Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMachine Generated Product Advertisements: Benchmarking LLMs Against Human Performance
This study compares the performance of AI-generated and human-written product descriptions using a multifaceted evaluation model. We analyze descriptions for 100 products generated by four AI models (Gemma 2B, LLAMA, GPT2, and ChatGPT 4) with and without sample descriptions, against human-written descriptions. Our evaluation metrics include sentiment, readability, persuasiveness, Search Engine Optimization(SEO), clarity, emotional appeal, and call-to-action effectiveness. The results indicate that ChatGPT 4 performs the best. In contrast, other models demonstrate significant shortcomings, producing incoherent and illogical output that lacks logical structure and contextual relevance. These models struggle to maintain focus on the product being described, resulting in disjointed sentences that do not convey meaningful information. This research provides insights into the current capabilities and limitations of AI in the creation of content for e-Commerce.
Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation
Evaluating production-level retrieval systems at scale is a crucial yet challenging task due to the limited availability of a large pool of well-trained human annotators. Large Language Models (LLMs) have the potential to address this scaling issue and offer a viable alternative to humans for the bulk of annotation tasks. In this paper, we propose a framework for assessing the product search engines in a large-scale e-commerce setting, leveraging Multimodal LLMs for (i) generating tailored annotation guidelines for individual queries, and (ii) conducting the subsequent annotation task. Our method, validated through deployment on a large e-commerce platform, demonstrates comparable quality to human annotations, significantly reduces time and cost, facilitates rapid problem discovery, and provides an effective solution for production-level quality control at scale.
TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models
This paper introduces Virtual Try-Off (VTOFF), a novel task focused on generating standardized garment images from single photos of clothed individuals. Unlike traditional Virtual Try-On (VTON), which digitally dresses models, VTOFF aims to extract a canonical garment image, posing unique challenges in capturing garment shape, texture, and intricate patterns. This well-defined target makes VTOFF particularly effective for evaluating reconstruction fidelity in generative models. We present TryOffDiff, a model that adapts Stable Diffusion with SigLIP-based visual conditioning to ensure high fidelity and detail retention. Experiments on a modified VITON-HD dataset show that our approach outperforms baseline methods based on pose transfer and virtual try-on with fewer pre- and post-processing steps. Our analysis reveals that traditional image generation metrics inadequately assess reconstruction quality, prompting us to rely on DISTS for more accurate evaluation. Our results highlight the potential of VTOFF to enhance product imagery in e-commerce applications, advance generative model evaluation, and inspire future work on high-fidelity reconstruction. Demo, code, and models are available at: https://rizavelioglu.github.io/tryoffdiff/
Tensor Product Attention Is All You Need
Scaling language models to handle longer input sequences typically necessitates large key-value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decompositions to represent queries, keys, and values compactly, significantly shrinking KV cache size at inference time. By factorizing these representations into contextual low-rank components (contextual factorization) and seamlessly integrating with RoPE, TPA achieves improved model quality alongside memory efficiency. Based on TPA, we introduce the Tensor ProducT ATTenTion Transformer (T6), a new model architecture for sequence modeling. Through extensive empirical evaluation of language modeling tasks, we demonstrate that T6 exceeds the performance of standard Transformer baselines including MHA, MQA, GQA, and MLA across various metrics, including perplexity and a range of renowned evaluation benchmarks. Notably, TPAs memory efficiency enables the processing of significantly longer sequences under fixed resource constraints, addressing a critical scalability challenge in modern language models. The code is available at https://github.com/tensorgi/T6.
Leveraging Large Language Models for Enhanced Product Descriptions in eCommerce
In the dynamic field of eCommerce, the quality and comprehensiveness of product descriptions are pivotal for enhancing search visibility and customer engagement. Effective product descriptions can address the 'cold start' problem, align with market trends, and ultimately lead to increased click-through rates. Traditional methods for crafting these descriptions often involve significant human effort and may lack both consistency and scalability. This paper introduces a novel methodology for automating product description generation using the LLAMA 2.0 7B language model. We train the model on a dataset of authentic product descriptions from Walmart, one of the largest eCommerce platforms. The model is then fine-tuned for domain-specific language features and eCommerce nuances to enhance its utility in sales and user engagement. We employ multiple evaluation metrics, including NDCG, customer click-through rates, and human assessments, to validate the effectiveness of our approach. Our findings reveal that the system is not only scalable but also significantly reduces the human workload involved in creating product descriptions. This study underscores the considerable potential of large language models like LLAMA 2.0 7B in automating and optimizing various facets of eCommerce platforms, offering significant business impact, including improved search functionality and increased sales.
Creation and Evaluation of a Food Product Image Dataset for Product Property Extraction
The enormous progress in the field of artificial intelligence (AI) enables retail companies to automate their processes and thus to save costs. Thereby, many AI-based automation approaches are based on machine learning and computer vision. The realization of such approaches requires high-quality training data. In this paper, we describe the creation process of an annotated dataset that contains 1,034 images of single food products, taken under studio conditions, annotated with 5 class labels and 30 object detection labels, which can be used for product recognition and classification tasks. We based all images and labels on standards presented by GS1, a global non-profit organisation. The objective of our work is to support the development of machine learning models in the retail domain and to provide a reference process for creating the necessary training data.
Product Attribute Value Extraction using Large Language Models
E-commerce applications such as faceted product search or product comparison are based on structured product descriptions like attribute/value pairs. The vendors on e-commerce platforms do not provide structured product descriptions but describe offers using titles or descriptions. To process such offers, it is necessary to extract attribute/value pairs from textual product attributes. State-of-the-art attribute/value extraction techniques rely on pre-trained language models (PLMs), such as BERT. Two major drawbacks of these models for attribute/value extraction are that (i) the models require significant amounts of task-specific training data and (ii) the fine-tuned models face challenges in generalizing to attribute values not included in the training data. This paper explores the potential of large language models (LLMs) as a training data-efficient and robust alternative to PLM-based attribute/value extraction methods. We consider hosted LLMs, such as GPT-3.5 and GPT-4, as well as open-source LLMs based on Llama2. We evaluate the models in a zero-shot scenario and in a scenario where task-specific training data is available. In the zero-shot scenario, we compare various prompt designs for representing information about the target attributes of the extraction. In the scenario with training data, we investigate (i) the provision of example attribute values, (ii) the selection of in-context demonstrations, and (iii) the fine-tuning of GPT-3.5. Our experiments show that GPT-4 achieves an average F1-score of 85% on the two evaluation datasets while the best PLM-based techniques perform on average 5% worse using the same amount of training data. GPT-4 achieves a 10% higher F1-score than the best open-source LLM. The fine-tuned GPT-3.5 model reaches a similar performance as GPT-4 while being significantly more cost-efficient.
A Multi-Faceted Evaluation Framework for Assessing Synthetic Data Generated by Large Language Models
The rapid advancements in generative AI and large language models (LLMs) have opened up new avenues for producing synthetic data, particularly in the realm of structured tabular formats, such as product reviews. Despite the potential benefits, concerns regarding privacy leakage have surfaced, especially when personal information is utilized in the training datasets. In addition, there is an absence of a comprehensive evaluation framework capable of quantitatively measuring the quality of the generated synthetic data and their utility for downstream tasks. In response to this gap, we introduce SynEval, an open-source evaluation framework designed to assess the fidelity, utility, and privacy preservation of synthetically generated tabular data via a suite of diverse evaluation metrics. We validate the efficacy of our proposed framework - SynEval - by applying it to synthetic product review data generated by three state-of-the-art LLMs: ChatGPT, Claude, and Llama. Our experimental findings illuminate the trade-offs between various evaluation metrics in the context of synthetic data generation. Furthermore, SynEval stands as a critical instrument for researchers and practitioners engaged with synthetic tabular data,, empowering them to judiciously determine the suitability of the generated data for their specific applications, with an emphasis on upholding user privacy.
Query Attribute Modeling: Improving search relevance with Semantic Search and Meta Data Filtering
This study introduces Query Attribute Modeling (QAM), a hybrid framework that enhances search precision and relevance by decomposing open text queries into structured metadata tags and semantic elements. QAM addresses traditional search limitations by automatically extracting metadata filters from free-form text queries, reducing noise and enabling focused retrieval of relevant items. Experimental evaluation using the Amazon Toys Reviews dataset (10,000 unique items with 40,000+ reviews and detailed product attributes) demonstrated QAM's superior performance, achieving a mean average precision at 5 (mAP@5) of 52.99\%. This represents significant improvement over conventional methods, including BM25 keyword search, encoder-based semantic similarity search, cross-encoder re-ranking, and hybrid search combining BM25 and semantic results via Reciprocal Rank Fusion (RRF). The results establish QAM as a robust solution for Enterprise Search applications, particularly in e-commerce systems.
What Is Your AI Agent Buying? Evaluation, Implications and Emerging Questions for Agentic E-Commerce
Online marketplaces will be transformed by autonomous AI agents acting on behalf of consumers. Rather than humans browsing and clicking, vision-language-model (VLM) agents can parse webpages, evaluate products, and transact. This raises a fundamental question: what do AI agents buy, and why? We develop ACES, a sandbox environment that pairs a platform-agnostic VLM agent with a fully programmable mock marketplace to study this question. We first conduct basic rationality checks in the context of simple tasks, and then, by randomizing product positions, prices, ratings, reviews, sponsored tags, and platform endorsements, we obtain causal estimates of how frontier VLMs actually shop. Models show strong but heterogeneous position effects: all favor the top row, yet different models prefer different columns, undermining the assumption of a universal "top" rank. They penalize sponsored tags and reward endorsements. Sensitivities to price, ratings, and reviews are directionally human-like but vary sharply in magnitude across models. Motivated by scenarios where sellers use AI agents to optimize product listings, we show that a seller-side agent that makes minor tweaks to product descriptions, targeting AI buyer preferences, can deliver substantial market-share gains if AI-mediated shopping dominates. We also find that modal product choices can differ across models and, in some cases, demand may concentrate on a few select products, raising competition questions. Together, our results illuminate how AI agents may behave in e-commerce settings and surface concrete seller strategy, platform design, and regulatory questions in an AI-mediated ecosystem.
Enhancing Semantic Similarity Understanding in Arabic NLP with Nested Embedding Learning
This work presents a novel framework for training Arabic nested embedding models through Matryoshka Embedding Learning, leveraging multilingual, Arabic-specific, and English-based models, to highlight the power of nested embeddings models in various Arabic NLP downstream tasks. Our innovative contribution includes the translation of various sentence similarity datasets into Arabic, enabling a comprehensive evaluation framework to compare these models across different dimensions. We trained several nested embedding models on the Arabic Natural Language Inference triplet dataset and assessed their performance using multiple evaluation metrics, including Pearson and Spearman correlations for cosine similarity, Manhattan distance, Euclidean distance, and dot product similarity. The results demonstrate the superior performance of the Matryoshka embedding models, particularly in capturing semantic nuances unique to the Arabic language. Results demonstrated that Arabic Matryoshka embedding models have superior performance in capturing semantic nuances unique to the Arabic language, significantly outperforming traditional models by up to 20-25\% across various similarity metrics. These results underscore the effectiveness of language-specific training and highlight the potential of Matryoshka models in enhancing semantic textual similarity tasks for Arabic NLP.
Relational recurrent neural networks
Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember. Here, we first confirm our intuitions that standard memory architectures may struggle at tasks that heavily involve an understanding of the ways in which entities are connected -- i.e., tasks involving relational reasoning. We then improve upon these deficits by using a new memory module -- a Relational Memory Core (RMC) -- which employs multi-head dot product attention to allow memories to interact. Finally, we test the RMC on a suite of tasks that may profit from more capable relational reasoning across sequential information, and show large gains in RL domains (e.g. Mini PacMan), program evaluation, and language modeling, achieving state-of-the-art results on the WikiText-103, Project Gutenberg, and GigaWord datasets.
Lynx: An Open Source Hallucination Evaluation Model
Retrieval Augmented Generation (RAG) techniques aim to mitigate hallucinations in Large Language Models (LLMs). However, LLMs can still produce information that is unsupported or contradictory to the retrieved contexts. We introduce LYNX, a SOTA hallucination detection LLM that is capable of advanced reasoning on challenging real-world hallucination scenarios. To evaluate LYNX, we present HaluBench, a comprehensive hallucination evaluation benchmark, consisting of 15k samples sourced from various real-world domains. Our experiment results show that LYNX outperforms GPT-4o, Claude-3-Sonnet, and closed and open-source LLM-as-a-judge models on HaluBench. We release LYNX, HaluBench and our evaluation code for public access.
Atla Selene Mini: A General Purpose Evaluation Model
We introduce Atla Selene Mini, a state-of-the-art small language model-as-a-judge (SLMJ). Selene Mini is a general-purpose evaluator that outperforms the best SLMJs and GPT-4o-mini on overall performance across 11 out-of-distribution benchmarks, spanning absolute scoring, classification, and pairwise preference tasks. It is the highest-scoring 8B generative model on RewardBench, surpassing strong baselines like GPT-4o and specialized judges. To achieve this, we develop a principled data curation strategy that augments public datasets with synthetically generated critiques and ensures high quality through filtering and dataset ablations. We train our model on a combined direct preference optimization (DPO) and supervised fine-tuning (SFT) loss, and produce a highly promptable evaluator that excels in real-world scenarios. Selene Mini shows dramatically improved zero-shot agreement with human expert evaluations on financial and medical industry datasets. It is also robust to variations in prompt format. Preliminary results indicate that Selene Mini is the top-ranking evaluator in a live, community-driven Judge Arena. We release the model weights on HuggingFace (https://hf.co/AtlaAI/Selene-1-Mini-Llama-3.1-8B) and Ollama to encourage widespread community adoption.
Model evaluation for extreme risks
Current approaches to building general-purpose AI systems tend to produce systems with both beneficial and harmful capabilities. Further progress in AI development could lead to capabilities that pose extreme risks, such as offensive cyber capabilities or strong manipulation skills. We explain why model evaluation is critical for addressing extreme risks. Developers must be able to identify dangerous capabilities (through "dangerous capability evaluations") and the propensity of models to apply their capabilities for harm (through "alignment evaluations"). These evaluations will become critical for keeping policymakers and other stakeholders informed, and for making responsible decisions about model training, deployment, and security.
Navigating Text-To-Image Customization:From LyCORIS Fine-Tuning to Model Evaluation
Text-to-image generative models have garnered immense attention for their ability to produce high-fidelity images from text prompts. Among these, Stable Diffusion distinguishes itself as a leading open-source model in this fast-growing field. However, the intricacies of fine-tuning these models pose multiple challenges from new methodology integration to systematic evaluation. Addressing these issues, this paper introduces LyCORIS (Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion) [https://github.com/KohakuBlueleaf/LyCORIS], an open-source library that offers a wide selection of fine-tuning methodologies for Stable Diffusion. Furthermore, we present a thorough framework for the systematic assessment of varied fine-tuning techniques. This framework employs a diverse suite of metrics and delves into multiple facets of fine-tuning, including hyperparameter adjustments and the evaluation with different prompt types across various concept categories. Through this comprehensive approach, our work provides essential insights into the nuanced effects of fine-tuning parameters, bridging the gap between state-of-the-art research and practical application.
How to Select Datapoints for Efficient Human Evaluation of NLG Models?
Human evaluation is the gold-standard for evaluating text generation models. It is also expensive, and to fit budgetary constraints, a random subset of the test data is often chosen in practice. The randomly selected data may not accurately represent test performance, making this approach economically inefficient for model comparison. Thus, in this work, we develop a suite of selectors to get the most informative datapoints for human evaluation while taking the evaluation costs into account. We show that selectors based on variance in automated metric scores, diversity in model outputs, or Item Response Theory outperform random selection. We further develop an approach to distill these selectors to the scenario where the model outputs are not yet available. In particular, we introduce source-based estimators, which predict item usefulness for human evaluation just based on the source texts. We demonstrate the efficacy of our selectors in two common NLG tasks, machine translation and summarization, and show that up to only ~50% of the test data is needed to produce the same evaluation result as the entire data. Our implementations are published in the subset2evaluate package.
EvalMuse-40K: A Reliable and Fine-Grained Benchmark with Comprehensive Human Annotations for Text-to-Image Generation Model Evaluation
Recently, Text-to-Image (T2I) generation models have achieved significant advancements. Correspondingly, many automated metrics have emerged to evaluate the image-text alignment capabilities of generative models. However, the performance comparison among these automated metrics is limited by existing small datasets. Additionally, these datasets lack the capacity to assess the performance of automated metrics at a fine-grained level. In this study, we contribute an EvalMuse-40K benchmark, gathering 40K image-text pairs with fine-grained human annotations for image-text alignment-related tasks. In the construction process, we employ various strategies such as balanced prompt sampling and data re-annotation to ensure the diversity and reliability of our benchmark. This allows us to comprehensively evaluate the effectiveness of image-text alignment metrics for T2I models. Meanwhile, we introduce two new methods to evaluate the image-text alignment capabilities of T2I models: FGA-BLIP2 which involves end-to-end fine-tuning of a vision-language model to produce fine-grained image-text alignment scores and PN-VQA which adopts a novel positive-negative VQA manner in VQA models for zero-shot fine-grained evaluation. Both methods achieve impressive performance in image-text alignment evaluations. We also use our methods to rank current AIGC models, in which the results can serve as a reference source for future study and promote the development of T2I generation. The data and code will be made publicly available.
NeurIPS 2025 E2LM Competition : Early Training Evaluation of Language Models
Existing benchmarks have proven effective for assessing the performance of fully trained large language models. However, we find striking differences in the early training stages of small models, where benchmarks often fail to provide meaningful or discriminative signals. To explore how these differences arise, this competition tackles the challenge of designing scientific knowledge evaluation tasks specifically tailored for measuring early training progress of language models. Participants are invited to develop novel evaluation methodologies or adapt existing benchmarks to better capture performance differences among language models. To support this effort, we provide three pre-trained small models (0.5B, 1B, and 3B parameters), along with intermediate checkpoints sampled during training up to 200B tokens. All experiments and development work can be run on widely available free cloud-based GPU platforms, making participation accessible to researchers with limited computational resources. Submissions will be evaluated based on three criteria: the quality of the performance signal they produce, the consistency of model rankings at 1 trillion tokens of training, and their relevance to the scientific knowledge domain. By promoting the design of tailored evaluation strategies for early training, this competition aims to attract a broad range of participants from various disciplines, including those who may not be machine learning experts or have access to dedicated GPU resources. Ultimately, this initiative seeks to make foundational LLM research more systematic and benchmark-informed from the earliest phases of model development.
Zero-shot Benchmarking: A Framework for Flexible and Scalable Automatic Evaluation of Language Models
As language models improve and become capable of performing more complex tasks across modalities, evaluating them automatically becomes increasingly challenging. Developing strong and robust task-specific automatic metrics gets harder, and human-annotated test sets -- which are expensive to create -- saturate more quickly. A compelling alternative is to design reliable strategies to automate the creation of test data and evaluation, but previous attempts either rely on pre-existing data, or focus solely on individual tasks. We present Zero-shot Benchmarking (ZSB), a framework for creating high-quality benchmarks for any task by leveraging language models for both synthetic test data creation and evaluation. ZSB is simple and flexible: it requires only the creation of a prompt for data generation and one for evaluation; it is scalable to tasks and languages where collecting real-world data is costly or impractical; it is model-agnostic, allowing the creation of increasingly challenging benchmarks as models improve. To assess the effectiveness of our framework, we create benchmarks for five text-only tasks and a multi-modal one: general capabilities in four languages (English, Chinese, French, and Korean), translation, and general vision-language capabilities in English. We then rank a broad range of open and closed systems on our benchmarks. ZSB rankings consistently correlate strongly with human rankings, outperforming widely-adopted standard benchmarks. Through ablations, we find that strong benchmarks can be created with open models, and that judge model size and dataset variety are crucial drivers of performance. We release all our benchmarks, and code to reproduce our experiments and to produce new benchmarks.
A Systematic Survey and Critical Review on Evaluating Large Language Models: Challenges, Limitations, and Recommendations
Large Language Models (LLMs) have recently gained significant attention due to their remarkable capabilities in performing diverse tasks across various domains. However, a thorough evaluation of these models is crucial before deploying them in real-world applications to ensure they produce reliable performance. Despite the well-established importance of evaluating LLMs in the community, the complexity of the evaluation process has led to varied evaluation setups, causing inconsistencies in findings and interpretations. To address this, we systematically review the primary challenges and limitations causing these inconsistencies and unreliable evaluations in various steps of LLM evaluation. Based on our critical review, we present our perspectives and recommendations to ensure LLM evaluations are reproducible, reliable, and robust.
ReasonAgain: Using Extractable Symbolic Programs to Evaluate Mathematical Reasoning
Existing math datasets evaluate the reasoning abilities of large language models (LLMs) by either using the final answer or the intermediate reasoning steps derived from static examples. However, the former approach fails to surface model's uses of shortcuts and wrong reasoning while the later poses challenges in accommodating alternative solutions. In this work, we seek to use symbolic programs as a means for automated evaluation if a model can consistently produce correct final answers across various inputs to the program. We begin by extracting programs for popular math datasets (GSM8K and MATH) using GPT4-o. For those executable programs verified using the original input-output pairs, they are found to encapsulate the proper reasoning required to solve the original text questions. We then prompt GPT4-o to generate new questions using alternative input-output pairs based the extracted program. We apply the resulting datasets to evaluate a collection of LLMs. In our experiments, we observe significant accuracy drops using our proposed evaluation compared with original static examples, suggesting the fragility of math reasoning in state-of-the-art LLMs.
EvalLM: Interactive Evaluation of Large Language Model Prompts on User-Defined Criteria
By simply composing prompts, developers can prototype novel generative applications with Large Language Models (LLMs). To refine prototypes into products, however, developers must iteratively revise prompts by evaluating outputs to diagnose weaknesses. Formative interviews (N=8) revealed that developers invest significant effort in manually evaluating outputs as they assess context-specific and subjective criteria. We present EvalLM, an interactive system for iteratively refining prompts by evaluating multiple outputs on user-defined criteria. By describing criteria in natural language, users can employ the system's LLM-based evaluator to get an overview of where prompts excel or fail, and improve these based on the evaluator's feedback. A comparative study (N=12) showed that EvalLM, when compared to manual evaluation, helped participants compose more diverse criteria, examine twice as many outputs, and reach satisfactory prompts with 59% fewer revisions. Beyond prompts, our work can be extended to augment model evaluation and alignment in specific application contexts.
PUMGPT: A Large Vision-Language Model for Product Understanding
Recent developments of multi-modal large language models have demonstrated its strong ability in solving vision-language tasks. In this paper, we focus on the product understanding task, which plays an essential role in enhancing online shopping experience. Product understanding task includes a variety of sub-tasks, which require models to respond diverse queries based on multi-modal product information. Traditional methods design distinct model architectures for each sub-task. On the contrary, we present PUMGPT, a large vision-language model aims at unifying all product understanding tasks under a singular model structure. To bridge the gap between vision and text representations, we propose Layer-wise Adapters (LA), an approach that provides enhanced alignment with fewer visual tokens and enables parameter-efficient fine-tuning. Moreover, the inherent parameter-efficient fine-tuning ability allows PUMGPT to be readily adapted to new product understanding tasks and emerging products. We design instruction templates to generate diverse product instruction datasets. Simultaneously, we utilize open-domain datasets during training to improve the performance of PUMGPT and its generalization ability. Through extensive evaluations, PUMGPT demonstrates its superior performance across multiple product understanding tasks, including product captioning, category question-answering, attribute extraction, attribute question-answering, and even free-form question-answering about products.
Generative Evaluation of Complex Reasoning in Large Language Models
With powerful large language models (LLMs) demonstrating superhuman reasoning capabilities, a critical question arises: Do LLMs genuinely reason, or do they merely recall answers from their extensive, web-scraped training datasets? Publicly released benchmarks inevitably become contaminated once incorporated into subsequent LLM training sets, undermining their reliability as faithful assessments. To address this, we introduce KUMO, a generative evaluation framework designed specifically for assessing reasoning in LLMs. KUMO synergistically combines LLMs with symbolic engines to dynamically produce diverse, multi-turn reasoning tasks that are partially observable and adjustable in difficulty. Through an automated pipeline, KUMO continuously generates novel tasks across open-ended domains, compelling models to demonstrate genuine generalization rather than memorization. We evaluated 23 state-of-the-art LLMs on 5,000 tasks across 100 domains created by KUMO, benchmarking their reasoning abilities against university students. Our findings reveal that many LLMs have outperformed university-level performance on easy reasoning tasks, and reasoning-scaled LLMs reach university-level performance on complex reasoning challenges. Moreover, LLM performance on KUMO tasks correlates strongly with results on newly released real-world reasoning benchmarks, underscoring KUMO's value as a robust, enduring assessment tool for genuine LLM reasoning capabilities.
VHELM: A Holistic Evaluation of Vision Language Models
Current benchmarks for assessing vision-language models (VLMs) often focus on their perception or problem-solving capabilities and neglect other critical aspects such as fairness, multilinguality, or toxicity. Furthermore, they differ in their evaluation procedures and the scope of the evaluation, making it difficult to compare models. To address these issues, we extend the HELM framework to VLMs to present the Holistic Evaluation of Vision Language Models (VHELM). VHELM aggregates various datasets to cover one or more of the 9 aspects: visual perception, knowledge, reasoning, bias, fairness, multilinguality, robustness, toxicity, and safety. In doing so, we produce a comprehensive, multi-dimensional view of the capabilities of the VLMs across these important factors. In addition, we standardize the standard inference parameters, methods of prompting, and evaluation metrics to enable fair comparisons across models. Our framework is designed to be lightweight and automatic so that evaluation runs are cheap and fast. Our initial run evaluates 22 VLMs on 21 existing datasets to provide a holistic snapshot of the models. We uncover new key findings, such as the fact that efficiency-focused models (e.g., Claude 3 Haiku or Gemini 1.5 Flash) perform significantly worse than their full models (e.g., Claude 3 Opus or Gemini 1.5 Pro) on the bias benchmark but not when evaluated on the other aspects. For transparency, we release the raw model generations and complete results on our website (https://crfm.stanford.edu/helm/vhelm/v2.0.1). VHELM is intended to be a living benchmark, and we hope to continue adding new datasets and models over time.
Leveraging Large Language Models for Actionable Course Evaluation Student Feedback to Lecturers
End of semester student evaluations of teaching are the dominant mechanism for providing feedback to academics on their teaching practice. For large classes, however, the volume of feedback makes these tools impractical for this purpose. This paper explores the use of open-source generative AI to synthesise factual, actionable and appropriate summaries of student feedback from these survey responses. In our setup, we have 742 student responses ranging over 75 courses in a Computer Science department. For each course, we synthesise a summary of the course evaluations and actionable items for the instructor. Our results reveal a promising avenue for enhancing teaching practices in the classroom setting. Our contribution lies in demonstrating the feasibility of using generative AI to produce insightful feedback for teachers, thus providing a cost-effective means to support educators' development. Overall, our work highlights the possibility of using generative AI to produce factual, actionable, and appropriate feedback for teachers in the classroom setting.
CORE-MM: Complex Open-Ended Reasoning Evaluation For Multi-Modal Large Language Models
Multi-modal Large Language Models (MLLMs) are increasingly prominent in the field of artificial intelligence. These models not only excel in traditional vision-language tasks but also demonstrate impressive performance in contemporary multi-modal benchmarks. Although many of these benchmarks attempt to holistically evaluate MLLMs, they typically concentrate on basic reasoning tasks, often yielding only simple yes/no or multi-choice responses. These methods naturally lead to confusion and difficulties in conclusively determining the reasoning capabilities of MLLMs. To mitigate this issue, we manually curate a benchmark dataset specifically designed for MLLMs, with a focus on complex reasoning tasks. Our benchmark comprises three key reasoning categories: deductive, abductive, and analogical reasoning. The queries in our dataset are intentionally constructed to engage the reasoning capabilities of MLLMs in the process of generating answers. For a fair comparison across various MLLMs, we incorporate intermediate reasoning steps into our evaluation criteria. In instances where an MLLM is unable to produce a definitive answer, its reasoning ability is evaluated by requesting intermediate reasoning steps. If these steps align with our manual annotations, appropriate scores are assigned. This evaluation scheme resembles methods commonly used in human assessments, such as exams or assignments, and represents what we consider a more effective assessment technique compared with existing benchmarks. We evaluate a selection of representative MLLMs using this rigorously developed open-ended multi-step elaborate reasoning benchmark, designed to challenge and accurately measure their reasoning capabilities. The code and data will be released at https://core-mm.github.io/
AI Analyst: Framework and Comprehensive Evaluation of Large Language Models for Financial Time Series Report Generation
This paper explores the potential of large language models (LLMs) to generate financial reports from time series data. We propose a framework encompassing prompt engineering, model selection, and evaluation. We introduce an automated highlighting system to categorize information within the generated reports, differentiating between insights derived directly from time series data, stemming from financial reasoning, and those reliant on external knowledge. This approach aids in evaluating the factual grounding and reasoning capabilities of the models. Our experiments, utilizing both data from the real stock market indices and synthetic time series, demonstrate the capability of LLMs to produce coherent and informative financial reports.
Large Language Models Struggle to Describe the Haystack without Human Help: Human-in-the-loop Evaluation of LLMs
A common use of NLP is to facilitate the understanding of large document collections, with a shift from using traditional topic models to Large Language Models. Yet the effectiveness of using LLM for large corpus understanding in real-world applications remains under-explored. This study measures the knowledge users acquire with unsupervised, supervised LLM-based exploratory approaches or traditional topic models on two datasets. While LLM-based methods generate more human-readable topics and show higher average win probabilities than traditional models for data exploration, they produce overly generic topics for domain-specific datasets that do not easily allow users to learn much about the documents. Adding human supervision to the LLM generation process improves data exploration by mitigating hallucination and over-genericity but requires greater human effort. In contrast, traditional. models like Latent Dirichlet Allocation (LDA) remain effective for exploration but are less user-friendly. We show that LLMs struggle to describe the haystack of large corpora without human help, particularly domain-specific data, and face scaling and hallucination limitations due to context length constraints. Dataset available at https://huggingface. co/datasets/zli12321/Bills.
SimpleVQA: Multimodal Factuality Evaluation for Multimodal Large Language Models
The increasing application of multi-modal large language models (MLLMs) across various sectors have spotlighted the essence of their output reliability and accuracy, particularly their ability to produce content grounded in factual information (e.g. common and domain-specific knowledge). In this work, we introduce SimpleVQA, the first comprehensive multi-modal benchmark to evaluate the factuality ability of MLLMs to answer natural language short questions. SimpleVQA is characterized by six key features: it covers multiple tasks and multiple scenarios, ensures high quality and challenging queries, maintains static and timeless reference answers, and is straightforward to evaluate. Our approach involves categorizing visual question-answering items into 9 different tasks around objective events or common knowledge and situating these within 9 topics. Rigorous quality control processes are implemented to guarantee high-quality, concise, and clear answers, facilitating evaluation with minimal variance via an LLM-as-a-judge scoring system. Using SimpleVQA, we perform a comprehensive assessment of leading 18 MLLMs and 8 text-only LLMs, delving into their image comprehension and text generation abilities by identifying and analyzing error cases.
