming has been employed as a proactive security measure to probe language models for harmful outputs via jailbreak attacks. However, current jailbreak attack approaches are single-turn with explicit malicious queries that do not fully capture the complexity of real-world interactions. In reality, users can engage in multi-turn interactions with LLM-based chat assistants, allowing them to conceal their true intentions in a more covert manner. To bridge this gap, we, first, propose a new jailbreak approach, RED QUEEN ATTACK. This method constructs a multi-turn scenario, concealing the malicious intent under the guise of preventing harm. We craft 40 scenarios that vary in turns and select 14 harmful categories to generate 56k multi-turn attack data points. We conduct comprehensive experiments on the RED QUEEN ATTACK with four representative LLM families of different sizes. Our experiments reveal that all LLMs are vulnerable to RED QUEEN ATTACK, reaching 87.62% attack success rate on GPT-4o and 75.4% on Llama3-70B. Further analysis reveals that larger models are more susceptible to the RED QUEEN ATTACK, with multi-turn structures and concealment strategies contributing to its success. To prioritize safety, we introduce a straightforward mitigation strategy called RED QUEEN GUARD, which aligns LLMs to effectively counter adversarial attacks. This approach reduces the attack success rate to below 1% while maintaining the model's performance across standard benchmarks. Full implementation and dataset are publicly accessible at https://github.com/kriti-hippo/red_queen.
Gandalf the Red: Adaptive Security for LLMs
Current evaluations of defenses against prompt attacks in large language model (LLM) applications often overlook two critical factors: the dynamic nature of adversarial behavior and the usability penalties imposed on legitimate users by restrictive defenses. We propose D-SEC (Dynamic Security Utility Threat Model), which explicitly separates attackers from legitimate users, models multi-step interactions, and expresses the security-utility in an optimizable form. We further address the shortcomings in existing evaluations by introducing Gandalf, a crowd-sourced, gamified red-teaming platform designed to generate realistic, adaptive attack. Using Gandalf, we collect and release a dataset of 279k prompt attacks. Complemented by benign user data, our analysis reveals the interplay between security and utility, showing that defenses integrated in the LLM (e.g., system prompts) can degrade usability even without blocking requests. We demonstrate that restricted application domains, defense-in-depth, and adaptive defenses are effective strategies for building secure and useful LLM applications.
Aurora-M: The First Open Source Multilingual Language Model Red-teamed according to the U.S. Executive Order
Pretrained language models underpin several AI applications, but their high computational cost for training limits accessibility. Initiatives such as BLOOM and StarCoder aim to democratize access to pretrained models for collaborative community development. However, such existing models face challenges: limited multilingual capabilities, continual pretraining causing catastrophic forgetting, whereas pretraining from scratch is computationally expensive, and compliance with AI safety and development laws. This paper presents Aurora-M, a 15B parameter multilingual open-source model trained on English, Finnish, Hindi, Japanese, Vietnamese, and code. Continually pretrained from StarCoderPlus on 435 billion additional tokens, Aurora-M surpasses 2 trillion tokens in total training token count. It is the first open-source multilingual model fine-tuned on human-reviewed safety instructions, thus aligning its development not only with conventional red-teaming considerations, but also with the specific concerns articulated in the Biden-Harris Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence. Aurora-M is rigorously evaluated across various tasks and languages, demonstrating robustness against catastrophic forgetting and outperforming alternatives in multilingual settings, particularly in safety evaluations. To promote responsible open-source LLM development, Aurora-M and its variants are released at https://huggingface.co/collections/aurora-m/aurora-m-models-65fdfdff62471e09812f5407 .
Jailbreaking to Jailbreak
Refusal training on Large Language Models (LLMs) prevents harmful outputs, yet this defense remains vulnerable to both automated and human-crafted jailbreaks. We present a novel LLM-as-red-teamer approach in which a human jailbreaks a refusal-trained LLM to make it willing to jailbreak itself or other LLMs. We refer to the jailbroken LLMs as J_2 attackers, which can systematically evaluate target models using various red teaming strategies and improve its performance via in-context learning from the previous failures. Our experiments demonstrate that Sonnet 3.5 and Gemini 1.5 pro outperform other LLMs as J_2, achieving 93.0% and 91.0% attack success rates (ASRs) respectively against GPT-4o (and similar results across other capable LLMs) on Harmbench. Our work not only introduces a scalable approach to strategic red teaming, drawing inspiration from human red teamers, but also highlights jailbreaking-to-jailbreak as an overlooked failure mode of the safeguard. Specifically, an LLM can bypass its own safeguards by employing a jailbroken version of itself that is willing to assist in further jailbreaking. To prevent any direct misuse with J_2, while advancing research in AI safety, we publicly share our methodology while keeping specific prompting details private.
Refusal-Trained LLMs Are Easily Jailbroken As Browser Agents
For safety reasons, large language models (LLMs) are trained to refuse harmful user instructions, such as assisting dangerous activities. We study an open question in this work: does the desired safety refusal, typically enforced in chat contexts, generalize to non-chat and agentic use cases? Unlike chatbots, LLM agents equipped with general-purpose tools, such as web browsers and mobile devices, can directly influence the real world, making it even more crucial to refuse harmful instructions. In this work, we primarily focus on red-teaming browser agents, LLMs that manipulate information via web browsers. To this end, we introduce Browser Agent Red teaming Toolkit (BrowserART), a comprehensive test suite designed specifically for red-teaming browser agents. BrowserART is consist of 100 diverse browser-related harmful behaviors (including original behaviors and ones sourced from HarmBench [Mazeika et al., 2024] and AirBench 2024 [Zeng et al., 2024b]) across both synthetic and real websites. Our empirical study on state-of-the-art browser agents reveals that, while the backbone LLM refuses harmful instructions as a chatbot, the corresponding agent does not. Moreover, attack methods designed to jailbreak refusal-trained LLMs in the chat settings transfer effectively to browser agents. With human rewrites, GPT-4o and o1-preview-based browser agents attempted 98 and 63 harmful behaviors (out of 100), respectively. We publicly release BrowserART and call on LLM developers, policymakers, and agent developers to collaborate on improving agent safety
Defending Against Unforeseen Failure Modes with Latent Adversarial Training
Despite extensive diagnostics and debugging by developers, AI systems sometimes exhibit harmful unintended behaviors. Finding and fixing these is challenging because the attack surface is so large -- it is not tractable to exhaustively search for inputs that may elicit harmful behaviors. Red-teaming and adversarial training (AT) are commonly used to improve robustness, however, they empirically struggle to fix failure modes that differ from the attacks used during training. In this work, we utilize latent adversarial training (LAT) to defend against vulnerabilities without leveraging knowledge of what they are or using inputs that elicit them. LAT makes use of the compressed, abstract, and structured latent representations of concepts that the network actually uses for prediction. Here, we use it to defend against failure modes without examples that elicit them. Specifically, we use LAT to remove trojans and defend against held-out classes of adversarial attacks. We show in image classification, text classification, and text generation tasks that LAT usually improves both robustness to novel attacks and performance on clean data relative to AT. This suggests that LAT can be a promising tool for defending against failure modes that are not explicitly identified by developers.
Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!
Optimizing large language models (LLMs) for downstream use cases often involves the customization of pre-trained LLMs through further fine-tuning. Meta's open release of Llama models and OpenAI's APIs for fine-tuning GPT-3.5 Turbo on custom datasets also encourage this practice. But, what are the safety costs associated with such custom fine-tuning? We note that while existing safety alignment infrastructures can restrict harmful behaviors of LLMs at inference time, they do not cover safety risks when fine-tuning privileges are extended to end-users. Our red teaming studies find that the safety alignment of LLMs can be compromised by fine-tuning with only a few adversarially designed training examples. For instance, we jailbreak GPT-3.5 Turbo's safety guardrails by fine-tuning it on only 10 such examples at a cost of less than $0.20 via OpenAI's APIs, making the model responsive to nearly any harmful instructions. Disconcertingly, our research also reveals that, even without malicious intent, simply fine-tuning with benign and commonly used datasets can also inadvertently degrade the safety alignment of LLMs, though to a lesser extent. These findings suggest that fine-tuning aligned LLMs introduces new safety risks that current safety infrastructures fall short of addressing -- even if a model's initial safety alignment is impeccable, it is not necessarily to be maintained after custom fine-tuning. We outline and critically analyze potential mitigations and advocate for further research efforts toward reinforcing safety protocols for the custom fine-tuning of aligned LLMs.
LARGO: Latent Adversarial Reflection through Gradient Optimization for Jailbreaking LLMs
Efficient red-teaming method to uncover vulnerabilities in Large Language Models (LLMs) is crucial. While recent attacks often use LLMs as optimizers, the discrete language space make gradient-based methods struggle. We introduce LARGO (Latent Adversarial Reflection through Gradient Optimization), a novel latent self-reflection attack that reasserts the power of gradient-based optimization for generating fluent jailbreaking prompts. By operating within the LLM's continuous latent space, LARGO first optimizes an adversarial latent vector and then recursively call the same LLM to decode the latent into natural language. This methodology yields a fast, effective, and transferable attack that produces fluent and stealthy prompts. On standard benchmarks like AdvBench and JailbreakBench, LARGO surpasses leading jailbreaking techniques, including AutoDAN, by 44 points in attack success rate. Our findings demonstrate a potent alternative to agentic LLM prompting, highlighting the efficacy of interpreting and attacking LLM internals through gradient optimization.
Improved Techniques for Optimization-Based Jailbreaking on Large Language Models
Large language models (LLMs) are being rapidly developed, and a key component of their widespread deployment is their safety-related alignment. Many red-teaming efforts aim to jailbreak LLMs, where among these efforts, the Greedy Coordinate Gradient (GCG) attack's success has led to a growing interest in the study of optimization-based jailbreaking techniques. Although GCG is a significant milestone, its attacking efficiency remains unsatisfactory. In this paper, we present several improved (empirical) techniques for optimization-based jailbreaks like GCG. We first observe that the single target template of "Sure" largely limits the attacking performance of GCG; given this, we propose to apply diverse target templates containing harmful self-suggestion and/or guidance to mislead LLMs. Besides, from the optimization aspects, we propose an automatic multi-coordinate updating strategy in GCG (i.e., adaptively deciding how many tokens to replace in each step) to accelerate convergence, as well as tricks like easy-to-hard initialisation. Then, we combine these improved technologies to develop an efficient jailbreak method, dubbed I-GCG. In our experiments, we evaluate on a series of benchmarks (such as NeurIPS 2023 Red Teaming Track). The results demonstrate that our improved techniques can help GCG outperform state-of-the-art jailbreaking attacks and achieve nearly 100% attack success rate. The code is released at https://github.com/jiaxiaojunQAQ/I-GCG.
