new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 20

Outlier-Safe Pre-Training for Robust 4-Bit Quantization of Large Language Models

Extreme activation outliers in Large Language Models (LLMs) critically degrade quantization performance, hindering efficient on-device deployment. While channel-wise operations and adaptive gradient scaling are recognized causes, practical mitigation remains challenging. We introduce Outlier-Safe Pre-Training (OSP), a practical guideline that proactively prevents outlier formation rather than relying on post-hoc mitigation. OSP combines three key innovations: (1) the Muon optimizer, eliminating privileged bases while maintaining training efficiency; (2) Single-Scale RMSNorm, preventing channel-wise amplification; and (3) a learnable embedding projection, redistributing activation magnitudes originating from embedding matrices. We validate OSP by training a 1.4B-parameter model on 1 trillion tokens, which is the first production-scale LLM trained without such outliers. Under aggressive 4-bit quantization, our OSP model achieves a 35.7 average score across 10 benchmarks (compared to 26.5 for an Adam-trained model), with only a 2% training overhead. Remarkably, OSP models exhibit near-zero excess kurtosis (0.04) compared to extreme values (1818.56) in standard models, fundamentally altering LLM quantization behavior. Our work demonstrates that outliers are not inherent to LLMs but are consequences of training strategies, paving the way for more efficient LLM deployment. The source code and pretrained checkpoints are available at https://github.com/dmis-lab/Outlier-Safe-Pre-Training.

Improving Autoencoder-based Outlier Detection with Adjustable Probabilistic Reconstruction Error and Mean-shift Outlier Scoring

Autoencoders were widely used in many machine learning tasks thanks to their strong learning ability which has drawn great interest among researchers in the field of outlier detection. However, conventional autoencoder-based methods lacked considerations in two aspects. This limited their performance in outlier detection. First, the mean squared error used in conventional autoencoders ignored the judgment uncertainty of the autoencoder, which limited their representation ability. Second, autoencoders suffered from the abnormal reconstruction problem: some outliers can be unexpectedly reconstructed well, making them difficult to identify from the inliers. To mitigate the aforementioned issues, two novel methods were proposed in this paper. First, a novel loss function named Probabilistic Reconstruction Error (PRE) was constructed to factor in both reconstruction bias and judgment uncertainty. To further control the trade-off of these two factors, two weights were introduced in PRE producing Adjustable Probabilistic Reconstruction Error (APRE), which benefited the outlier detection in different applications. Second, a conceptually new outlier scoring method based on mean-shift (MSS) was proposed to reduce the false inliers caused by the autoencoder. Experiments on 32 real-world outlier detection datasets proved the effectiveness of the proposed methods. The combination of the proposed methods achieved 41% of the relative performance improvement compared to the best baseline. The MSS improved the performance of multiple autoencoder-based outlier detectors by an average of 20%. The proposed two methods have the potential to advance autoencoder's development in outlier detection. The code is available on www.OutlierNet.com for reproducibility.

OutlierTune: Efficient Channel-Wise Quantization for Large Language Models

Quantizing the activations of large language models (LLMs) has been a significant challenge due to the presence of structured outliers. Most existing methods focus on the per-token or per-tensor quantization of activations, making it difficult to achieve both accuracy and hardware efficiency. To address this problem, we propose OutlierTune, an efficient per-channel post-training quantization (PTQ) method for the activations of LLMs. OutlierTune consists of two components: pre-execution of dequantization and symmetrization. The pre-execution of dequantization updates the model weights by the activation scaling factors, avoiding the internal scaling and costly additional computational overheads brought by the per-channel activation quantization. The symmetrization further reduces the quantization differences arising from the weight updates by ensuring the balanced numerical ranges across different activation channels. OutlierTune is easy to implement and hardware-efficient, introducing almost no additional computational overheads during the inference. Extensive experiments show that the proposed framework outperforms existing methods across multiple different tasks. Demonstrating better generalization, this framework improves the Int6 quantization of the instruction-tuning LLMs, such as OPT-IML, to the same level as half-precision (FP16). Moreover, we have shown that the proposed framework is 1.48x faster than the FP16 implementation while reducing approximately 2x memory usage.