Qiskit HumanEval: An Evaluation Benchmark For Quantum Code Generative Models
Quantum programs are typically developed using quantum Software Development Kits (SDKs). The rapid advancement of quantum computing necessitates new tools to streamline this development process, and one such tool could be Generative Artificial intelligence (GenAI). In this study, we introduce and use the Qiskit HumanEval dataset, a hand-curated collection of tasks designed to benchmark the ability of Large Language Models (LLMs) to produce quantum code using Qiskit - a quantum SDK. This dataset consists of more than 100 quantum computing tasks, each accompanied by a prompt, a canonical solution, a comprehensive test case, and a difficulty scale to evaluate the correctness of the generated solutions. We systematically assess the performance of a set of LLMs against the Qiskit HumanEval dataset's tasks and focus on the models ability in producing executable quantum code. Our findings not only demonstrate the feasibility of using LLMs for generating quantum code but also establish a new benchmark for ongoing advancements in the field and encourage further exploration and development of GenAI-driven tools for quantum code generation.
Dynamic Sentiment Analysis with Local Large Language Models using Majority Voting: A Study on Factors Affecting Restaurant Evaluation
User-generated contents (UGCs) on online platforms allow marketing researchers to understand consumer preferences for products and services. With the advance of large language models (LLMs), some studies utilized the models for annotation and sentiment analysis. However, the relationship between the accuracy and the hyper-parameters of LLMs is yet to be thoroughly examined. In addition, the issues of variability and reproducibility of results from each trial of LLMs have rarely been considered in existing literature. Since actual human annotation uses majority voting to resolve disagreements among annotators, this study introduces a majority voting mechanism to a sentiment analysis model using local LLMs. By a series of three analyses of online reviews on restaurant evaluations, we demonstrate that majority voting with multiple attempts using a medium-sized model produces more robust results than using a large model with a single attempt. Furthermore, we conducted further analysis to investigate the effect of each aspect on the overall evaluation.
S-Eval: Automatic and Adaptive Test Generation for Benchmarking Safety Evaluation of Large Language Models
Large Language Models have gained considerable attention for their revolutionary capabilities. However, there is also growing concern on their safety implications, making a comprehensive safety evaluation for LLMs urgently needed before model deployment. In this work, we propose S-Eval, a new comprehensive, multi-dimensional and open-ended safety evaluation benchmark. At the core of S-Eval is a novel LLM-based automatic test prompt generation and selection framework, which trains an expert testing LLM Mt combined with a range of test selection strategies to automatically construct a high-quality test suite for the safety evaluation. The key to the automation of this process is a novel expert safety-critique LLM Mc able to quantify the riskiness score of a LLM's response, and additionally produce risk tags and explanations. Besides, the generation process is also guided by a carefully designed risk taxonomy with four different levels, covering comprehensive and multi-dimensional safety risks of concern. Based on these, we systematically construct a new and large-scale safety evaluation benchmark for LLMs consisting of 220,000 evaluation prompts, including 20,000 base risk prompts (10,000 in Chinese and 10,000 in English) and 200, 000 corresponding attack prompts derived from 10 popular adversarial instruction attacks against LLMs. Moreover, considering the rapid evolution of LLMs and accompanied safety threats, S-Eval can be flexibly configured and adapted to include new risks, attacks and models. S-Eval is extensively evaluated on 20 popular and representative LLMs. The results confirm that S-Eval can better reflect and inform the safety risks of LLMs compared to existing benchmarks. We also explore the impacts of parameter scales, language environments, and decoding parameters on the evaluation, providing a systematic methodology for evaluating the safety of LLMs.
Automatic Evaluation of Healthcare LLMs Beyond Question-Answering
Current Large Language Models (LLMs) benchmarks are often based on open-ended or close-ended QA evaluations, avoiding the requirement of human labor. Close-ended measurements evaluate the factuality of responses but lack expressiveness. Open-ended capture the model's capacity to produce discourse responses but are harder to assess for correctness. These two approaches are commonly used, either independently or together, though their relationship remains poorly understood. This work is focused on the healthcare domain, where both factuality and discourse matter greatly. It introduces a comprehensive, multi-axis suite for healthcare LLM evaluation, exploring correlations between open and close benchmarks and metrics. Findings include blind spots and overlaps in current methodologies. As an updated sanity check, we release a new medical benchmark--CareQA--, with both open and closed variants. Finally, we propose a novel metric for open-ended evaluations --Relaxed Perplexity-- to mitigate the identified limitations.
Exploring Neural Models for Query-Focused Summarization
Query-focused summarization (QFS) aims to produce summaries that answer particular questions of interest, enabling greater user control and personalization. While recently released datasets, such as QMSum or AQuaMuSe, facilitate research efforts in QFS, the field lacks a comprehensive study of the broad space of applicable modeling methods. In this paper we conduct a systematic exploration of neural approaches to QFS, considering two general classes of methods: two-stage extractive-abstractive solutions and end-to-end models. Within those categories, we investigate existing models and explore strategies for transfer learning. We also present two modeling extensions that achieve state-of-the-art performance on the QMSum dataset, up to a margin of 3.38 ROUGE-1, 3.72 ROUGE2, and 3.28 ROUGE-L when combined with transfer learning strategies. Results from human evaluation suggest that the best models produce more comprehensive and factually consistent summaries compared to a baseline model. Code and checkpoints are made publicly available: https://github.com/salesforce/query-focused-sum.
Automated Unit Test Improvement using Large Language Models at Meta
This paper describes Meta's TestGen-LLM tool, which uses LLMs to automatically improve existing human-written tests. TestGen-LLM verifies that its generated test classes successfully clear a set of filters that assure measurable improvement over the original test suite, thereby eliminating problems due to LLM hallucination. We describe the deployment of TestGen-LLM at Meta test-a-thons for the Instagram and Facebook platforms. In an evaluation on Reels and Stories products for Instagram, 75% of TestGen-LLM's test cases built correctly, 57% passed reliably, and 25% increased coverage. During Meta's Instagram and Facebook test-a-thons, it improved 11.5% of all classes to which it was applied, with 73% of its recommendations being accepted for production deployment by Meta software engineers. We believe this is the first report on industrial scale deployment of LLM-generated code backed by such assurances of code improvement.
Small Language Models Fine-tuned to Coordinate Larger Language Models improve Complex Reasoning
Large Language Models (LLMs) prompted to generate chain-of-thought (CoT) exhibit impressive reasoning capabilities. Recent attempts at prompt decomposition toward solving complex, multi-step reasoning problems depend on the ability of the LLM to simultaneously decompose and solve the problem. A significant disadvantage is that foundational LLMs are typically not available for fine-tuning, making adaptation computationally prohibitive. We believe (and demonstrate) that problem decomposition and solution generation are distinct capabilites, better addressed in separate modules, than by one monolithic LLM. We introduce DaSLaM, which uses a decomposition generator to decompose complex problems into subproblems that require fewer reasoning steps. These subproblems are answered by a solver. We use a relatively small (13B parameters) LM as the decomposition generator, which we train using policy gradient optimization to interact with a solver LM (regarded as black-box) and guide it through subproblems, thereby rendering our method solver-agnostic. Evaluation on multiple different reasoning datasets reveal that with our method, a 175 billion parameter LM (text-davinci-003) can produce competitive or even better performance, compared to its orders-of-magnitude larger successor, GPT-4. Additionally, we show that DaSLaM is not limited by the solver's capabilities as a function of scale; e.g., solver LMs with diverse sizes give significant performance improvement with our solver-agnostic decomposition technique. Exhaustive ablation studies evince the superiority of our modular finetuning technique over exorbitantly large decomposer LLMs, based on prompting alone.
Potemkin Understanding in Large Language Models
Large language models (LLMs) are regularly evaluated using benchmark datasets. But what justifies making inferences about an LLM's capabilities based on its answers to a curated set of questions? This paper first introduces a formal framework to address this question. The key is to note that the benchmarks used to test LLMs -- such as AP exams -- are also those used to test people. However, this raises an implication: these benchmarks are only valid tests if LLMs misunderstand concepts in ways that mirror human misunderstandings. Otherwise, success on benchmarks only demonstrates potemkin understanding: the illusion of understanding driven by answers irreconcilable with how any human would interpret a concept. We present two procedures for quantifying the existence of potemkins: one using a specially designed benchmark in three domains, the other using a general procedure that provides a lower-bound on their prevalence. We find that potemkins are ubiquitous across models, tasks, and domains. We also find that these failures reflect not just incorrect understanding, but deeper internal incoherence in concept representations.
RAIN: Your Language Models Can Align Themselves without Finetuning
Large language models (LLMs) often demonstrate inconsistencies with human preferences. Previous research gathered human preference data and then aligned the pre-trained models using reinforcement learning or instruction tuning, the so-called finetuning step. In contrast, aligning frozen LLMs without any extra data is more appealing. This work explores the potential of the latter setting. We discover that by integrating self-evaluation and rewind mechanisms, unaligned LLMs can directly produce responses consistent with human preferences via self-boosting. We introduce a novel inference method, Rewindable Auto-regressive INference (RAIN), that allows pre-trained LLMs to evaluate their own generation and use the evaluation results to guide backward rewind and forward generation for AI safety. Notably, RAIN operates without the need of extra data for model alignment and abstains from any training, gradient computation, or parameter updates; during the self-evaluation phase, the model receives guidance on which human preference to align with through a fixed-template prompt, eliminating the need to modify the initial prompt. Experimental results evaluated by GPT-4 and humans demonstrate the effectiveness of RAIN: on the HH dataset, RAIN improves the harmlessness rate of LLaMA 30B over vanilla inference from 82% to 97%, while maintaining the helpfulness rate. Under the leading adversarial attack llm-attacks on Vicuna 33B, RAIN establishes a new defense baseline by reducing the attack success rate from 94% to 19%.
GRADEO: Towards Human-Like Evaluation for Text-to-Video Generation via Multi-Step Reasoning
Recent great advances in video generation models have demonstrated their potential to produce high-quality videos, bringing challenges to effective evaluation. Unlike human evaluation, existing automated evaluation metrics lack high-level semantic understanding and reasoning capabilities for video, thus making them infeasible and unexplainable. To fill this gap, we curate GRADEO-Instruct, a multi-dimensional T2V evaluation instruction tuning dataset, including 3.3k videos from over 10 existing video generation models and multi-step reasoning assessments converted by 16k human annotations. We then introduce GRADEO, one of the first specifically designed video evaluation models, which grades AI-generated videos for explainable scores and assessments through multi-step reasoning. Experiments show that our method aligns better with human evaluations than existing methods. Furthermore, our benchmarking reveals that current video generation models struggle to produce content that aligns with human reasoning and complex real-world scenarios. The models, datasets, and codes will be released soon.
TreeCut: A Synthetic Unanswerable Math Word Problem Dataset for LLM Hallucination Evaluation
Large language models (LLMs) now achieve near-human performance on standard math word problem benchmarks (e.g., GSM8K), yet their true reasoning ability remains disputed. A key concern is that models often produce confident, yet unfounded, answers to unanswerable problems. We introduce TreeCut, a synthetic dataset that systematically generates infinite unanswerable math word problems and their answerable counterparts, by representing each question as a tree and removing chosen necessary conditions. Experiments show TreeCut effectively induce hallucinations in large language models, including GPT-4o and o3-mini, with rates of 64% and 44% in their respective worst-case scenarios under zero-shot setting. Further analysis highlights that deeper or more complex trees, composite item names, and removing necessary condition near the middle of a path all increase the likelihood of hallucinations, underscoring the persistent challenges LLMs face in identifying unanswerable math problems. The dataset generation code and sample data are available at https://github.com/j-bagel/treecut-math.
Toward Robust Hyper-Detailed Image Captioning: A Multiagent Approach and Dual Evaluation Metrics for Factuality and Coverage
Multimodal large language models (MLLMs) excel at generating highly detailed captions but often produce hallucinations. Our analysis reveals that existing hallucination detection methods struggle with detailed captions. We attribute this to the increasing reliance of MLLMs on their generated text, rather than the input image, as the sequence length grows. To address this issue, we propose a multiagent approach that leverages LLM-MLLM collaboration to correct given captions. Additionally, we introduce an evaluation framework and a benchmark dataset to facilitate the systematic analysis of detailed captions. Our experiments demonstrate that our proposed evaluation method better aligns with human judgments of factuality than existing metrics and that existing approaches to improve the MLLM factuality may fall short in hyper-detailed image captioning tasks. In contrast, our proposed method significantly enhances the factual accuracy of captions, even improving those generated by GPT-4V. Finally, we highlight a limitation of VQA-centric benchmarking by demonstrating that an MLLM's performance on VQA benchmarks may not correlate with its ability to generate detailed image captions.
Evaluation of Deep Audio Representations for Hearables
Effectively steering hearable devices requires understanding the acoustic environment around the user. In the computational analysis of sound scenes, foundation models have emerged as the state of the art to produce high-performance, robust, multi-purpose audio representations. We introduce and release Deep Evaluation of Audio Representations (DEAR), the first dataset and benchmark to evaluate the efficacy of foundation models in capturing essential acoustic properties for hearables. The dataset includes 1,158 audio tracks, each 30 seconds long, created by spatially mixing proprietary monologues with commercial, high-quality recordings of everyday acoustic scenes. Our benchmark encompasses eight tasks that assess the general context, speech sources, and technical acoustic properties of the audio scenes. Through our evaluation of four general-purpose audio representation models, we demonstrate that the BEATs model significantly surpasses its counterparts. This superiority underscores the advantage of models trained on diverse audio collections, confirming their applicability to a wide array of auditory tasks, including encoding the environment properties necessary for hearable steering. The DEAR dataset and associated code are available at https://dear-dataset.github.io.
KITTEN: A Knowledge-Intensive Evaluation of Image Generation on Visual Entities
Recent advancements in text-to-image generation have significantly enhanced the quality of synthesized images. Despite this progress, evaluations predominantly focus on aesthetic appeal or alignment with text prompts. Consequently, there is limited understanding of whether these models can accurately represent a wide variety of realistic visual entities - a task requiring real-world knowledge. To address this gap, we propose a benchmark focused on evaluating Knowledge-InTensive image generaTion on real-world ENtities (i.e., KITTEN). Using KITTEN, we conduct a systematic study on the fidelity of entities in text-to-image generation models, focusing on their ability to generate a wide range of real-world visual entities, such as landmark buildings, aircraft, plants, and animals. We evaluate the latest text-to-image models and retrieval-augmented customization models using both automatic metrics and carefully-designed human evaluations, with an emphasis on the fidelity of entities in the generated images. Our findings reveal that even the most advanced text-to-image models often fail to generate entities with accurate visual details. Although retrieval-augmented models can enhance the fidelity of entity by incorporating reference images during testing, they often over-rely on these references and struggle to produce novel configurations of the entity as requested in creative text prompts.
Adaptable Moral Stances of Large Language Models on Sexist Content: Implications for Society and Gender Discourse
This work provides an explanatory view of how LLMs can apply moral reasoning to both criticize and defend sexist language. We assessed eight large language models, all of which demonstrated the capability to provide explanations grounded in varying moral perspectives for both critiquing and endorsing views that reflect sexist assumptions. With both human and automatic evaluation, we show that all eight models produce comprehensible and contextually relevant text, which is helpful in understanding diverse views on how sexism is perceived. Also, through analysis of moral foundations cited by LLMs in their arguments, we uncover the diverse ideological perspectives in models' outputs, with some models aligning more with progressive or conservative views on gender roles and sexism. Based on our observations, we caution against the potential misuse of LLMs to justify sexist language. We also highlight that LLMs can serve as tools for understanding the roots of sexist beliefs and designing well-informed interventions. Given this dual capacity, it is crucial to monitor LLMs and design safety mechanisms for their use in applications that involve sensitive societal topics, such as sexism.
Joint Representations of Text and Knowledge Graphs for Retrieval and Evaluation
A key feature of neural models is that they can produce semantic vector representations of objects (texts, images, speech, etc.) ensuring that similar objects are close to each other in the vector space. While much work has focused on learning representations for other modalities, there are no aligned cross-modal representations for text and knowledge base (KB) elements. One challenge for learning such representations is the lack of parallel data, which we use contrastive training on heuristics-based datasets and data augmentation to overcome, training embedding models on (KB graph, text) pairs. On WebNLG, a cleaner manually crafted dataset, we show that they learn aligned representations suitable for retrieval. We then fine-tune on annotated data to create EREDAT (Ensembled Representations for Evaluation of DAta-to-Text), a similarity metric between English text and KB graphs. EREDAT outperforms or matches state-of-the-art metrics in terms of correlation with human judgments on WebNLG even though, unlike them, it does not require a reference text to compare against.
A Course Correction in Steerability Evaluation: Revealing Miscalibration and Side Effects in LLMs
Despite advances in large language models (LLMs) on reasoning and instruction-following benchmarks, it remains unclear whether they can reliably produce outputs aligned with a broad variety of user goals, a concept we refer to as steerability. The abundance of methods proposed to modify LLM behavior makes it unclear whether current LLMs are already steerable, or require further intervention. In particular, LLMs may exhibit (i) poor coverage, where rare user goals are underrepresented; (ii) miscalibration, where models overshoot requests; and (iii) side effects, where changes to one dimension of text inadvertently affect others. To systematically evaluate these failures, we introduce a framework based on a multi-dimensional goal space that models user goals and LLM outputs as vectors with dimensions corresponding to text attributes (e.g., reading difficulty). Applied to a text-rewriting task, we find that current LLMs struggle with steerability, as side effects are persistent. Interventions to improve steerability, such as prompt engineering, best-of-N sampling, and reinforcement learning fine-tuning, have varying effectiveness, yet side effects remain problematic. Our findings suggest that even strong LLMs struggle with steerability, and existing alignment strategies may be insufficient. We open-source our steerability evaluation framework at https://github.com/MLD3/steerability.
Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation
We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books. Previous efforts to construct such datasets relied on crowd-sourcing, but the emergence of transformers with a context size of 1 million or more tokens now enables entirely automatic approaches. Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text, such as questions involving character arcs, broader themes, or the consequences of early actions later in the story. We propose a holistic pipeline for automatic data generation including question generation, answering, and model scoring using an ``Evaluator''. We find that a relative approach, comparing answers between models in a pairwise fashion and ranking with a Bradley-Terry model, provides a more consistent and differentiating scoring mechanism than an absolute scorer that rates answers individually. We also show that LLMs from different model families produce moderate agreement in their ratings. We ground our approach using the manually curated NarrativeQA dataset, where our evaluator shows excellent agreement with human judgement and even finds errors in the dataset. Using our automatic evaluation approach, we show that using an entire book as context produces superior reading comprehension performance compared to baseline no-context (parametric knowledge only) and retrieval-based approaches.
Long-term Control for Dialogue Generation: Methods and Evaluation
Current approaches for controlling dialogue response generation are primarily focused on high-level attributes like style, sentiment, or topic. In this work, we focus on constrained long-term dialogue generation, which involves more fine-grained control and requires a given set of control words to appear in generated responses. This setting requires a model to not only consider the generation of these control words in the immediate context, but also produce utterances that will encourage the generation of the words at some time in the (possibly distant) future. We define the problem of constrained long-term control for dialogue generation, identify gaps in current methods for evaluation, and propose new metrics that better measure long-term control. We also propose a retrieval-augmented method that improves performance of long-term controlled generation via logit modification techniques. We show through experiments on three task-oriented dialogue datasets that our metrics better assess dialogue control relative to current alternatives and that our method outperforms state-of-the-art constrained generation baselines.
BEAR: A Unified Framework for Evaluating Relational Knowledge in Causal and Masked Language Models
Knowledge probing assesses to which degree a language model (LM) has successfully learned relational knowledge during pre-training. Probing is an inexpensive way to compare LMs of different sizes and training configurations. However, previous approaches rely on the objective function used in pre-training LMs and are thus applicable only to masked or causal LMs. As a result, comparing different types of LMs becomes impossible. To address this, we propose an approach that uses an LM's inherent ability to estimate the log-likelihood of any given textual statement. We carefully design an evaluation dataset of 7,731 instances (40,916 in a larger variant) from which we produce alternative statements for each relational fact, one of which is correct. We then evaluate whether an LM correctly assigns the highest log-likelihood to the correct statement. Our experimental evaluation of 22 common LMs shows that our proposed framework, BEAR, can effectively probe for knowledge across different LM types. We release the BEAR datasets and an open-source framework that implements the probing approach to the research community to facilitate the evaluation and development of LMs.
Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering
Retriever-augmented instruction-following models are attractive alternatives to fine-tuned approaches for information-seeking tasks such as question answering (QA). By simply prepending retrieved documents in its input along with an instruction, these models can be adapted to various information domains and tasks without additional fine-tuning. While the model responses tend to be natural and fluent, the additional verbosity makes traditional QA evaluation metrics such as exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we investigate the performance of instruction-following models across three information-seeking QA tasks. We use both automatic and human evaluation to evaluate these models along two dimensions: 1) how well they satisfy the user's information need (correctness), and 2) whether they produce a response based on the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness. We then propose simple token-overlap based and model-based metrics that reflect the true performance of these models. Our analysis reveals that instruction-following models are competitive, and sometimes even outperform fine-tuned models for correctness. However, these models struggle to stick to the provided knowledge and often hallucinate in their responses. We hope our work encourages a more holistic evaluation of instruction-following models for QA. Our code and data is available at https://github.com/McGill-NLP/instruct-qa
How Propense Are Large Language Models at Producing Code Smells? A Benchmarking Study
Large Language Models (LLMs) have shown significant potential in automating software engineering tasks, particularly in code generation. However, current evaluation benchmarks, which primarily focus on accuracy, fall short in assessing the quality of the code generated by these models, specifically their tendency to produce code smells. To address this limitation, we introduce CodeSmellEval, a benchmark designed to evaluate the propensity of LLMs for generating code smells. Our benchmark includes a novel metric: Propensity Smelly Score (PSC), and a curated dataset of method-level code smells: CodeSmellData. To demonstrate the use of CodeSmellEval, we conducted a case study with two state-of-the-art LLMs, CodeLlama and Mistral. The results reveal that both models tend to generate code smells, such as simplifiable-condition and consider-merging-isinstance. These findings highlight the effectiveness of our benchmark in evaluating LLMs, providing valuable insights into their reliability and their propensity to introduce code smells in code generation tasks.
Visual Question Decomposition on Multimodal Large Language Models
Question decomposition has emerged as an effective strategy for prompting Large Language Models (LLMs) to answer complex questions. However, while existing methods primarily focus on unimodal language models, the question decomposition capability of Multimodal Large Language Models (MLLMs) has yet to be explored. To this end, this paper explores visual question decomposition on MLLMs. Specifically, we introduce a systematic evaluation framework including a dataset and several evaluation criteria to assess the quality of the decomposed sub-questions, revealing that existing MLLMs struggle to produce high-quality sub-questions. To address this limitation, we propose a specific finetuning dataset, DecoVQA+, for enhancing the model's question decomposition capability. Aiming at enabling models to perform appropriate selective decomposition, we propose an efficient finetuning pipeline. The finetuning pipeline consists of our proposed dataset and a training objective for selective decomposition. Finetuned MLLMs demonstrate significant improvements in the quality of sub-questions and the policy of selective question decomposition. Additionally, the models also achieve higher accuracy with selective decomposition on VQA benchmark datasets.
SimOAP: Improve Coherence and Consistency in Persona-based Dialogue Generation via Over-sampling and Post-evaluation
Language models trained on large-scale corpora can generate remarkably fluent results in open-domain dialogue. However, for the persona-based dialogue generation task, consistency and coherence are also key factors, which are great challenges for language models. Existing works mainly focus on valuable data filtering, model structure modifying, or objective function designing, while their improvements are limited and hard to generalize to all types of pre-trained language models. However, we find that language models can produce consistent and coherent responses if we consider enough generations. Thus, the problems lay in large-scale response generation and target response selection. In this work, a simple but effective two-stage SimOAP strategy is proposed, i.e., over-sampling and post-evaluation. The over-sampling stage takes large-scale responses from existing trained models efficiently via off-the-shelf distilling and compressing methods, and the post-evaluation stage selects a good response based on multiple well-designed evaluation metrics from large-scale candidates. Experimental results show that the proposed plug-in SimOAP strategy improves the backbone models and outperforms the baseline strategies in both automatic and human evaluations.
Investigating Data Contamination in Modern Benchmarks for Large Language Models
Recent observations have underscored a disparity between the inflated benchmark scores and the actual performance of LLMs, raising concerns about potential contamination of evaluation benchmarks. This issue is especially critical for closed-source models and certain open-source models where training data transparency is lacking. In this paper we study data contamination by proposing two methods tailored for both open-source and proprietary LLMs. We first introduce a retrieval-based system to explore potential overlaps between evaluation benchmarks and pretraining corpora. We further present a novel investigation protocol named Testset Slot Guessing (TS-Guessing), applicable to both open and proprietary models. This approach entails masking a wrong answer in a multiple-choice question and prompting the model to fill in the gap. Additionally, it involves obscuring an unlikely word in an evaluation example and asking the model to produce it. We find that certain commercial LLMs could surprisingly guess the missing option in various test sets. Specifically, in the TruthfulQA benchmark, we find that LLMs exhibit notable performance improvement when provided with additional metadata in the benchmark. Further, in the MMLU benchmark, ChatGPT and GPT-4 demonstrated an exact match rate of 52\% and 57\%, respectively, in guessing the missing options in benchmark test data. We hope these results underscore the need for more robust evaluation methodologies and benchmarks in the field.
PROXYQA: An Alternative Framework for Evaluating Long-Form Text Generation with Large Language Models
Large Language Models (LLMs) have exhibited remarkable success in long-form context comprehension tasks. However, their capacity to generate long contents, such as reports and articles, remains insufficiently explored. Current benchmarks do not adequately assess LLMs' ability to produce informative and comprehensive content, necessitating a more rigorous evaluation approach. In this study, we introduce ProxyQA, a framework for evaluating long-form text generation, comprising in-depth human-curated meta-questions spanning various domains. Each meta-question contains corresponding proxy-questions with annotated answers. LLMs are prompted to generate extensive content in response to these meta-questions. Utilizing an evaluator and incorporating generated content as background context, ProxyQA evaluates the quality of generated content based on the evaluator's performance in answering the proxy-questions. We examine multiple LLMs, emphasizing ProxyQA's demanding nature as a high-quality assessment tool. Human evaluation demonstrates that evaluating through proxy-questions is a highly self-consistent and human-criteria-correlated validation method. The dataset and leaderboard will be available at https://github.com/Namco0816/ProxyQA.
MIDI-GPT: A Controllable Generative Model for Computer-Assisted Multitrack Music Composition
We present and release MIDI-GPT, a generative system based on the Transformer architecture that is designed for computer-assisted music composition workflows. MIDI-GPT supports the infilling of musical material at the track and bar level, and can condition generation on attributes including: instrument type, musical style, note density, polyphony level, and note duration. In order to integrate these features, we employ an alternative representation for musical material, creating a time-ordered sequence of musical events for each track and concatenating several tracks into a single sequence, rather than using a single time-ordered sequence where the musical events corresponding to different tracks are interleaved. We also propose a variation of our representation allowing for expressiveness. We present experimental results that demonstrate that MIDI-GPT is able to consistently avoid duplicating the musical material it was trained on, generate music that is stylistically similar to the training dataset, and that attribute controls allow enforcing various constraints on the generated material. We also outline several real-world applications of MIDI-GPT, including collaborations with industry partners that explore the integration and evaluation of MIDI-GPT into commercial products, as well as several artistic works produced using it.
ExecRepoBench: Multi-level Executable Code Completion Evaluation
Code completion has become an essential tool for daily software development. Existing evaluation benchmarks often employ static methods that do not fully capture the dynamic nature of real-world coding environments and face significant challenges, including limited context length, reliance on superficial evaluation metrics, and potential overfitting to training datasets. In this work, we introduce a novel framework for enhancing code completion in software development through the creation of a repository-level benchmark ExecRepoBench and the instruction corpora Repo-Instruct, aim at improving the functionality of open-source large language models (LLMs) in real-world coding scenarios that involve complex interdependencies across multiple files. ExecRepoBench includes 1.2K samples from active Python repositories. Plus, we present a multi-level grammar-based completion methodology conditioned on the abstract syntax tree to mask code fragments at various logical units (e.g. statements, expressions, and functions). Then, we fine-tune the open-source LLM with 7B parameters on Repo-Instruct to produce a strong code completion baseline model Qwen2.5-Coder-Instruct-C based on the open-source model. Qwen2.5-Coder-Instruct-C is rigorously evaluated against existing benchmarks, including MultiPL-E and ExecRepoBench, which consistently outperforms prior baselines across all programming languages. The deployment of can be used as a high-performance, local service for programming development\url{https://execrepobench.github.io/}.
Fairer Preferences Elicit Improved Human-Aligned Large Language Model Judgments
Large language models (LLMs) have shown promising abilities as cost-effective and reference-free evaluators for assessing language generation quality. In particular, pairwise LLM evaluators, which compare two generated texts and determine the preferred one, have been employed in a wide range of applications. However, LLMs exhibit preference biases and worrying sensitivity to prompt designs. In this work, we first reveal that the predictive preference of LLMs can be highly brittle and skewed, even with semantically equivalent instructions. We find that fairer predictive preferences from LLMs consistently lead to judgments that are better aligned with humans. Motivated by this phenomenon, we propose an automatic Zero-shot Evaluation-oriented Prompt Optimization framework, ZEPO, which aims to produce fairer preference decisions and improve the alignment of LLM evaluators with human judgments. To this end, we propose a zero-shot learning objective based on the preference decision fairness. ZEPO demonstrates substantial performance improvements over state-of-the-art LLM evaluators, without requiring labeled data, on representative meta-evaluation benchmarks. Our findings underscore the critical correlation between preference fairness and human alignment, positioning ZEPO as an efficient prompt optimizer for bridging the gap between LLM evaluators and human judgments.
TinyStories: How Small Can Language Models Be and Still Speak Coherent English?
Language models (LMs) are powerful tools for natural language processing, but they often struggle to produce coherent and fluent text when they are small. Models with around 125M parameters such as GPT-Neo (small) or GPT-2 (small) can rarely generate coherent and consistent English text beyond a few words even after extensive training. This raises the question of whether the emergence of the ability to produce coherent English text only occurs at larger scales (with hundreds of millions of parameters or more) and complex architectures (with many layers of global attention). In this work, we introduce TinyStories, a synthetic dataset of short stories that only contain words that a typical 3 to 4-year-olds usually understand, generated by GPT-3.5 and GPT-4. We show that TinyStories can be used to train and evaluate LMs that are much smaller than the state-of-the-art models (below 10 million total parameters), or have much simpler architectures (with only one transformer block), yet still produce fluent and consistent stories with several paragraphs that are diverse and have almost perfect grammar, and demonstrate reasoning capabilities. We also introduce a new paradigm for the evaluation of language models: We suggest a framework which uses GPT-4 to grade the content generated by these models as if those were stories written by students and graded by a (human) teacher. This new paradigm overcomes the flaws of standard benchmarks which often requires the model's output to be very structures, and moreover provides a multidimensional score for the model, providing scores for different capabilities such as grammar, creativity and consistency. We hope that TinyStories can facilitate the development, analysis and research of LMs, especially for low-resource or specialized domains, and shed light on the emergence of language capabilities in LMs.