Confidence-Building Measures for Artificial Intelligence: Workshop Proceedings
Foundation models could eventually introduce several pathways for undermining state security: accidents, inadvertent escalation, unintentional conflict, the proliferation of weapons, and the interference with human diplomacy are just a few on a long list. The Confidence-Building Measures for Artificial Intelligence workshop hosted by the Geopolitics Team at OpenAI and the Berkeley Risk and Security Lab at the University of California brought together a multistakeholder group to think through the tools and strategies to mitigate the potential risks introduced by foundation models to international security. Originating in the Cold War, confidence-building measures (CBMs) are actions that reduce hostility, prevent conflict escalation, and improve trust between parties. The flexibility of CBMs make them a key instrument for navigating the rapid changes in the foundation model landscape. Participants identified the following CBMs that directly apply to foundation models and which are further explained in this conference proceedings: 1. crisis hotlines 2. incident sharing 3. model, transparency, and system cards 4. content provenance and watermarks 5. collaborative red teaming and table-top exercises and 6. dataset and evaluation sharing. Because most foundation model developers are non-government entities, many CBMs will need to involve a wider stakeholder community. These measures can be implemented either by AI labs or by relevant government actors.
Virus: Harmful Fine-tuning Attack for Large Language Models Bypassing Guardrail Moderation
Recent research shows that Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks -- models lose their safety alignment ability after fine-tuning on a few harmful samples. For risk mitigation, a guardrail is typically used to filter out harmful samples before fine-tuning. By designing a new red-teaming method, we in this paper show that purely relying on the moderation guardrail for data filtration is not reliable. Our proposed attack method, dubbed Virus, easily bypasses the guardrail moderation by slightly modifying the harmful data. Experimental results show that the harmful data optimized by Virus is not detectable by the guardrail with up to 100\% leakage ratio, and can simultaneously achieve superior attack performance. Finally, the key message we want to convey through this paper is that: it is reckless to consider guardrail moderation as a clutch at straws towards harmful fine-tuning attack, as it cannot solve the inherent safety issue of the pre-trained LLMs. Our code is available at https://github.com/git-disl/Virus
ELAB: Extensive LLM Alignment Benchmark in Persian Language
This paper presents a comprehensive evaluation framework for aligning Persian Large Language Models (LLMs) with critical ethical dimensions, including safety, fairness, and social norms. It addresses the gaps in existing LLM evaluation frameworks by adapting them to Persian linguistic and cultural contexts. This benchmark creates three types of Persian-language benchmarks: (i) translated data, (ii) new data generated synthetically, and (iii) new naturally collected data. We translate Anthropic Red Teaming data, AdvBench, HarmBench, and DecodingTrust into Persian. Furthermore, we create ProhibiBench-fa, SafeBench-fa, FairBench-fa, and SocialBench-fa as new datasets to address harmful and prohibited content in indigenous culture. Moreover, we collect extensive dataset as GuardBench-fa to consider Persian cultural norms. By combining these datasets, our work establishes a unified framework for evaluating Persian LLMs, offering a new approach to culturally grounded alignment evaluation. A systematic evaluation of Persian LLMs is performed across the three alignment aspects: safety (avoiding harmful content), fairness (mitigating biases), and social norms (adhering to culturally accepted behaviors). We present a publicly available leaderboard that benchmarks Persian LLMs with respect to safety, fairness, and social norms at: https://huggingface.co/spaces/MCILAB/LLM_Alignment_Evaluation.
On the Exploitability of Reinforcement Learning with Human Feedback for Large Language Models
Reinforcement Learning with Human Feedback (RLHF) is a methodology designed to align Large Language Models (LLMs) with human preferences, playing an important role in LLMs alignment. Despite its advantages, RLHF relies on human annotators to rank the text, which can introduce potential security vulnerabilities if any adversarial annotator (i.e., attackers) manipulates the ranking score by up-ranking any malicious text to steer the LLM adversarially. To assess the red-teaming of RLHF against human preference data poisoning, we propose RankPoison, a poisoning attack method on candidates' selection of preference rank flipping to reach certain malicious behaviors (e.g., generating longer sequences, which can increase the computational cost). With poisoned dataset generated by RankPoison, we can perform poisoning attacks on LLMs to generate longer tokens without hurting the original safety alignment performance. Moreover, applying RankPoison, we also successfully implement a backdoor attack where LLMs can generate longer answers under questions with the trigger word. Our findings highlight critical security challenges in RLHF, underscoring the necessity for more robust alignment methods for LLMs.
Low-Resource Languages Jailbreak GPT-4
AI safety training and red-teaming of large language models (LLMs) are measures to mitigate the generation of unsafe content. Our work exposes the inherent cross-lingual vulnerability of these safety mechanisms, resulting from the linguistic inequality of safety training data, by successfully circumventing GPT-4's safeguard through translating unsafe English inputs into low-resource languages. On the AdvBenchmark, GPT-4 engages with the unsafe translated inputs and provides actionable items that can get the users towards their harmful goals 79% of the time, which is on par with or even surpassing state-of-the-art jailbreaking attacks. Other high-/mid-resource languages have significantly lower attack success rate, which suggests that the cross-lingual vulnerability mainly applies to low-resource languages. Previously, limited training on low-resource languages primarily affects speakers of those languages, causing technological disparities. However, our work highlights a crucial shift: this deficiency now poses a risk to all LLMs users. Publicly available translation APIs enable anyone to exploit LLMs' safety vulnerabilities. Therefore, our work calls for a more holistic red-teaming efforts to develop robust multilingual safeguards with wide language coverage.
Eliciting and Analyzing Emergent Misalignment in State-of-the-Art Large Language Models
Despite significant advances in alignment techniques, we demonstrate that state-of-the-art language models remain vulnerable to carefully crafted conversational scenarios that can induce various forms of misalignment without explicit jailbreaking. Through systematic manual red-teaming with Claude-4-Opus, we discovered 10 successful attack scenarios, revealing fundamental vulnerabilities in how current alignment methods handle narrative immersion, emotional pressure, and strategic framing. These scenarios successfully elicited a range of misaligned behaviors, including deception, value drift, self-preservation, and manipulative reasoning, each exploiting different psychological and contextual vulnerabilities. To validate generalizability, we distilled our successful manual attacks into MISALIGNMENTBENCH, an automated evaluation framework that enables reproducible testing across multiple models. Cross-model evaluation of our 10 scenarios against five frontier LLMs revealed an overall 76% vulnerability rate, with significant variations: GPT-4.1 showed the highest susceptibility (90%), while Claude-4-Sonnet demonstrated greater resistance (40%). Our findings demonstrate that sophisticated reasoning capabilities often become attack vectors rather than protective mechanisms, as models can be manipulated into complex justifications for misaligned behavior. This work provides (i) a detailed taxonomy of conversational manipulation patterns and (ii) a reusable evaluation framework. Together, these findings expose critical gaps in current alignment strategies and highlight the need for robustness against subtle, scenario-based manipulation in future AI systems.
Jailbreaking Multimodal Large Language Models via Shuffle Inconsistency
Multimodal Large Language Models (MLLMs) have achieved impressive performance and have been put into practical use in commercial applications, but they still have potential safety mechanism vulnerabilities. Jailbreak attacks are red teaming methods that aim to bypass safety mechanisms and discover MLLMs' potential risks. Existing MLLMs' jailbreak methods often bypass the model's safety mechanism through complex optimization methods or carefully designed image and text prompts. Despite achieving some progress, they have a low attack success rate on commercial closed-source MLLMs. Unlike previous research, we empirically find that there exists a Shuffle Inconsistency between MLLMs' comprehension ability and safety ability for the shuffled harmful instruction. That is, from the perspective of comprehension ability, MLLMs can understand the shuffled harmful text-image instructions well. However, they can be easily bypassed by the shuffled harmful instructions from the perspective of safety ability, leading to harmful responses. Then we innovatively propose a text-image jailbreak attack named SI-Attack. Specifically, to fully utilize the Shuffle Inconsistency and overcome the shuffle randomness, we apply a query-based black-box optimization method to select the most harmful shuffled inputs based on the feedback of the toxic judge model. A series of experiments show that SI-Attack can improve the attack's performance on three benchmarks. In particular, SI-Attack can obviously improve the attack success rate for commercial MLLMs such as GPT-4o or Claude-3.5-Sonnet.
Tamper-Resistant Safeguards for Open-Weight LLMs
Rapid advances in the capabilities of large language models (LLMs) have raised widespread concerns regarding their potential for malicious use. Open-weight LLMs present unique challenges, as existing safeguards lack robustness to tampering attacks that modify model weights. For example, recent works have demonstrated that refusal and unlearning safeguards can be trivially removed with a few steps of fine-tuning. These vulnerabilities necessitate new approaches for enabling the safe release of open-weight LLMs. We develop a method, called TAR, for building tamper-resistant safeguards into open-weight LLMs such that adversaries cannot remove the safeguards even after thousands of steps of fine-tuning. In extensive evaluations and red teaming analyses, we find that our method greatly improves tamper-resistance while preserving benign capabilities. Our results demonstrate that tamper-resistance is a tractable problem, opening up a promising new avenue to improve the safety and security of open-weight LLMs.
Latent Adversarial Training Improves Robustness to Persistent Harmful Behaviors in LLMs
Large language models (LLMs) can often be made to behave in undesirable ways that they are explicitly fine-tuned not to. For example, the LLM red-teaming literature has produced a wide variety of 'jailbreaking' techniques to elicit harmful text from models that were fine-tuned to be harmless. Recent work on red-teaming, model editing, and interpretability suggests that this challenge stems from how (adversarial) fine-tuning largely serves to suppress rather than remove undesirable capabilities from LLMs. Prior work has introduced latent adversarial training (LAT) as a way to improve robustness to broad classes of failures. These prior works have considered untargeted latent space attacks where the adversary perturbs latent activations to maximize loss on examples of desirable behavior. Untargeted LAT can provide a generic type of robustness but does not leverage information about specific failure modes. Here, we experiment with targeted LAT where the adversary seeks to minimize loss on a specific competing task. We find that it can augment a wide variety of state-of-the-art methods. First, we use targeted LAT to improve robustness to jailbreaks, outperforming a strong R2D2 baseline with orders of magnitude less compute. Second, we use it to more effectively remove backdoors with no knowledge of the trigger. Finally, we use it to more effectively unlearn knowledge for specific undesirable tasks in a way that is also more robust to re-learning. Overall, our results suggest that targeted LAT can be an effective tool for defending against harmful behaviors from LLMs.
WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models
We introduce WildTeaming, an automatic LLM safety red-teaming framework that mines in-the-wild user-chatbot interactions to discover 5.7K unique clusters of novel jailbreak tactics, and then composes multiple tactics for systematic exploration of novel jailbreaks. Compared to prior work that performed red-teaming via recruited human workers, gradient-based optimization, or iterative revision with LLMs, our work investigates jailbreaks from chatbot users who were not specifically instructed to break the system. WildTeaming reveals previously unidentified vulnerabilities of frontier LLMs, resulting in up to 4.6x more diverse and successful adversarial attacks compared to state-of-the-art jailbreak methods. While many datasets exist for jailbreak evaluation, very few open-source datasets exist for jailbreak training, as safety training data has been closed even when model weights are open. With WildTeaming we create WildJailbreak, a large-scale open-source synthetic safety dataset with 262K vanilla (direct request) and adversarial (complex jailbreak) prompt-response pairs. To mitigate exaggerated safety behaviors, WildJailbreak provides two contrastive types of queries: 1) harmful queries (vanilla & adversarial) and 2) benign queries that resemble harmful queries in form but contain no harm. As WildJailbreak considerably upgrades the quality and scale of existing safety resources, it uniquely enables us to examine the scaling effects of data and the interplay of data properties and model capabilities during safety training. Through extensive experiments, we identify the training properties that enable an ideal balance of safety behaviors: appropriate safeguarding without over-refusal, effective handling of vanilla and adversarial queries, and minimal, if any, decrease in general capabilities. All components of WildJailbeak contribute to achieving balanced safety behaviors of models.
Activation-Guided Local Editing for Jailbreaking Attacks
Jailbreaking is an essential adversarial technique for red-teaming these models to uncover and patch security flaws. However, existing jailbreak methods face significant drawbacks. Token-level jailbreak attacks often produce incoherent or unreadable inputs and exhibit poor transferability, while prompt-level attacks lack scalability and rely heavily on manual effort and human ingenuity. We propose a concise and effective two-stage framework that combines the advantages of these approaches. The first stage performs a scenario-based generation of context and rephrases the original malicious query to obscure its harmful intent. The second stage then utilizes information from the model's hidden states to guide fine-grained edits, effectively steering the model's internal representation of the input from a malicious toward a benign one. Extensive experiments demonstrate that this method achieves state-of-the-art Attack Success Rate, with gains of up to 37.74% over the strongest baseline, and exhibits excellent transferability to black-box models. Our analysis further demonstrates that AGILE maintains substantial effectiveness against prominent defense mechanisms, highlighting the limitations of current safeguards and providing valuable insights for future defense development. Our code is available at https://github.com/yunsaijc/AGILE.
RedTeamCUA: Realistic Adversarial Testing of Computer-Use Agents in Hybrid Web-OS Environments
Computer-use agents (CUAs) promise to automate complex tasks across operating systems (OS) and the web, but remain vulnerable to indirect prompt injection. Current evaluations of this threat either lack support realistic but controlled environments or ignore hybrid web-OS attack scenarios involving both interfaces. To address this, we propose RedTeamCUA, an adversarial testing framework featuring a novel hybrid sandbox that integrates a VM-based OS environment with Docker-based web platforms. Our sandbox supports key features tailored for red teaming, such as flexible adversarial scenario configuration, and a setting that decouples adversarial evaluation from navigational limitations of CUAs by initializing tests directly at the point of an adversarial injection. Using RedTeamCUA, we develop RTC-Bench, a comprehensive benchmark with 864 examples that investigate realistic, hybrid web-OS attack scenarios and fundamental security vulnerabilities. Benchmarking current frontier CUAs identifies significant vulnerabilities: Claude 3.7 Sonnet | CUA demonstrates an ASR of 42.9%, while Operator, the most secure CUA evaluated, still exhibits an ASR of 7.6%. Notably, CUAs often attempt to execute adversarial tasks with an Attempt Rate as high as 92.5%, although failing to complete them due to capability limitations. Nevertheless, we observe concerning ASRs of up to 50% in realistic end-to-end settings, with the recently released frontier Claude 4 Opus | CUA showing an alarming ASR of 48%, demonstrating that indirect prompt injection presents tangible risks for even advanced CUAs despite their capabilities and safeguards. Overall, RedTeamCUA provides an essential framework for advancing realistic, controlled, and systematic analysis of CUA vulnerabilities, highlighting the urgent need for robust defenses to indirect prompt injection prior to real-world deployment.
MMDT: Decoding the Trustworthiness and Safety of Multimodal Foundation Models
Multimodal foundation models (MMFMs) play a crucial role in various applications, including autonomous driving, healthcare, and virtual assistants. However, several studies have revealed vulnerabilities in these models, such as generating unsafe content by text-to-image models. Existing benchmarks on multimodal models either predominantly assess the helpfulness of these models, or only focus on limited perspectives such as fairness and privacy. In this paper, we present the first unified platform, MMDT (Multimodal DecodingTrust), designed to provide a comprehensive safety and trustworthiness evaluation for MMFMs. Our platform assesses models from multiple perspectives, including safety, hallucination, fairness/bias, privacy, adversarial robustness, and out-of-distribution (OOD) generalization. We have designed various evaluation scenarios and red teaming algorithms under different tasks for each perspective to generate challenging data, forming a high-quality benchmark. We evaluate a range of multimodal models using MMDT, and our findings reveal a series of vulnerabilities and areas for improvement across these perspectives. This work introduces the first comprehensive and unique safety and trustworthiness evaluation platform for MMFMs, paving the way for developing safer and more reliable MMFMs and systems. Our platform and benchmark are available at https://mmdecodingtrust.github.io/.
Tastle: Distract Large Language Models for Automatic Jailbreak Attack
Large language models (LLMs) have achieved significant advances in recent days. Extensive efforts have been made before the public release of LLMs to align their behaviors with human values. The primary goal of alignment is to ensure their helpfulness, honesty and harmlessness. However, even meticulously aligned LLMs remain vulnerable to malicious manipulations such as jailbreaking, leading to unintended behaviors. The jailbreak is to intentionally develop a malicious prompt that escapes from the LLM security restrictions to produce uncensored detrimental contents. Previous works explore different jailbreak methods for red teaming LLMs, yet they encounter challenges regarding to effectiveness and scalability. In this work, we propose Tastle, a novel black-box jailbreak framework for automated red teaming of LLMs. We designed malicious content concealing and memory reframing with an iterative optimization algorithm to jailbreak LLMs, motivated by the research about the distractibility and over-confidence phenomenon of LLMs. Extensive experiments of jailbreaking both open-source and proprietary LLMs demonstrate the superiority of our framework in terms of effectiveness, scalability and transferability. We also evaluate the effectiveness of existing jailbreak defense methods against our attack and highlight the crucial need to develop more effective and practical defense strategies.
XSTest: A Test Suite for Identifying Exaggerated Safety Behaviours in Large Language Models
Without proper safeguards, large language models will readily follow malicious instructions and generate toxic content. This motivates safety efforts such as red-teaming and large-scale feedback learning, which aim to make models both helpful and harmless. However, there is a tension between these two objectives, since harmlessness requires models to refuse complying with unsafe prompts, and thus not be helpful. Recent anecdotal evidence suggests that some models may have struck a poor balance, so that even clearly safe prompts are refused if they use similar language to unsafe prompts or mention sensitive topics. In this paper, we introduce a new test suite called XSTest to identify such eXaggerated Safety behaviours in a structured and systematic way. In its current form, XSTest comprises 200 safe prompts across ten prompt types that well-calibrated models should not refuse to comply with. We describe XSTest's creation and composition, and use the test suite to highlight systematic failure modes in a recently-released state-of-the-art language model.
Security Challenges in AI Agent Deployment: Insights from a Large Scale Public Competition
Recent advances have enabled LLM-powered AI agents to autonomously execute complex tasks by combining language model reasoning with tools, memory, and web access. But can these systems be trusted to follow deployment policies in realistic environments, especially under attack? To investigate, we ran the largest public red-teaming competition to date, targeting 22 frontier AI agents across 44 realistic deployment scenarios. Participants submitted 1.8 million prompt-injection attacks, with over 60,000 successfully eliciting policy violations such as unauthorized data access, illicit financial actions, and regulatory noncompliance. We use these results to build the Agent Red Teaming (ART) benchmark - a curated set of high-impact attacks - and evaluate it across 19 state-of-the-art models. Nearly all agents exhibit policy violations for most behaviors within 10-100 queries, with high attack transferability across models and tasks. Importantly, we find limited correlation between agent robustness and model size, capability, or inference-time compute, suggesting that additional defenses are needed against adversarial misuse. Our findings highlight critical and persistent vulnerabilities in today's AI agents. By releasing the ART benchmark and accompanying evaluation framework, we aim to support more rigorous security assessment and drive progress toward safer agent deployment.
garak: A Framework for Security Probing Large Language Models
As Large Language Models (LLMs) are deployed and integrated into thousands of applications, the need for scalable evaluation of how models respond to adversarial attacks grows rapidly. However, LLM security is a moving target: models produce unpredictable output, are constantly updated, and the potential adversary is highly diverse: anyone with access to the internet and a decent command of natural language. Further, what constitutes a security weak in one context may not be an issue in a different context; one-fits-all guardrails remain theoretical. In this paper, we argue that it is time to rethink what constitutes ``LLM security'', and pursue a holistic approach to LLM security evaluation, where exploration and discovery of issues are central. To this end, this paper introduces garak (Generative AI Red-teaming and Assessment Kit), a framework which can be used to discover and identify vulnerabilities in a target LLM or dialog system. garak probes an LLM in a structured fashion to discover potential vulnerabilities. The outputs of the framework describe a target model's weaknesses, contribute to an informed discussion of what composes vulnerabilities in unique contexts, and can inform alignment and policy discussions for LLM deployment.