A Comparative Study on Generative Models for High Resolution Solar Observation Imaging
Solar activity is one of the main drivers of variability in our solar system and the key source of space weather phenomena that affect Earth and near Earth space. The extensive record of high resolution extreme ultraviolet (EUV) observations from the Solar Dynamics Observatory (SDO) offers an unprecedented, very large dataset of solar images. In this work, we make use of this comprehensive dataset to investigate capabilities of current state-of-the-art generative models to accurately capture the data distribution behind the observed solar activity states. Starting from StyleGAN-based methods, we uncover severe deficits of this model family in handling fine-scale details of solar images when training on high resolution samples, contrary to training on natural face images. When switching to the diffusion based generative model family, we observe strong improvements of fine-scale detail generation. For the GAN family, we are able to achieve similar improvements in fine-scale generation when turning to ProjectedGANs, which uses multi-scale discriminators with a pre-trained frozen feature extractor. We conduct ablation studies to clarify mechanisms responsible for proper fine-scale handling. Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts, as suggested by the evaluation we conduct. We make all code, models and workflows used in this study publicly available at https://github.com/SLAMPAI/generative-models-for-highres-solar-images.
Skill-Mix: a Flexible and Expandable Family of Evaluations for AI models
With LLMs shifting their role from statistical modeling of language to serving as general-purpose AI agents, how should LLM evaluations change? Arguably, a key ability of an AI agent is to flexibly combine, as needed, the basic skills it has learned. The capability to combine skills plays an important role in (human) pedagogy and also in a paper on emergence phenomena (Arora & Goyal, 2023). This work introduces Skill-Mix, a new evaluation to measure ability to combine skills. Using a list of N skills the evaluator repeatedly picks random subsets of k skills and asks the LLM to produce text combining that subset of skills. Since the number of subsets grows like N^k, for even modest k this evaluation will, with high probability, require the LLM to produce text significantly different from any text in the training set. The paper develops a methodology for (a) designing and administering such an evaluation, and (b) automatic grading (plus spot-checking by humans) of the results using GPT-4 as well as the open LLaMA-2 70B model. Administering a version of to popular chatbots gave results that, while generally in line with prior expectations, contained surprises. Sizeable differences exist among model capabilities that are not captured by their ranking on popular LLM leaderboards ("cramming for the leaderboard"). Furthermore, simple probability calculations indicate that GPT-4's reasonable performance on k=5 is suggestive of going beyond "stochastic parrot" behavior (Bender et al., 2021), i.e., it combines skills in ways that it had not seen during training. We sketch how the methodology can lead to a Skill-Mix based eco-system of open evaluations for AI capabilities of future models.
TIFA: Accurate and Interpretable Text-to-Image Faithfulness Evaluation with Question Answering
Despite thousands of researchers, engineers, and artists actively working on improving text-to-image generation models, systems often fail to produce images that accurately align with the text inputs. We introduce TIFA (Text-to-Image Faithfulness evaluation with question Answering), an automatic evaluation metric that measures the faithfulness of a generated image to its text input via visual question answering (VQA). Specifically, given a text input, we automatically generate several question-answer pairs using a language model. We calculate image faithfulness by checking whether existing VQA models can answer these questions using the generated image. TIFA is a reference-free metric that allows for fine-grained and interpretable evaluations of generated images. TIFA also has better correlations with human judgments than existing metrics. Based on this approach, we introduce TIFA v1.0, a benchmark consisting of 4K diverse text inputs and 25K questions across 12 categories (object, counting, etc.). We present a comprehensive evaluation of existing text-to-image models using TIFA v1.0 and highlight the limitations and challenges of current models. For instance, we find that current text-to-image models, despite doing well on color and material, still struggle in counting, spatial relations, and composing multiple objects. We hope our benchmark will help carefully measure the research progress in text-to-image synthesis and provide valuable insights for further research.
InstructZero: Efficient Instruction Optimization for Black-Box Large Language Models
Large language models~(LLMs) are instruction followers, but it can be challenging to find the best instruction for different situations, especially for black-box LLMs on which backpropagation is forbidden. Instead of directly optimizing the discrete instruction, we optimize a low-dimensional soft prompt applied to an open-source LLM to generate the instruction for the black-box LLM. On each iteration of the proposed method, which we call InstructZero, a soft prompt is converted into an instruction using the open-source LLM, which is then submitted to the black-box LLM for zero-shot evaluation, and the performance is sent to Bayesian optimization to produce new soft prompts improving the zero-shot performance. We evaluate InstructZero on different combinations of open-source LLMs and APIs including Vicuna and ChatGPT. Our results show that InstructZero outperforms SOTA auto-instruction methods across a variety of downstream tasks. Our code and data are publicly available at https://github.com/Lichang-Chen/InstructZero.
TeXpert: A Multi-Level Benchmark for Evaluating LaTeX Code Generation by LLMs
LaTeX's precision and flexibility in typesetting have made it the gold standard for the preparation of scientific documentation. Large Language Models (LLMs) present a promising opportunity for researchers to produce publication-ready material using LaTeX with natural language instructions, yet current benchmarks completely lack evaluation of this ability. By introducing TeXpert, our benchmark dataset with natural language prompts for generating LaTeX code focused on components of scientific documents across multiple difficulty levels, we conduct an in-depth analysis of LLM performance in this regard and identify frequent error types. Our evaluation across open and closed-source LLMs highlights multiple key findings: LLMs excelling on standard benchmarks perform poorly in LaTeX generation with a significant accuracy drop-off as the complexity of tasks increases; open-source models like DeepSeek v3 and DeepSeek Coder strongly rival closed-source counterparts in LaTeX tasks; and formatting and package errors are unexpectedly prevalent, suggesting a lack of diverse LaTeX examples in the training datasets of most LLMs. Our dataset, code, and model evaluations are available at https://github.com/knowledge-verse-ai/TeXpert.
Scaling Down to Scale Up: A Cost-Benefit Analysis of Replacing OpenAI's LLM with Open Source SLMs in Production
Many companies use large language models (LLMs) offered as a service, like OpenAI's GPT-4, to create AI-enabled product experiences. Along with the benefits of ease-of-use and shortened time-to-solution, this reliance on proprietary services has downsides in model control, performance reliability, uptime predictability, and cost. At the same time, a flurry of open-source small language models (SLMs) has been made available for commercial use. However, their readiness to replace existing capabilities remains unclear, and a systematic approach to holistically evaluate these SLMs is not readily available. This paper presents a systematic evaluation methodology and a characterization of modern open-source SLMs and their trade-offs when replacing proprietary LLMs for a real-world product feature. We have designed SLaM, an open-source automated analysis tool that enables the quantitative and qualitative testing of product features utilizing arbitrary SLMs. Using SLaM, we examine the quality and performance characteristics of modern SLMs relative to an existing customer-facing implementation using the OpenAI GPT-4 API. Across 9 SLMs and their 29 variants, we observe that SLMs provide competitive results, significant performance consistency improvements, and a cost reduction of 5x~29x when compared to GPT-4.
Benchmarking Attribution Methods with Relative Feature Importance
Interpretability is an important area of research for safe deployment of machine learning systems. One particular type of interpretability method attributes model decisions to input features. Despite active development, quantitative evaluation of feature attribution methods remains difficult due to the lack of ground truth: we do not know which input features are in fact important to a model. In this work, we propose a framework for Benchmarking Attribution Methods (BAM) with a priori knowledge of relative feature importance. BAM includes 1) a carefully crafted dataset and models trained with known relative feature importance and 2) three complementary metrics to quantitatively evaluate attribution methods by comparing feature attributions between pairs of models and pairs of inputs. Our evaluation on several widely-used attribution methods suggests that certain methods are more likely to produce false positive explanations---features that are incorrectly attributed as more important to model prediction. We open source our dataset, models, and metrics.
Automatic Stage Lighting Control: Is it a Rule-Driven Process or Generative Task?
Stage lighting plays an essential role in live music performances, influencing the engaging experience of both musicians and audiences. Given the high costs associated with hiring or training professional lighting engineers, Automatic Stage Lighting Control (ASLC) has gained increasing attention. However, most existing approaches only classify music into limited categories and map them to predefined light patterns, resulting in formulaic and monotonous outcomes that lack rationality. To address this issue, this paper presents an end-to-end solution that directly learns from experienced lighting engineers -- Skip-BART. To the best of our knowledge, this is the first work to conceptualize ASLC as a generative task rather than merely a classification problem. Our method modifies the BART model to take audio music as input and produce light hue and value (intensity) as output, incorporating a novel skip connection mechanism to enhance the relationship between music and light within the frame grid.We validate our method through both quantitative analysis and an human evaluation, demonstrating that Skip-BART outperforms conventional rule-based methods across all evaluation metrics and shows only a limited gap compared to real lighting engineers.Specifically, our method yields a p-value of 0.72 in a statistical comparison based on human evaluations with human lighting engineers, suggesting that the proposed approach closely matches human lighting engineering performance. To support further research, we have made our self-collected dataset, code, and trained model parameters available at https://github.com/RS2002/Skip-BART .
LoFTI: Localization and Factuality Transfer to Indian Locales
Large language models (LLMs) encode vast amounts of world knowledge acquired via training on large web-scale datasets crawled from the internet. However, these datasets typically exhibit a geographical bias towards English-speaking Western countries. This results in LLMs producing biased or hallucinated responses to queries that require answers localized to other geographical regions. In this work, we introduce a new benchmark named LoFTI (Localization and Factuality Transfer to Indian Locales) that can be used to evaluate an LLM's localization and factual text transfer capabilities. LoFTI consists of factual statements about entities in source and target locations; the source locations are spread across the globe and the target locations are all within India with varying degrees of hyperlocality (country, states, cities). The entities span a wide variety of categories. We use LoFTI to evaluate Mixtral, GPT-4 and two other Mixtral-based approaches well-suited to the task of localized factual transfer. We demonstrate that LoFTI is a high-quality evaluation benchmark and all the models, including GPT-4, produce skewed results across varying levels of hyperlocality.
Relation Extraction in underexplored biomedical domains: A diversity-optimised sampling and synthetic data generation approach
The sparsity of labelled data is an obstacle to the development of Relation Extraction models and the completion of databases in various biomedical areas. While being of high interest in drug-discovery, the natural-products literature, reporting the identification of potential bioactive compounds from organisms, is a concrete example of such an overlooked topic. To mark the start of this new task, we created the first curated evaluation dataset and extracted literature items from the LOTUS database to build training sets. To this end, we developed a new sampler inspired by diversity metrics in ecology, named Greedy Maximum Entropy sampler, or GME-sampler (https://github.com/idiap/gme-sampler). The strategic optimization of both balance and diversity of the selected items in the evaluation set is important given the resource-intensive nature of manual curation. After quantifying the noise in the training set, in the form of discrepancies between the input abstracts text and the expected output labels, we explored different strategies accordingly. Framing the task as an end-to-end Relation Extraction, we evaluated the performance of standard fine-tuning as a generative task and few-shot learning with open Large Language Models (LLaMA 7B-65B). In addition to their evaluation in few-shot settings, we explore the potential of open Large Language Models (Vicuna-13B) as synthetic data generator and propose a new workflow for this purpose. All evaluated models exhibited substantial improvements when fine-tuned on synthetic abstracts rather than the original noisy data. We provide our best performing (f1-score=59.0) BioGPT-Large model for end-to-end RE of natural-products relationships along with all the generated synthetic data and the evaluation dataset. See more details at https://github.com/idiap/abroad-re.
MIRAGE-Bench: Automatic Multilingual Benchmark Arena for Retrieval-Augmented Generation Systems
Traditional Retrieval-Augmented Generation (RAG) benchmarks rely on different heuristic-based metrics for evaluation, but these require human preferences as ground truth for reference. In contrast, arena-based benchmarks, where two models compete each other, require an expensive Large Language Model (LLM) as a judge for a reliable evaluation. We present an easy and efficient technique to get the best of both worlds. The idea is to train a learning to rank model as a "surrogate" judge using RAG-based evaluation heuristics as input, to produce a synthetic arena-based leaderboard. Using this idea, We develop MIRAGE-Bench, a standardized arena-based multilingual RAG benchmark for 18 diverse languages on Wikipedia. The benchmark is constructed using MIRACL, a retrieval dataset, and extended for multilingual generation evaluation. MIRAGE-Bench evaluates RAG extensively coupling both heuristic features and LLM as a judge evaluator. In our work, we benchmark 19 diverse multilingual-focused LLMs, and achieve a high correlation (Kendall Tau (tau) = 0.909) using our surrogate judge learned using heuristic features with pairwise evaluations and between GPT-4o as a teacher on the MIRAGE-Bench leaderboard using the Bradley-Terry framework. We observe proprietary and large open-source LLMs currently dominate in multilingual RAG. MIRAGE-Bench is available at: https://github.com/vectara/mirage-bench.
Self-rationalization improves LLM as a fine-grained judge
LLM-as-a-judge models have been used for evaluating both human and AI generated content, specifically by providing scores and rationales. Rationales, in addition to increasing transparency, help models learn to calibrate its judgments. Enhancing a model's rationale can therefore improve its calibration abilities and ultimately the ability to score content. We introduce Self-Rationalization, an iterative process of improving the rationales for the judge models, which consequently improves the score for fine-grained customizable scoring criteria (i.e., likert-scale scoring with arbitrary evaluation criteria). Self-rationalization works by having the model generate multiple judgments with rationales for the same input, curating a preference pair dataset from its own judgements, and iteratively fine-tuning the judge via DPO. Intuitively, this approach allows the judge model to self-improve by learning from its own rationales, leading to better alignment and evaluation accuracy. After just two iterations -- while only relying on examples in the training set -- human evaluation shows that our judge model learns to produce higher quality rationales, with a win rate of 62% on average compared to models just trained via SFT on rationale . This judge model also achieves high scoring accuracy on BigGen Bench and Reward Bench, outperforming even bigger sized models trained using SFT with rationale, self-consistency or best-of-N sampling by 3% to 9%.
RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins
In the rapidly advancing field of robotics, dual-arm coordination and complex object manipulation are essential capabilities for developing advanced autonomous systems. However, the scarcity of diverse, high-quality demonstration data and real-world-aligned evaluation benchmarks severely limits such development. To address this, we introduce RoboTwin, a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets and provide a real-world-aligned evaluation platform for dual-arm robotic tasks. Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios. It also introduces a spatial relation-aware code generation framework that combines object annotations with large language models to break down tasks, determine spatial constraints, and generate precise robotic movement code. Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance. We validated our approach using the open-source COBOT Magic Robot platform. Policies pre-trained on RoboTwin-generated data and fine-tuned with limited real-world samples demonstrate significant potential for enhancing dual-arm robotic manipulation systems by improving success rates by over 70% for single-arm tasks and over 40% for dual-arm tasks compared to models trained solely on real-world data.
Artificial Intelligence, Scientific Discovery, and Product Innovation
This paper studies the impact of artificial intelligence on innovation, exploiting the randomized introduction of a new materials discovery technology to 1,018 scientists in the R&D lab of a large U.S. firm. AI-assisted researchers discover 44% more materials, resulting in a 39% increase in patent filings and a 17% rise in downstream product innovation. These compounds possess more novel chemical structures and lead to more radical inventions. However, the technology has strikingly disparate effects across the productivity distribution: while the bottom third of scientists see little benefit, the output of top researchers nearly doubles. Investigating the mechanisms behind these results, I show that AI automates 57% of "idea-generation" tasks, reallocating researchers to the new task of evaluating model-produced candidate materials. Top scientists leverage their domain knowledge to prioritize promising AI suggestions, while others waste significant resources testing false positives. Together, these findings demonstrate the potential of AI-augmented research and highlight the complementarity between algorithms and expertise in the innovative process. Survey evidence reveals that these gains come at a cost, however, as 82% of scientists report reduced satisfaction with their work due to decreased creativity and skill underutilization.
Collaborative Metric Learning Recommendation System: Application to Theatrical Movie Releases
Product recommendation systems are important for major movie studios during the movie greenlight process and as part of machine learning personalization pipelines. Collaborative Filtering (CF) models have proved to be effective at powering recommender systems for online streaming services with explicit customer feedback data. CF models do not perform well in scenarios in which feedback data is not available, in cold start situations like new product launches, and situations with markedly different customer tiers (e.g., high frequency customers vs. casual customers). Generative natural language models that create useful theme-based representations of an underlying corpus of documents can be used to represent new product descriptions, like new movie plots. When combined with CF, they have shown to increase the performance in cold start situations. Outside of those cases though in which explicit customer feedback is available, recommender engines must rely on binary purchase data, which materially degrades performance. Fortunately, purchase data can be combined with product descriptions to generate meaningful representations of products and customer trajectories in a convenient product space in which proximity represents similarity. Learning to measure the distance between points in this space can be accomplished with a deep neural network that trains on customer histories and on dense vectorizations of product descriptions. We developed a system based on Collaborative (Deep) Metric Learning (CML) to predict the purchase probabilities of new theatrical releases. We trained and evaluated the model using a large dataset of customer histories, and tested the model for a set of movies that were released outside of the training window. Initial experiments show gains relative to models that do not train on collaborative preferences.
Self-Taught Evaluators
Model-based evaluation is at the heart of successful model development -- as a reward model for training, and as a replacement for human evaluation. To train such evaluators, the standard approach is to collect a large amount of human preference judgments over model responses, which is costly and the data becomes stale as models improve. In this work, we present an approach that aims to im-prove evaluators without human annotations, using synthetic training data only. Starting from unlabeled instructions, our iterative self-improvement scheme generates contrasting model outputs and trains an LLM-as-a-Judge to produce reasoning traces and final judgments, repeating this training at each new iteration using the improved predictions. Without any labeled preference data, our Self-Taught Evaluator can improve a strong LLM (Llama3-70B-Instruct) from 75.4 to 88.3 (88.7 with majority vote) on RewardBench. This outperforms commonly used LLM judges such as GPT-4 and matches the performance of the top-performing reward models trained with labeled examples.
A Survey on Evaluation of Large Language Models
Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: https://github.com/MLGroupJLU/LLM-eval-survey.
Adding Error Bars to Evals: A Statistical Approach to Language Model Evaluations
Evaluations are critical for understanding the capabilities of large language models (LLMs). Fundamentally, evaluations are experiments; but the literature on evaluations has largely ignored the literature from other sciences on experiment analysis and planning. This article shows researchers with some training in statistics how to think about and analyze data from language model evaluations. Conceptualizing evaluation questions as having been drawn from an unseen super-population, we present formulas for analyzing evaluation data, measuring differences between two models, and planning an evaluation experiment. We make a number of specific recommendations for running language model evaluations and reporting experiment results in a way that minimizes statistical noise and maximizes informativeness.
MM-Eval: A Multilingual Meta-Evaluation Benchmark for LLM-as-a-Judge and Reward Models
Large language models (LLMs) are commonly used as evaluators in tasks (e.g., reward modeling, LLM-as-a-judge), where they act as proxies for human preferences or judgments. This leads to the need for meta-evaluation: evaluating the credibility of LLMs as evaluators. However, existing benchmarks primarily focus on English, offering limited insight into LLMs' effectiveness as evaluators in non-English contexts. To address this, we introduce MM-Eval, a multilingual meta-evaluation benchmark that covers 18 languages across six categories. MM-Eval evaluates various dimensions, including language-specific challenges like linguistics and language hallucinations. Evaluation results show that both proprietary and open-source language models have considerable room for improvement. Further analysis reveals a tendency for these models to assign middle-ground scores to low-resource languages. We publicly release our benchmark and code.
Replacing Judges with Juries: Evaluating LLM Generations with a Panel of Diverse Models
As Large Language Models (LLMs) have become more advanced, they have outpaced our abilities to accurately evaluate their quality. Not only is finding data to adequately probe particular model properties difficult, but evaluating the correctness of a model's freeform generation alone is a challenge. To address this, many evaluations now rely on using LLMs themselves as judges to score the quality of outputs from other LLMs. Evaluations most commonly use a single large model like GPT4. While this method has grown in popularity, it is costly, has been shown to introduce intramodel bias, and in this work, we find that very large models are often unnecessary. We propose instead to evaluate models using a Panel of LLm evaluators (PoLL). Across three distinct judge settings and spanning six different datasets, we find that using a PoLL composed of a larger number of smaller models outperforms a single large judge, exhibits less intra-model bias due to its composition of disjoint model families, and does so while being over seven times less expensive.
Towards Reliable Evaluation of Behavior Steering Interventions in LLMs
Representation engineering methods have recently shown promise for enabling efficient steering of model behavior. However, evaluation pipelines for these methods have primarily relied on subjective demonstrations, instead of quantitative, objective metrics. We aim to take a step towards addressing this issue by advocating for four properties missing from current evaluations: (i) contexts sufficiently similar to downstream tasks should be used for assessing intervention quality; (ii) model likelihoods should be accounted for; (iii) evaluations should allow for standardized comparisons across different target behaviors; and (iv) baseline comparisons should be offered. We introduce an evaluation pipeline grounded in these criteria, offering both a quantitative and visual analysis of how effectively a given method works. We use this pipeline to evaluate two representation engineering methods on how effectively they can steer behaviors such as truthfulness and corrigibility, finding that some interventions are less effective than previously reported.
Re-evaluating Open-ended Evaluation of Large Language Models
Evaluation has traditionally focused on ranking candidates for a specific skill. Modern generalist models, such as Large Language Models (LLMs), decidedly outpace this paradigm. Open-ended evaluation systems, where candidate models are compared on user-submitted prompts, have emerged as a popular solution. Despite their many advantages, we show that the current Elo-based rating systems can be susceptible to and even reinforce biases in data, intentional or accidental, due to their sensitivity to redundancies. To address this issue, we propose evaluation as a 3-player game, and introduce novel game-theoretic solution concepts to ensure robustness to redundancy. We show that our method leads to intuitive ratings and provide insights into the competitive landscape of LLM development.
Lessons from the Trenches on Reproducible Evaluation of Language Models
Effective evaluation of language models remains an open challenge in NLP. Researchers and engineers face methodological issues such as the sensitivity of models to evaluation setup, difficulty of proper comparisons across methods, and the lack of reproducibility and transparency. In this paper we draw on three years of experience in evaluating large language models to provide guidance and lessons for researchers. First, we provide an overview of common challenges faced in language model evaluation. Second, we delineate best practices for addressing or lessening the impact of these challenges on research. Third, we present the Language Model Evaluation Harness (lm-eval): an open source library for independent, reproducible, and extensible evaluation of language models that seeks to address these issues. We describe the features of the library as well as case studies in which the library has been used to alleviate these methodological concerns.
Quantifying Variance in Evaluation Benchmarks
Evaluation benchmarks are the cornerstone of measuring capabilities of large language models (LLMs), as well as driving progress in said capabilities. Originally designed to make claims about capabilities (or lack thereof) in fully pretrained models, evaluation benchmarks are now also extensively used to decide between various training choices. Despite this widespread usage, we rarely quantify the variance in our evaluation benchmarks, which dictates whether differences in performance are meaningful. Here, we define and measure a range of metrics geared towards measuring variance in evaluation benchmarks, including seed variance across initialisations, and monotonicity during training. By studying a large number of models -- both openly available and pretrained from scratch -- we provide empirical estimates for a variety of variance metrics, with considerations and recommendations for practitioners. We also evaluate the utility and tradeoffs of continuous versus discrete performance measures and explore options for better understanding and reducing this variance. We find that simple changes, such as framing choice tasks (like MMLU) as completion tasks, can often reduce variance for smaller scale (sim7B) models, while more involved methods inspired from human testing literature (such as item analysis and item response theory) struggle to meaningfully reduce variance. Overall, our work provides insights into variance in evaluation benchmarks, suggests LM-specific techniques to reduce variance, and more generally encourages practitioners to carefully factor in variance when comparing models.
MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities
We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models. Code and data are available at https://github.com/yuweihao/MM-Vet.
MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs
As a prominent direction of Artificial General Intelligence (AGI), Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia. Building upon pre-trained LLMs, this family of models further develops multimodal perception and reasoning capabilities that are impressive, such as writing code given a flow chart or creating stories based on an image. In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models. Distinct from the traditional train-eval-test paradigm that only favors a single task like image classification, the versatility of MLLMs has spurred the rise of various new benchmarks and evaluation methods. In this paper, we aim to present a comprehensive survey of MLLM evaluation, discussing four key aspects: 1) the summarised benchmarks types divided by the evaluation capabilities, including foundation capabilities, model self-analysis, and extented applications; 2) the typical process of benchmark counstruction, consisting of data collection, annotation, and precautions; 3) the systematic evaluation manner composed of judge, metric, and toolkit; 4) the outlook for the next benchmark. This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods, thereby driving the progress of MLLM research.
Don't Make Your LLM an Evaluation Benchmark Cheater
Large language models~(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity. To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs in different aspects. Despite that a number of high-quality benchmarks have been released, the concerns about the appropriate use of these benchmarks and the fair comparison of different models are increasingly growing. Considering these concerns, in this paper, we discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results. Specially, we focus on a special issue that would lead to inappropriate evaluation, \ie benchmark leakage, referring that the data related to evaluation sets is occasionally used for model training. This phenomenon now becomes more common since pre-training data is often prepared ahead of model test. We conduct extensive experiments to study the effect of benchmark leverage, and find that it can dramatically boost the evaluation results, which would finally lead to an unreliable assessment of model performance. To improve the use of existing evaluation benchmarks, we finally present several guidelines for both LLM developers and benchmark maintainers. We hope this work can draw attention to appropriate training and evaluation of LLMs.
Adaptively evaluating models with task elicitation
Manual curation of evaluation datasets is struggling to keep up with the rapidly expanding capabilities and deployment scenarios of language models. Towards scalable model profiling, we introduce and validate a framework for evaluating LLMs, called Adaptive Evaluations. Adaptive evaluations use scaffolded language models (evaluator agents) to search through a target model's behavior on a domain dataset and create difficult questions (tasks) that can discover and probe the model's failure modes. We find that frontier models lack consistency when adaptively probed with our framework on a diverse suite of datasets and tasks, including but not limited to legal reasoning, forecasting, and online harassment. Generated questions pass human validity checks and often transfer to other models with different capability profiles, demonstrating that adaptive evaluations can also be used to create difficult domain-specific datasets.
Evaluate & Evaluation on the Hub: Better Best Practices for Data and Model Measurements
Evaluation is a key part of machine learning (ML), yet there is a lack of support and tooling to enable its informed and systematic practice. We introduce Evaluate and Evaluation on the Hub --a set of tools to facilitate the evaluation of models and datasets in ML. Evaluate is a library to support best practices for measurements, metrics, and comparisons of data and models. Its goal is to support reproducibility of evaluation, centralize and document the evaluation process, and broaden evaluation to cover more facets of model performance. It includes over 50 efficient canonical implementations for a variety of domains and scenarios, interactive documentation, and the ability to easily share implementations and outcomes. The library is available at https://github.com/huggingface/evaluate. In addition, we introduce Evaluation on the Hub, a platform that enables the large-scale evaluation of over 75,000 models and 11,000 datasets on the Hugging Face Hub, for free, at the click of a button. Evaluation on the Hub is available at https://huggingface.co/autoevaluate.
The Generative Energy Arena (GEA): Incorporating Energy Awareness in Large Language Model (LLM) Human Evaluations
The evaluation of large language models is a complex task, in which several approaches have been proposed. The most common is the use of automated benchmarks in which LLMs have to answer multiple-choice questions of different topics. However, this method has certain limitations, being the most concerning, the poor correlation with the humans. An alternative approach, is to have humans evaluate the LLMs. This poses scalability issues as there is a large and growing number of models to evaluate making it impractical (and costly) to run traditional studies based on recruiting a number of evaluators and having them rank the responses of the models. An alternative approach is the use of public arenas, such as the popular LM arena, on which any user can freely evaluate models on any question and rank the responses of two models. The results are then elaborated into a model ranking. An increasingly important aspect of LLMs is their energy consumption and, therefore, evaluating how energy awareness influences the decisions of humans in selecting a model is of interest. In this paper, we present GEA, the Generative Energy Arena, an arena that incorporates information on the energy consumption of the model in the evaluation process. Preliminary results obtained with GEA are also presented, showing that for most questions, when users are aware of the energy consumption, they favor smaller and more energy efficient models. This suggests that for most user interactions, the extra cost and energy incurred by the more complex and top-performing models do not provide an increase in the perceived quality of the responses that justifies their use.
T-Eval: Evaluating the Tool Utilization Capability Step by Step
Large language models (LLM) have achieved remarkable performance on various NLP tasks and are augmented by tools for broader applications. Yet, how to evaluate and analyze the tool-utilization capability of LLMs is still under-explored. In contrast to previous works that evaluate models holistically, we comprehensively decompose the tool utilization into multiple sub-processes, including instruction following, planning, reasoning, retrieval, understanding, and review. Based on that, we further introduce T-Eval to evaluate the tool utilization capability step by step. T-Eval disentangles the tool utilization evaluation into several sub-domains along model capabilities, facilitating the inner understanding of both holistic and isolated competency of LLMs. We conduct extensive experiments on T-Eval and in-depth analysis of various LLMs. T-Eval not only exhibits consistency with the outcome-oriented evaluation but also provides a more fine-grained analysis of the capabilities of LLMs, providing a new perspective in LLM evaluation on tool-utilization ability. The benchmark will be available at https://github.com/open-compass/T-Eval.
Utilizing Large Language Models to Synthesize Product Desirability Datasets
This research explores the application of large language models (LLMs) to generate synthetic datasets for Product Desirability Toolkit (PDT) testing, a key component in evaluating user sentiment and product experience. Utilizing gpt-4o-mini, a cost-effective alternative to larger commercial LLMs, three methods, Word+Review, Review+Word, and Supply-Word, were each used to synthesize 1000 product reviews. The generated datasets were assessed for sentiment alignment, textual diversity, and data generation cost. Results demonstrated high sentiment alignment across all methods, with Pearson correlations ranging from 0.93 to 0.97. Supply-Word exhibited the highest diversity and coverage of PDT terms, although with increased generation costs. Despite minor biases toward positive sentiments, in situations with limited test data, LLM-generated synthetic data offers significant advantages, including scalability, cost savings, and flexibility in dataset production.
An Empirical Study of LLM-as-a-Judge for LLM Evaluation: Fine-tuned Judge Models are Task-specific Classifiers
Recently, there has been a growing trend of utilizing Large Language Model (LLM) to evaluate the quality of other LLMs. Many studies have employed proprietary close-source models, especially GPT4, as the evaluator. Alternatively, other works have fine-tuned judge models based on open-source LLMs as the evaluator. In this study, we conduct an empirical study of different judge models on their evaluation capability. Our findings indicate that although the fine-tuned judge models achieve high accuracy on in-domain test sets, even surpassing GPT4, they are inherently task-specific classifiers, and their generalizability and fairness severely underperform GPT4.
A Closer Look into Automatic Evaluation Using Large Language Models
Using large language models (LLMs) to evaluate text quality has recently gained popularity. Some prior works explore the idea of using LLMs for evaluation, while they differ in some details of the evaluation process. In this paper, we analyze LLM evaluation (Chiang and Lee, 2023) and G-Eval (Liu et al., 2023), and we discuss how those details in the evaluation process change how well the ratings given by LLMs correlate with human ratings. We find that the auto Chain-of-Thought (CoT) used in G-Eval does not always make G-Eval more aligned with human ratings. We also show that forcing the LLM to output only a numeric rating, as in G-Eval, is suboptimal. Last, we reveal that asking the LLM to explain its own ratings consistently improves the correlation between the ChatGPT and human ratings and pushes state-of-the-art (SoTA) correlations on two meta-evaluation datasets.