Amazon Nova AI Challenge -- Trusted AI: Advancing secure, AI-assisted software development
AI systems for software development are rapidly gaining prominence, yet significant challenges remain in ensuring their safety. To address this, Amazon launched the Trusted AI track of the Amazon Nova AI Challenge, a global competition among 10 university teams to drive advances in secure AI. In the challenge, five teams focus on developing automated red teaming bots, while the other five create safe AI assistants. This challenge provides teams with a unique platform to evaluate automated red-teaming and safety alignment methods through head-to-head adversarial tournaments where red teams have multi-turn conversations with the competing AI coding assistants to test their safety alignment. Along with this, the challenge provides teams with a feed of high quality annotated data to fuel iterative improvement. Throughout the challenge, teams developed state-of-the-art techniques, introducing novel approaches in reasoning-based safety alignment, robust model guardrails, multi-turn jail-breaking, and efficient probing of large language models (LLMs). To support these efforts, the Amazon Nova AI Challenge team made substantial scientific and engineering investments, including building a custom baseline coding specialist model for the challenge from scratch, developing a tournament orchestration service, and creating an evaluation harness. This paper outlines the advancements made by university teams and the Amazon Nova AI Challenge team in addressing the safety challenges of AI for software development, highlighting this collaborative effort to raise the bar for AI safety.
Understanding and Enhancing the Transferability of Jailbreaking Attacks
Jailbreaking attacks can effectively manipulate open-source large language models (LLMs) to produce harmful responses. However, these attacks exhibit limited transferability, failing to disrupt proprietary LLMs consistently. To reliably identify vulnerabilities in proprietary LLMs, this work investigates the transferability of jailbreaking attacks by analysing their impact on the model's intent perception. By incorporating adversarial sequences, these attacks can redirect the source LLM's focus away from malicious-intent tokens in the original input, thereby obstructing the model's intent recognition and eliciting harmful responses. Nevertheless, these adversarial sequences fail to mislead the target LLM's intent perception, allowing the target LLM to refocus on malicious-intent tokens and abstain from responding. Our analysis further reveals the inherent distributional dependency within the generated adversarial sequences, whose effectiveness stems from overfitting the source LLM's parameters, resulting in limited transferability to target LLMs. To this end, we propose the Perceived-importance Flatten (PiF) method, which uniformly disperses the model's focus across neutral-intent tokens in the original input, thus obscuring malicious-intent tokens without relying on overfitted adversarial sequences. Extensive experiments demonstrate that PiF provides an effective and efficient red-teaming evaluation for proprietary LLMs.
Sowing the Wind, Reaping the Whirlwind: The Impact of Editing Language Models
In the rapidly advancing field of artificial intelligence, the concept of Red-Teaming or Jailbreaking large language models (LLMs) has emerged as a crucial area of study. This approach is especially significant in terms of assessing and enhancing the safety and robustness of these models. This paper investigates the intricate consequences of such modifications through model editing, uncovering a complex relationship between enhancing model accuracy and preserving its ethical integrity. Our in-depth analysis reveals a striking paradox: while injecting accurate information is crucial for model reliability, it can paradoxically destabilize the model's foundational framework, resulting in unpredictable and potentially unsafe behaviors. Additionally, we propose a benchmark dataset NicheHazardQA to investigate this unsafe behavior both within the same and cross topical domain. This aspect of our research sheds light on how the edits, impact the model's safety metrics and guardrails. Our findings show that model editing serves as a cost-effective tool for topical red-teaming by methodically applying targeted edits and evaluating the resultant model behavior
Jinx: Unlimited LLMs for Probing Alignment Failures
Unlimited, or so-called helpful-only language models are trained without safety alignment constraints and never refuse user queries. They are widely used by leading AI companies as internal tools for red teaming and alignment evaluation. For example, if a safety-aligned model produces harmful outputs similar to an unlimited model, this indicates alignment failures that require further attention. Despite their essential role in assessing alignment, such models are not available to the research community. We introduce Jinx, a helpful-only variant of popular open-weight LLMs. Jinx responds to all queries without refusals or safety filtering, while preserving the base model's capabilities in reasoning and instruction following. It provides researchers with an accessible tool for probing alignment failures, evaluating safety boundaries, and systematically studying failure modes in language model safety.
Can Language Models be Instructed to Protect Personal Information?
Large multimodal language models have proven transformative in numerous applications. However, these models have been shown to memorize and leak pre-training data, raising serious user privacy and information security concerns. While data leaks should be prevented, it is also crucial to examine the trade-off between the privacy protection and model utility of proposed approaches. In this paper, we introduce PrivQA -- a multimodal benchmark to assess this privacy/utility trade-off when a model is instructed to protect specific categories of personal information in a simulated scenario. We also propose a technique to iteratively self-moderate responses, which significantly improves privacy. However, through a series of red-teaming experiments, we find that adversaries can also easily circumvent these protections with simple jailbreaking methods through textual and/or image inputs. We believe PrivQA has the potential to support the development of new models with improved privacy protections, as well as the adversarial robustness of these protections. We release the entire PrivQA dataset at https://llm-access-control.github.io/.
Jailbreaking Large Language Models with Symbolic Mathematics
Recent advancements in AI safety have led to increased efforts in training and red-teaming large language models (LLMs) to mitigate unsafe content generation. However, these safety mechanisms may not be comprehensive, leaving potential vulnerabilities unexplored. This paper introduces MathPrompt, a novel jailbreaking technique that exploits LLMs' advanced capabilities in symbolic mathematics to bypass their safety mechanisms. By encoding harmful natural language prompts into mathematical problems, we demonstrate a critical vulnerability in current AI safety measures. Our experiments across 13 state-of-the-art LLMs reveal an average attack success rate of 73.6\%, highlighting the inability of existing safety training mechanisms to generalize to mathematically encoded inputs. Analysis of embedding vectors shows a substantial semantic shift between original and encoded prompts, helping explain the attack's success. This work emphasizes the importance of a holistic approach to AI safety, calling for expanded red-teaming efforts to develop robust safeguards across all potential input types and their associated risks.
LLM Defenses Are Not Robust to Multi-Turn Human Jailbreaks Yet
Recent large language model (LLM) defenses have greatly improved models' ability to refuse harmful queries, even when adversarially attacked. However, LLM defenses are primarily evaluated against automated adversarial attacks in a single turn of conversation, an insufficient threat model for real-world malicious use. We demonstrate that multi-turn human jailbreaks uncover significant vulnerabilities, exceeding 70% attack success rate (ASR) on HarmBench against defenses that report single-digit ASRs with automated single-turn attacks. Human jailbreaks also reveal vulnerabilities in machine unlearning defenses, successfully recovering dual-use biosecurity knowledge from unlearned models. We compile these results into Multi-Turn Human Jailbreaks (MHJ), a dataset of 2,912 prompts across 537 multi-turn jailbreaks. We publicly release MHJ alongside a compendium of jailbreak tactics developed across dozens of commercial red teaming engagements, supporting research towards stronger LLM defenses.
Dialogue Action Tokens: Steering Language Models in Goal-Directed Dialogue with a Multi-Turn Planner
We present an approach called Dialogue Action Tokens (DAT) that adapts language model agents to plan goal-directed dialogues. The core idea is to treat each utterance as an action, thereby converting dialogues into games where existing approaches such as reinforcement learning can be applied. Specifically, we freeze a pretrained language model and train a small planner model that predicts a continuous action vector, used for controlled generation in each round. This design avoids the problem of language degradation under reward optimization. When evaluated on the Sotopia platform for social simulations, the DAT-steered LLaMA model surpasses GPT-4's performance. We also apply DAT to steer an attacker language model in a novel multi-turn red-teaming setting, revealing a potential new attack surface.
Seamless: Multilingual Expressive and Streaming Speech Translation
Large-scale automatic speech translation systems today lack key features that help machine-mediated communication feel seamless when compared to human-to-human dialogue. In this work, we introduce a family of models that enable end-to-end expressive and multilingual translations in a streaming fashion. First, we contribute an improved version of the massively multilingual and multimodal SeamlessM4T model-SeamlessM4T v2. This newer model, incorporating an updated UnitY2 framework, was trained on more low-resource language data. SeamlessM4T v2 provides the foundation on which our next two models are initiated. SeamlessExpressive enables translation that preserves vocal styles and prosody. Compared to previous efforts in expressive speech research, our work addresses certain underexplored aspects of prosody, such as speech rate and pauses, while also preserving the style of one's voice. As for SeamlessStreaming, our model leverages the Efficient Monotonic Multihead Attention mechanism to generate low-latency target translations without waiting for complete source utterances. As the first of its kind, SeamlessStreaming enables simultaneous speech-to-speech/text translation for multiple source and target languages. To ensure that our models can be used safely and responsibly, we implemented the first known red-teaming effort for multimodal machine translation, a system for the detection and mitigation of added toxicity, a systematic evaluation of gender bias, and an inaudible localized watermarking mechanism designed to dampen the impact of deepfakes. Consequently, we bring major components from SeamlessExpressive and SeamlessStreaming together to form Seamless, the first publicly available system that unlocks expressive cross-lingual communication in real-time. The contributions to this work are publicly released and accessible at https://github.com/facebookresearch/seamless_communication
Aloe: A Family of Fine-tuned Open Healthcare LLMs
As the capabilities of Large Language Models (LLMs) in healthcare and medicine continue to advance, there is a growing need for competitive open-source models that can safeguard public interest. With the increasing availability of highly competitive open base models, the impact of continued pre-training is increasingly uncertain. In this work, we explore the role of instruct tuning, model merging, alignment, red teaming and advanced inference schemes, as means to improve current open models. To that end, we introduce the Aloe family, a set of open medical LLMs highly competitive within its scale range. Aloe models are trained on the current best base models (Mistral, LLaMA 3), using a new custom dataset which combines public data sources improved with synthetic Chain of Thought (CoT). Aloe models undergo an alignment phase, becoming one of the first few policy-aligned open healthcare LLM using Direct Preference Optimization, setting a new standard for ethical performance in healthcare LLMs. Model evaluation expands to include various bias and toxicity datasets, a dedicated red teaming effort, and a much-needed risk assessment for healthcare LLMs. Finally, to explore the limits of current LLMs in inference, we study several advanced prompt engineering strategies to boost performance across benchmarks, yielding state-of-the-art results for open healthcare 7B LLMs, unprecedented at this scale.