Eureka: Evaluating and Understanding Large Foundation Models
Rigorous and reproducible evaluation is critical for assessing the state of the art and for guiding scientific advances in Artificial Intelligence. Evaluation is challenging in practice due to several reasons, including benchmark saturation, lack of transparency in methods used for measurement, development challenges in extracting measurements for generative tasks, and, more generally, the extensive number of capabilities required for a well-rounded comparison across models. We make three contributions to alleviate the above challenges. First, we present Eureka, an open-source framework for standardizing evaluations of large foundation models beyond single-score reporting and rankings. Second, we introduce Eureka-Bench as an extensible collection of benchmarks testing capabilities that (i) are still challenging for state-of-the-art models and (ii) represent fundamental but overlooked language and multimodal capabilities. The inherent space for improvement in non-saturated benchmarks enables us to discover meaningful differences between models at a capability level. Third, using Eureka, we conduct an analysis of 12 state-of-the-art models, providing in-depth insights into failure understanding and model comparison, which can be leveraged to plan targeted improvements. In contrast to recent trends in reports and leaderboards showing absolute rankings and claims for one model or another to be the best, our analysis shows that there is no such best model. Different models have different strengths, but there are models that appear more often than others as best performers for some capabilities. Despite the recent improvements, current models still struggle with several fundamental capabilities including detailed image understanding, benefiting from multimodal input when available rather than fully relying on language, factuality and grounding for information retrieval, and over refusals.
Evaluating the Generation Capabilities of Large Chinese Language Models
This paper presents CG-Eval, the first comprehensive evaluation of the generation capabilities of large Chinese language models across a wide range of academic disciplines. The models' performance was assessed based on their ability to generate accurate and relevant responses to different types of questions in six disciplines, namely, Science and Engineering, Humanities and Social Sciences, Mathematical Calculations, Medical Practitioner Qualification Examination, Judicial Examination, and Certified Public Accountant Examination. This paper also presents Gscore, a composite index derived from the weighted sum of multiple metrics to measure the quality of model's generation against a reference. The test data and test results can be found at http://cgeval.besteasy.com/.
Improving the Capabilities of Large Language Model Based Marketing Analytics Copilots With Semantic Search And Fine-Tuning
Artificial intelligence (AI) is widely deployed to solve problems related to marketing attribution and budget optimization. However, AI models can be quite complex, and it can be difficult to understand model workings and insights without extensive implementation teams. In principle, recently developed large language models (LLMs), like GPT-4, can be deployed to provide marketing insights, reducing the time and effort required to make critical decisions. In practice, there are substantial challenges that need to be overcome to reliably use such models. We focus on domain-specific question-answering, SQL generation needed for data retrieval, and tabular analysis and show how a combination of semantic search, prompt engineering, and fine-tuning can be applied to dramatically improve the ability of LLMs to execute these tasks accurately. We compare both proprietary models, like GPT-4, and open-source models, like Llama-2-70b, as well as various embedding methods. These models are tested on sample use cases specific to marketing mix modeling and attribution.
From Concept to Manufacturing: Evaluating Vision-Language Models for Engineering Design
Engineering Design is undergoing a transformative shift with the advent of AI, marking a new era in how we approach product, system, and service planning. Large language models have demonstrated impressive capabilities in enabling this shift. Yet, with text as their only input modality, they cannot leverage the large body of visual artifacts that engineers have used for centuries and are accustomed to. This gap is addressed with the release of multimodal vision language models, such as GPT-4V, enabling AI to impact many more types of tasks. In light of these advancements, this paper presents a comprehensive evaluation of GPT-4V, a vision language model, across a wide spectrum of engineering design tasks, categorized into four main areas: Conceptual Design, System-Level and Detailed Design, Manufacturing and Inspection, and Engineering Education Tasks. Our study assesses GPT-4V's capabilities in design tasks such as sketch similarity analysis, concept selection using Pugh Charts, material selection, engineering drawing analysis, CAD generation, topology optimization, design for additive and subtractive manufacturing, spatial reasoning challenges, and textbook problems. Through this structured evaluation, we not only explore GPT-4V's proficiency in handling complex design and manufacturing challenges but also identify its limitations in complex engineering design applications. Our research establishes a foundation for future assessments of vision language models, emphasizing their immense potential for innovating and enhancing the engineering design and manufacturing landscape. It also contributes a set of benchmark testing datasets, with more than 1000 queries, for ongoing advancements and applications in this field.
OLMES: A Standard for Language Model Evaluations
Progress in AI is often demonstrated by new models claiming improved performance on tasks measuring model capabilities. Evaluating language models in particular is challenging, as small changes to how a model is evaluated on a task can lead to large changes in measured performance. There is no common standard setup, so different models are evaluated on the same tasks in different ways, leading to claims about which models perform best not being reproducible. We propose OLMES, a completely documented, practical, open standard for reproducible LLM evaluations. In developing this standard, we identify and review the varying factors in evaluation practices adopted by the community - such as details of prompt formatting, choice of in-context examples, probability normalizations, and task formulation. In particular, OLMES supports meaningful comparisons between smaller base models that require the unnatural "cloze" formulation of multiple-choice questions against larger models that can utilize the original formulation. OLMES includes well-considered recommendations guided by results from existing literature as well as new experiments investigating open questions.
SciArena: An Open Evaluation Platform for Foundation Models in Scientific Literature Tasks
We present SciArena, an open and collaborative platform for evaluating foundation models on scientific literature tasks. Unlike traditional benchmarks for scientific literature understanding and synthesis, SciArena engages the research community directly, following the Chatbot Arena evaluation approach of community voting on model comparisons. By leveraging collective intelligence, SciArena offers a community-driven evaluation of model performance on open-ended scientific tasks that demand literature-grounded, long-form responses. The platform currently supports 23 open-source and proprietary foundation models and has collected over 13,000 votes from trusted researchers across diverse scientific domains. We analyze the data collected so far and confirm that the submitted questions are diverse, aligned with real-world literature needs, and that participating researchers demonstrate strong self-consistency and inter-annotator agreement in their evaluations. We discuss the results and insights based on the model ranking leaderboard. To further promote research in building model-based automated evaluation systems for literature tasks, we release SciArena-Eval, a meta-evaluation benchmark based on our collected preference data. The benchmark measures the accuracy of models in judging answer quality by comparing their pairwise assessments with human votes. Our experiments highlight the benchmark's challenges and emphasize the need for more reliable automated evaluation methods.
Evaluating Large Language Models: A Comprehensive Survey
Large language models (LLMs) have demonstrated remarkable capabilities across a broad spectrum of tasks. They have attracted significant attention and been deployed in numerous downstream applications. Nevertheless, akin to a double-edged sword, LLMs also present potential risks. They could suffer from private data leaks or yield inappropriate, harmful, or misleading content. Additionally, the rapid progress of LLMs raises concerns about the potential emergence of superintelligent systems without adequate safeguards. To effectively capitalize on LLM capacities as well as ensure their safe and beneficial development, it is critical to conduct a rigorous and comprehensive evaluation of LLMs. This survey endeavors to offer a panoramic perspective on the evaluation of LLMs. We categorize the evaluation of LLMs into three major groups: knowledge and capability evaluation, alignment evaluation and safety evaluation. In addition to the comprehensive review on the evaluation methodologies and benchmarks on these three aspects, we collate a compendium of evaluations pertaining to LLMs' performance in specialized domains, and discuss the construction of comprehensive evaluation platforms that cover LLM evaluations on capabilities, alignment, safety, and applicability. We hope that this comprehensive overview will stimulate further research interests in the evaluation of LLMs, with the ultimate goal of making evaluation serve as a cornerstone in guiding the responsible development of LLMs. We envision that this will channel their evolution into a direction that maximizes societal benefit while minimizing potential risks. A curated list of related papers has been publicly available at https://github.com/tjunlp-lab/Awesome-LLMs-Evaluation-Papers.
The Aloe Family Recipe for Open and Specialized Healthcare LLMs
Purpose: With advancements in Large Language Models (LLMs) for healthcare, the need arises for competitive open-source models to protect the public interest. This work contributes to the field of open medical LLMs by optimizing key stages of data preprocessing and training, while showing how to improve model safety (through DPO) and efficacy (through RAG). The evaluation methodology used, which includes four different types of tests, defines a new standard for the field. The resultant models, shown to be competitive with the best private alternatives, are released with a permisive license. Methods: Building on top of strong base models like Llama 3.1 and Qwen 2.5, Aloe Beta uses a custom dataset to enhance public data with synthetic Chain of Thought examples. The models undergo alignment with Direct Preference Optimization, emphasizing ethical and policy-aligned performance in the presence of jailbreaking attacks. Evaluation includes close-ended, open-ended, safety and human assessments, to maximize the reliability of results. Results: Recommendations are made across the entire pipeline, backed by the solid performance of the Aloe Family. These models deliver competitive performance across healthcare benchmarks and medical fields, and are often preferred by healthcare professionals. On bias and toxicity, the Aloe Beta models significantly improve safety, showing resilience to unseen jailbreaking attacks. For a responsible release, a detailed risk assessment specific to healthcare is attached to the Aloe Family models. Conclusion: The Aloe Beta models, and the recipe that leads to them, are a significant contribution to the open-source medical LLM field, offering top-of-the-line performance while maintaining high ethical requirements. This work sets a new standard for developing and reporting aligned LLMs in healthcare.
Manipulating Large Language Models to Increase Product Visibility
Large language models (LLMs) are increasingly being integrated into search engines to provide natural language responses tailored to user queries. Customers and end-users are also becoming more dependent on these models for quick and easy purchase decisions. In this work, we investigate whether recommendations from LLMs can be manipulated to enhance a product's visibility. We demonstrate that adding a strategic text sequence (STS) -- a carefully crafted message -- to a product's information page can significantly increase its likelihood of being listed as the LLM's top recommendation. To understand the impact of STS, we use a catalog of fictitious coffee machines and analyze its effect on two target products: one that seldom appears in the LLM's recommendations and another that usually ranks second. We observe that the strategic text sequence significantly enhances the visibility of both products by increasing their chances of appearing as the top recommendation. This ability to manipulate LLM-generated search responses provides vendors with a considerable competitive advantage and has the potential to disrupt fair market competition. Just as search engine optimization (SEO) revolutionized how webpages are customized to rank higher in search engine results, influencing LLM recommendations could profoundly impact content optimization for AI-driven search services. Code for our experiments is available at https://github.com/aounon/llm-rank-optimizer.
xbench: Tracking Agents Productivity Scaling with Profession-Aligned Real-World Evaluations
We introduce xbench, a dynamic, profession-aligned evaluation suite designed to bridge the gap between AI agent capabilities and real-world productivity. While existing benchmarks often focus on isolated technical skills, they may not accurately reflect the economic value agents deliver in professional settings. To address this, xbench targets commercially significant domains with evaluation tasks defined by industry professionals. Our framework creates metrics that strongly correlate with productivity value, enables prediction of Technology-Market Fit (TMF), and facilitates tracking of product capabilities over time. As our initial implementations, we present two benchmarks: Recruitment and Marketing. For Recruitment, we collect 50 tasks from real-world headhunting business scenarios to evaluate agents' abilities in company mapping, information retrieval, and talent sourcing. For Marketing, we assess agents' ability to match influencers with advertiser needs, evaluating their performance across 50 advertiser requirements using a curated pool of 836 candidate influencers. We present initial evaluation results for leading contemporary agents, establishing a baseline for these professional domains. Our continuously updated evalsets and evaluations are available at https://xbench.org.
PRE: A Peer Review Based Large Language Model Evaluator
The impressive performance of large language models (LLMs) has attracted considerable attention from the academic and industrial communities. Besides how to construct and train LLMs, how to effectively evaluate and compare the capacity of LLMs has also been well recognized as an important yet difficult problem. Existing paradigms rely on either human annotators or model-based evaluators to evaluate the performance of LLMs on different tasks. However, these paradigms often suffer from high cost, low generalizability, and inherited biases in practice, which make them incapable of supporting the sustainable development of LLMs in long term. In order to address these issues, inspired by the peer review systems widely used in academic publication process, we propose a novel framework that can automatically evaluate LLMs through a peer-review process. Specifically, for the evaluation of a specific task, we first construct a small qualification exam to select "reviewers" from a couple of powerful LLMs. Then, to actually evaluate the "submissions" written by different candidate LLMs, i.e., the evaluatees, we use the reviewer LLMs to rate or compare the submissions. The final ranking of evaluatee LLMs is generated based on the results provided by all reviewers. We conducted extensive experiments on text summarization tasks with eleven LLMs including GPT-4. The results demonstrate the existence of biasness when evaluating using a single LLM. Also, our PRE model outperforms all the baselines, illustrating the effectiveness of the peer review mechanism.
Emulating Human Cognitive Processes for Expert-Level Medical Question-Answering with Large Language Models
In response to the pressing need for advanced clinical problem-solving tools in healthcare, we introduce BooksMed, a novel framework based on a Large Language Model (LLM). BooksMed uniquely emulates human cognitive processes to deliver evidence-based and reliable responses, utilizing the GRADE (Grading of Recommendations, Assessment, Development, and Evaluations) framework to effectively quantify evidence strength. For clinical decision-making to be appropriately assessed, an evaluation metric that is clinically aligned and validated is required. As a solution, we present ExpertMedQA, a multispecialty clinical benchmark comprised of open-ended, expert-level clinical questions, and validated by a diverse group of medical professionals. By demanding an in-depth understanding and critical appraisal of up-to-date clinical literature, ExpertMedQA rigorously evaluates LLM performance. BooksMed outperforms existing state-of-the-art models Med-PaLM 2, Almanac, and ChatGPT in a variety of medical scenarios. Therefore, a framework that mimics human cognitive stages could be a useful tool for providing reliable and evidence-based responses to clinical inquiries.
A Comprehensive Survey of Evaluation Techniques for Recommendation Systems
The effectiveness of recommendation systems is pivotal to user engagement and satisfaction in online platforms. As these recommendation systems increasingly influence user choices, their evaluation transcends mere technical performance and becomes central to business success. This paper addresses the multifaceted nature of recommendations system evaluation by introducing a comprehensive suite of metrics, each tailored to capture a distinct aspect of system performance. We discuss * Similarity Metrics: to quantify the precision of content-based filtering mechanisms and assess the accuracy of collaborative filtering techniques. * Candidate Generation Metrics: to evaluate how effectively the system identifies a broad yet relevant range of items. * Predictive Metrics: to assess the accuracy of forecasted user preferences. * Ranking Metrics: to evaluate the effectiveness of the order in which recommendations are presented. * Business Metrics: to align the performance of the recommendation system with economic objectives. Our approach emphasizes the contextual application of these metrics and their interdependencies. In this paper, we identify the strengths and limitations of current evaluation practices and highlight the nuanced trade-offs that emerge when optimizing recommendation systems across different metrics. The paper concludes by proposing a framework for selecting and interpreting these metrics to not only improve system performance but also to advance business goals. This work is to aid researchers and practitioners in critically assessing recommendation systems and fosters the development of more nuanced, effective, and economically viable personalization strategies. Our code is available at GitHub - https://github.com/aryan-jadon/Evaluation-Metrics-for-Recommendation-Systems.
In Search of Insights, Not Magic Bullets: Towards Demystification of the Model Selection Dilemma in Heterogeneous Treatment Effect Estimation
Personalized treatment effect estimates are often of interest in high-stakes applications -- thus, before deploying a model estimating such effects in practice, one needs to be sure that the best candidate from the ever-growing machine learning toolbox for this task was chosen. Unfortunately, due to the absence of counterfactual information in practice, it is usually not possible to rely on standard validation metrics for doing so, leading to a well-known model selection dilemma in the treatment effect estimation literature. While some solutions have recently been investigated, systematic understanding of the strengths and weaknesses of different model selection criteria is still lacking. In this paper, instead of attempting to declare a global `winner', we therefore empirically investigate success- and failure modes of different selection criteria. We highlight that there is a complex interplay between selection strategies, candidate estimators and the data used for comparing them, and provide interesting insights into the relative (dis)advantages of different criteria alongside desiderata for the design of further illuminating empirical studies in this context.
Attention Weighted Mixture of Experts with Contrastive Learning for Personalized Ranking in E-commerce
Ranking model plays an essential role in e-commerce search and recommendation. An effective ranking model should give a personalized ranking list for each user according to the user preference. Existing algorithms usually extract a user representation vector from the user behavior sequence, then feed the vector into a feed-forward network (FFN) together with other features for feature interactions, and finally produce a personalized ranking score. Despite tremendous progress in the past, there is still room for improvement. Firstly, the personalized patterns of feature interactions for different users are not explicitly modeled. Secondly, most of existing algorithms have poor personalized ranking results for long-tail users with few historical behaviors due to the data sparsity. To overcome the two challenges, we propose Attention Weighted Mixture of Experts (AW-MoE) with contrastive learning for personalized ranking. Firstly, AW-MoE leverages the MoE framework to capture personalized feature interactions for different users. To model the user preference, the user behavior sequence is simultaneously fed into expert networks and the gate network. Within the gate network, one gate unit and one activation unit are designed to adaptively learn the fine-grained activation vector for experts using an attention mechanism. Secondly, a random masking strategy is applied to the user behavior sequence to simulate long-tail users, and an auxiliary contrastive loss is imposed to the output of the gate network to improve the model generalization for these users. This is validated by a higher performance gain on the long-tail user test set. Experiment results on a JD real production dataset and a public dataset demonstrate the effectiveness of AW-MoE, which significantly outperforms state-of-art methods. Notably, AW-MoE has been successfully deployed in the JD e-commerce search engine, ...
Through the Lens of Core Competency: Survey on Evaluation of Large Language Models
From pre-trained language model (PLM) to large language model (LLM), the field of natural language processing (NLP) has witnessed steep performance gains and wide practical uses. The evaluation of a research field guides its direction of improvement. However, LLMs are extremely hard to thoroughly evaluate for two reasons. First of all, traditional NLP tasks become inadequate due to the excellent performance of LLM. Secondly, existing evaluation tasks are difficult to keep up with the wide range of applications in real-world scenarios. To tackle these problems, existing works proposed various benchmarks to better evaluate LLMs. To clarify the numerous evaluation tasks in both academia and industry, we investigate multiple papers concerning LLM evaluations. We summarize 4 core competencies of LLM, including reasoning, knowledge, reliability, and safety. For every competency, we introduce its definition, corresponding benchmarks, and metrics. Under this competency architecture, similar tasks are combined to reflect corresponding ability, while new tasks can also be easily added into the system. Finally, we give our suggestions on the future direction of LLM's evaluation.
A Survey on LLM-as-a-Judge
Accurate and consistent evaluation is crucial for decision-making across numerous fields, yet it remains a challenging task due to inherent subjectivity, variability, and scale. Large Language Models (LLMs) have achieved remarkable success across diverse domains, leading to the emergence of "LLM-as-a-Judge," where LLMs are employed as evaluators for complex tasks. With their ability to process diverse data types and provide scalable, cost-effective, and consistent assessments, LLMs present a compelling alternative to traditional expert-driven evaluations. However, ensuring the reliability of LLM-as-a-Judge systems remains a significant challenge that requires careful design and standardization. This paper provides a comprehensive survey of LLM-as-a-Judge, addressing the core question: How can reliable LLM-as-a-Judge systems be built? We explore strategies to enhance reliability, including improving consistency, mitigating biases, and adapting to diverse assessment scenarios. Additionally, we propose methodologies for evaluating the reliability of LLM-as-a-Judge systems, supported by a novel benchmark designed for this purpose. To advance the development and real-world deployment of LLM-as-a-Judge systems, we also discussed practical applications, challenges, and future directions. This survey serves as a foundational reference for researchers and practitioners in this rapidly evolving field.
The Science of Evaluating Foundation Models
The emergent phenomena of large foundation models have revolutionized natural language processing. However, evaluating these models presents significant challenges due to their size, capabilities, and deployment across diverse applications. Existing literature often focuses on individual aspects, such as benchmark performance or specific tasks, but fails to provide a cohesive process that integrates the nuances of diverse use cases with broader ethical and operational considerations. This work focuses on three key aspects: (1) Formalizing the Evaluation Process by providing a structured framework tailored to specific use-case contexts, (2) Offering Actionable Tools and Frameworks such as checklists and templates to ensure thorough, reproducible, and practical evaluations, and (3) Surveying Recent Work with a targeted review of advancements in LLM evaluation, emphasizing real-world applications.
LitLLMs, LLMs for Literature Review: Are we there yet?
Literature reviews are an essential component of scientific research, but they remain time-intensive and challenging to write, especially due to the recent influx of research papers. This paper explores the zero-shot abilities of recent Large Language Models (LLMs) in assisting with the writing of literature reviews based on an abstract. We decompose the task into two components: 1. Retrieving related works given a query abstract, and 2. Writing a literature review based on the retrieved results. We analyze how effective LLMs are for both components. For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper and then retrieves potentially relevant papers by querying an external knowledge base. Additionally, we study a prompting-based re-ranking mechanism with attribution and show that re-ranking doubles the normalized recall compared to naive search methods, while providing insights into the LLM's decision-making process. In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review. To evaluate different LLM-based literature review methods, we create test sets from arXiv papers using a protocol designed for rolling use with newly released LLMs to avoid test set contamination in zero-shot evaluations. We release this evaluation protocol to promote additional research and development in this regard. Our empirical results suggest that LLMs show promising potential for writing literature reviews when the task is decomposed into smaller components of retrieval and planning. Our project page including a demonstration system and toolkit can be accessed here: https://litllm.github.io.
Yelp Dataset Challenge: Review Rating Prediction
Review websites, such as TripAdvisor and Yelp, allow users to post online reviews for various businesses, products and services, and have been recently shown to have a significant influence on consumer shopping behaviour. An online review typically consists of free-form text and a star rating out of 5. The problem of predicting a user's star rating for a product, given the user's text review for that product, is called Review Rating Prediction and has lately become a popular, albeit hard, problem in machine learning. In this paper, we treat Review Rating Prediction as a multi-class classification problem, and build sixteen different prediction models by combining four feature extraction methods, (i) unigrams, (ii) bigrams, (iii) trigrams and (iv) Latent Semantic Indexing, with four machine learning algorithms, (i) logistic regression, (ii) Naive Bayes classification, (iii) perceptrons, and (iv) linear Support Vector Classification. We analyse the performance of each of these sixteen models to come up with the best model for predicting the ratings from reviews. We use the dataset provided by Yelp for training and testing the models.
AgentSims: An Open-Source Sandbox for Large Language Model Evaluation
With ChatGPT-like large language models (LLM) prevailing in the community, how to evaluate the ability of LLMs is an open question. Existing evaluation methods suffer from following shortcomings: (1) constrained evaluation abilities, (2) vulnerable benchmarks, (3) unobjective metrics. We suggest that task-based evaluation, where LLM agents complete tasks in a simulated environment, is a one-for-all solution to solve above problems. We present AgentSims, an easy-to-use infrastructure for researchers from all disciplines to test the specific capacities they are interested in. Researchers can build their evaluation tasks by adding agents and buildings on an interactive GUI or deploy and test new support mechanisms, i.e. memory, planning and tool-use systems, by a few lines of codes. Our demo is available at https://agentsims.com .
From Rankings to Insights: Evaluation Should Shift Focus from Leaderboard to Feedback
Automatic evaluation benchmarks such as MT-Bench, Arena-Hard, and Auto-Arena are seeing growing adoption for the evaluation of Large Language Models (LLMs). Existing research has primarily focused on approximating human-based model rankings using limited data and LLM-as-a-Judge. However, the fundamental premise of these studies, which attempts to replicate human rankings, is flawed. Specifically, these benchmarks typically offer only overall scores, limiting their utility to leaderboard rankings, rather than providing feedback that can guide model optimization and support model profiling. Therefore, we advocate for an evaluation paradigm shift from approximating human-based model rankings to providing feedback with analytical value. To this end, we introduce Feedbacker, an evaluation framework that provides comprehensive and fine-grained results, thereby enabling thorough identification of a model's specific strengths and weaknesses. Such feedback not only supports the targeted optimization of the model but also enhances the understanding of its behavior. Feedbacker comprises three key components: an extensible tree-based query taxonomy builder, an automated query synthesis scheme, and a suite of visualization and analysis tools. Furthermore, we propose a novel LLM-as-a-Judge method: PC2 (Pre-Comparison-derived Criteria) pointwise evaluation. This method derives evaluation criteria by pre-comparing the differences between several auxiliary responses, achieving the accuracy of pairwise evaluation while maintaining the time complexity of pointwise evaluation. Finally, leveraging the evaluation results of 17 mainstream LLMs, we demonstrate the usage of Feedbacker and highlight its effectiveness and potential. Our homepage project is available at https://liudan193.github.io/Feedbacker.
Pareto Front Approximation for Multi-Objective Session-Based Recommender Systems
This work introduces MultiTRON, an approach that adapts Pareto front approximation techniques to multi-objective session-based recommender systems using a transformer neural network. Our approach optimizes trade-offs between key metrics such as click-through and conversion rates by training on sampled preference vectors. A significant advantage is that after training, a single model can access the entire Pareto front, allowing it to be tailored to meet the specific requirements of different stakeholders by adjusting an additional input vector that weights the objectives. We validate the model's performance through extensive offline and online evaluation. For broader application and research, the source code is made available at https://github.com/otto-de/MultiTRON. The results confirm the model's ability to manage multiple recommendation objectives effectively, offering a flexible tool for diverse business needs.
Self-Evaluation of Large Language Model based on Glass-box Features
The proliferation of open-source Large Language Models (LLMs) underscores the pressing need for evaluation methods. Existing works primarily rely on external evaluators, focusing on training and prompting strategies. However, a crucial aspect - model-aware glass-box features - is overlooked. In this study, we explore the utility of glass-box features under the scenario of self-evaluation, namely applying an LLM to evaluate its own output. We investigate various glass-box feature groups and discovered that the softmax distribution serves as a reliable indicator for quality evaluation. Furthermore, we propose two strategies to enhance the evaluation by incorporating features derived from references. Experimental results on public benchmarks validate the feasibility of self-evaluation of LLMs using glass-box features.
Balancing Specialized and General Skills in LLMs: The Impact of Modern Tuning and Data Strategy
This paper introduces a multifaceted methodology for fine-tuning and evaluating large language models (LLMs) for specialized monetization tasks. The goal is to balance general language proficiency with domain-specific skills. The methodology has three main components: 1) Carefully blending in-domain and general-purpose data during fine-tuning to achieve an optimal balance between general and specialized capabilities; 2) Designing a comprehensive evaluation framework with 45 questions tailored to assess performance on functionally relevant dimensions like reliability, consistency, and business impact; 3) Analyzing how model size and continual training influence metrics to guide efficient resource allocation during fine-tuning. The paper details the design, data collection, analytical techniques, and results validating the proposed frameworks. It aims to provide businesses and researchers with actionable insights on effectively adapting LLMs for specialized contexts. We also intend to make public the comprehensive evaluation framework, which includes the 45 tailored questions and their respective scoring guidelines, to foster transparency and collaboration in adapting LLMs for specialized tasks.
Is GPT-4 a reliable rater? Evaluating Consistency in GPT-4 Text Ratings
This study investigates the consistency of feedback ratings generated by OpenAI's GPT-4, a state-of-the-art artificial intelligence language model, across multiple iterations, time spans and stylistic variations. The model rated responses to tasks within the Higher Education (HE) subject domain of macroeconomics in terms of their content and style. Statistical analysis was conducted in order to learn more about the interrater reliability, consistency of the ratings across iterations and the correlation between ratings in terms of content and style. The results revealed a high interrater reliability with ICC scores ranging between 0.94 and 0.99 for different timespans, suggesting that GPT-4 is capable of generating consistent ratings across repetitions with a clear prompt. Style and content ratings show a high correlation of 0.87. When applying a non-adequate style the average content ratings remained constant, while style ratings decreased, which indicates that the large language model (LLM) effectively distinguishes between these two criteria during evaluation. The prompt used in this study is furthermore presented and explained. Further research is necessary to assess the robustness and reliability of AI models in various use cases.
Rethinking Model Evaluation as Narrowing the Socio-Technical Gap
The recent development of generative and large language models (LLMs) poses new challenges for model evaluation that the research community and industry are grappling with. While the versatile capabilities of these models ignite excitement, they also inevitably make a leap toward homogenization: powering a wide range of applications with a single, often referred to as ``general-purpose'', model. In this position paper, we argue that model evaluation practices must take on a critical task to cope with the challenges and responsibilities brought by this homogenization: providing valid assessments for whether and how much human needs in downstream use cases can be satisfied by the given model (socio-technical gap). By drawing on lessons from the social sciences, human-computer interaction (HCI), and the interdisciplinary field of explainable AI (XAI), we urge the community to develop evaluation methods based on real-world socio-requirements and embrace diverse evaluation methods with an acknowledgment of trade-offs between realism to socio-requirements and pragmatic costs to conduct the evaluation. By mapping HCI and current NLG evaluation methods, we identify opportunities for evaluation methods for LLMs to narrow the socio-technical gap and pose open questions.
MSEval: A Dataset for Material Selection in Conceptual Design to Evaluate Algorithmic Models
Material selection plays a pivotal role in many industries, from manufacturing to construction. Material selection is usually carried out after several cycles of conceptual design, during which designers iteratively refine the design solution and the intended manufacturing approach. In design research, material selection is typically treated as an optimization problem with a single correct answer. Moreover, it is also often restricted to specific types of objects or design functions, which can make the selection process computationally expensive and time-consuming. In this paper, we introduce MSEval, a novel dataset which is comprised of expert material evaluations across a variety of design briefs and criteria. This data is designed to serve as a benchmark to facilitate the evaluation and modification of machine learning models in the context of material selection for conceptual design.
BARS: Towards Open Benchmarking for Recommender Systems
The past two decades have witnessed the rapid development of personalized recommendation techniques. Despite significant progress made in both research and practice of recommender systems, to date, there is a lack of a widely-recognized benchmarking standard in this field. Many existing studies perform model evaluations and comparisons in an ad-hoc manner, for example, by employing their own private data splits or using different experimental settings. Such conventions not only increase the difficulty in reproducing existing studies, but also lead to inconsistent experimental results among them. This largely limits the credibility and practical value of research results in this field. To tackle these issues, we present an initiative project (namely BARS) aiming for open benchmarking for recommender systems. In comparison to some earlier attempts towards this goal, we take a further step by setting up a standardized benchmarking pipeline for reproducible research, which integrates all the details about datasets, source code, hyper-parameter settings, running logs, and evaluation results. The benchmark is designed with comprehensiveness and sustainability in mind. It covers both matching and ranking tasks, and also enables researchers to easily follow and contribute to the research in this field. This project will not only reduce the redundant efforts of researchers to re-implement or re-run existing baselines, but also drive more solid and reproducible research on recommender systems. We would like to call upon everyone to use the BARS benchmark for future evaluation, and contribute to the project through the portal at: https://openbenchmark.github.io/BARS.
Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences
Due to the cumbersome nature of human evaluation and limitations of code-based evaluation, Large Language Models (LLMs) are increasingly being used to assist humans in evaluating LLM outputs. Yet LLM-generated evaluators simply inherit all the problems of the LLMs they evaluate, requiring further human validation. We present a mixed-initiative approach to ``validate the validators'' -- aligning LLM-generated evaluation functions (be it prompts or code) with human requirements. Our interface, EvalGen, provides automated assistance to users in generating evaluation criteria and implementing assertions. While generating candidate implementations (Python functions, LLM grader prompts), EvalGen asks humans to grade a subset of LLM outputs; this feedback is used to select implementations that better align with user grades. A qualitative study finds overall support for EvalGen but underscores the subjectivity and iterative process of alignment. In particular, we identify a phenomenon we dub criteria drift: users need criteria to grade outputs, but grading outputs helps users define criteria. What is more, some criteria appears dependent on the specific LLM outputs observed (rather than independent criteria that can be defined a priori), raising serious questions for approaches that assume the independence of evaluation from observation of model outputs. We present our interface and implementation details, a comparison of our algorithm with a baseline approach, and implications for the design of future LLM evaluation assistants.
Fairness Evaluation for Uplift Modeling in the Absence of Ground Truth
The acceleration in the adoption of AI-based automated decision-making systems poses a challenge for evaluating the fairness of algorithmic decisions, especially in the absence of ground truth. When designing interventions, uplift modeling is used extensively to identify candidates that are likely to benefit from treatment. However, these models remain particularly susceptible to fairness evaluation due to the lack of ground truth on the outcome measure since a candidate cannot be in both treatment and control simultaneously. In this article, we propose a framework that overcomes the missing ground truth problem by generating surrogates to serve as a proxy for counterfactual labels of uplift modeling campaigns. We then leverage the surrogate ground truth to conduct a more comprehensive binary fairness evaluation. We show how to apply the approach in a comprehensive study from a real-world marketing campaign for promotional offers and demonstrate its enhancement for fairness evaluation.
EvalTree: Profiling Language Model Weaknesses via Hierarchical Capability Trees
An ideal model evaluation should achieve two goals: identifying where the model fails and providing actionable improvement guidance. Toward these goals for Language Model (LM) evaluations, we formulate the problem of generating a weakness profile, a set of weaknesses expressed in natural language, given an LM's performance on every individual instance in a benchmark. We introduce a suite of quantitative assessments to compare different weakness profiling methods. We also propose a weakness profiling method EvalTree. It constructs a capability tree where each node represents a capability described in natural language and is linked to a subset of benchmark instances that specifically evaluate this capability; it then extracts nodes where the LM performs poorly to generate a weakness profile. On the MATH and WildChat benchmarks, we show that EvalTree outperforms baseline weakness profiling methods by identifying weaknesses more precisely and comprehensively. Weakness profiling further enables weakness-guided data collection, and training data collection guided by EvalTree-identified weaknesses improves LM performance more than other data collection strategies. We also show how EvalTree exposes flaws in Chatbot Arena's human-voter-based evaluation practice. To facilitate future work, we release our code and an interface that allows practitioners to interactively explore the capability trees built by EvalTree.
ChineseEcomQA: A Scalable E-commerce Concept Evaluation Benchmark for Large Language Models
With the increasing use of Large Language Models (LLMs) in fields such as e-commerce, domain-specific concept evaluation benchmarks are crucial for assessing their domain capabilities. Existing LLMs may generate factually incorrect information within the complex e-commerce applications. Therefore, it is necessary to build an e-commerce concept benchmark. Existing benchmarks encounter two primary challenges: (1) handle the heterogeneous and diverse nature of tasks, (2) distinguish between generality and specificity within the e-commerce field. To address these problems, we propose ChineseEcomQA, a scalable question-answering benchmark focused on fundamental e-commerce concepts. ChineseEcomQA is built on three core characteristics: Focus on Fundamental Concept, E-commerce Generality and E-commerce Expertise. Fundamental concepts are designed to be applicable across a diverse array of e-commerce tasks, thus addressing the challenge of heterogeneity and diversity. Additionally, by carefully balancing generality and specificity, ChineseEcomQA effectively differentiates between broad e-commerce concepts, allowing for precise validation of domain capabilities. We achieve this through a scalable benchmark construction process that combines LLM validation, Retrieval-Augmented Generation (RAG) validation, and rigorous manual annotation. Based on ChineseEcomQA, we conduct extensive evaluations on mainstream LLMs and provide some valuable insights. We hope that ChineseEcomQA could guide future domain-specific evaluations, and facilitate broader LLM adoption in e-commerce applications.
SkyReels-A1: Expressive Portrait Animation in Video Diffusion Transformers
We present SkyReels-A1, a simple yet effective framework built upon video diffusion Transformer to facilitate portrait image animation. Existing methodologies still encounter issues, including identity distortion, background instability, and unrealistic facial dynamics, particularly in head-only animation scenarios. Besides, extending to accommodate diverse body proportions usually leads to visual inconsistencies or unnatural articulations. To address these challenges, SkyReels-A1 capitalizes on the strong generative capabilities of video DiT, enhancing facial motion transfer precision, identity retention, and temporal coherence. The system incorporates an expression-aware conditioning module that enables seamless video synthesis driven by expression-guided landmark inputs. Integrating the facial image-text alignment module strengthens the fusion of facial attributes with motion trajectories, reinforcing identity preservation. Additionally, SkyReels-A1 incorporates a multi-stage training paradigm to incrementally refine the correlation between expressions and motion while ensuring stable identity reproduction. Extensive empirical evaluations highlight the model's ability to produce visually coherent and compositionally diverse results, making it highly applicable to domains such as virtual avatars, remote communication, and digital media generation.
Chain of Ideas: Revolutionizing Research in Novel Idea Development with LLM Agents
Effective research ideation is a critical step for scientific research. However, the exponential increase in scientific literature makes it challenging for researchers to stay current with recent advances and identify meaningful research directions. Recent developments in large language models~(LLMs) suggest a promising avenue for automating the generation of novel research ideas. However, existing methods for idea generation either trivially prompt LLMs or directly expose LLMs to extensive literature without indicating useful information. Inspired by the research process of human researchers, we propose a Chain-of-Ideas~(CoI) agent, an LLM-based agent that organizes relevant literature in a chain structure to effectively mirror the progressive development in a research domain. This organization facilitates LLMs to capture the current advancements in research, thereby enhancing their ideation capabilities. Furthermore, we propose Idea Arena, an evaluation protocol that can comprehensively evaluate idea generation methods from different perspectives, aligning closely with the preferences of human researchers. Experimental results indicate that the CoI agent consistently outperforms other methods and shows comparable quality as humans in research idea generation. Moreover, our CoI agent is budget-friendly, with a minimum cost of \$0.50 to generate a candidate idea and its corresponding experimental design.
State of What Art? A Call for Multi-Prompt LLM Evaluation
Recent advances in large language models (LLMs) have led to the development of various evaluation benchmarks. These benchmarks typically rely on a single instruction template for evaluating all LLMs on a specific task. In this paper, we comprehensively analyze the brittleness of results obtained via single-prompt evaluations across 6.5M instances, involving 20 different LLMs and 39 tasks from 3 benchmarks. To improve robustness of the analysis, we propose to evaluate LLMs with a set of diverse prompts instead. We discuss tailored evaluation metrics for specific use cases (e.g., LLM developers vs. developers interested in a specific downstream task), ensuring a more reliable and meaningful assessment of LLM capabilities. We then implement these criteria and conduct evaluations of multiple models, providing insights into the true strengths and limitations of current LLMs.
RewardBench 2: Advancing Reward Model Evaluation
Reward models are used throughout the post-training of language models to capture nuanced signals from preference data and provide a training target for optimization across instruction following, reasoning, safety, and more domains. The community has begun establishing best practices for evaluating reward models, from the development of benchmarks that test capabilities in specific skill areas to others that test agreement with human preferences. At the same time, progress in evaluation has not been mirrored by the effectiveness of reward models in downstream tasks -- simpler direct alignment algorithms are reported to work better in many cases. This paper introduces RewardBench 2, a new multi-skill reward modeling benchmark designed to bring new, challenging data for accuracy-based reward model evaluation -- models score about 20 points on average lower on RewardBench 2 compared to the first RewardBench -- while being highly correlated with downstream performance. Compared to most other benchmarks, RewardBench 2 sources new human prompts instead of existing prompts from downstream evaluations, facilitating more rigorous evaluation practices. In this paper, we describe our benchmark construction process and report how existing models perform on it, while quantifying how performance on the benchmark correlates with downstream use of the models in both inference-time scaling algorithms, like best-of-N sampling, and RLHF training algorithms like proximal policy optimization.
LLM Comparator: Visual Analytics for Side-by-Side Evaluation of Large Language Models
Automatic side-by-side evaluation has emerged as a promising approach to evaluating the quality of responses from large language models (LLMs). However, analyzing the results from this evaluation approach raises scalability and interpretability challenges. In this paper, we present LLM Comparator, a novel visual analytics tool for interactively analyzing results from automatic side-by-side evaluation. The tool supports interactive workflows for users to understand when and why a model performs better or worse than a baseline model, and how the responses from two models are qualitatively different. We iteratively designed and developed the tool by closely working with researchers and engineers at a large technology company. This paper details the user challenges we identified, the design and development of the tool, and an observational study with participants who regularly evaluate their models.
BoxingGym: Benchmarking Progress in Automated Experimental Design and Model Discovery
Understanding the world and explaining it with scientific theories is a central aspiration of artificial intelligence research. Proposing theories, designing experiments to test them, and then revising them based on data are fundamental to scientific discovery. Despite the significant promise of LLM-based scientific agents, no benchmarks systematically test LLM's ability to propose scientific models, collect experimental data, and revise them in light of new data. We introduce BoxingGym, a benchmark with 10 environments for systematically evaluating both experimental design (e.g. collecting data to test a scientific theory) and model discovery (e.g. proposing and revising scientific theories). To enable tractable and quantitative evaluation, we implement each environment as a generative probabilistic model with which a scientific agent can run interactive experiments. These probabilistic models are drawn from various real-world scientific domains ranging from psychology to ecology. To quantitatively evaluate a scientific agent's ability to collect informative experimental data, we compute the expected information gain (EIG), an information-theoretic quantity which measures how much an experiment reduces uncertainty about the parameters of a generative model. A good scientific theory is a concise and predictive explanation. Therefore, to quantitatively evaluate model discovery, we ask a scientific agent to explain their model and then assess whether this explanation enables another scientific agent to make reliable predictions about this environment. In addition to this explanation-based evaluation, we compute standard model evaluation metrics such as prediction errors. We find that current LLMs, such as GPT-4o, struggle with both experimental design and model discovery. We find that augmenting the LLM-based agent with an explicit statistical model does not reliably improve these results.
Towards Personality-Aware Recommendation
In the last decade new ways of shopping online have increased the possibility of buying products and services more easily and faster than ever. In this new context, personality is a key determinant in the decision making of the consumer when shopping. The two main reasons are: firstly, a person's buying choices are influenced by psychological factors like impulsiveness, and secondly, some consumers may be more susceptible to making impulse purchases than others. To the best of our knowledge, the impact of personality factors on advertisements has been largely neglected at the level of recommender systems. This work proposes a highly innovative research which uses a personality perspective to determine the unique associations among the consumer's buying tendency and advert recommendations. As a matter of fact, the lack of a publicly available benchmark for computational advertising do not allow both the exploration of this intriguing research direction and the evaluation of state-of-the-art algorithms. We present the ADS Dataset, a publicly available benchmark for computational advertising enriched with Big-Five users' personality factors and 1,200 personal users' pictures. The proposed benchmark allows two main tasks: rating prediction over 300 real advertisements (i.e., Rich Media Ads, Image Ads, Text Ads) and click-through rate prediction. Moreover, this work carries out experiments, reviews various evaluation criteria used in the literature, and provides a library for each one of them within one integrated toolbox.
IPEval: A Bilingual Intellectual Property Agency Consultation Evaluation Benchmark for Large Language Models
The rapid development of Large Language Models (LLMs) in vertical domains, including intellectual property (IP), lacks a specific evaluation benchmark for assessing their understanding, application, and reasoning abilities. To fill this gap, we introduce IPEval, the first evaluation benchmark tailored for IP agency and consulting tasks. IPEval comprises 2657 multiple-choice questions across four major dimensions: creation, application, protection, and management of IP. These questions span patent rights (inventions, utility models, designs), trademarks, copyrights, trade secrets, and other related laws. Evaluation methods include zero-shot, 5-few-shot, and Chain of Thought (CoT) for seven LLM types, predominantly in English or Chinese. Results show superior English performance by models like GPT series and Qwen series, while Chinese-centric LLMs excel in Chinese tests, albeit specialized IP LLMs lag behind general-purpose ones. Regional and temporal aspects of IP underscore the need for LLMs to grasp legal nuances and evolving laws. IPEval aims to accurately gauge LLM capabilities in IP and spur development of specialized models. Website: https://ipeval.github.io/
Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models
Much recent work seeks to evaluate values and opinions in large language models (LLMs) using multiple-choice surveys and questionnaires. Most of this work is motivated by concerns around real-world LLM applications. For example, politically-biased LLMs may subtly influence society when they are used by millions of people. Such real-world concerns, however, stand in stark contrast to the artificiality of current evaluations: real users do not typically ask LLMs survey questions. Motivated by this discrepancy, we challenge the prevailing constrained evaluation paradigm for values and opinions in LLMs and explore more realistic unconstrained evaluations. As a case study, we focus on the popular Political Compass Test (PCT). In a systematic review, we find that most prior work using the PCT forces models to comply with the PCT's multiple-choice format. We show that models give substantively different answers when not forced; that answers change depending on how models are forced; and that answers lack paraphrase robustness. Then, we demonstrate that models give different answers yet again in a more realistic open-ended answer setting. We distill these findings into recommendations and open challenges in evaluating values and opinions in LLMs.
On the Role of Reviewer Expertise in Temporal Review Helpfulness Prediction
Helpful reviews have been essential for the success of e-commerce services, as they help customers make quick purchase decisions and benefit the merchants in their sales. While many reviews are informative, others provide little value and may contain spam, excessive appraisal, or unexpected biases. With the large volume of reviews and their uneven quality, the problem of detecting helpful reviews has drawn much attention lately. Existing methods for identifying helpful reviews primarily focus on review text and ignore the two key factors of (1) who post the reviews and (2) when the reviews are posted. Moreover, the helpfulness votes suffer from scarcity for less popular products and recently submitted (a.k.a., cold-start) reviews. To address these challenges, we introduce a dataset and develop a model that integrates the reviewer's expertise, derived from the past review history of the reviewers, and the temporal dynamics of the reviews to automatically assess review helpfulness. We conduct experiments on our dataset to demonstrate the effectiveness of incorporating these factors and report improved results compared to several well-established baselines.
Aspect-based Analysis of Advertising Appeals for Search Engine Advertising
Writing an ad text that attracts people and persuades them to click or act is essential for the success of search engine advertising. Therefore, ad creators must consider various aspects of advertising appeals (A^3) such as the price, product features, and quality. However, products and services exhibit unique effective A^3 for different industries. In this work, we focus on exploring the effective A^3 for different industries with the aim of assisting the ad creation process. To this end, we created a dataset of advertising appeals and used an existing model that detects various aspects for ad texts. Our experiments demonstrated that different industries have their own effective A^3 and that the identification of the A^3 contributes to the estimation of advertising performance.
Evaluating ChatGPT as a Recommender System: A Rigorous Approach
Recent popularity surrounds large AI language models due to their impressive natural language capabilities. They contribute significantly to language-related tasks, including prompt-based learning, making them valuable for various specific tasks. This approach unlocks their full potential, enhancing precision and generalization. Research communities are actively exploring their applications, with ChatGPT receiving recognition. Despite extensive research on large language models, their potential in recommendation scenarios still needs to be explored. This study aims to fill this gap by investigating ChatGPT's capabilities as a zero-shot recommender system. Our goals include evaluating its ability to use user preferences for recommendations, reordering existing recommendation lists, leveraging information from similar users, and handling cold-start situations. We assess ChatGPT's performance through comprehensive experiments using three datasets (MovieLens Small, Last.FM, and Facebook Book). We compare ChatGPT's performance against standard recommendation algorithms and other large language models, such as GPT-3.5 and PaLM-2. To measure recommendation effectiveness, we employ widely-used evaluation metrics like Mean Average Precision (MAP), Recall, Precision, F1, normalized Discounted Cumulative Gain (nDCG), Item Coverage, Expected Popularity Complement (EPC), Average Coverage of Long Tail (ACLT), Average Recommendation Popularity (ARP), and Popularity-based Ranking-based Equal Opportunity (PopREO). Through thoroughly exploring ChatGPT's abilities in recommender systems, our study aims to contribute to the growing body of research on the versatility and potential applications of large language models. Our experiment code is available on the GitHub repository: https://github.com/sisinflab/Recommender-ChatGPT
ECKGBench: Benchmarking Large Language Models in E-commerce Leveraging Knowledge Graph
Large language models (LLMs) have demonstrated their capabilities across various NLP tasks. Their potential in e-commerce is also substantial, evidenced by practical implementations such as platform search, personalized recommendations, and customer service. One primary concern associated with LLMs is their factuality (e.g., hallucination), which is urgent in e-commerce due to its significant impact on user experience and revenue. Despite some methods proposed to evaluate LLMs' factuality, issues such as lack of reliability, high consumption, and lack of domain expertise leave a gap between effective assessment in e-commerce. To bridge the evaluation gap, we propose ECKGBench, a dataset specifically designed to evaluate the capacities of LLMs in e-commerce knowledge. Specifically, we adopt a standardized workflow to automatically generate questions based on a large-scale knowledge graph, guaranteeing sufficient reliability. We employ the simple question-answering paradigm, substantially improving the evaluation efficiency by the least input and output tokens. Furthermore, we inject abundant e-commerce expertise in each evaluation stage, including human annotation, prompt design, negative sampling, and verification. Besides, we explore the LLMs' knowledge boundaries in e-commerce from a novel perspective. Through comprehensive evaluations of several advanced LLMs on ECKGBench, we provide meticulous analysis and insights into leveraging LLMs for e-commerce.
Can Multimodal Foundation Models Understand Schematic Diagrams? An Empirical Study on Information-Seeking QA over Scientific Papers
This paper introduces MISS-QA, the first benchmark specifically designed to evaluate the ability of models to interpret schematic diagrams within scientific literature. MISS-QA comprises 1,500 expert-annotated examples over 465 scientific papers. In this benchmark, models are tasked with interpreting schematic diagrams that illustrate research overviews and answering corresponding information-seeking questions based on the broader context of the paper. We assess the performance of 18 frontier multimodal foundation models, including o4-mini, Gemini-2.5-Flash, and Qwen2.5-VL. We reveal a significant performance gap between these models and human experts on MISS-QA. Our analysis of model performance on unanswerable questions and our detailed error analysis further highlight the strengths and limitations of current models, offering key insights to enhance models in comprehending multimodal scientific literature.
TP-Eval: Tap Multimodal LLMs' Potential in Evaluation by Customizing Prompts
Recently, multimodal large language models (MLLMs) have received much attention for their impressive capabilities. The evaluation of MLLMs is becoming critical to analyzing attributes of MLLMs and providing valuable insights. However, current benchmarks overlook the problem of prompt sensitivity - minor prompt variations may lead to significant performance fluctuations. Thus, inappropriate prompts may obscure the models' capabilities, underestimating the models' performance. Moreover, different models have different preferences for different prompts, and thus, using the same prompt for all models will cause evaluation bias. This paper analyzes this deficiency in existing benchmarks and further introduces a new evaluation framework named TP-Eval, which introduces a prompt customization method to reduce evaluation biases and tap models' potential. TP-Eval will rewrite the original prompts to different customized prompts for different models. In particular, we propose some well-designed modules for prompt customization tailored to the scenario of MLLM evaluation. Extensive experiments demonstrate the effectiveness of our approach to uncovering models' capabilities, and TP-Eval should benefit the community in developing more comprehensive and convincing MLLM evaluation benchmarks.
Tool-Augmented Reward Modeling
Reward modeling (a.k.a., preference modeling) is instrumental for aligning large language models with human preferences, particularly within the context of reinforcement learning from human feedback (RLHF). While conventional reward models (RMs) have exhibited remarkable scalability, they oft struggle with fundamental functionality such as arithmetic computation, code execution, and factual lookup. In this paper, we propose a tool-augmented preference modeling approach, named Themis, to address these limitations by empowering RMs with access to external environments, including calculators and search engines. This approach not only fosters synergy between tool utilization and reward grading but also enhances interpretive capacity and scoring reliability. Our study delves into the integration of external tools into RMs, enabling them to interact with diverse external sources and construct task-specific tool engagement and reasoning traces in an autoregressive manner. We validate our approach across a wide range of domains, incorporating seven distinct external tools. Our experimental results demonstrate a noteworthy overall improvement of 17.7% across eight tasks in preference ranking. Furthermore, our approach outperforms Gopher 280B by 7.3% on TruthfulQA task in zero-shot evaluation. In human evaluations, RLHF trained with Themis attains an average win rate of 32% when compared to baselines across four distinct tasks. Additionally, we provide a comprehensive collection of tool-related RM datasets, incorporating data from seven distinct tool APIs, totaling 15,000 instances. We have made the code, data, and model checkpoints publicly available to facilitate and inspire further research advancements\url{https://github.com/ernie-research/Tool-Augmented-Reward-Model}.
Can Large Language Models be Trusted for Evaluation? Scalable Meta-Evaluation of LLMs as Evaluators via Agent Debate
Despite the utility of Large Language Models (LLMs) across a wide range of tasks and scenarios, developing a method for reliably evaluating LLMs across varied contexts continues to be challenging. Modern evaluation approaches often use LLMs to assess responses generated by LLMs. However, the meta-evaluation conducted to assess the effectiveness of these LLMs as evaluators is typically constrained by the coverage of existing benchmarks or requires extensive human annotation. This underscores the urgency of methods for scalable meta-evaluation that can effectively, reliably, and efficiently evaluate the performance of LLMs as evaluators across diverse tasks and scenarios, particularly in potentially new, user-defined scenarios. To fill this gap, we propose ScaleEval, an agent-debate-assisted meta-evaluation framework that leverages the capabilities of multiple communicative LLM agents. This framework supports multi-round discussions to assist human annotators in discerning the most capable LLMs as evaluators, which significantly eases their workload in cases that used to require large-scale annotations during meta-evaluation. We release the code for our framework, which is publicly available at: https://github.com/GAIR-NLP/scaleeval.
Hierarchical Catalogue Generation for Literature Review: A Benchmark
Scientific literature review generation aims to extract and organize important information from an abundant collection of reference papers and produces corresponding reviews while lacking a clear and logical hierarchy. We observe that a high-quality catalogue-guided generation process can effectively alleviate this problem. Therefore, we present an atomic and challenging task named Hierarchical Catalogue Generation for Literature Review as the first step for review generation, which aims to produce a hierarchical catalogue of a review paper given various references. We construct a novel English Hierarchical Catalogues of Literature Reviews Dataset with 7.6k literature review catalogues and 389k reference papers. To accurately assess the model performance, we design two evaluation metrics for informativeness and similarity to ground truth from semantics and structure.Our extensive analyses verify the high quality of our dataset and the effectiveness of our evaluation metrics. We further benchmark diverse experiments on state-of-the-art summarization models like BART and large language models like ChatGPT to evaluate their capabilities. We further discuss potential directions for this task to motivate future research.
Elo Uncovered: Robustness and Best Practices in Language Model Evaluation
In Natural Language Processing (NLP), the Elo rating system, originally designed for ranking players in dynamic games such as chess, is increasingly being used to evaluate Large Language Models (LLMs) through "A vs B" paired comparisons. However, while popular, the system's suitability for assessing entities with constant skill levels, such as LLMs, remains relatively unexplored. We study two fundamental axioms that evaluation methods should adhere to: reliability and transitivity. We conduct extensive evaluation of Elo behaviour, illustrating that individual Elo computations exhibit volatility and delving into the impact of varying the Elo rating system's hyperparameters. We show that these axioms are not always satisfied raising questions about the reliability of current comparative evaluations of LLMs. If the current use of Elo scores is intended to substitute the costly head-to-head comparison of LLMs, it is crucial to ensure the ranking is as robust as possible. Guided by the axioms, our findings offer concrete guidelines for enhancing the reliability of LLM evaluation methods, suggesting a need for reassessment of existing comparative approaches.
LMMs-Eval: Reality Check on the Evaluation of Large Multimodal Models
The advances of large foundation models necessitate wide-coverage, low-cost, and zero-contamination benchmarks. Despite continuous exploration of language model evaluations, comprehensive studies on the evaluation of Large Multi-modal Models (LMMs) remain limited. In this work, we introduce LMMS-EVAL, a unified and standardized multimodal benchmark framework with over 50 tasks and more than 10 models to promote transparent and reproducible evaluations. Although LMMS-EVAL offers comprehensive coverage, we find it still falls short in achieving low cost and zero contamination. To approach this evaluation trilemma, we further introduce LMMS-EVAL LITE, a pruned evaluation toolkit that emphasizes both coverage and efficiency. Additionally, we present Multimodal LIVEBENCH that utilizes continuously updating news and online forums to assess models' generalization abilities in the wild, featuring a low-cost and zero-contamination evaluation approach. In summary, our work highlights the importance of considering the evaluation trilemma and provides practical solutions to navigate the trade-offs in evaluating large multi-modal models, paving the way for more effective and reliable benchmarking of LMMs. We opensource our codebase and maintain leaderboard of LIVEBENCH at https://github.com/EvolvingLMMs-Lab/lmms-eval and https://huggingface.co/spaces/lmms-lab/LiveBench.
SciEval: A Multi-Level Large Language Model Evaluation Benchmark for Scientific Research
Recently, there has been growing interest in using Large Language Models (LLMs) for scientific research. Numerous benchmarks have been proposed to evaluate the ability of LLMs for scientific research. However, current benchmarks are mostly based on pre-collected objective questions. This design suffers from data leakage problem and lacks the evaluation of subjective Q/A ability. In this paper, we propose SciEval, a comprehensive and multi-disciplinary evaluation benchmark to address these issues. Based on Bloom's taxonomy, SciEval covers four dimensions to systematically evaluate scientific research ability. In particular, we design a "dynamic" subset based on scientific principles to prevent evaluation from potential data leakage. Both objective and subjective questions are included in SciEval. These characteristics make SciEval a more effective benchmark for scientific research ability evaluation of LLMs. Comprehensive experiments on most advanced LLMs show that, although GPT-4 achieves SOTA performance compared to other LLMs, there is still substantial room for improvement, especially for dynamic questions. The data and codes are now publicly available.
Towards Better Evaluation for Generated Patent Claims
Patent claims define the scope of protection and establish the legal boundaries of an invention. Drafting these claims is a complex and time-consuming process that usually requires the expertise of skilled patent attorneys, which can form a large access barrier for many small enterprises. To solve these challenges, researchers have investigated the use of large language models (LLMs) for automating patent claim generation. However, existing studies highlight inconsistencies between automated evaluation metrics and human expert assessments. To bridge this gap, we introduce Patent-CE, the first comprehensive benchmark for evaluating patent claims. Patent-CE includes comparative claim evaluations annotated by patent experts, focusing on five key criteria: feature completeness, conceptual clarity, terminology consistency, logical linkage, and overall quality. Additionally, we propose PatClaimEval, a novel multi-dimensional evaluation method specifically designed for patent claims. Our experiments demonstrate that PatClaimEval achieves the highest correlation with human expert evaluations across all assessment criteria among all tested metrics. This research provides the groundwork for more accurate evaluations of automated patent claim generation systems.
Does Context Matter? ContextualJudgeBench for Evaluating LLM-based Judges in Contextual Settings
The large language model (LLM)-as-judge paradigm has been used to meet the demand for a cheap, reliable, and fast evaluation of model outputs during AI system development and post-deployment monitoring. While judge models -- LLMs finetuned to specialize in assessing and critiquing model outputs -- have been touted as general purpose evaluators, they are typically evaluated only on non-contextual scenarios, such as instruction following. The omission of contextual settings -- those where external information is used as context to generate an output -- is surprising given the increasing prevalence of retrieval-augmented generation (RAG) and summarization use cases. Contextual assessment is uniquely challenging, as evaluation often depends on practitioner priorities, leading to conditional evaluation criteria (e.g., comparing responses based on factuality and then considering completeness if they are equally factual). To address the gap, we propose ContextualJudgeBench, a judge benchmark with 2,000 challenging response pairs across eight splits inspired by real-world contextual evaluation scenarios. We build our benchmark with a multi-pronged data construction pipeline that leverages both existing human annotations and model-based perturbations. Our comprehensive study across 11 judge models and 9 general purpose models, reveals that the contextual information and its assessment criteria present a significant challenge to even state-of-the-art models. For example, OpenAI's o1, the best-performing model, barely reaches 55% consistent accuracy.
Breaking the Curse of Quality Saturation with User-Centric Ranking
A key puzzle in search, ads, and recommendation is that the ranking model can only utilize a small portion of the vastly available user interaction data. As a result, increasing data volume, model size, or computation FLOPs will quickly suffer from diminishing returns. We examined this problem and found that one of the root causes may lie in the so-called ``item-centric'' formulation, which has an unbounded vocabulary and thus uncontrolled model complexity. To mitigate quality saturation, we introduce an alternative formulation named ``user-centric ranking'', which is based on a transposed view of the dyadic user-item interaction data. We show that this formulation has a promising scaling property, enabling us to train better-converged models on substantially larger data sets.
Large Language Models for Supply Chain Optimization
Supply chain operations traditionally involve a variety of complex decision making problems. Over the last few decades, supply chains greatly benefited from advances in computation, which allowed the transition from manual processing to automation and cost-effective optimization. Nonetheless, business operators still need to spend substantial efforts in explaining and interpreting the optimization outcomes to stakeholders. Motivated by the recent advances in Large Language Models (LLMs), we study how this disruptive technology can help bridge the gap between supply chain automation and human comprehension and trust thereof. We design -- a framework that accepts as input queries in plain text, and outputs insights about the underlying optimization outcomes. Our framework does not forgo the state-of-the-art combinatorial optimization technology, but rather leverages it to quantitatively answer what-if scenarios (e.g., how would the cost change if we used supplier B instead of supplier A for a given demand?). Importantly, our design does not require sending proprietary data over to LLMs, which can be a privacy concern in some circumstances. We demonstrate the effectiveness of our framework on a real server placement scenario within Microsoft's cloud supply chain. Along the way, we develop a general evaluation benchmark, which can be used to evaluate the accuracy of the LLM output in other scenarios.
tinyBenchmarks: evaluating LLMs with fewer examples
The versatility of large language models (LLMs) led to the creation of diverse benchmarks that thoroughly test a variety of language models' abilities. These benchmarks consist of tens of thousands of examples making evaluation of LLMs very expensive. In this paper, we investigate strategies to reduce the number of evaluations needed to assess the performance of an LLM on several key benchmarks. For example, we show that to accurately estimate the performance of an LLM on MMLU, a popular multiple-choice QA benchmark consisting of 14K examples, it is sufficient to evaluate this LLM on 100 curated examples. We release evaluation tools and tiny versions of popular benchmarks: Open LLM Leaderboard, MMLU, HELM, and AlpacaEval 2.0. Our empirical analysis demonstrates that these tools and tiny benchmarks are sufficient to reliably and efficiently reproduce the original evaluation results.
Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate
Estimating post-click conversion rate (CVR) accurately is crucial for ranking systems in industrial applications such as recommendation and advertising. Conventional CVR modeling applies popular deep learning methods and achieves state-of-the-art performance. However it encounters several task-specific problems in practice, making CVR modeling challenging. For example, conventional CVR models are trained with samples of clicked impressions while utilized to make inference on the entire space with samples of all impressions. This causes a sample selection bias problem. Besides, there exists an extreme data sparsity problem, making the model fitting rather difficult. In this paper, we model CVR in a brand-new perspective by making good use of sequential pattern of user actions, i.e., impression -> click -> conversion. The proposed Entire Space Multi-task Model (ESMM) can eliminate the two problems simultaneously by i) modeling CVR directly over the entire space, ii) employing a feature representation transfer learning strategy. Experiments on dataset gathered from Taobao's recommender system demonstrate that ESMM significantly outperforms competitive methods. We also release a sampling version of this dataset to enable future research. To the best of our knowledge, this is the first public dataset which contains samples with sequential dependence of click and conversion labels for CVR modeling.
Evaluating Large Language Models at Evaluating Instruction Following
As research in large language models (LLMs) continues to accelerate, LLM-based evaluation has emerged as a scalable and cost-effective alternative to human evaluations for comparing the ever increasing list of models. This paper investigates the efficacy of these "LLM evaluators", particularly in using them to assess instruction following, a metric that gauges how closely generated text adheres to the given instruction. We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs. The authors manually curated 419 pairs of outputs, one adhering to instructions while the other diverging, yet may possess deceptive qualities that mislead an LLM evaluator, e.g., a more engaging tone. Contrary to existing meta-evaluation, we discover that different evaluators (i.e., combinations of LLMs and prompts) exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement. We also present a novel suite of prompting strategies that further close the gap between LLM and human evaluators. With LLMBar, we hope to offer more insight into LLM evaluators and foster future research in developing better instruction-following models.
Mamo: a Mathematical Modeling Benchmark with Solvers
Mathematical modeling involves representing real-world phenomena, systems, or problems using mathematical expressions and equations to analyze, understand, and predict their behavior. Given that this process typically requires experienced experts, there is an interest in exploring whether Large Language Models (LLMs) can undertake mathematical modeling to potentially decrease human labor. To evaluate of LLMs in mathematical modeling, we introduce a new benchmark, Mamo, that transcends traditional result-oriented assessments. Unlike conventional methods that primarily assess LLMs based on the accuracy of solutions to mathematical problems, our approach offers deeper insight into the modeling process itself. By focusing on the processes LLMs undertake rather than the correctness of their final solutions, Mamo pioneers a novel evaluation paradigm. This shift underscores the importance of understanding the inherent modeling capabilities of LLMs, paving the way for a more nuanced and comprehensive analysis of their problem-solving strategies. Our work marks a significant advancement in the field, suggesting a new direction for future research by emphasizing the evaluation of LLMs' modeling processes over the mere correctness of answers. This benchmark not only facilitates a better understanding of LLMs' mathematical modeling capabilities but also sets a new standard for evaluating their performance in complex problem-solving scenarios.
F-Eval: Asssessing Fundamental Abilities with Refined Evaluation Methods
Large language models (LLMs) garner significant attention for their unprecedented performance, leading to an increasing number of researches evaluating LLMs. However, these evaluation benchmarks are limited to assessing the instruction-following capabilities, overlooking the fundamental abilities that emerge during the pre-training stage. Previous subjective evaluation methods mainly reply on scoring by API models. However, in the absence of references, large models have shown limited ability to discern subtle differences. To bridge the gap, we propose F-Eval, a bilingual evaluation benchmark to evaluate the fundamental abilities, including expression, commonsense and logic. The tasks in F-Eval include multi-choice objective tasks, open-ended objective tasks, reference-based subjective tasks and reference-free subjective tasks. For reference-free subjective tasks, we devise new evaluation methods, serving as alternatives to scoring by API models. We conduct evaluations on 13 advanced LLMs. Results show that our evaluation methods show higher correlation coefficients and larger distinction than other evaluators. Additionally, we discuss the influence of different model sizes, dimensions, and normalization methods. We anticipate that F-Eval will facilitate the study of LLMs' fundamental abilities.
Large Language Models are not Fair Evaluators
In this paper, we uncover a systematic bias in the evaluation paradigm of adopting large language models~(LLMs), e.g., GPT-4, as a referee to score and compare the quality of responses generated by candidate models. We find that the quality ranking of candidate responses can be easily hacked by simply altering their order of appearance in the context. This manipulation allows us to skew the evaluation result, making one model appear considerably superior to the other, e.g., Vicuna-13B could beat ChatGPT on 66 over 80 tested queries with ChatGPT as an evaluator. To address this issue, we propose a calibration framework with three simple yet effective strategies: 1) Multiple Evidence Calibration, which requires the evaluator model to generate multiple evaluation evidence before assigning ratings; 2) Balanced Position Calibration, which aggregates results across various orders to determine the final score; 3) Human-in-the-Loop Calibration, which introduces a balanced position diversity entropy to measure the difficulty of each example and seeks human assistance when needed. We also manually annotate the "win/tie/lose" outcomes of responses from ChatGPT and Vicuna-13B in the Vicuna Benchmark's question prompt, and extensive experiments demonstrate that our approach successfully mitigates evaluation bias, resulting in closer alignment with human judgments. We release our code and human annotation at https://github.com/i-Eval/FairEval to facilitate future research.
Opportunities for Large Language Models and Discourse in Engineering Design
In recent years, large language models have achieved breakthroughs on a wide range of benchmarks in natural language processing and continue to increase in performance. Recently, the advances of large language models have raised interest outside the natural language processing community and could have a large impact on daily life. In this paper, we pose the question: How will large language models and other foundation models shape the future product development process? We provide the reader with an overview of the subject by summarizing both recent advances in natural language processing and the use of information technology in the engineering design process. We argue that discourse should be regarded as the core of engineering design processes, and therefore should be represented in a digital artifact. On this basis, we describe how foundation models such as large language models could contribute to the design discourse by automating parts thereof that involve creativity and reasoning, and were previously reserved for humans. We describe how simulations, experiments, topology optimizations, and other process steps can be integrated into a machine-actionable, discourse-centric design process. Finally, we outline the future research that will be necessary for the implementation of the conceptualized framework.
ConSens: Assessing context grounding in open-book question answering
Large Language Models (LLMs) have demonstrated considerable success in open-book question answering (QA), where the task requires generating answers grounded in a provided external context. A critical challenge in open-book QA is to ensure that model responses are based on the provided context rather than its parametric knowledge, which can be outdated, incomplete, or incorrect. Existing evaluation methods, primarily based on the LLM-as-a-judge approach, face significant limitations, including biases, scalability issues, and dependence on costly external systems. To address these challenges, we propose a novel metric that contrasts the perplexity of the model response under two conditions: when the context is provided and when it is not. The resulting score quantifies the extent to which the model's answer relies on the provided context. The validity of this metric is demonstrated through a series of experiments that show its effectiveness in identifying whether a given answer is grounded in the provided context. Unlike existing approaches, this metric is computationally efficient, interpretable, and adaptable to various use cases, offering a scalable and practical solution to assess context utilization in open-book QA systems.
Task Me Anything
Benchmarks for large multimodal language models (MLMs) now serve to simultaneously assess the general capabilities of models instead of evaluating for a specific capability. As a result, when a developer wants to identify which models to use for their application, they are overwhelmed by the number of benchmarks and remain uncertain about which benchmark's results are most reflective of their specific use case. This paper introduces Task-Me-Anything, a benchmark generation engine which produces a benchmark tailored to a user's needs. Task-Me-Anything maintains an extendable taxonomy of visual assets and can programmatically generate a vast number of task instances. Additionally, it algorithmically addresses user queries regarding MLM performance efficiently within a computational budget. It contains 113K images, 10K videos, 2K 3D object assets, over 365 object categories, 655 attributes, and 335 relationships. It can generate 750M image/video question-answering pairs, which focus on evaluating MLM perceptual capabilities. Task-Me-Anything reveals critical insights: open-source MLMs excel in object and attribute recognition but lack spatial and temporal understanding; each model exhibits unique strengths and weaknesses; larger models generally perform better, though exceptions exist; and GPT4o demonstrates challenges in recognizing rotating/moving objects and distinguishing colors.
Style Over Substance: Evaluation Biases for Large Language Models
As large language models (LLMs) continue to advance, accurately and comprehensively evaluating their performance becomes increasingly challenging. Human evaluations are conventionally considered the gold standard in natural language generation, but recent advancements incorporate state-of-the-art LLMs as proxies for human judges in evaluation processes. However, the extent to which humans and LLMs are capable evaluators remains uncertain. This study investigates the behavior of crowd-sourced and expert annotators, as well as LLMs, when comparing outputs from different models. To achieve this, we curate a dataset of intentionally flawed machine-generated answers. Our findings reveal a concerning bias in the evaluation process, as answers with factual errors are rated more favorably than answers that are too short or contained grammatical errors. To address this issue, we propose independently evaluating machine-generated text across multiple dimensions, rather than merging all the evaluation aspects into a single score. We instantiate this idea with the Elo rating system, resulting in the Multi-Elo Rating System. Empirical results from our study reveal that this proposed approach significantly enhances the quality of LLM-based evaluations, particularly in terms of factual accuracy. However, there is no significant improvement in crowd-sourced-based evaluations, indicating the need for further investigation and refinement.
CheckEval: Robust Evaluation Framework using Large Language Model via Checklist
We introduce CheckEval, a novel evaluation framework using Large Language Models, addressing the challenges of ambiguity and inconsistency in current evaluation methods. CheckEval addresses these challenges by dividing evaluation criteria into detailed sub-aspects and constructing a checklist of Boolean questions for each, simplifying the evaluation. This approach not only renders the process more interpretable but also significantly enhances the robustness and reliability of results by focusing on specific evaluation dimensions. Validated through a focused case study using the SummEval benchmark, CheckEval indicates a strong correlation with human judgments. Furthermore, it demonstrates a highly consistent Inter-Annotator Agreement. These findings highlight the effectiveness of CheckEval for objective, flexible, and precise evaluations. By offering a customizable and interactive framework, CheckEval sets a new standard for the use of LLMs in evaluation, responding to the evolving needs of the field and establishing a clear method for future LLM-based evaluation.
AI Idea Bench 2025: AI Research Idea Generation Benchmark
Large-scale Language Models (LLMs) have revolutionized human-AI interaction and achieved significant success in the generation of novel ideas. However, current assessments of idea generation overlook crucial factors such as knowledge leakage in LLMs, the absence of open-ended benchmarks with grounded truth, and the limited scope of feasibility analysis constrained by prompt design. These limitations hinder the potential of uncovering groundbreaking research ideas. In this paper, we present AI Idea Bench 2025, a framework designed to quantitatively evaluate and compare the ideas generated by LLMs within the domain of AI research from diverse perspectives. The framework comprises a comprehensive dataset of 3,495 AI papers and their associated inspired works, along with a robust evaluation methodology. This evaluation system gauges idea quality in two dimensions: alignment with the ground-truth content of the original papers and judgment based on general reference material. AI Idea Bench 2025's benchmarking system stands to be an invaluable resource for assessing and comparing idea-generation techniques, thereby facilitating the automation of scientific discovery.
MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains
Recent advances in large language models (LLMs) have increased the demand for comprehensive benchmarks to evaluate their capabilities as human-like agents. Existing benchmarks, while useful, often focus on specific application scenarios, emphasizing task completion but failing to dissect the underlying skills that drive these outcomes. This lack of granularity makes it difficult to deeply discern where failures stem from. Additionally, setting up these environments requires considerable effort, and issues of unreliability and reproducibility sometimes arise, especially in interactive tasks. To address these limitations, we introduce the Massive Multitask Agent Understanding (MMAU) benchmark, featuring comprehensive offline tasks that eliminate the need for complex environment setups. It evaluates models across five domains, including teal{Tool-use}, teal{Directed Acyclic Graph (DAG) QA}, teal{Data Science and Machine Learning coding}, teal{Contest-level programming} and teal{Mathematics}, and covers five essential capabilities: orange{Understanding}, orange{Reasoning}, orange{Planning}, orange{Problem-solving}, and orange{Self-correction}. With a total of 20 meticulously designed tasks encompassing over 3K distinct prompts, MMAU provides a comprehensive framework for evaluating the strengths and limitations of LLM agents. By testing 18 representative models on MMAU, we provide deep and insightful analyses. Ultimately, MMAU not only sheds light on the capabilities and limitations of LLM agents but also enhances the interpretability of their performance. Datasets and evaluation scripts of MMAU are released at https://github.com/apple/axlearn/docs/research/mmau.
Unified Vision-Language Representation Modeling for E-Commerce Same-Style Products Retrieval
Same-style products retrieval plays an important role in e-commerce platforms, aiming to identify the same products which may have different text descriptions or images. It can be used for similar products retrieval from different suppliers or duplicate products detection of one supplier. Common methods use the image as the detected object, but they only consider the visual features and overlook the attribute information contained in the textual descriptions, and perform weakly for products in image less important industries like machinery, hardware tools and electronic component, even if an additional text matching module is added. In this paper, we propose a unified vision-language modeling method for e-commerce same-style products retrieval, which is designed to represent one product with its textual descriptions and visual contents. It contains one sampling skill to collect positive pairs from user click log with category and relevance constrained, and a novel contrastive loss unit to model the image, text, and image+text representations into one joint embedding space. It is capable of cross-modal product-to-product retrieval, as well as style transfer and user-interactive search. Offline evaluations on annotated data demonstrate its superior retrieval performance, and online testings show it can attract more clicks and conversions. Moreover, this model has already been deployed online for similar products retrieval in alibaba.com, the largest B2B e-commerce platform in the world.
IntentionQA: A Benchmark for Evaluating Purchase Intention Comprehension Abilities of Language Models in E-commerce
Enhancing Language Models' (LMs) ability to understand purchase intentions in E-commerce scenarios is crucial for their effective assistance in various downstream tasks. However, previous approaches that distill intentions from LMs often fail to generate meaningful and human-centric intentions applicable in real-world E-commerce contexts. This raises concerns about the true comprehension and utilization of purchase intentions by LMs. In this paper, we present IntentionQA, a double-task multiple-choice question answering benchmark to evaluate LMs' comprehension of purchase intentions in E-commerce. Specifically, LMs are tasked to infer intentions based on purchased products and utilize them to predict additional purchases. IntentionQA consists of 4,360 carefully curated problems across three difficulty levels, constructed using an automated pipeline to ensure scalability on large E-commerce platforms. Human evaluations demonstrate the high quality and low false-negative rate of our benchmark. Extensive experiments across 19 language models show that they still struggle with certain scenarios, such as understanding products and intentions accurately, jointly reasoning with products and intentions, and more, in which they fall far behind human performances. Our code and data are publicly available at https://github.com/HKUST-KnowComp/IntentionQA.
ConMe: Rethinking Evaluation of Compositional Reasoning for Modern VLMs
Compositional Reasoning (CR) entails grasping the significance of attributes, relations, and word order. Recent Vision-Language Models (VLMs), comprising a visual encoder and a Large Language Model (LLM) decoder, have demonstrated remarkable proficiency in such reasoning tasks. This prompts a crucial question: have VLMs effectively tackled the CR challenge? We conjecture that existing CR benchmarks may not adequately push the boundaries of modern VLMs due to the reliance on an LLM-only negative text generation pipeline. Consequently, the negatives produced either appear as outliers from the natural language distribution learned by VLMs' LLM decoders or as improbable within the corresponding image context. To address these limitations, we introduce ConMe -- a compositional reasoning benchmark and a novel data generation pipeline leveraging VLMs to produce `hard CR Q&A'. Through a new concept of VLMs conversing with each other to collaboratively expose their weaknesses, our pipeline autonomously generates, evaluates, and selects challenging compositional reasoning questions, establishing a robust CR benchmark, also subsequently validated manually. Our benchmark provokes a noteworthy, up to 33%, decrease in CR performance compared to preceding benchmarks, reinstating the CR challenge even for state-of-the-art VLMs.
UBENCH: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions
The rapid development of large language models (LLMs) has shown promising practical results. However, their low interpretability often leads to errors in unforeseen circumstances, limiting their utility. Many works have focused on creating comprehensive evaluation systems, but previous benchmarks have primarily assessed problem-solving abilities while neglecting the response's uncertainty, which may result in unreliability. Recent methods for measuring LLM reliability are resource-intensive and unable to test black-box models. To address this, we propose UBENCH, a comprehensive benchmark for evaluating LLM reliability. UBENCH includes 3,978 multiple-choice questions covering knowledge, language, understanding, and reasoning abilities. Experimental results show that UBENCH has achieved state-of-the-art performance, while its single-sampling method significantly saves computational resources compared to baseline methods that require multiple samplings. Additionally, based on UBENCH, we evaluate the reliability of 15 popular LLMs, finding GLM4 to be the most outstanding, closely followed by GPT-4. We also explore the impact of Chain-of-Thought prompts, role-playing prompts, option order, and temperature on LLM reliability, analyzing the varying effects on different LLMs.
KOFFVQA: An Objectively Evaluated Free-form VQA Benchmark for Large Vision-Language Models in the Korean Language
The recent emergence of Large Vision-Language Models(VLMs) has resulted in a variety of different benchmarks for evaluating such models. Despite this, we observe that most existing evaluation methods suffer from the fact that they either require the model to choose from pre-determined responses, sacrificing open-endedness, or evaluate responses using a judge model, resulting in subjective and unreliable evaluation. In addition, we observe a lack of benchmarks for VLMs in the Korean language, which are necessary as a separate metric from more common English language benchmarks, as the performance of generative language models can differ significantly based on the language being used. Therefore, we present KOFFVQA, a general-purpose free-form visual question answering benchmark in the Korean language for the evaluation of VLMs. Our benchmark consists of 275 carefully crafted questions each paired with an image and grading criteria covering 10 different aspects of VLM performance. The grading criteria eliminate the problem of unreliability by allowing the judge model to grade each response based on a pre-determined set of rules. By defining the evaluation criteria in an objective manner, even a small open-source model can be used to evaluate models on our benchmark reliably. In addition to evaluating a large number of existing VLMs on our benchmark, we also experimentally verify that our method of using pre-existing grading criteria for evaluation is much more reliable than existing methods. Our evaluation code is available at https://github.com/maum-ai/KOFFVQA
Automatic Evaluation Metrics for Artificially Generated Scientific Research
Foundation models are increasingly used in scientific research, but evaluating AI-generated scientific work remains challenging. While expert reviews are costly, large language models (LLMs) as proxy reviewers have proven to be unreliable. To address this, we investigate two automatic evaluation metrics, specifically citation count prediction and review score prediction. We parse all papers of OpenReview and augment each submission with its citation count, reference, and research hypothesis. Our findings reveal that citation count prediction is more viable than review score prediction, and predicting scores is more difficult purely from the research hypothesis than from the full paper. Furthermore, we show that a simple prediction model based solely on title and abstract outperforms LLM-based reviewers, though it still falls short of human-level consistency.
Automated Feedback in Math Education: A Comparative Analysis of LLMs for Open-Ended Responses
The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research has explored methodologies to enhance the effectiveness of feedback. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated feedback systems. This study aims to explore the potential of LLMs in facilitating automated feedback in math education. We examine the effectiveness of LLMs in evaluating student responses by comparing 3 different models: Llama, SBERT-Canberra, and GPT4 model. The evaluation requires the model to provide both a quantitative score and qualitative feedback on the student's responses to open-ended math problems. We employ Mistral, a version of Llama catered to math, and fine-tune this model for evaluating student responses by leveraging a dataset of student responses and teacher-written feedback for middle-school math problems. A similar approach was taken for training the SBERT model as well, while the GPT4 model used a zero-shot learning approach. We evaluate the model's performance in scoring accuracy and the quality of feedback by utilizing judgments from 2 teachers. The teachers utilized a shared rubric in assessing the accuracy and relevance of the generated feedback. We conduct both quantitative and qualitative analyses of the model performance. By offering a detailed comparison of these methods, this study aims to further the ongoing development of automated feedback systems and outlines potential future directions for leveraging generative LLMs to create more personalized learning experiences.
SAGEval: The frontiers of Satisfactory Agent based NLG Evaluation for reference-free open-ended text
Large Language Model (LLM) integrations into applications like Microsoft365 suite and Google Workspace for creating/processing documents, emails, presentations, etc. has led to considerable enhancements in productivity and time savings. But as these integrations become more more complex, it is paramount to ensure that the quality of output from the LLM-integrated applications are relevant and appropriate for use. Identifying the need to develop robust evaluation approaches for natural language generation, wherein references/ground labels doesn't exist or isn't amply available, this paper introduces a novel framework called "SAGEval" which utilizes a critiquing Agent to provide feedback on scores generated by LLM evaluators. We show that the critiquing Agent is able to rectify scores from LLM evaluators, in absence of references/ground-truth labels, thereby reducing the need for labeled data even for complex NLG evaluation scenarios, like the generation of JSON-structured forms/surveys with responses in different styles like multiple choice, likert ratings, single choice questions, etc.
EAIRA: Establishing a Methodology for Evaluating AI Models as Scientific Research Assistants
Recent advancements have positioned AI, and particularly Large Language Models (LLMs), as transformative tools for scientific research, capable of addressing complex tasks that require reasoning, problem-solving, and decision-making. Their exceptional capabilities suggest their potential as scientific research assistants but also highlight the need for holistic, rigorous, and domain-specific evaluation to assess effectiveness in real-world scientific applications. This paper describes a multifaceted methodology for Evaluating AI models as scientific Research Assistants (EAIRA) developed at Argonne National Laboratory. This methodology incorporates four primary classes of evaluations. 1) Multiple Choice Questions to assess factual recall; 2) Open Response to evaluate advanced reasoning and problem-solving skills; 3) Lab-Style Experiments involving detailed analysis of capabilities as research assistants in controlled environments; and 4) Field-Style Experiments to capture researcher-LLM interactions at scale in a wide range of scientific domains and applications. These complementary methods enable a comprehensive analysis of LLM strengths and weaknesses with respect to their scientific knowledge, reasoning abilities, and adaptability. Recognizing the rapid pace of LLM advancements, we designed the methodology to evolve and adapt so as to ensure its continued relevance and applicability. This paper describes the methodology state at the end of February 2025. Although developed within a subset of scientific domains, the methodology is designed to be generalizable to a wide range of scientific domains.
CLEAR: Error Analysis via LLM-as-a-Judge Made Easy
The evaluation of Large Language Models (LLMs) increasingly relies on other LLMs acting as judges. However, current evaluation paradigms typically yield a single score or ranking, answering which model is better but not why. While essential for benchmarking, these top-level scores obscure the specific, actionable reasons behind a model's performance. To bridge this gap, we introduce CLEAR, an interactive, open-source package for LLM-based error analysis. CLEAR first generates per-instance textual feedback, then it creates a set of system-level error issues, and quantifies the prevalence of each identified issue. Our package also provides users with an interactive dashboard that allows for a comprehensive error analysis through aggregate visualizations, applies interactive filters to isolate specific issues or score ranges, and drills down to the individual instances that exemplify a particular behavioral pattern. We demonstrate CLEAR analysis for RAG and Math benchmarks, and showcase its utility through a user case study.
Music Arena: Live Evaluation for Text-to-Music
We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare, as study protocols may differ across systems. Moreover, human preferences might help researchers align their TTM systems or improve automatic evaluation metrics, but an open and renewable source of preferences does not currently exist. We aim to fill these gaps by offering *live* evaluation for TTM. In Music Arena, real-world users input text prompts of their choosing and compare outputs from two TTM systems, and their preferences are used to compile a leaderboard. While Music Arena follows recent evaluation trends in other AI domains, we also design it with key features tailored to music: an LLM-based routing system to navigate the heterogeneous type signatures of TTM systems, and the collection of *detailed* preferences including listening data and natural language feedback. We also propose a rolling data release policy with user privacy guarantees, providing a renewable source of preference data and increasing platform transparency. Through its standardized evaluation protocol, transparent data access policies, and music-specific features, Music Arena not only addresses key challenges in the TTM ecosystem but also demonstrates how live evaluation can be thoughtfully adapted to unique characteristics of specific AI domains. Music Arena is available at: https://music-arena.org
GLEE: A Unified Framework and Benchmark for Language-based Economic Environments
Large Language Models (LLMs) show significant potential in economic and strategic interactions, where communication via natural language is often prevalent. This raises key questions: Do LLMs behave rationally? Can they mimic human behavior? Do they tend to reach an efficient and fair outcome? What is the role of natural language in the strategic interaction? How do characteristics of the economic environment influence these dynamics? These questions become crucial concerning the economic and societal implications of integrating LLM-based agents into real-world data-driven systems, such as online retail platforms and recommender systems. While the ML community has been exploring the potential of LLMs in such multi-agent setups, varying assumptions, design choices and evaluation criteria across studies make it difficult to draw robust and meaningful conclusions. To address this, we introduce a benchmark for standardizing research on two-player, sequential, language-based games. Inspired by the economic literature, we define three base families of games with consistent parameterization, degrees of freedom and economic measures to evaluate agents' performance (self-gain), as well as the game outcome (efficiency and fairness). We develop an open-source framework for interaction simulation and analysis, and utilize it to collect a dataset of LLM vs. LLM interactions across numerous game configurations and an additional dataset of human vs. LLM interactions. Through extensive experimentation, we demonstrate how our framework and dataset can be used to: (i) compare the behavior of LLM-based agents to human players in various economic contexts; (ii) evaluate agents in both individual and collective performance measures; and (iii) quantify the effect of the economic characteristics of the environments on the behavior of agents.
Foundation Model-oriented Robustness: Robust Image Model Evaluation with Pretrained Models
Machine learning has demonstrated remarkable performance over finite datasets, yet whether the scores over the fixed benchmarks can sufficiently indicate the model's performance in the real world is still in discussion. In reality, an ideal robust model will probably behave similarly to the oracle (e.g., the human users), thus a good evaluation protocol is probably to evaluate the models' behaviors in comparison to the oracle. In this paper, we introduce a new robustness measurement that directly measures the image classification model's performance compared with a surrogate oracle (i.e., a foundation model). Besides, we design a simple method that can accomplish the evaluation beyond the scope of the benchmarks. Our method extends the image datasets with new samples that are sufficiently perturbed to be distinct from the ones in the original sets, but are still bounded within the same image-label structure the original test image represents, constrained by a foundation model pretrained with a large amount of samples. As a result, our new method will offer us a new way to evaluate the models' robustness performance, free of limitations of fixed benchmarks or constrained perturbations, although scoped by the power of the oracle. In addition to the evaluation results, we also leverage our generated data to understand the behaviors of the model and our new evaluation strategies.
PRD: Peer Rank and Discussion Improve Large Language Model based Evaluations
Nowadays, the quality of responses generated by different modern large language models (LLMs) are hard to evaluate and compare automatically. Recent studies suggest and predominantly use LLMs as a reference-free metric for open-ended question answering. More specifically, they use the recognized "strongest" LLM as the evaluator, which conducts pairwise comparisons of candidate models' answers and provides a ranking score. However, this intuitive method has multiple problems, such as bringing in self-enhancement (favoring its own answers) and positional bias. We draw insights and lessons from the educational domain (Cho and MacArthur, 2011; Walsh, 2014) to improve LLM-based evaluations. Specifically, we propose the (1) peer rank (PR) algorithm that takes into account each peer LLM's pairwise preferences of all answer pairs, and outputs a final ranking of models; and (2) peer discussion (PD), where we prompt two LLMs to discuss and try to reach a mutual agreement on preferences of two answers. We conduct experiments on two benchmark datasets. We find that our approaches achieve higher accuracy and align better with human judgments, respectively. Interestingly, PR can induce a relatively accurate self-ranking of models under the anonymous setting, where each model's name is unrevealed. Our work provides space to explore evaluating models that are hard to compare for humans.
"Kelly is a Warm Person, Joseph is a Role Model": Gender Biases in LLM-Generated Reference Letters
Large Language Models (LLMs) have recently emerged as an effective tool to assist individuals in writing various types of content, including professional documents such as recommendation letters. Though bringing convenience, this application also introduces unprecedented fairness concerns. Model-generated reference letters might be directly used by users in professional scenarios. If underlying biases exist in these model-constructed letters, using them without scrutinization could lead to direct societal harms, such as sabotaging application success rates for female applicants. In light of this pressing issue, it is imminent and necessary to comprehensively study fairness issues and associated harms in this real-world use case. In this paper, we critically examine gender biases in LLM-generated reference letters. Drawing inspiration from social science findings, we design evaluation methods to manifest biases through 2 dimensions: (1) biases in language style and (2) biases in lexical content. We further investigate the extent of bias propagation by analyzing the hallucination bias of models, a term that we define to be bias exacerbation in model-hallucinated contents. Through benchmarking evaluation on 2 popular LLMs- ChatGPT and Alpaca, we reveal significant gender biases in LLM-generated recommendation letters. Our findings not only warn against using LLMs for this application without scrutinization, but also illuminate the importance of thoroughly studying hidden biases and harms in LLM-generated professional documents.
Rethinking Evaluation Metric for Probability Estimation Models Using Esports Data
Probability estimation models play an important role in various fields, such as weather forecasting, recommendation systems, and sports analysis. Among several models estimating probabilities, it is difficult to evaluate which model gives reliable probabilities since the ground-truth probabilities are not available. The win probability estimation model for esports, which calculates the win probability under a certain game state, is also one of the fields being actively studied in probability estimation. However, most of the previous works evaluated their models using accuracy, a metric that only can measure the performance of discrimination. In this work, we firstly investigate the Brier score and the Expected Calibration Error (ECE) as a replacement of accuracy used as a performance evaluation metric for win probability estimation models in esports field. Based on the analysis, we propose a novel metric called Balance score which is a simple yet effective metric in terms of six good properties that probability estimation metric should have. Under the general condition, we also found that the Balance score can be an effective approximation of the true expected calibration error which has been imperfectly approximated by ECE using the binning technique. Extensive evaluations using simulation studies and real game snapshot data demonstrate the promising potential to adopt the proposed metric not only for the win probability estimation model for esports but also for evaluating general probability estimation models.
DEsignBench: Exploring and Benchmarking DALL-E 3 for Imagining Visual Design
We introduce DEsignBench, a text-to-image (T2I) generation benchmark tailored for visual design scenarios. Recent T2I models like DALL-E 3 and others, have demonstrated remarkable capabilities in generating photorealistic images that align closely with textual inputs. While the allure of creating visually captivating images is undeniable, our emphasis extends beyond mere aesthetic pleasure. We aim to investigate the potential of using these powerful models in authentic design contexts. In pursuit of this goal, we develop DEsignBench, which incorporates test samples designed to assess T2I models on both "design technical capability" and "design application scenario." Each of these two dimensions is supported by a diverse set of specific design categories. We explore DALL-E 3 together with other leading T2I models on DEsignBench, resulting in a comprehensive visual gallery for side-by-side comparisons. For DEsignBench benchmarking, we perform human evaluations on generated images in DEsignBench gallery, against the criteria of image-text alignment, visual aesthetic, and design creativity. Our evaluation also considers other specialized design capabilities, including text rendering, layout composition, color harmony, 3D design, and medium style. In addition to human evaluations, we introduce the first automatic image generation evaluator powered by GPT-4V. This evaluator provides ratings that align well with human judgments, while being easily replicable and cost-efficient. A high-resolution version is available at https://github.com/design-bench/design-bench.github.io/raw/main/designbench.pdf?download=
Toward Verifiable and Reproducible Human Evaluation for Text-to-Image Generation
Human evaluation is critical for validating the performance of text-to-image generative models, as this highly cognitive process requires deep comprehension of text and images. However, our survey of 37 recent papers reveals that many works rely solely on automatic measures (e.g., FID) or perform poorly described human evaluations that are not reliable or repeatable. This paper proposes a standardized and well-defined human evaluation protocol to facilitate verifiable and reproducible human evaluation in future works. In our pilot data collection, we experimentally show that the current automatic measures are incompatible with human perception in evaluating the performance of the text-to-image generation results. Furthermore, we provide insights for designing human evaluation experiments reliably and conclusively. Finally, we make several resources publicly available to the community to facilitate easy and fast implementations.