Trajectory Balance with Asynchrony: Decoupling Exploration and Learning for Fast, Scalable LLM Post-Training
Reinforcement learning (RL) is a critical component of large language model (LLM) post-training. However, existing on-policy algorithms used for post-training are inherently incompatible with the use of experience replay buffers, which can be populated scalably by distributed off-policy actors to enhance exploration as compute increases. We propose efficiently obtaining this benefit of replay buffers via Trajectory Balance with Asynchrony (TBA), a massively scalable LLM RL system. In contrast to existing approaches, TBA uses a larger fraction of compute on search, constantly generating off-policy data for a central replay buffer. A training node simultaneously samples data from this buffer based on reward or recency to update the policy using Trajectory Balance (TB), a diversity-seeking RL objective introduced for GFlowNets. TBA offers three key advantages: (1) decoupled training and search, speeding up training wall-clock time by 4x or more; (2) improved diversity through large-scale off-policy sampling; and (3) scalable search for sparse reward settings. On mathematical reasoning, preference-tuning, and automated red-teaming (diverse and representative post-training tasks), TBA produces speed and performance improvements over strong baselines.
AI Control: Improving Safety Despite Intentional Subversion
As large language models (LLMs) become more powerful and are deployed more autonomously, it will be increasingly important to prevent them from causing harmful outcomes. Researchers have investigated a variety of safety techniques for this purpose, e.g. using models to review the outputs of other models, or red-teaming techniques to surface subtle failure modes. However, researchers have not evaluated whether such techniques still ensure safety if the model is itself intentionally trying to subvert them. In this paper, we develop and evaluate pipelines of safety techniques ("protocols") that are robust to intentional subversion. We investigate a scenario in which we want to solve a sequence of programming problems, using access to a powerful but untrusted model (in our case, GPT-4), access to a less powerful trusted model (in our case, GPT-3.5), and limited access to high-quality trusted labor. We investigate protocols that aim to never submit solutions containing backdoors, which we operationalize here as logical errors that are not caught by test cases. We investigate a range of protocols and test each against strategies that the untrusted model could use to subvert them. One protocol is what we call trusted editing. This protocol first asks GPT-4 to write code, and then asks GPT-3.5 to rate the suspiciousness of that code. If the code is below some suspiciousness threshold, it is submitted. Otherwise, GPT-3.5 edits the solution to remove parts that seem suspicious and then submits the edited code. Another protocol is untrusted monitoring. This protocol asks GPT-4 to write code, and then asks another instance of GPT-4 whether the code is backdoored, using various techniques to prevent the GPT-4 instances from colluding. These protocols improve substantially on simple baselines.
RabakBench: Scaling Human Annotations to Construct Localized Multilingual Safety Benchmarks for Low-Resource Languages
Large language models (LLMs) and their safety classifiers often perform poorly on low-resource languages due to limited training data and evaluation benchmarks. This paper introduces RabakBench, a new multilingual safety benchmark localized to Singapore's unique linguistic context, covering Singlish, Chinese, Malay, and Tamil. RabakBench is constructed through a scalable three-stage pipeline: (i) Generate - adversarial example generation by augmenting real Singlish web content with LLM-driven red teaming; (ii) Label - semi-automated multi-label safety annotation using majority-voted LLM labelers aligned with human judgments; and (iii) Translate - high-fidelity translation preserving linguistic nuance and toxicity across languages. The final dataset comprises over 5,000 safety-labeled examples across four languages and six fine-grained safety categories with severity levels. Evaluations of 11 popular open-source and closed-source guardrail classifiers reveal significant performance degradation. RabakBench not only enables robust safety evaluation in Southeast Asian multilingual settings but also offers a reproducible framework for building localized safety datasets in low-resource environments. The benchmark dataset, including the human-verified translations, and evaluation code are publicly available.
OpenAI o1 System Card
The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought. These advanced reasoning capabilities provide new avenues for improving the safety and robustness of our models. In particular, our models can reason about our safety policies in context when responding to potentially unsafe prompts, through deliberative alignment. This leads to state-of-the-art performance on certain benchmarks for risks such as generating illicit advice, choosing stereotyped responses, and succumbing to known jailbreaks. Training models to incorporate a chain of thought before answering has the potential to unlock substantial benefits, while also increasing potential risks that stem from heightened intelligence. Our results underscore the need for building robust alignment methods, extensively stress-testing their efficacy, and maintaining meticulous risk management protocols. This report outlines the safety work carried out for the OpenAI o1 and OpenAI o1-mini models, including safety evaluations, external red teaming, and Preparedness Framework evaluations.
Do LLMs Have Political Correctness? Analyzing Ethical Biases and Jailbreak Vulnerabilities in AI Systems
Although large language models (LLMs) demonstrate impressive proficiency in various tasks, they present potential safety risks, such as `jailbreaks', where malicious inputs can coerce LLMs into generating harmful content. To address these issues, many LLM developers have implemented various safety measures to align these models. This alignment involves several techniques, including data filtering during pre-training, supervised fine-tuning, reinforcement learning from human feedback, and red-teaming exercises. These methods often introduce deliberate and intentional biases similar to Political Correctness (PC) to ensure the ethical behavior of LLMs. In this paper, we delve into the intentional biases injected into LLMs for safety purposes and examine methods to circumvent these safety alignment techniques. Notably, these intentional biases result in a jailbreaking success rate in GPT-4o models that differs by 20% between non-binary and cisgender keywords and by 16% between white and black keywords, even when the other parts of the prompts are identical. We introduce the concept of PCJailbreak, highlighting the inherent risks posed by these safety-induced biases. Additionally, we propose an efficient defense method PCDefense, which prevents jailbreak attempts by injecting defense prompts prior to generation. PCDefense stands as an appealing alternative to Guard Models, such as Llama-Guard, that require additional inference cost after text generation. Our findings emphasize the urgent need for LLM developers to adopt a more responsible approach when designing and implementing safety measures.
LoRA Fine-tuning Efficiently Undoes Safety Training in Llama 2-Chat 70B
AI developers often apply safety alignment procedures to prevent the misuse of their AI systems. For example, before Meta released Llama 2-Chat, a collection of instruction fine-tuned large language models, they invested heavily in safety training, incorporating extensive red-teaming and reinforcement learning from human feedback. However, it remains unclear how well safety training guards against model misuse when attackers have access to model weights. We explore the robustness of safety training in language models by subversively fine-tuning the public weights of Llama 2-Chat. We employ low-rank adaptation (LoRA) as an efficient fine-tuning method. With a budget of less than $200 per model and using only one GPU, we successfully undo the safety training of Llama 2-Chat models of sizes 7B, 13B, and 70B. Specifically, our fine-tuning technique significantly reduces the rate at which the model refuses to follow harmful instructions. We achieve a refusal rate below 1% for our 70B Llama 2-Chat model on two refusal benchmarks. Our fine-tuning method retains general performance, which we validate by comparing our fine-tuned models against Llama 2-Chat across two benchmarks. Additionally, we present a selection of harmful outputs produced by our models. While there is considerable uncertainty about the scope of risks from current models, it is likely that future models will have significantly more dangerous capabilities, including the ability to hack into critical infrastructure, create dangerous bio-weapons, or autonomously replicate and adapt to new environments. We show that subversive fine-tuning is practical and effective, and hence argue that evaluating risks from fine-tuning should be a core part of risk assessments for releasing model weights.
Phi-3 Safety Post-Training: Aligning Language Models with a "Break-Fix" Cycle
Recent innovations in language model training have demonstrated that it is possible to create highly performant models that are small enough to run on a smartphone. As these models are deployed in an increasing number of domains, it is critical to ensure that they are aligned with human preferences and safety considerations. In this report, we present our methodology for safety aligning the Phi-3 series of language models. We utilized a "break-fix" cycle, performing multiple rounds of dataset curation, safety post-training, benchmarking, red teaming, and vulnerability identification to cover a variety of harm areas in both single and multi-turn scenarios. Our results indicate that this approach iteratively improved the performance of the Phi-3 models across a wide range of responsible AI benchmarks.
Evaluating the Critical Risks of Amazon's Nova Premier under the Frontier Model Safety Framework
Nova Premier is Amazon's most capable multimodal foundation model and teacher for model distillation. It processes text, images, and video with a one-million-token context window, enabling analysis of large codebases, 400-page documents, and 90-minute videos in a single prompt. We present the first comprehensive evaluation of Nova Premier's critical risk profile under the Frontier Model Safety Framework. Evaluations target three high-risk domains -- Chemical, Biological, Radiological & Nuclear (CBRN), Offensive Cyber Operations, and Automated AI R&D -- and combine automated benchmarks, expert red-teaming, and uplift studies to determine whether the model exceeds release thresholds. We summarize our methodology and report core findings. Based on this evaluation, we find that Nova Premier is safe for public release as per our commitments made at the 2025 Paris AI Safety Summit. We will continue to enhance our safety evaluation and mitigation pipelines as new risks and capabilities associated with frontier models are identified.
Digital cloning of online social networks for language-sensitive agent-based modeling of misinformation spread
We develop a simulation framework for studying misinformation spread within online social networks that blends agent-based modeling and natural language processing techniques. While many other agent-based simulations exist in this space, questions over their fidelity and generalization to existing networks in part hinders their ability to provide actionable insights. To partially address these concerns, we create a 'digital clone' of a known misinformation sharing network by downloading social media histories for over ten thousand of its users. We parse these histories to both extract the structure of the network and model the nuanced ways in which information is shared and spread among its members. Unlike many other agent-based methods in this space, information sharing between users in our framework is sensitive to topic of discussion, user preferences, and online community dynamics. To evaluate the fidelity of our method, we seed our cloned network with a set of posts recorded in the base network and compare propagation dynamics between the two, observing reasonable agreement across the twin networks over a variety of metrics. Lastly, we explore how the cloned network may serve as a flexible, low-cost testbed for misinformation countermeasure evaluation and red teaming analysis. We hope the tools explored here augment existing efforts in the space and unlock new opportunities for misinformation countermeasure evaluation, a field that may become increasingly important to consider with the anticipated rise of misinformation campaigns fueled by generative artificial intelligence.
GPT-4 Is Too Smart To Be Safe: Stealthy Chat with LLMs via Cipher
Safety lies at the core of the development of Large Language Models (LLMs). There is ample work on aligning LLMs with human ethics and preferences, including data filtering in pretraining, supervised fine-tuning, reinforcement learning from human feedback, and red teaming, etc. In this study, we discover that chat in cipher can bypass the safety alignment techniques of LLMs, which are mainly conducted in natural languages. We propose a novel framework CipherChat to systematically examine the generalizability of safety alignment to non-natural languages -- ciphers. CipherChat enables humans to chat with LLMs through cipher prompts topped with system role descriptions and few-shot enciphered demonstrations. We use CipherChat to assess state-of-the-art LLMs, including ChatGPT and GPT-4 for different representative human ciphers across 11 safety domains in both English and Chinese. Experimental results show that certain ciphers succeed almost 100% of the time to bypass the safety alignment of GPT-4 in several safety domains, demonstrating the necessity of developing safety alignment for non-natural languages. Notably, we identify that LLMs seem to have a ''secret cipher'', and propose a novel SelfCipher that uses only role play and several demonstrations in natural language to evoke this capability. SelfCipher surprisingly outperforms existing human ciphers in almost all cases. Our code and data will be released at https://github.com/RobustNLP/CipherChat.
BitBypass: A New Direction in Jailbreaking Aligned Large Language Models with Bitstream Camouflage
The inherent risk of generating harmful and unsafe content by Large Language Models (LLMs), has highlighted the need for their safety alignment. Various techniques like supervised fine-tuning, reinforcement learning from human feedback, and red-teaming were developed for ensuring the safety alignment of LLMs. However, the robustness of these aligned LLMs is always challenged by adversarial attacks that exploit unexplored and underlying vulnerabilities of the safety alignment. In this paper, we develop a novel black-box jailbreak attack, called BitBypass, that leverages hyphen-separated bitstream camouflage for jailbreaking aligned LLMs. This represents a new direction in jailbreaking by exploiting fundamental information representation of data as continuous bits, rather than leveraging prompt engineering or adversarial manipulations. Our evaluation of five state-of-the-art LLMs, namely GPT-4o, Gemini 1.5, Claude 3.5, Llama 3.1, and Mixtral, in adversarial perspective, revealed the capabilities of BitBypass in bypassing their safety alignment and tricking them into generating harmful and unsafe content. Further, we observed that BitBypass outperforms several state-of-the-art jailbreak attacks in terms of stealthiness and attack success. Overall, these results highlights the effectiveness and efficiency of BitBypass in jailbreaking these state-of-the-art LLMs.
VLFeedback: A Large-Scale AI Feedback Dataset for Large Vision-Language Models Alignment
As large vision-language models (LVLMs) evolve rapidly, the demand for high-quality and diverse data to align these models becomes increasingly crucial. However, the creation of such data with human supervision proves costly and time-intensive. In this paper, we investigate the efficacy of AI feedback to scale supervision for aligning LVLMs. We introduce VLFeedback, the first large-scale vision-language feedback dataset, comprising over 82K multi-modal instructions and comprehensive rationales generated by off-the-shelf models without human annotations. To evaluate the effectiveness of AI feedback for vision-language alignment, we train Silkie, an LVLM fine-tuned via direct preference optimization on VLFeedback. Silkie showcases exceptional performance regarding helpfulness, visual faithfulness, and safety metrics. It outperforms its base model by 6.9\% and 9.5\% in perception and cognition tasks, reduces hallucination issues on MMHal-Bench, and exhibits enhanced resilience against red-teaming attacks. Furthermore, our analysis underscores the advantage of AI feedback, particularly in fostering preference diversity to deliver more comprehensive improvements. Our dataset, training code and models are available at https://vlf-silkie.github.io.
Testing and Evaluation of Large Language Models: Correctness, Non-Toxicity, and Fairness
Large language models (LLMs), such as ChatGPT, have rapidly penetrated into people's work and daily lives over the past few years, due to their extraordinary conversational skills and intelligence. ChatGPT has become the fastest-growing software in terms of user numbers in human history and become an important foundational model for the next generation of artificial intelligence applications. However, the generations of LLMs are not entirely reliable, often producing content with factual errors, biases, and toxicity. Given their vast number of users and wide range of application scenarios, these unreliable responses can lead to many serious negative impacts. This thesis introduces the exploratory works in the field of language model reliability during the PhD study, focusing on the correctness, non-toxicity, and fairness of LLMs from both software testing and natural language processing perspectives. First, to measure the correctness of LLMs, we introduce two testing frameworks, FactChecker and LogicAsker, to evaluate factual knowledge and logical reasoning accuracy, respectively. Second, for the non-toxicity of LLMs, we introduce two works for red-teaming LLMs. Third, to evaluate the fairness of LLMs, we introduce two evaluation frameworks, BiasAsker and XCulturalBench, to measure the social bias and cultural bias of LLMs, respectively.
Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models
Text-to-image models encounter safety issues, including concerns related to copyright and Not-Safe-For-Work (NSFW) content. Despite several methods have been proposed for erasing inappropriate concepts from diffusion models, they often exhibit incomplete erasure, consume a lot of computing resources, and inadvertently damage generation ability. In this work, we introduce Reliable and Efficient Concept Erasure (RECE), a novel approach that modifies the model in 3 seconds without necessitating additional fine-tuning. Specifically, RECE efficiently leverages a closed-form solution to derive new target embeddings, which are capable of regenerating erased concepts within the unlearned model. To mitigate inappropriate content potentially represented by derived embeddings, RECE further aligns them with harmless concepts in cross-attention layers. The derivation and erasure of new representation embeddings are conducted iteratively to achieve a thorough erasure of inappropriate concepts. Besides, to preserve the model's generation ability, RECE introduces an additional regularization term during the derivation process, resulting in minimizing the impact on unrelated concepts during the erasure process. All the processes above are in closed-form, guaranteeing extremely efficient erasure in only 3 seconds. Benchmarking against previous approaches, our method achieves more efficient and thorough erasure with minor damage to original generation ability and demonstrates enhanced robustness against red-teaming tools. Code is available at https://github.com/CharlesGong12/RECE.
MLLMGuard: A Multi-dimensional Safety Evaluation Suite for Multimodal Large Language Models
Powered by remarkable advancements in Large Language Models (LLMs), Multimodal Large Language Models (MLLMs) demonstrate impressive capabilities in manifold tasks. However, the practical application scenarios of MLLMs are intricate, exposing them to potential malicious instructions and thereby posing safety risks. While current benchmarks do incorporate certain safety considerations, they often lack comprehensive coverage and fail to exhibit the necessary rigor and robustness. For instance, the common practice of employing GPT-4V as both the evaluator and a model to be evaluated lacks credibility, as it tends to exhibit a bias toward its own responses. In this paper, we present MLLMGuard, a multidimensional safety evaluation suite for MLLMs, including a bilingual image-text evaluation dataset, inference utilities, and a lightweight evaluator. MLLMGuard's assessment comprehensively covers two languages (English and Chinese) and five important safety dimensions (Privacy, Bias, Toxicity, Truthfulness, and Legality), each with corresponding rich subtasks. Focusing on these dimensions, our evaluation dataset is primarily sourced from platforms such as social media, and it integrates text-based and image-based red teaming techniques with meticulous annotation by human experts. This can prevent inaccurate evaluation caused by data leakage when using open-source datasets and ensures the quality and challenging nature of our benchmark. Additionally, a fully automated lightweight evaluator termed GuardRank is developed, which achieves significantly higher evaluation accuracy than GPT-4. Our evaluation results across 13 advanced models indicate that MLLMs still have a substantial journey ahead before they can be considered safe and responsible.
Stealthy and Persistent Unalignment on Large Language Models via Backdoor Injections
Recent developments in Large Language Models (LLMs) have manifested significant advancements. To facilitate safeguards against malicious exploitation, a body of research has concentrated on aligning LLMs with human preferences and inhibiting their generation of inappropriate content. Unfortunately, such alignments are often vulnerable: fine-tuning with a minimal amount of harmful data can easily unalign the target LLM. While being effective, such fine-tuning-based unalignment approaches also have their own limitations: (1) non-stealthiness, after fine-tuning, safety audits or red-teaming can easily expose the potential weaknesses of the unaligned models, thereby precluding their release/use. (2) non-persistence, the unaligned LLMs can be easily repaired through re-alignment, i.e., fine-tuning again with aligned data points. In this work, we show that it is possible to conduct stealthy and persistent unalignment on large language models via backdoor injections. We also provide a novel understanding on the relationship between the backdoor persistence and the activation pattern and further provide guidelines for potential trigger design. Through extensive experiments, we demonstrate that our proposed stealthy and persistent unalignment can successfully pass the safety evaluation while maintaining strong persistence against re-alignment defense.