An Evaluation Protocol for Generative Conversational Systems
There is a multitude of novel generative models for open-domain conversational systems; however, there is no systematic evaluation of different systems. Systematic comparisons require consistency in experimental design, evaluation sets, conversational systems and their outputs, and statistical analysis. We lay out a protocol for the evaluation of conversational models using head-to-head pairwise comparison. We analyze ten recent models that claim state-of-the-art performance using a paired head-to-head performance (win-loss-tie) on five evaluation datasets. Our findings show that DialoGPT and Blender are superior systems using Bradley-Terry model and TrueSkill ranking methods. These findings demonstrate the feasibility of our protocol to evaluate conversational agents and evaluation sets. Finally, we make all code and evaluations publicly available for researchers to compare their model to other state-of-the-art dialog models.
Large Language Models Often Know When They Are Being Evaluated
If AI models can detect when they are being evaluated, the effectiveness of evaluations might be compromised. For example, models could have systematically different behavior during evaluations, leading to less reliable benchmarks for deployment and governance decisions. We investigate whether frontier language models can accurately classify transcripts based on whether they originate from evaluations or real-world deployment, a capability we call evaluation awareness. To achieve this, we construct a diverse benchmark of 1,000 prompts and transcripts from 61 distinct datasets. These span public benchmarks (e.g., MMLU, SWEBench), real-world deployment interactions, and agent trajectories from scaffolding frameworks (e.g., web-browsing agents). Frontier models clearly demonstrate above-random evaluation awareness (Gemini-2.5-Pro reaches an AUC of 0.83), but do not yet surpass our simple human baseline (AUC of 0.92). Furthermore, both AI models and humans are better at identifying evaluations in agentic settings compared to chat settings. Additionally, we test whether models can identify the purpose of the evaluation. Under multiple-choice and open-ended questioning, AI models far outperform random chance in identifying what an evaluation is testing for. Our results indicate that frontier models already exhibit a substantial, though not yet superhuman, level of evaluation-awareness. We recommend tracking this capability in future models.
RM-Bench: Benchmarking Reward Models of Language Models with Subtlety and Style
Reward models are critical in techniques like Reinforcement Learning from Human Feedback (RLHF) and Inference Scaling Laws, where they guide language model alignment and select optimal responses. Despite their importance, existing reward model benchmarks often evaluate models by asking them to distinguish between responses generated by models of varying power. However, this approach fails to assess reward models on subtle but critical content changes and variations in style, resulting in a low correlation with policy model performance. To this end, we introduce RM-Bench, a novel benchmark designed to evaluate reward models based on their sensitivity to subtle content differences and resistance to style biases. Extensive experiments demonstrate that RM-Bench strongly correlates with policy model performance, making it a reliable reference for selecting reward models to align language models effectively. We evaluate nearly 40 reward models on RM-Bench. Our results reveal that even state-of-the-art models achieve an average performance of only 46.6%, which falls short of random-level accuracy (50%) when faced with style bias interference. These findings highlight the significant room for improvement in current reward models. Related code and data are available at https://github.com/THU-KEG/RM-Bench.
Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions
Large Language Models (LLMs) have demonstrated wide-ranging applications across various fields and have shown significant potential in the academic peer-review process. However, existing applications are primarily limited to static review generation based on submitted papers, which fail to capture the dynamic and iterative nature of real-world peer reviews. In this paper, we reformulate the peer-review process as a multi-turn, long-context dialogue, incorporating distinct roles for authors, reviewers, and decision makers. We construct a comprehensive dataset containing over 26,841 papers with 92,017 reviews collected from multiple sources, including the top-tier conference and prestigious journal. This dataset is meticulously designed to facilitate the applications of LLMs for multi-turn dialogues, effectively simulating the complete peer-review process. Furthermore, we propose a series of metrics to evaluate the performance of LLMs for each role under this reformulated peer-review setting, ensuring fair and comprehensive evaluations. We believe this work provides a promising perspective on enhancing the LLM-driven peer-review process by incorporating dynamic, role-based interactions. It aligns closely with the iterative and interactive nature of real-world academic peer review, offering a robust foundation for future research and development in this area. We open-source the dataset at https://github.com/chengtan9907/ReviewMT.
MMBench: Is Your Multi-modal Model an All-around Player?
Large vision-language models have recently achieved remarkable progress, exhibiting great perception and reasoning abilities concerning visual information. However, how to effectively evaluate these large vision-language models remains a major obstacle, hindering future model development. Traditional benchmarks like VQAv2 or COCO Caption provide quantitative performance measurements but suffer from a lack of fine-grained ability assessment and non-robust evaluation metrics. Recent subjective benchmarks, such as OwlEval, offer comprehensive evaluations of a model's abilities by incorporating human labor, but they are not scalable and display significant bias. In response to these challenges, we propose MMBench, a novel multi-modality benchmark. MMBench methodically develops a comprehensive evaluation pipeline, primarily comprised of two elements. The first element is a meticulously curated dataset that surpasses existing similar benchmarks in terms of the number and variety of evaluation questions and abilities. The second element introduces a novel CircularEval strategy and incorporates the use of ChatGPT. This implementation is designed to convert free-form predictions into pre-defined choices, thereby facilitating a more robust evaluation of the model's predictions. MMBench is a systematically-designed objective benchmark for robustly evaluating the various abilities of vision-language models. We hope MMBench will assist the research community in better evaluating their models and encourage future advancements in this domain. Project page: https://opencompass.org.cn/mmbench.
Report Cards: Qualitative Evaluation of Language Models Using Natural Language Summaries
The rapid development and dynamic nature of large language models (LLMs) make it difficult for conventional quantitative benchmarks to accurately assess their capabilities. We propose report cards, which are human-interpretable, natural language summaries of model behavior for specific skills or topics. We develop a framework to evaluate report cards based on three criteria: specificity (ability to distinguish between models), faithfulness (accurate representation of model capabilities), and interpretability (clarity and relevance to humans). We also propose an iterative algorithm for generating report cards without human supervision and explore its efficacy by ablating various design choices. Through experimentation with popular LLMs, we demonstrate that report cards provide insights beyond traditional benchmarks and can help address the need for a more interpretable and holistic evaluation of LLMs.
Active Evaluation Acquisition for Efficient LLM Benchmarking
As large language models (LLMs) become increasingly versatile, numerous large scale benchmarks have been developed to thoroughly assess their capabilities. These benchmarks typically consist of diverse datasets and prompts to evaluate different aspects of LLM performance. However, comprehensive evaluations on hundreds or thousands of prompts incur tremendous costs in terms of computation, money, and time. In this work, we investigate strategies to improve evaluation efficiency by selecting a subset of examples from each benchmark using a learned policy. Our approach models the dependencies across test examples, allowing accurate prediction of the evaluation outcomes for the remaining examples based on the outcomes of the selected ones. Consequently, we only need to acquire the actual evaluation outcomes for the selected subset. We rigorously explore various subset selection policies and introduce a novel RL-based policy that leverages the captured dependencies. Empirical results demonstrate that our approach significantly reduces the number of evaluation prompts required while maintaining accurate performance estimates compared to previous methods.
How Many Parameters Does it Take to Change a Light Bulb? Evaluating Performance in Self-Play of Conversational Games as a Function of Model Characteristics
What makes a good Large Language Model (LLM)? That it performs well on the relevant benchmarks -- which hopefully measure, with some validity, the presence of capabilities that are also challenged in real application. But what makes the model perform well? What gives a model its abilities? We take a recently introduced type of benchmark that is meant to challenge capabilities in a goal-directed, agentive context through self-play of conversational games, and analyse how performance develops as a function of model characteristics like number of parameters, or type of training. We find that while there is a clear relationship between number of parameters and performance, there is still a wide spread of performance points within a given size bracket, which is to be accounted for by training parameters such as fine-tuning data quality and method. From a more practical angle, we also find a certain degree of unpredictability about performance across access methods, possible due to unexposed sampling parameters, and a, very welcome, performance stability against at least moderate weight quantisation during inference.
Benchmarking Cognitive Biases in Large Language Models as Evaluators
Large Language Models (LLMs) have recently been shown to be effective as automatic evaluators with simple prompting and in-context learning. In this work, we assemble 15 LLMs of four different size ranges and evaluate their output responses by preference ranking from the other LLMs as evaluators, such as System Star is better than System Square. We then evaluate the quality of ranking outputs introducing the Cognitive Bias Benchmark for LLMs as Evaluators (CoBBLEr), a benchmark to measure six different cognitive biases in LLM evaluation outputs, such as the Egocentric bias where a model prefers to rank its own outputs highly in evaluation. We find that LLMs are biased text quality evaluators, exhibiting strong indications on our bias benchmark (average of 40% of comparisons across all models) within each of their evaluations that question their robustness as evaluators. Furthermore, we examine the correlation between human and machine preferences and calculate the average Rank-Biased Overlap (RBO) score to be 49.6%, indicating that machine preferences are misaligned with humans. According to our findings, LLMs may still be unable to be utilized for automatic annotation aligned with human preferences. Our project page is at: https://minnesotanlp.github.io/cobbler.
ConSiDERS-The-Human Evaluation Framework: Rethinking Human Evaluation for Generative Large Language Models
In this position paper, we argue that human evaluation of generative large language models (LLMs) should be a multidisciplinary undertaking that draws upon insights from disciplines such as user experience research and human behavioral psychology to ensure that the experimental design and results are reliable. The conclusions from these evaluations, thus, must consider factors such as usability, aesthetics, and cognitive biases. We highlight how cognitive biases can conflate fluent information and truthfulness, and how cognitive uncertainty affects the reliability of rating scores such as Likert. Furthermore, the evaluation should differentiate the capabilities and weaknesses of increasingly powerful large language models -- which requires effective test sets. The scalability of human evaluation is also crucial to wider adoption. Hence, to design an effective human evaluation system in the age of generative NLP, we propose the ConSiDERS-The-Human evaluation framework consisting of 6 pillars -- Consistency, Scoring Criteria, Differentiating, User Experience, Responsible, and Scalability.
CreAgent: Towards Long-Term Evaluation of Recommender System under Platform-Creator Information Asymmetry
Ensuring the long-term sustainability of recommender systems (RS) emerges as a crucial issue. Traditional offline evaluation methods for RS typically focus on immediate user feedback, such as clicks, but they often neglect the long-term impact of content creators. On real-world content platforms, creators can strategically produce and upload new items based on user feedback and preference trends. While previous studies have attempted to model creator behavior, they often overlook the role of information asymmetry. This asymmetry arises because creators primarily have access to feedback on the items they produce, while platforms possess data on the entire spectrum of user feedback. Current RS simulators, however, fail to account for this asymmetry, leading to inaccurate long-term evaluations. To address this gap, we propose CreAgent, a Large Language Model (LLM)-empowered creator simulation agent. By incorporating game theory's belief mechanism and the fast-and-slow thinking framework, CreAgent effectively simulates creator behavior under conditions of information asymmetry. Additionally, we enhance CreAgent's simulation ability by fine-tuning it using Proximal Policy Optimization (PPO). Our credibility validation experiments show that CreAgent aligns well with the behaviors between real-world platform and creator, thus improving the reliability of long-term RS evaluations. Moreover, through the simulation of RS involving CreAgents, we can explore how fairness- and diversity-aware RS algorithms contribute to better long-term performance for various stakeholders. CreAgent and the simulation platform are publicly available at https://github.com/shawnye2000/CreAgent.
A Survey on Benchmarks of Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) are gaining increasing popularity in both academia and industry due to their remarkable performance in various applications such as visual question answering, visual perception, understanding, and reasoning. Over the past few years, significant efforts have been made to examine MLLMs from multiple perspectives. This paper presents a comprehensive review of 180 benchmarks and evaluation for MLLMs, focusing on (1)perception and understanding, (2)cognition and reasoning, (3)specific domains, (4)key capabilities, and (5)other modalities. Finally, we discuss the limitations of the current evaluation methods for MLLMs and explore promising future directions. Our key argument is that evaluation should be regarded as a crucial discipline to better support the development of MLLMs. For more details, please visit our GitHub repository: https://github.com/swordlidev/Evaluation-Multimodal-LLMs-Survey.
Rethinking Reward Model Evaluation: Are We Barking up the Wrong Tree?
Reward Models (RMs) are crucial for aligning language models with human preferences. Currently, the evaluation of RMs depends on measuring accuracy against a validation set of manually annotated preference data. Although this method is straightforward and widely adopted, the relationship between RM accuracy and downstream policy performance remains under-explored. In this work, we conduct experiments in a synthetic setting to investigate how differences in RM measured by accuracy translate into gaps in optimized policy performance. Our findings reveal that while there is a weak positive correlation between accuracy and downstream performance, policies optimized towards RMs with similar accuracy can exhibit quite different performance. Moreover, we discover that the way of measuring accuracy significantly impacts its ability to predict the final policy performance. Through the lens of the Regressional Goodhart effect, we recognize that accuracy, when used for measuring RM quality, can fail to fully capture the potential RM overoptimization. This underscores the inadequacy of relying solely on accuracy to reflect their impact on policy optimization.
CompassJudger-1: All-in-one Judge Model Helps Model Evaluation and Evolution
Efficient and accurate evaluation is crucial for the continuous improvement of large language models (LLMs). Among various assessment methods, subjective evaluation has garnered significant attention due to its superior alignment with real-world usage scenarios and human preferences. However, human-based evaluations are costly and lack reproducibility, making precise automated evaluators (judgers) vital in this process. In this report, we introduce CompassJudger-1, the first open-source all-in-one judge LLM. CompassJudger-1 is a general-purpose LLM that demonstrates remarkable versatility. It is capable of: 1. Performing unitary scoring and two-model comparisons as a reward model; 2. Conducting evaluations according to specified formats; 3. Generating critiques; 4. Executing diverse tasks like a general LLM. To assess the evaluation capabilities of different judge models under a unified setting, we have also established JudgerBench, a new benchmark that encompasses various subjective evaluation tasks and covers a wide range of topics. CompassJudger-1 offers a comprehensive solution for various evaluation tasks while maintaining the flexibility to adapt to diverse requirements. Both CompassJudger and JudgerBench are released and available to the research community athttps://github.com/open-compass/CompassJudger. We believe that by open-sourcing these tools, we can foster collaboration and accelerate progress in LLM evaluation methodologies.
Holistic Evaluation of Language Models
Language models (LMs) are becoming the foundation for almost all major language technologies, but their capabilities, limitations, and risks are not well understood. We present Holistic Evaluation of Language Models (HELM) to improve the transparency of language models. First, we taxonomize the vast space of potential scenarios (i.e. use cases) and metrics (i.e. desiderata) that are of interest for LMs. Then we select a broad subset based on coverage and feasibility, noting what's missing or underrepresented (e.g. question answering for neglected English dialects, metrics for trustworthiness). Second, we adopt a multi-metric approach: We measure 7 metrics (accuracy, calibration, robustness, fairness, bias, toxicity, and efficiency) for each of 16 core scenarios when possible (87.5% of the time). This ensures metrics beyond accuracy don't fall to the wayside, and that trade-offs are clearly exposed. We also perform 7 targeted evaluations, based on 26 targeted scenarios, to analyze specific aspects (e.g. reasoning, disinformation). Third, we conduct a large-scale evaluation of 30 prominent language models (spanning open, limited-access, and closed models) on all 42 scenarios, 21 of which were not previously used in mainstream LM evaluation. Prior to HELM, models on average were evaluated on just 17.9% of the core HELM scenarios, with some prominent models not sharing a single scenario in common. We improve this to 96.0%: now all 30 models have been densely benchmarked on the same core scenarios and metrics under standardized conditions. Our evaluation surfaces 25 top-level findings. For full transparency, we release all raw model prompts and completions publicly for further analysis, as well as a general modular toolkit. We intend for HELM to be a living benchmark for the community, continuously updated with new scenarios, metrics, and models.
Learning to Align Multi-Faceted Evaluation: A Unified and Robust Framework
Large Language Models (LLMs) are being used more and more extensively for automated evaluation in various scenarios. Previous studies have attempted to fine-tune open-source LLMs to replicate the evaluation explanations and judgments of powerful proprietary models, such as GPT-4. However, these methods are largely limited to text-based analyses under predefined general criteria, resulting in reduced adaptability for unseen instructions and demonstrating instability in evaluating adherence to quantitative and structural constraints. To address these limitations, we propose a novel evaluation framework, ARJudge, that adaptively formulates evaluation criteria and synthesizes both text-based and code-driven analyses to evaluate LLM responses. ARJudge consists of two components: a fine-tuned Analyzer that generates multi-faceted evaluation analyses and a tuning-free Refiner that combines and refines all analyses to make the final judgment. We construct a Composite Analysis Corpus that integrates tasks for evaluation criteria generation alongside text-based and code-driven analysis generation to train the Analyzer. Our results demonstrate that ARJudge outperforms existing fine-tuned evaluators in effectiveness and robustness. Furthermore, it demonstrates the importance of multi-faceted evaluation and code-driven analyses in enhancing evaluation capabilities.
MME-Finance: A Multimodal Finance Benchmark for Expert-level Understanding and Reasoning
In recent years, multimodal benchmarks for general domains have guided the rapid development of multimodal models on general tasks. However, the financial field has its peculiarities. It features unique graphical images (e.g., candlestick charts, technical indicator charts) and possesses a wealth of specialized financial knowledge (e.g., futures, turnover rate). Therefore, benchmarks from general fields often fail to measure the performance of multimodal models in the financial domain, and thus cannot effectively guide the rapid development of large financial models. To promote the development of large financial multimodal models, we propose MME-Finance, an bilingual open-ended and practical usage-oriented Visual Question Answering (VQA) benchmark. The characteristics of our benchmark are finance and expertise, which include constructing charts that reflect the actual usage needs of users (e.g., computer screenshots and mobile photography), creating questions according to the preferences in financial domain inquiries, and annotating questions by experts with 10+ years of experience in the financial industry. Additionally, we have developed a custom-designed financial evaluation system in which visual information is first introduced in the multi-modal evaluation process. Extensive experimental evaluations of 19 mainstream MLLMs are conducted to test their perception, reasoning, and cognition capabilities. The results indicate that models performing well on general benchmarks cannot do well on MME-Finance; for instance, the top-performing open-source and closed-source models obtain 65.69 (Qwen2VL-72B) and 63.18 (GPT-4o), respectively. Their performance is particularly poor in categories most relevant to finance, such as candlestick charts and technical indicator charts. In addition, we propose a Chinese version, which helps compare performance of MLLMs under a Chinese context.
LLaMA-E: Empowering E-commerce Authoring with Multi-Aspect Instruction Following
E-commerce authoring involves creating attractive, abundant, and targeted promotional content to drive product sales. The emergence of large language models (LLMs) introduces an innovative paradigm, offering a unified solution to address various authoring tasks within this scenario. However, mainstream LLMs trained on general corpora with common sense knowledge reveal limitations in fitting complex and personalized features unique to e-commerce products and customers. Furthermore, LLMs like GPT-3.5 necessitate remote accessibility, raising concerns about safeguarding voluminous customer privacy data during transmission. This paper proposes the LLaMA-E, the unified and customized instruction-following language models focusing on diverse e-commerce authoring tasks. Specifically, the domain experts create the seed instruction set from the tasks of ads generation, query-enhanced product title rewriting, product classification, purchase intent speculation, and general Q&A. These tasks enable the models to comprehensively understand precise e-commerce authoring knowledge by interleaving features covering typical service aspects of customers, sellers, and platforms. The GPT-3.5 is introduced as a teacher model, which expands the seed instructions to form a training set for the LLaMA-E models with various scales. The experimental results show that the proposed LLaMA-E models achieve state-of-the-art results in quantitative and qualitative evaluations, also exhibiting the advantage in zero-shot scenes. To the best of our knowledge, this study is the first to serve the LLMs to specific e-commerce authoring scenarios.
What do we know about Hugging Face? A systematic literature review and quantitative validation of qualitative claims
Background: Collaborative Software Package Registries (SPRs) are an integral part of the software supply chain. Much engineering work synthesizes SPR package into applications. Prior research has examined SPRs for traditional software, such as NPM (JavaScript) and PyPI (Python). Pre-Trained Model (PTM) Registries are an emerging class of SPR of increasing importance, because they support the deep learning supply chain. Aims: Recent empirical research has examined PTM registries in ways such as vulnerabilities, reuse processes, and evolution. However, no existing research synthesizes them to provide a systematic understanding of the current knowledge. Some of the existing research includes qualitative claims lacking quantitative analysis. Our research fills these gaps by providing a knowledge synthesis and quantitative analyses. Methods: We first conduct a systematic literature review (SLR). We then observe that some of the claims are qualitative. We identify quantifiable metrics associated with those claims, and measure in order to substantiate these claims. Results: From our SLR, we identify 12 claims about PTM reuse on the HuggingFace platform, 4 of which lack quantitative validation. We successfully test 3 of these claims through a quantitative analysis, and directly compare one with traditional software. Our findings corroborate qualitative claims with quantitative measurements. Our findings are: (1) PTMs have a much higher turnover rate than traditional software, indicating a dynamic and rapidly evolving reuse environment within the PTM ecosystem; and (2) There is a strong correlation between documentation quality and PTM popularity. Conclusions: We confirm qualitative research claims with concrete metrics, supporting prior qualitative and case study research. Our measures show further dynamics of PTM reuse, inspiring research infrastructure and new measures.
Hypothesis Generation for Materials Discovery and Design Using Goal-Driven and Constraint-Guided LLM Agents
Materials discovery and design are essential for advancing technology across various industries by enabling the development of application-specific materials. Recent research has leveraged Large Language Models (LLMs) to accelerate this process. We explore the potential of LLMs to generate viable hypotheses that, once validated, can expedite materials discovery. Collaborating with materials science experts, we curated a novel dataset from recent journal publications, featuring real-world goals, constraints, and methods for designing real-world applications. Using this dataset, we test LLM-based agents that generate hypotheses for achieving given goals under specific constraints. To assess the relevance and quality of these hypotheses, we propose a novel scalable evaluation metric that emulates the process a materials scientist would use to evaluate a hypothesis critically. Our curated dataset, proposed method, and evaluation framework aim to advance future research in accelerating materials discovery and design with LLMs.
LLaMA Beyond English: An Empirical Study on Language Capability Transfer
In recent times, substantial advancements have been witnessed in large language models (LLMs), exemplified by ChatGPT, showcasing remarkable proficiency across a range of complex tasks. However, many mainstream LLMs (e.g. LLaMA) are pretrained on English-dominant corpus, which limits their performance in other non-English languages. In this paper, we focus on how to effectively transfer the capabilities of language generation and following instructions to a non-English language. To answer this question, we conduct an extensive empirical investigation based on LLaMA, accumulating over 1440 GPU hours. We analyze the impact of key factors such as vocabulary extension, further pretraining, and instruction tuning on transfer. To accurately assess the model's level of knowledge, we employ four widely used standardized testing benchmarks: C-Eval, MMLU, AGI-Eval, and GAOKAO-Bench. Furthermore, a comprehensive evaluation of the model's response quality is conducted, considering aspects such as accuracy, fluency, informativeness, logical coherence, and harmlessness, based on LLM-Eval, a benchmarks consisting instruction tasks from 17 diverse categories. Our evaluation results demonstrate that comparable performance to state-of-the-art transfer models can be achieved with less than 1% of the pretraining data, both in terms of knowledge alignment and response quality. Furthermore, the experimental outcomes across the thirteen low-resource languages also exhibit similar trends. We anticipate that the conclusions revealed by the experiments will aid the community in developing non-English LLMs.
Deep neural network marketplace recommenders in online experiments
Recommendations are broadly used in marketplaces to match users with items relevant to their interests and needs. To understand user intent and tailor recommendations to their needs, we use deep learning to explore various heterogeneous data available in marketplaces. This paper focuses on the challenge of measuring recommender performance and summarizes the online experiment results with several promising types of deep neural network recommenders - hybrid item representation models combining features from user engagement and content, sequence-based models, and multi-armed bandit models that optimize user engagement by re-ranking proposals from multiple submodels. The recommenders are currently running in production at the leading Norwegian marketplace FINN.no and serves over one million visitors everyday.
Model Hubs and Beyond: Analyzing Model Popularity, Performance, and Documentation
With the massive surge in ML models on platforms like Hugging Face, users often lose track and struggle to choose the best model for their downstream tasks, frequently relying on model popularity indicated by download counts, likes, or recency. We investigate whether this popularity aligns with actual model performance and how the comprehensiveness of model documentation correlates with both popularity and performance. In our study, we evaluated a comprehensive set of 500 Sentiment Analysis models on Hugging Face. This evaluation involved massive annotation efforts, with human annotators completing nearly 80,000 annotations, alongside extensive model training and evaluation. Our findings reveal that model popularity does not necessarily correlate with performance. Additionally, we identify critical inconsistencies in model card reporting: approximately 80\% of the models analyzed lack detailed information about the model, training, and evaluation processes. Furthermore, about 88\% of model authors overstate their models' performance in the model cards. Based on our findings, we provide a checklist of guidelines for users to choose good models for downstream tasks.
Multi-Label Zero-Shot Product Attribute-Value Extraction
E-commerce platforms should provide detailed product descriptions (attribute values) for effective product search and recommendation. However, attribute value information is typically not available for new products. To predict unseen attribute values, large quantities of labeled training data are needed to train a traditional supervised learning model. Typically, it is difficult, time-consuming, and costly to manually label large quantities of new product profiles. In this paper, we propose a novel method to efficiently and effectively extract unseen attribute values from new products in the absence of labeled data (zero-shot setting). We propose HyperPAVE, a multi-label zero-shot attribute value extraction model that leverages inductive inference in heterogeneous hypergraphs. In particular, our proposed technique constructs heterogeneous hypergraphs to capture complex higher-order relations (i.e. user behavior information) to learn more accurate feature representations for graph nodes. Furthermore, our proposed HyperPAVE model uses an inductive link prediction mechanism to infer future connections between unseen nodes. This enables HyperPAVE to identify new attribute values without the need for labeled training data. We conduct extensive experiments with ablation studies on different categories of the MAVE dataset. The results demonstrate that our proposed HyperPAVE model significantly outperforms existing classification-based, generation-based large language models for attribute value extraction in the zero-shot setting.
How to Index Item IDs for Recommendation Foundation Models
Recommendation foundation model utilizes large language models (LLM) for recommendation by converting recommendation tasks into natural language tasks. It enables generative recommendation which directly generates the item(s) to recommend rather than calculating a ranking score for each and every candidate item in traditional recommendation models, simplifying the recommendation pipeline from multi-stage filtering to single-stage filtering. To avoid generating excessively long text and hallucinated recommendation when deciding which item(s) to recommend, creating LLM-compatible item IDs to uniquely identify each item is essential for recommendation foundation models. In this study, we systematically examine the item indexing problem for recommendation foundation models, using P5 as an example of backbone model. To emphasize the importance of item indexing, we first discuss the issues of several trivial item indexing methods, such as independent indexing, title indexing, and random indexing. We then propose four simple yet effective solutions, including sequential indexing, collaborative indexing, semantic (content-based) indexing, and hybrid indexing. Our study highlights the significant influence of item indexing methods on the performance of LLM-based recommendation, and our results on real-world datasets validate the effectiveness of our proposed solutions. The research also demonstrates how recent advances on language modeling and traditional IR principles such as indexing can help each other for better learning and inference.
C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models
New NLP benchmarks are urgently needed to align with the rapid development of large language models (LLMs). We present C-Eval, the first comprehensive Chinese evaluation suite designed to assess advanced knowledge and reasoning abilities of foundation models in a Chinese context. C-Eval comprises multiple-choice questions across four difficulty levels: middle school, high school, college, and professional. The questions span 52 diverse disciplines, ranging from humanities to science and engineering. C-Eval is accompanied by C-Eval Hard, a subset of very challenging subjects in C-Eval that requires advanced reasoning abilities to solve. We conduct a comprehensive evaluation of the most advanced LLMs on C-Eval, including both English- and Chinese-oriented models. Results indicate that only GPT-4 could achieve an average accuracy of over 60%, suggesting that there is still significant room for improvement for current LLMs. We anticipate C-Eval will help analyze important strengths and shortcomings of foundation models, and foster their development and growth for Chinese users.
ViLLM-Eval: A Comprehensive Evaluation Suite for Vietnamese Large Language Models
The rapid advancement of large language models (LLMs) necessitates the development of new benchmarks to accurately assess their capabilities. To address this need for Vietnamese, this work aims to introduce ViLLM-Eval, the comprehensive evaluation suite designed to measure the advanced knowledge and reasoning abilities of foundation models within a Vietnamese context. ViLLM-Eval consists of multiple-choice questions and predict next word tasks spanning various difficulty levels and diverse disciplines, ranging from humanities to science and engineering. A thorough evaluation of the most advanced LLMs on ViLLM-Eval revealed that even the best performing models have significant room for improvement in understanding and responding to Vietnamese language tasks. ViLLM-Eval is believed to be instrumental in identifying key strengths and weaknesses of foundation models, ultimately promoting their development and enhancing their performance for Vietnamese users. This paper provides a thorough overview of ViLLM-Eval as part of the Vietnamese Large Language Model shared task, held within the 10th International Workshop on Vietnamese Language and Speech Processing (VLSP 2023).
Measuring short-form factuality in large language models
We present SimpleQA, a benchmark that evaluates the ability of language models to answer short, fact-seeking questions. We prioritized two properties in designing this eval. First, SimpleQA is challenging, as it is adversarially collected against GPT-4 responses. Second, responses are easy to grade, because questions are created such that there exists only a single, indisputable answer. Each answer in SimpleQA is graded as either correct, incorrect, or not attempted. A model with ideal behavior would get as many questions correct as possible while not attempting the questions for which it is not confident it knows the correct answer. SimpleQA is a simple, targeted evaluation for whether models "know what they know," and our hope is that this benchmark will remain relevant for the next few generations of frontier models. SimpleQA can be found at https://github.com/openai/simple-evals.
Pitfalls in Evaluating Language Model Forecasters
Large language models (LLMs) have recently been applied to forecasting tasks, with some works claiming these systems match or exceed human performance. In this paper, we argue that, as a community, we should be careful about such conclusions as evaluating LLM forecasters presents unique challenges. We identify two broad categories of issues: (1) difficulty in trusting evaluation results due to many forms of temporal leakage, and (2) difficulty in extrapolating from evaluation performance to real-world forecasting. Through systematic analysis and concrete examples from prior work, we demonstrate how evaluation flaws can raise concerns about current and future performance claims. We argue that more rigorous evaluation methodologies are needed to confidently assess the forecasting abilities of LLMs.
What Should Data Science Education Do with Large Language Models?