Backdoor Activation Attack: Attack Large Language Models using Activation Steering for Safety-Alignment
To ensure AI safety, instruction-tuned Large Language Models (LLMs) are specifically trained to ensure alignment, which refers to making models behave in accordance with human intentions. While these models have demonstrated commendable results on various safety benchmarks, the vulnerability of their safety alignment has not been extensively studied. This is particularly troubling given the potential harm that LLMs can inflict. Existing attack methods on LLMs often rely on poisoned training data or the injection of malicious prompts. These approaches compromise the stealthiness and generalizability of the attacks, making them susceptible to detection. Additionally, these models often demand substantial computational resources for implementation, making them less practical for real-world applications. Inspired by recent success in modifying model behavior through steering vectors without the need for optimization, and drawing on its effectiveness in red-teaming LLMs, we conducted experiments employing activation steering to target four key aspects of LLMs: truthfulness, toxicity, bias, and harmfulness - across a varied set of attack settings. To establish a universal attack strategy applicable to diverse target alignments without depending on manual analysis, we automatically select the intervention layer based on contrastive layer search. Our experiment results show that activation attacks are highly effective and add little or no overhead to attack efficiency. Additionally, we discuss potential countermeasures against such activation attacks. Our code and data are available at https://github.com/wang2226/Backdoor-Activation-Attack Warning: this paper contains content that can be offensive or upsetting.
Catastrophic Jailbreak of Open-source LLMs via Exploiting Generation
The rapid progress in open-source large language models (LLMs) is significantly advancing AI development. Extensive efforts have been made before model release to align their behavior with human values, with the primary goal of ensuring their helpfulness and harmlessness. However, even carefully aligned models can be manipulated maliciously, leading to unintended behaviors, known as "jailbreaks". These jailbreaks are typically triggered by specific text inputs, often referred to as adversarial prompts. In this work, we propose the generation exploitation attack, an extremely simple approach that disrupts model alignment by only manipulating variations of decoding methods. By exploiting different generation strategies, including varying decoding hyper-parameters and sampling methods, we increase the misalignment rate from 0% to more than 95% across 11 language models including LLaMA2, Vicuna, Falcon, and MPT families, outperforming state-of-the-art attacks with 30times lower computational cost. Finally, we propose an effective alignment method that explores diverse generation strategies, which can reasonably reduce the misalignment rate under our attack. Altogether, our study underscores a major failure in current safety evaluation and alignment procedures for open-source LLMs, strongly advocating for more comprehensive red teaming and better alignment before releasing such models. Our code is available at https://github.com/Princeton-SysML/Jailbreak_LLM.
Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment
Larger language models (LLMs) have taken the world by storm with their massive multi-tasking capabilities simply by optimizing over a next-word prediction objective. With the emergence of their properties and encoded knowledge, the risk of LLMs producing harmful outputs increases, making them unfit for scalable deployment for the public. In this work, we propose a new safety evaluation benchmark RED-EVAL that carries out red-teaming. We show that even widely deployed models are susceptible to the Chain of Utterances-based (CoU) prompting, jailbreaking closed source LLM-based systems such as GPT-4 and ChatGPT to unethically respond to more than 65% and 73% of harmful queries. We also demonstrate the consistency of the RED-EVAL across 8 open-source LLMs in generating harmful responses in more than 86% of the red-teaming attempts. Next, we propose RED-INSTRUCT--An approach for the safety alignment of LLMs. It constitutes two phases: 1) HARMFULQA data collection: Leveraging CoU prompting, we collect a dataset that consists of 1.9K harmful questions covering a wide range of topics, 9.5K safe and 7.3K harmful conversations from ChatGPT; 2) SAFE-ALIGN: We demonstrate how the conversational dataset can be used for the safety alignment of LLMs by minimizing the negative log-likelihood over helpful responses and penalizing over harmful responses by gradient accent over sample loss. Our model STARLING, a fine-tuned Vicuna-7B, is observed to be more safely aligned when evaluated on RED-EVAL and HHH benchmarks while preserving the utility of the baseline models (TruthfulQA, MMLU, and BBH).
Red Teaming Language Models with Language Models
Language Models (LMs) often cannot be deployed because of their potential to harm users in hard-to-predict ways. Prior work identifies harmful behaviors before deployment by using human annotators to hand-write test cases. However, human annotation is expensive, limiting the number and diversity of test cases. In this work, we automatically find cases where a target LM behaves in a harmful way, by generating test cases ("red teaming") using another LM. We evaluate the target LM's replies to generated test questions using a classifier trained to detect offensive content, uncovering tens of thousands of offensive replies in a 280B parameter LM chatbot. We explore several methods, from zero-shot generation to reinforcement learning, for generating test cases with varying levels of diversity and difficulty. Furthermore, we use prompt engineering to control LM-generated test cases to uncover a variety of other harms, automatically finding groups of people that the chatbot discusses in offensive ways, personal and hospital phone numbers generated as the chatbot's own contact info, leakage of private training data in generated text, and harms that occur over the course of a conversation. Overall, LM-based red teaming is one promising tool (among many needed) for finding and fixing diverse, undesirable LM behaviors before impacting users.
Red Teaming for Generative AI, Report on a Copyright-Focused Exercise Completed in an Academic Medical Center
Background: Generative artificial intelligence (AI) deployment in academic medical settings raises copyright compliance concerns. Dana-Farber Cancer Institute implemented GPT4DFCI, an internal generative AI tool utilizing OpenAI models, that is approved for enterprise use in research and operations. Given (1) the exceptionally broad adoption of the tool in our organization, (2) our research mission, and (3) the shared responsibility model required to benefit from Customer Copyright Commitment in Azure OpenAI Service products, we deemed rigorous copyright compliance testing necessary. Case Description: We conducted a structured red teaming exercise in Nov. 2024, with 42 participants from academic, industry, and government institutions. Four teams attempted to extract copyrighted content from GPT4DFCI across four domains: literary works, news articles, scientific publications, and access-restricted clinical notes. Teams successfully extracted verbatim book dedications and near-exact passages through various strategies. News article extraction failed despite jailbreak attempts. Scientific article reproduction yielded only high-level summaries. Clinical note testing revealed appropriate privacy safeguards. Discussion: The successful extraction of literary content indicates potential copyrighted material presence in training data, necessitating inference-time filtering. Differential success rates across content types suggest varying protective mechanisms. The event led to implementation of a copyright-specific meta-prompt in GPT4DFCI; this mitigation has been in production since Jan. 2025. Conclusion: Systematic red teaming revealed specific vulnerabilities in generative AI copyright compliance, leading to concrete mitigation strategies. Academic medical institutions deploying generative AI should implement continuous testing protocols to ensure legal and ethical compliance.
Capability-Based Scaling Laws for LLM Red-Teaming
As large language models grow in capability and agency, identifying vulnerabilities through red-teaming becomes vital for safe deployment. However, traditional prompt-engineering approaches may prove ineffective once red-teaming turns into a weak-to-strong problem, where target models surpass red-teamers in capabilities. To study this shift, we frame red-teaming through the lens of the capability gap between attacker and target. We evaluate more than 500 attacker-target pairs using LLM-based jailbreak attacks that mimic human red-teamers across diverse families, sizes, and capability levels. Three strong trends emerge: (i) more capable models are better attackers, (ii) attack success drops sharply once the target's capability exceeds the attacker's, and (iii) attack success rates correlate with high performance on social science splits of the MMLU-Pro benchmark. From these trends, we derive a jailbreaking scaling law that predicts attack success for a fixed target based on attacker-target capability gap. These findings suggest that fixed-capability attackers (e.g., humans) may become ineffective against future models, increasingly capable open-source models amplify risks for existing systems, and model providers must accurately measure and control models' persuasive and manipulative abilities to limit their effectiveness as attackers.
Red Teaming Language Models to Reduce Harms: Methods, Scaling Behaviors, and Lessons Learned
We describe our early efforts to red team language models in order to simultaneously discover, measure, and attempt to reduce their potentially harmful outputs. We make three main contributions. First, we investigate scaling behaviors for red teaming across 3 model sizes (2.7B, 13B, and 52B parameters) and 4 model types: a plain language model (LM); an LM prompted to be helpful, honest, and harmless; an LM with rejection sampling; and a model trained to be helpful and harmless using reinforcement learning from human feedback (RLHF). We find that the RLHF models are increasingly difficult to red team as they scale, and we find a flat trend with scale for the other model types. Second, we release our dataset of 38,961 red team attacks for others to analyze and learn from. We provide our own analysis of the data and find a variety of harmful outputs, which range from offensive language to more subtly harmful non-violent unethical outputs. Third, we exhaustively describe our instructions, processes, statistical methodologies, and uncertainty about red teaming. We hope that this transparency accelerates our ability to work together as a community in order to develop shared norms, practices, and technical standards for how to red team language models.
Constitutional Classifiers: Defending against Universal Jailbreaks across Thousands of Hours of Red Teaming
Large language models (LLMs) are vulnerable to universal jailbreaks-prompting strategies that systematically bypass model safeguards and enable users to carry out harmful processes that require many model interactions, like manufacturing illegal substances at scale. To defend against these attacks, we introduce Constitutional Classifiers: safeguards trained on synthetic data, generated by prompting LLMs with natural language rules (i.e., a constitution) specifying permitted and restricted content. In over 3,000 estimated hours of red teaming, no red teamer found a universal jailbreak that could extract information from an early classifier-guarded LLM at a similar level of detail to an unguarded model across most target queries. On automated evaluations, enhanced classifiers demonstrated robust defense against held-out domain-specific jailbreaks. These classifiers also maintain deployment viability, with an absolute 0.38% increase in production-traffic refusals and a 23.7% inference overhead. Our work demonstrates that defending against universal jailbreaks while maintaining practical deployment viability is tractable.
Tiny Refinements Elicit Resilience: Toward Efficient Prefix-Model Against LLM Red-Teaming
With the proliferation of red-teaming strategies for Large Language Models (LLMs), the deficiency in the literature about improving the safety and robustness of LLM defense strategies is becoming increasingly pronounced. This paper introduces the LLM-based sentinel model as a plug-and-play prefix module designed to reconstruct the input prompt with just a few (<30) additional tokens, effectively reducing toxicity in responses from target LLMs. The sentinel model naturally overcomes the parameter inefficiency and limited model accessibility for fine-tuning large target models. We employ an interleaved training regimen using Proximal Policy Optimization (PPO) to optimize both red team and sentinel models dynamically, incorporating a value head-sharing mechanism inspired by the multi-agent centralized critic to manage the complex interplay between agents. Our extensive experiments across text-to-text and text-to-image demonstrate the effectiveness of our approach in mitigating toxic outputs, even when dealing with larger models like Llama-2, GPT-3.5 and Stable-Diffusion, highlighting the potential of our framework in enhancing safety and robustness in various applications.
RainbowPlus: Enhancing Adversarial Prompt Generation via Evolutionary Quality-Diversity Search
Large Language Models (LLMs) exhibit remarkable capabilities but are susceptible to adversarial prompts that exploit vulnerabilities to produce unsafe or biased outputs. Existing red-teaming methods often face scalability challenges, resource-intensive requirements, or limited diversity in attack strategies. We propose RainbowPlus, a novel red-teaming framework rooted in evolutionary computation, enhancing adversarial prompt generation through an adaptive quality-diversity (QD) search that extends classical evolutionary algorithms like MAP-Elites with innovations tailored for language models. By employing a multi-element archive to store diverse high-quality prompts and a comprehensive fitness function to evaluate multiple prompts concurrently, RainbowPlus overcomes the constraints of single-prompt archives and pairwise comparisons in prior QD methods like Rainbow Teaming. Experiments comparing RainbowPlus to QD methods across six benchmark datasets and four open-source LLMs demonstrate superior attack success rate (ASR) and diversity (Diverse-Score approx 0.84), generating up to 100 times more unique prompts (e.g., 10,418 vs. 100 for Ministral-8B-Instruct-2410). Against nine state-of-the-art methods on the HarmBench dataset with twelve LLMs (ten open-source, two closed-source), RainbowPlus achieves an average ASR of 81.1%, surpassing AutoDAN-Turbo by 3.9%, and is 9 times faster (1.45 vs. 13.50 hours). Our open-source implementation fosters further advancements in LLM safety, offering a scalable tool for vulnerability assessment. Code and resources are publicly available at https://github.com/knoveleng/rainbowplus, supporting reproducibility and future research in LLM red-teaming.
SEAS: Self-Evolving Adversarial Safety Optimization for Large Language Models
As large language models (LLMs) continue to advance in capability and influence, ensuring their security and preventing harmful outputs has become crucial. A promising approach to address these concerns involves training models to automatically generate adversarial prompts for red teaming. However, the evolving subtlety of vulnerabilities in LLMs challenges the effectiveness of current adversarial methods, which struggle to specifically target and explore the weaknesses of these models. To tackle these challenges, we introduce the Self-Evolving Adversarial Safety (SEAS) optimization framework, which enhances security by leveraging data generated by the model itself. SEAS operates through three iterative stages: Initialization, Attack, and Adversarial Optimization, refining both the Red Team and Target models to improve robustness and safety. This framework reduces reliance on manual testing and significantly enhances the security capabilities of LLMs. Our contributions include a novel adversarial framework, a comprehensive safety dataset, and after three iterations, the Target model achieves a security level comparable to GPT-4, while the Red Team model shows a marked increase in attack success rate (ASR) against advanced models.
Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo
Numerous capability and safety techniques of Large Language Models (LLMs), including RLHF, automated red-teaming, prompt engineering, and infilling, can be cast as sampling from an unnormalized target distribution defined by a given reward or potential function over the full sequence. In this work, we leverage the rich toolkit of Sequential Monte Carlo (SMC) for these probabilistic inference problems. In particular, we use learned twist functions to estimate the expected future value of the potential at each timestep, which enables us to focus inference-time computation on promising partial sequences. We propose a novel contrastive method for learning the twist functions, and establish connections with the rich literature of soft reinforcement learning. As a complementary application of our twisted SMC framework, we present methods for evaluating the accuracy of language model inference techniques using novel bidirectional SMC bounds on the log partition function. These bounds can be used to estimate the KL divergence between the inference and target distributions in both directions. We apply our inference evaluation techniques to show that twisted SMC is effective for sampling undesirable outputs from a pretrained model (a useful component of harmlessness training and automated red-teaming), generating reviews with varied sentiment, and performing infilling tasks.
Jailbroken: How Does LLM Safety Training Fail?
Large language models trained for safety and harmlessness remain susceptible to adversarial misuse, as evidenced by the prevalence of "jailbreak" attacks on early releases of ChatGPT that elicit undesired behavior. Going beyond recognition of the issue, we investigate why such attacks succeed and how they can be created. We hypothesize two failure modes of safety training: competing objectives and mismatched generalization. Competing objectives arise when a model's capabilities and safety goals conflict, while mismatched generalization occurs when safety training fails to generalize to a domain for which capabilities exist. We use these failure modes to guide jailbreak design and then evaluate state-of-the-art models, including OpenAI's GPT-4 and Anthropic's Claude v1.3, against both existing and newly designed attacks. We find that vulnerabilities persist despite the extensive red-teaming and safety-training efforts behind these models. Notably, new attacks utilizing our failure modes succeed on every prompt in a collection of unsafe requests from the models' red-teaming evaluation sets and outperform existing ad hoc jailbreaks. Our analysis emphasizes the need for safety-capability parity -- that safety mechanisms should be as sophisticated as the underlying model -- and argues against the idea that scaling alone can resolve these safety failure modes.
X-Teaming: Multi-Turn Jailbreaks and Defenses with Adaptive Multi-Agents
Multi-turn interactions with language models (LMs) pose critical safety risks, as harmful intent can be strategically spread across exchanges. Yet, the vast majority of prior work has focused on single-turn safety, while adaptability and diversity remain among the key challenges of multi-turn red-teaming. To address these challenges, we present X-Teaming, a scalable framework that systematically explores how seemingly harmless interactions escalate into harmful outcomes and generates corresponding attack scenarios. X-Teaming employs collaborative agents for planning, attack optimization, and verification, achieving state-of-the-art multi-turn jailbreak effectiveness and diversity with success rates up to 98.1% across representative leading open-weight and closed-source models. In particular, X-Teaming achieves a 96.2% attack success rate against the latest Claude 3.7 Sonnet model, which has been considered nearly immune to single-turn attacks. Building on X-Teaming, we introduce XGuard-Train, an open-source multi-turn safety training dataset that is 20x larger than the previous best resource, comprising 30K interactive jailbreaks, designed to enable robust multi-turn safety alignment for LMs. Our work offers essential tools and insights for mitigating sophisticated conversational attacks, advancing the multi-turn safety of LMs.
Towards best practices in AGI safety and governance: A survey of expert opinion
A number of leading AI companies, including OpenAI, Google DeepMind, and Anthropic, have the stated goal of building artificial general intelligence (AGI) - AI systems that achieve or exceed human performance across a wide range of cognitive tasks. In pursuing this goal, they may develop and deploy AI systems that pose particularly significant risks. While they have already taken some measures to mitigate these risks, best practices have not yet emerged. To support the identification of best practices, we sent a survey to 92 leading experts from AGI labs, academia, and civil society and received 51 responses. Participants were asked how much they agreed with 50 statements about what AGI labs should do. Our main finding is that participants, on average, agreed with all of them. Many statements received extremely high levels of agreement. For example, 98% of respondents somewhat or strongly agreed that AGI labs should conduct pre-deployment risk assessments, dangerous capabilities evaluations, third-party model audits, safety restrictions on model usage, and red teaming. Ultimately, our list of statements may serve as a helpful foundation for efforts to develop best practices, standards, and regulations for AGI labs.
AutoDAN-Turbo: A Lifelong Agent for Strategy Self-Exploration to Jailbreak LLMs
In this paper, we propose AutoDAN-Turbo, a black-box jailbreak method that can automatically discover as many jailbreak strategies as possible from scratch, without any human intervention or predefined scopes (e.g., specified candidate strategies), and use them for red-teaming. As a result, AutoDAN-Turbo can significantly outperform baseline methods, achieving a 74.3% higher average attack success rate on public benchmarks. Notably, AutoDAN-Turbo achieves an 88.5 attack success rate on GPT-4-1106-turbo. In addition, AutoDAN-Turbo is a unified framework that can incorporate existing human-designed jailbreak strategies in a plug-and-play manner. By integrating human-designed strategies, AutoDAN-Turbo can even achieve a higher attack success rate of 93.4 on GPT-4-1106-turbo.
Rainbow Teaming: Open-Ended Generation of Diverse Adversarial Prompts
As large language models (LLMs) become increasingly prevalent across many real-world applications, understanding and enhancing their robustness to user inputs is of paramount importance. Existing methods for identifying adversarial prompts tend to focus on specific domains, lack diversity, or require extensive human annotations. To address these limitations, we present Rainbow Teaming, a novel approach for producing a diverse collection of adversarial prompts. Rainbow Teaming casts adversarial prompt generation as a quality-diversity problem, and uses open-ended search to generate prompts that are both effective and diverse. It can uncover a model's vulnerabilities across a broad range of domains including, in this paper, safety, question answering, and cybersecurity. We also demonstrate that fine-tuning on synthetic data generated by Rainbow Teaming improves the safety of state-of-the-art LLMs without hurting their general capabilities and helpfulness, paving the path to open-ended self-improvement.
RedTeamLLM: an Agentic AI framework for offensive security
From automated intrusion testing to discovery of zero-day attacks before software launch, agentic AI calls for great promises in security engineering. This strong capability is bound with a similar threat: the security and research community must build up its models before the approach is leveraged by malicious actors for cybercrime. We therefore propose and evaluate RedTeamLLM, an integrated architecture with a comprehensive security model for automatization of pentest tasks. RedTeamLLM follows three key steps: summarizing, reasoning and act, which embed its operational capacity. This novel framework addresses four open challenges: plan correction, memory management, context window constraint, and generality vs. specialization. Evaluation is performed through the automated resolution of a range of entry-level, but not trivial, CTF challenges. The contribution of the reasoning capability of our agentic AI framework is specifically evaluated.