The rapid advances of large language models (LLMs), such as ChatGPT, are revolutionizing data science and statistics. These state-of-the-art tools can streamline complex processes. As a result, it reshapes the role of data scientists. We argue that LLMs are transforming the responsibilities of data scientists, shifting their focus from hands-on coding, data-wrangling and conducting standard analyses to assessing and managing analyses performed by these automated AIs. This evolution of roles is reminiscent of the transition from a software engineer to a product manager. We illustrate this transition with concrete data science case studies using LLMs in this paper. These developments necessitate a meaningful evolution in data science education. Pedagogy must now place greater emphasis on cultivating diverse skillsets among students, such as LLM-informed creativity, critical thinking, AI-guided programming. LLMs can also play a significant role in the classroom as interactive teaching and learning tools, contributing to personalized education. This paper discusses the opportunities, resources and open challenges for each of these directions. As with any transformative technology, integrating LLMs into education calls for careful consideration. While LLMs can perform repetitive tasks efficiently, it's crucial to remember that their role is to supplement human intelligence and creativity, not to replace it. Therefore, the new era of data science education should balance the benefits of LLMs while fostering complementary human expertise and innovations. In conclusion, the rise of LLMs heralds a transformative period for data science and its education. This paper seeks to shed light on the emerging trends, potential opportunities, and challenges accompanying this paradigm shift, hoping to spark further discourse and investigation into this exciting, uncharted territory.
Evaluating Machine Learning Models with NERO: Non-Equivariance Revealed on Orbits
Proper evaluations are crucial for better understanding, troubleshooting, interpreting model behaviors and further improving model performance. While using scalar-based error metrics provides a fast way to overview model performance, they are often too abstract to display certain weak spots and lack information regarding important model properties, such as robustness. This not only hinders machine learning models from being more interpretable and gaining trust, but also can be misleading to both model developers and users. Additionally, conventional evaluation procedures often leave researchers unclear about where and how model fails, which complicates model comparisons and further developments. To address these issues, we propose a novel evaluation workflow, named Non-Equivariance Revealed on Orbits (NERO) Evaluation. The goal of NERO evaluation is to turn focus from traditional scalar-based metrics onto evaluating and visualizing models equivariance, closely capturing model robustness, as well as to allow researchers quickly investigating interesting or unexpected model behaviors. NERO evaluation is consist of a task-agnostic interactive interface and a set of visualizations, called NERO plots, which reveals the equivariance property of the model. Case studies on how NERO evaluation can be applied to multiple research areas, including 2D digit recognition, object detection, particle image velocimetry (PIV), and 3D point cloud classification, demonstrate that NERO evaluation can quickly illustrate different model equivariance, and effectively explain model behaviors through interactive visualizations of the model outputs. In addition, we propose consensus, an alternative to ground truths, to be used in NERO evaluation so that model equivariance can still be evaluated with new, unlabeled datasets.
Fast Adversarial Attacks on Language Models In One GPU Minute
In this paper, we introduce a novel class of fast, beam search-based adversarial attack (BEAST) for Language Models (LMs). BEAST employs interpretable parameters, enabling attackers to balance between attack speed, success rate, and the readability of adversarial prompts. The computational efficiency of BEAST facilitates us to investigate its applications on LMs for jailbreaking, eliciting hallucinations, and privacy attacks. Our gradient-free targeted attack can jailbreak aligned LMs with high attack success rates within one minute. For instance, BEAST can jailbreak Vicuna-7B-v1.5 under one minute with a success rate of 89% when compared to a gradient-based baseline that takes over an hour to achieve 70% success rate using a single Nvidia RTX A6000 48GB GPU. Additionally, we discover a unique outcome wherein our untargeted attack induces hallucinations in LM chatbots. Through human evaluations, we find that our untargeted attack causes Vicuna-7B-v1.5 to produce ~15% more incorrect outputs when compared to LM outputs in the absence of our attack. We also learn that 22% of the time, BEAST causes Vicuna to generate outputs that are not relevant to the original prompt. Further, we use BEAST to generate adversarial prompts in a few seconds that can boost the performance of existing membership inference attacks for LMs. We believe that our fast attack, BEAST, has the potential to accelerate research in LM security and privacy. Our codebase is publicly available at https://github.com/vinusankars/BEAST.
The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources
Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications. To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet: a growing collection of 250+ tools and resources spanning text, vision, and speech modalities. We draw on a large body of prior work to survey resources (e.g. software, documentation, frameworks, guides, and practical tools) that support informed data selection, processing, and understanding, precise and limitation-aware artifact documentation, efficient model training, advance awareness of the environmental impact from training, careful model evaluation of capabilities, risks, and claims, as well as responsible model release, licensing and deployment practices. We hope this curated collection of resources helps guide more responsible development. The process of curating this list, enabled us to review the AI development ecosystem, revealing what tools are critically missing, misused, or over-used in existing practices. We find that (i) tools for data sourcing, model evaluation, and monitoring are critically under-serving ethical and real-world needs, (ii) evaluations for model safety, capabilities, and environmental impact all lack reproducibility and transparency, (iii) text and particularly English-centric analyses continue to dominate over multilingual and multi-modal analyses, and (iv) evaluation of systems, rather than just models, is needed so that capabilities and impact are assessed in context.
AutoBencher: Creating Salient, Novel, Difficult Datasets for Language Models
Evaluation is critical for assessing capabilities, tracking scientific progress, and informing model selection. In this paper, we present three desiderata for a good benchmark for language models: (i) salience (e.g., knowledge about World War II is more salient than a random day in history), (ii) novelty (i.e., the benchmark reveals new trends in model rankings not shown by previous benchmarks), and (iii) difficulty (i.e., the benchmark should be difficult for existing models, leaving headroom for future improvement). We operationalize these three desiderata and cast benchmark creation as a search problem, that of finding benchmarks that that satisfy all three desiderata. To tackle this search problem, we present AutoBencher, which uses a language model to automatically search for datasets that meet the three desiderata. AutoBencher uses privileged information (e.g. relevant documents) to construct reliable datasets, and adaptivity with reranking to optimize for the search objective. We use AutoBencher to create datasets for math, multilingual, and knowledge-intensive question answering. The scalability of AutoBencher allows it to test fine-grained categories and tail knowledge, creating datasets that are on average 27% more novel and 22% more difficult than existing benchmarks. A closer investigation of our constructed datasets shows that we can identify specific gaps in LM knowledge in language models that are not captured by existing benchmarks, such as Gemini Pro performing much worse on question answering about the Permian Extinction and Fordism, while OpenAGI-7B performing surprisingly well on QA about COVID-19.
ValueBench: Towards Comprehensively Evaluating Value Orientations and Understanding of Large Language Models
Large Language Models (LLMs) are transforming diverse fields and gaining increasing influence as human proxies. This development underscores the urgent need for evaluating value orientations and understanding of LLMs to ensure their responsible integration into public-facing applications. This work introduces ValueBench, the first comprehensive psychometric benchmark for evaluating value orientations and value understanding in LLMs. ValueBench collects data from 44 established psychometric inventories, encompassing 453 multifaceted value dimensions. We propose an evaluation pipeline grounded in realistic human-AI interactions to probe value orientations, along with novel tasks for evaluating value understanding in an open-ended value space. With extensive experiments conducted on six representative LLMs, we unveil their shared and distinctive value orientations and exhibit their ability to approximate expert conclusions in value-related extraction and generation tasks. ValueBench is openly accessible at https://github.com/Value4AI/ValueBench.
Michelangelo: Long Context Evaluations Beyond Haystacks via Latent Structure Queries
We introduce Michelangelo: a minimal, synthetic, and unleaked long-context reasoning evaluation for large language models which is also easy to automatically score. This evaluation is derived via a novel, unifying framework for evaluations over arbitrarily long contexts which measure the model's ability to do more than retrieve a single piece of information from its context. The central idea of the Latent Structure Queries framework (LSQ) is to construct tasks which require a model to ``chisel away'' the irrelevant information in the context, revealing a latent structure in the context. To verify a model's understanding of this latent structure, we query the model for details of the structure. Using LSQ, we produce three diagnostic long-context evaluations across code and natural-language domains intended to provide a stronger signal of long-context language model capabilities. We perform evaluations on several state-of-the-art models and demonstrate both that a) the proposed evaluations are high-signal and b) that there is significant room for improvement in synthesizing long-context information.
GRPO-LEAD: A Difficulty-Aware Reinforcement Learning Approach for Concise Mathematical Reasoning in Language Models
Recent advances in R1-like reasoning models leveraging Group Relative Policy Optimization (GRPO) have significantly improved the performance of language models on mathematical reasoning tasks. However, current GRPO implementations encounter critical challenges, including reward sparsity due to binary accuracy metrics, limited incentives for conciseness, and insufficient focus on complex reasoning tasks. To address these issues, we propose GRPO-LEAD, a suite of novel enhancements tailored for mathematical reasoning. Specifically, GRPO-LEAD introduces (1) a length-dependent accuracy reward to encourage concise and precise solutions, (2) an explicit penalty mechanism for incorrect answers to sharpen decision boundaries, and (3) a difficulty-aware advantage reweighting strategy that amplifies learning signals for challenging problems. Furthermore, we systematically examine the impact of model scale and supervised fine-tuning (SFT) strategies, demonstrating that larger-scale base models and carefully curated datasets significantly enhance reinforcement learning effectiveness. Extensive empirical evaluations and ablation studies confirm that GRPO-LEAD substantially mitigates previous shortcomings, resulting in language models that produce more concise, accurate, and robust reasoning across diverse mathematical tasks.
Shopping MMLU: A Massive Multi-Task Online Shopping Benchmark for Large Language Models
Online shopping is a complex multi-task, few-shot learning problem with a wide and evolving range of entities, relations, and tasks. However, existing models and benchmarks are commonly tailored to specific tasks, falling short of capturing the full complexity of online shopping. Large Language Models (LLMs), with their multi-task and few-shot learning abilities, have the potential to profoundly transform online shopping by alleviating task-specific engineering efforts and by providing users with interactive conversations. Despite the potential, LLMs face unique challenges in online shopping, such as domain-specific concepts, implicit knowledge, and heterogeneous user behaviors. Motivated by the potential and challenges, we propose Shopping MMLU, a diverse multi-task online shopping benchmark derived from real-world Amazon data. Shopping MMLU consists of 57 tasks covering 4 major shopping skills: concept understanding, knowledge reasoning, user behavior alignment, and multi-linguality, and can thus comprehensively evaluate the abilities of LLMs as general shop assistants. With Shopping MMLU, we benchmark over 20 existing LLMs and uncover valuable insights about practices and prospects of building versatile LLM-based shop assistants. Shopping MMLU can be publicly accessed at https://github.com/KL4805/ShoppingMMLU. In addition, with Shopping MMLU, we host a competition in KDD Cup 2024 with over 500 participating teams. The winning solutions and the associated workshop can be accessed at our website https://amazon-kddcup24.github.io/.
Multi-Label Topic Model for Financial Textual Data
This paper presents a multi-label topic model for financial texts like ad-hoc announcements, 8-K filings, finance related news or annual reports. I train the model on a new financial multi-label database consisting of 3,044 German ad-hoc announcements that are labeled manually using 20 predefined, economically motivated topics. The best model achieves a macro F1 score of more than 85%. Translating the data results in an English version of the model with similar performance. As application of the model, I investigate differences in stock market reactions across topics. I find evidence for strong positive or negative market reactions for some topics, like announcements of new Large Scale Projects or Bankruptcy Filings, while I do not observe significant price effects for some other topics. Furthermore, in contrast to previous studies, the multi-label structure of the model allows to analyze the effects of co-occurring topics on stock market reactions. For many cases, the reaction to a specific topic depends heavily on the co-occurrence with other topics. For example, if allocated capital from a Seasoned Equity Offering (SEO) is used for restructuring a company in the course of a Bankruptcy Proceeding, the market reacts positively on average. However, if that capital is used for covering unexpected, additional costs from the development of new drugs, the SEO implies negative reactions on average.
Efficient and Scalable Point Cloud Generation with Sparse Point-Voxel Diffusion Models
We propose a novel point cloud U-Net diffusion architecture for 3D generative modeling capable of generating high-quality and diverse 3D shapes while maintaining fast generation times. Our network employs a dual-branch architecture, combining the high-resolution representations of points with the computational efficiency of sparse voxels. Our fastest variant outperforms all non-diffusion generative approaches on unconditional shape generation, the most popular benchmark for evaluating point cloud generative models, while our largest model achieves state-of-the-art results among diffusion methods, with a runtime approximately 70% of the previously state-of-the-art PVD. Beyond unconditional generation, we perform extensive evaluations, including conditional generation on all categories of ShapeNet, demonstrating the scalability of our model to larger datasets, and implicit generation which allows our network to produce high quality point clouds on fewer timesteps, further decreasing the generation time. Finally, we evaluate the architecture's performance in point cloud completion and super-resolution. Our model excels in all tasks, establishing it as a state-of-the-art diffusion U-Net for point cloud generative modeling. The code is publicly available at https://github.com/JohnRomanelis/SPVD.git.
Denoising MCMC for Accelerating Diffusion-Based Generative Models
Diffusion models are powerful generative models that simulate the reverse of diffusion processes using score functions to synthesize data from noise. The sampling process of diffusion models can be interpreted as solving the reverse stochastic differential equation (SDE) or the ordinary differential equation (ODE) of the diffusion process, which often requires up to thousands of discretization steps to generate a single image. This has sparked a great interest in developing efficient integration techniques for reverse-S/ODEs. Here, we propose an orthogonal approach to accelerating score-based sampling: Denoising MCMC (DMCMC). DMCMC first uses MCMC to produce samples in the product space of data and variance (or diffusion time). Then, a reverse-S/ODE integrator is used to denoise the MCMC samples. Since MCMC traverses close to the data manifold, the computation cost of producing a clean sample for DMCMC is much less than that of producing a clean sample from noise. To verify the proposed concept, we show that Denoising Langevin Gibbs (DLG), an instance of DMCMC, successfully accelerates all six reverse-S/ODE integrators considered in this work on the tasks of CIFAR10 and CelebA-HQ-256 image generation. Notably, combined with integrators of Karras et al. (2022) and pre-trained score models of Song et al. (2021b), DLG achieves SOTA results. In the limited number of score function evaluation (NFE) settings on CIFAR10, we have 3.86 FID with approx 10 NFE and 2.63 FID with approx 20 NFE. On CelebA-HQ-256, we have 6.99 FID with approx 160 NFE, which beats the current best record of Kim et al. (2022) among score-based models, 7.16 FID with 4000 NFE. Code: https://github.com/1202kbs/DMCMC
An Empirical Study of LLM-as-a-Judge: How Design Choices Impact Evaluation Reliability
As large language models (LLMs) continue to advance, reliable evaluation methods are essential particularly for open-ended, instruction-following tasks. LLM-as-a-Judge enables automatic evaluation using LLMs as evaluators, but its reliability remains uncertain. In this work, we analyze key factors affecting its trustworthiness, focusing on alignment with human judgments and evaluation consistency. Using BIGGENBench and EvalBiasBench, we study the effects of evaluation design, decoding strategies, and Chain-of-Tought (CoT) reasoning in evaluation. Our results show that evaluation criteria are critical for reliability, non-deterministic sampling improves alignment with human preferences over deterministic evaluation, and CoT reasoning offers minimal gains when clear evaluation criteria are present.
HREF: Human Response-Guided Evaluation of Instruction Following in Language Models
Evaluating the capability of Large Language Models (LLMs) in following instructions has heavily relied on a powerful LLM as the judge, introducing unresolved biases that deviate the judgments from human judges. In this work, we reevaluate various choices for automatic evaluation on a wide range of instruction-following tasks. We experiment with methods that leverage human-written responses and observe that they enhance the reliability of automatic evaluations across a wide range of tasks, resulting in up to a 3.2% improvement in agreement with human judges. We also discovered that human-written responses offer an orthogonal perspective to model-generated responses in following instructions and should be used as an additional context when comparing model responses. Based on these observations, we develop a new evaluation benchmark, Human Response-Guided Evaluation of Instruction Following (HREF), comprising 4,258 samples across 11 task categories with a composite evaluation setup, employing a composite evaluation setup that selects the most reliable method for each category. In addition to providing reliable evaluation, HREF emphasizes individual task performance and is free from contamination. Finally, we study the impact of key design choices in HREF, including the size of the evaluation set, the judge model, the baseline model, and the prompt template. We host a live leaderboard that evaluates LLMs on the private evaluation set of HREF.
Think Again! The Effect of Test-Time Compute on Preferences, Opinions, and Beliefs of Large Language Models
As Large Language Models (LLMs) become deeply integrated into human life and increasingly influence decision-making, it's crucial to evaluate whether and to what extent they exhibit subjective preferences, opinions, and beliefs. These tendencies may stem from biases within the models, which may shape their behavior, influence the advice and recommendations they offer to users, and potentially reinforce certain viewpoints. This paper presents the Preference, Opinion, and Belief survey (POBs), a benchmark developed to assess LLMs' subjective inclinations across societal, cultural, ethical, and personal domains. We applied our benchmark to evaluate leading open- and closed-source LLMs, measuring desired properties such as reliability, neutrality, and consistency. In addition, we investigated the effect of increasing the test-time compute, through reasoning and self-reflection mechanisms, on those metrics. While effective in other tasks, our results show that these mechanisms offer only limited gains in our domain. Furthermore, we reveal that newer model versions are becoming less consistent and more biased toward specific viewpoints, highlighting a blind spot and a concerning trend. POBS: https://ibm.github.io/POBS
eCeLLM: Generalizing Large Language Models for E-commerce from Large-scale, High-quality Instruction Data
With tremendous efforts on developing effective e-commerce models, conventional e-commerce models show limited success in generalist e-commerce modeling, and suffer from unsatisfactory performance on new users and new products - a typical out-of-domain generalization challenge. Meanwhile, large language models (LLMs) demonstrate outstanding performance in generalist modeling and out-of-domain generalizability in many fields. Toward fully unleashing their power for e-commerce, in this paper, we construct ECInstruct, the first open-sourced, large-scale, and high-quality benchmark instruction dataset for e-commerce. Leveraging ECInstruct, we develop eCeLLM, a series of e-commerce LLMs, by instruction-tuning general-purpose LLMs. Our comprehensive experiments and evaluation demonstrate that eCeLLM models substantially outperform baseline models, including the most advanced GPT-4, and the state-of-the-art task-specific models in in-domain evaluation. Moreover, eCeLLM exhibits excellent generalizability to out-of-domain settings, including unseen products and unseen instructions, highlighting its superiority as a generalist e-commerce model. Both the ECInstruct dataset and the eCeLLM models show great potential in empowering versatile and effective LLMs for e-commerce. ECInstruct and eCeLLM models are publicly accessible through https://ninglab.github.io/eCeLLM.
Safer or Luckier? LLMs as Safety Evaluators Are Not Robust to Artifacts
Large Language Models (LLMs) are increasingly employed as automated evaluators to assess the safety of generated content, yet their reliability in this role remains uncertain. This study evaluates a diverse set of 11 LLM judge models across critical safety domains, examining three key aspects: self-consistency in repeated judging tasks, alignment with human judgments, and susceptibility to input artifacts such as apologetic or verbose phrasing. Our findings reveal that biases in LLM judges can significantly distort the final verdict on which content source is safer, undermining the validity of comparative evaluations. Notably, apologetic language artifacts alone can skew evaluator preferences by up to 98\%. Contrary to expectations, larger models do not consistently exhibit greater robustness, while smaller models sometimes show higher resistance to specific artifacts. To mitigate LLM evaluator robustness issues, we investigate jury-based evaluations aggregating decisions from multiple models. Although this approach both improves robustness and enhances alignment to human judgements, artifact sensitivity persists even with the best jury configurations. These results highlight the urgent need for diversified, artifact-resistant methodologies to ensure reliable safety assessments.
Embarrassingly Shallow Autoencoders for Sparse Data
Combining simple elements from the literature, we define a linear model that is geared toward sparse data, in particular implicit feedback data for recommender systems. We show that its training objective has a closed-form solution, and discuss the resulting conceptual insights. Surprisingly, this simple model achieves better ranking accuracy than various state-of-the-art collaborative-filtering approaches, including deep non-linear models, on most of the publicly available data-sets used in our experiments.
Automated Review Generation Method Based on Large Language Models
Literature research, vital for scientific work, faces the challenge of the surging torrent of information in the vast ocean of literature exceeding researchers' processing capabilities. To address this issue, we present an automated review generation method based on Large Language Models (LLMs), aimed at overcoming efficiency bottlenecks in literature processing and reducing cognitive load. Our statistically validated evaluation framework demonstrates that the generated reviews match or exceed manual quality, offering broad applicability across research fields due to minimal domain knowledge requirements. In a case study on propane dehydrogenation (PDH) catalysts, our method swiftly analyzed 343 articles, averaging seconds per article per LLM account, producing comprehensive reviews spanning 35 topics. Extended analysis of 1041 articles provided deep insights into catalysts' composition, structure, and performance. Recognizing LLMs' hallucinations, we implemented a multi-layered quality control strategy, effectively mitigating risks and ensuring reliability, as quantitatively demonstrated through manual verification. Expert verification confirms the accuracy and citation integrity of generated reviews, demonstrating LLM hallucination risks reduced to below 0.5\% with over 95\% confidence. Released Windows application enables one-click review generation, aiding researchers in tracking advancements and recommending literature. This approach showcases LLMs' role in enhancing scientific research productivity and sets the stage for further exploration.
WildBench: Benchmarking LLMs with Challenging Tasks from Real Users in the Wild
We introduce WildBench, an automated evaluation framework designed to benchmark large language models (LLMs) using challenging, real-world user queries. WildBench consists of 1,024 tasks carefully selected from over one million human-chatbot conversation logs. For automated evaluation with WildBench, we have developed two metrics, WB-Reward and WB-Score, which are computable using advanced LLMs such as GPT-4-turbo. WildBench evaluation uses task-specific checklists to evaluate model outputs systematically and provides structured explanations that justify the scores and comparisons, resulting in more reliable and interpretable automatic judgments. WB-Reward employs fine-grained pairwise comparisons between model responses, generating five potential outcomes: much better, slightly better, slightly worse, much worse, or a tie. Unlike previous evaluations that employed a single baseline model, we selected three baseline models at varying performance levels to ensure a comprehensive pairwise evaluation. Additionally, we propose a simple method to mitigate length bias, by converting outcomes of ``slightly better/worse'' to ``tie'' if the winner response exceeds the loser one by more than K characters. WB-Score evaluates the quality of model outputs individually, making it a fast and cost-efficient evaluation metric. WildBench results demonstrate a strong correlation with the human-voted Elo ratings from Chatbot Arena on hard tasks. Specifically, WB-Reward achieves a Pearson correlation of 0.98 with top-ranking models. Additionally, WB-Score reaches 0.95, surpassing both ArenaHard's 0.91 and AlpacaEval2.0's 0.89 for length-controlled win rates, as well as the 0.87 for regular win rates.
Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators
Large Language Models (LLMs) have demonstrated promising capabilities as automatic evaluators in assessing the quality of generated natural language. However, LLMs still exhibit biases in evaluation and often struggle to generate coherent evaluations that align with human assessments. In this work, we first conduct a systematic study of the misalignment between LLM evaluators and human judgement, revealing that existing calibration methods aimed at mitigating biases are insufficient for effectively aligning LLM evaluators. Inspired by the use of preference data in RLHF, we formulate the evaluation as a ranking problem and introduce Pairwise-preference Search (PairS), an uncertainty-guided search method that employs LLMs to conduct pairwise comparisons and efficiently ranks candidate texts. PairS achieves state-of-the-art performance on representative evaluation tasks and demonstrates significant improvements over direct scoring. Furthermore, we provide insights into the role of pairwise preference in quantifying the transitivity of LLMs and demonstrate how PairS benefits from calibration.
Reliable, Reproducible, and Really Fast Leaderboards with Evalica
The rapid advancement of natural language processing (NLP) technologies, such as instruction-tuned large language models (LLMs), urges the development of modern evaluation protocols with human and machine feedback. We introduce Evalica, an open-source toolkit that facilitates the creation of reliable and reproducible model leaderboards. This paper presents its design, evaluates its performance, and demonstrates its usability through its Web interface, command-line interface, and Python API.
LLMs with Industrial Lens: Deciphering the Challenges and Prospects -- A Survey
Large language models (LLMs) have become the secret ingredient driving numerous industrial applications, showcasing their remarkable versatility across a diverse spectrum of tasks. From natural language processing and sentiment analysis to content generation and personalized recommendations, their unparalleled adaptability has facilitated widespread adoption across industries. This transformative shift driven by LLMs underscores the need to explore the underlying associated challenges and avenues for enhancement in their utilization. In this paper, our objective is to unravel and evaluate the obstacles and opportunities inherent in leveraging LLMs within an industrial context. To this end, we conduct a survey involving a group of industry practitioners, develop four research questions derived from the insights gathered, and examine 68 industry papers to address these questions and derive meaningful conclusions.
DesignRepair: Dual-Stream Design Guideline-Aware Frontend Repair with Large Language Models
The rise of Large Language Models (LLMs) has streamlined frontend interface creation through tools like Vercel's V0, yet surfaced challenges in design quality (e.g., accessibility, and usability). Current solutions, often limited by their focus, generalisability, or data dependency, fall short in addressing these complexities. Moreover, none of them examine the quality of LLM-generated UI design. In this work, we introduce DesignRepair, a novel dual-stream design guideline-aware system to examine and repair the UI design quality issues from both code aspect and rendered page aspect. We utilised the mature and popular Material Design as our knowledge base to guide this process. Specifically, we first constructed a comprehensive knowledge base encoding Google's Material Design principles into low-level component knowledge base and high-level system design knowledge base. After that, DesignRepair employs a LLM for the extraction of key components and utilizes the Playwright tool for precise page analysis, aligning these with the established knowledge bases. Finally, we integrate Retrieval-Augmented Generation with state-of-the-art LLMs like GPT-4 to holistically refine and repair frontend code through a strategic divide and conquer approach. Our extensive evaluations validated the efficacy and utility of our approach, demonstrating significant enhancements in adherence to design guidelines, accessibility, and user experience metrics.
Vietnamese Complaint Detection on E-Commerce Websites
Customer product reviews play a role in improving the quality of products and services for business organizations or their brands. Complaining is an attitude that expresses dissatisfaction with an event or a product not meeting customer expectations. In this paper, we build a Open-domain Complaint Detection dataset (UIT-ViOCD), including 5,485 human-annotated reviews on four categories about product reviews on e-commerce sites. After the data collection phase, we proceed to the annotation task and achieve the inter-annotator agreement Am of 87%. Then, we present an extensive methodology for the research purposes and achieve 92.16% by F1-score for identifying complaints. With the results, in the future, we aim to build a system for open-domain complaint detection in E-commerce websites.
Counterfactuals for Design: A Model-Agnostic Method For Design Recommendations
We introduce Multi-Objective Counterfactuals for Design (MCD), a novel method for counterfactual optimization in design problems. Counterfactuals are hypothetical situations that can lead to a different decision or choice. In this paper, the authors frame the counterfactual search problem as a design recommendation tool that can help identify modifications to a design, leading to better functional performance. MCD improves upon existing counterfactual search methods by supporting multi-objective queries, which are crucial in design problems, and by decoupling the counterfactual search and sampling processes, thus enhancing efficiency and facilitating objective tradeoff visualization. The paper demonstrates MCD's core functionality using a two-dimensional test case, followed by three case studies of bicycle design that showcase MCD's effectiveness in real-world design problems. In the first case study, MCD excels at recommending modifications to query designs that can significantly enhance functional performance, such as weight savings and improvements to the structural safety factor. The second case study demonstrates that MCD can work with a pre-trained language model to suggest design changes based on a subjective text prompt effectively. Lastly, the authors task MCD with increasing a query design's similarity to a target image and text prompt while simultaneously reducing weight and improving structural performance, demonstrating MCD's performance on a complex multimodal query. Overall, MCD has the potential to provide valuable recommendations for practitioners and design automation researchers looking for answers to their ``What if'' questions by exploring hypothetical design modifications and their impact on multiple design objectives. The code, test problems, and datasets used in the paper are available to the public at decode.mit.edu/projects/counterfactuals/.
Are Large Language Model-based Evaluators the Solution to Scaling Up Multilingual Evaluation?
Large Language Models (LLMs) have demonstrated impressive performance on Natural Language Processing (NLP) tasks, such as Question Answering, Summarization, and Classification. The use of LLMs as evaluators, that can rank or score the output of other models (usually LLMs) has become increasingly popular, due to the limitations of current evaluation techniques including the lack of appropriate benchmarks, metrics, cost, and access to human annotators. While LLMs are capable of handling approximately 100 languages, the majority of languages beyond the top 20 lack systematic evaluation across various tasks, metrics, and benchmarks. This creates an urgent need to scale up multilingual evaluation to ensure a precise understanding of LLM performance across diverse languages. LLM-based evaluators seem like the perfect solution to this problem, as they do not require human annotators, human-created references, or benchmarks and can theoretically be used to evaluate any language covered by the LLM. In this paper, we investigate whether LLM-based evaluators can help scale up multilingual evaluation. Specifically, we calibrate LLM-based evaluation against 20k human judgments of five metrics across three text-generation tasks in eight languages. Our findings indicate that LLM-based evaluators may exhibit bias towards higher scores and should be used with caution and should always be calibrated with a dataset of native speaker judgments, particularly in low-resource and non-Latin script languages.
MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria
Multimodal large language models (MLLMs) have broadened the scope of AI applications. Existing automatic evaluation methodologies for MLLMs are mainly limited in evaluating queries without considering user experiences, inadequately addressing the nuances of creative and associative multimodal tasks. However, the open-ended and subjective nature of such tasks poses a significant challenge to the evaluation methodology, where it is difficult to define the ground-truth answers for them. To this end, in our paper, we propose a new evaluation paradigm for MLLMs, which is evaluating MLLMs with per-sample criteria using potent MLLM as the judge. To validate the feasibility and effectiveness of this paradigm, we design a benchmark, dubbed MLLM-Bench, by curating the evaluation samples across six comprehensive cognitive levels. We benchmark 21 popular MLLMs in a pairwise-comparison fashion, showing diverse performance across models. Moreover, the validity of our benchmark manifests itself in reaching 88.02% agreement with human evaluation. We contend that the proposed paradigm explores the potential of MLLMs as effective evaluation tools with the help of per-sample criteria. See online leaderboard at https://mllm-bench.llmzoo.com.
MAVE: A Product Dataset for Multi-source Attribute Value Extraction
Attribute value extraction refers to the task of identifying values of an attribute of interest from product information. Product attribute values are essential in many e-commerce scenarios, such as customer service robots, product ranking, retrieval and recommendations. While in the real world, the attribute values of a product are usually incomplete and vary over time, which greatly hinders the practical applications. In this paper, we introduce MAVE, a new dataset to better facilitate research on product attribute value extraction. MAVE is composed of a curated set of 2.2 million products from Amazon pages, with 3 million attribute-value annotations across 1257 unique categories. MAVE has four main and unique advantages: First, MAVE is the largest product attribute value extraction dataset by the number of attribute-value examples. Second, MAVE includes multi-source representations from the product, which captures the full product information with high attribute coverage. Third, MAVE represents a more diverse set of attributes and values relative to what previous datasets cover. Lastly, MAVE provides a very challenging zero-shot test set, as we empirically illustrate in the experiments. We further propose a novel approach that effectively extracts the attribute value from the multi-source product information. We conduct extensive experiments with several baselines and show that MAVE is an effective dataset for attribute value extraction task. It is also a very challenging task on zero-shot attribute extraction. Data is available at {\it https://github.com/google-research-datasets/MAVE}.