MambaQuant: Quantizing the Mamba Family with Variance Aligned Rotation Methods

Mamba is an efficient sequence model that rivals Transformers and demonstrates significant potential as a foundational architecture for various tasks. Quantization is commonly used in neural networks to reduce model size and computational latency. However, applying quantization to Mamba remains underexplored, and existing quantization methods, which have been effective for CNN and Transformer models, appear inadequate for Mamba models (e.g., Quarot suffers a 21% accuracy drop on Vim-T^dagger even under W8A8). We have pioneered the exploration of this issue and identified several key challenges. First, significant outliers are present in gate projections, output projections, and matrix multiplications. Second, Mamba's unique parallel scan further amplifies these outliers, leading to uneven and heavy-tailed data distributions. Third, even with the application of the Hadamard transform, the variance across channels in weights and activations still remains inconsistent. To these ends, we propose MambaQuant, a post-training quantization (PTQ) framework consisting of: 1) Karhunen-Loeve Transformation (KLT) enhanced rotation, rendering the rotation matrix adaptable to diverse channel distributions. 2) Smooth-Fused rotation, which equalizes channel variances and can merge additional parameters into model weights. Experiments show that MambaQuant can quantize both weights and activations into 8-bit with less than 1% accuracy loss for Mamba-based vision and language tasks. To the best of our knowledge, MambaQuant is the first comprehensive PTQ design for the Mamba family, paving the way for further advancements in its application.

AutoOD: Automated Outlier Detection via Curiosity-guided Search and Self-imitation Learning

Outlier detection is an important data mining task with numerous practical applications such as intrusion detection, credit card fraud detection, and video surveillance. However, given a specific complicated task with big data, the process of building a powerful deep learning based system for outlier detection still highly relies on human expertise and laboring trials. Although Neural Architecture Search (NAS) has shown its promise in discovering effective deep architectures in various domains, such as image classification, object detection, and semantic segmentation, contemporary NAS methods are not suitable for outlier detection due to the lack of intrinsic search space, unstable search process, and low sample efficiency. To bridge the gap, in this paper, we propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model within a predefined search space. Specifically, we firstly design a curiosity-guided search strategy to overcome the curse of local optimality. A controller, which acts as a search agent, is encouraged to take actions to maximize the information gain about the controller's internal belief. We further introduce an experience replay mechanism based on self-imitation learning to improve the sample efficiency. Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance, comparing with existing handcrafted models and traditional search methods.

Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection

In unsupervised anomaly detection (UAD) research, while state-of-the-art models have reached a saturation point with extensive studies on public benchmark datasets, they adopt large-scale tailor-made neural networks (NN) for detection performance or pursued unified models for various tasks. Towards edge computing, it is necessary to develop a computationally efficient and scalable solution that avoids large-scale complex NNs. Motivated by this, we aim to optimize the UAD performance with minimal changes to NN settings. Thus, we revisit the reconstruction-by-inpainting approach and rethink to improve it by analyzing strengths and weaknesses. The strength of the SOTA methods is a single deterministic masking approach that addresses the challenges of random multiple masking that is inference latency and output inconsistency. Nevertheless, the issue of failure to provide a mask to completely cover anomalous regions is a remaining weakness. To mitigate this issue, we propose Feature Attenuation of Defective Representation (FADeR) that only employs two MLP layers which attenuates feature information of anomaly reconstruction during decoding. By leveraging FADeR, features of unseen anomaly patterns are reconstructed into seen normal patterns, reducing false alarms. Experimental results demonstrate that FADeR achieves enhanced performance compared to similar-scale NNs. Furthermore, our approach exhibits scalability in performance enhancement when integrated with other single deterministic masking methods in a plug-and-play manner.

Diversify and Conquer: Open-set Disagreement for Robust Semi-supervised Learning with Outliers

Conventional semi-supervised learning (SSL) ideally assumes that labeled and unlabeled data share an identical class distribution, however in practice, this assumption is easily violated, as unlabeled data often includes unknown class data, i.e., outliers. The outliers are treated as noise, considerably degrading the performance of SSL models. To address this drawback, we propose a novel framework, Diversify and Conquer (DAC), to enhance SSL robustness in the context of open-set semi-supervised learning. In particular, we note that existing open-set SSL methods rely on prediction discrepancies between inliers and outliers from a single model trained on labeled data. This approach can be easily failed when the labeled data is insufficient, leading to performance degradation that is worse than naive SSL that do not account for outliers. In contrast, our approach exploits prediction disagreements among multiple models that are differently biased towards the unlabeled distribution. By leveraging the discrepancies arising from training on unlabeled data, our method enables robust outlier detection even when the labeled data is underspecified. Our key contribution is constructing a collection of differently biased models through a single training process. By encouraging divergent heads to be differently biased towards outliers while making consistent predictions for inliers, we exploit the disagreement among these heads as a measure to identify unknown concepts. Our code is available at https://github.com/heejokong/DivCon.

Measuring the Robustness of Audio Deepfake Detectors

Deepfakes have become a universal and rapidly intensifying concern of generative AI across various media types such as images, audio, and videos. Among these, audio deepfakes have been of particular concern due to the ease of high-quality voice synthesis and distribution via platforms such as social media and robocalls. Consequently, detecting audio deepfakes plays a critical role in combating the growing misuse of AI-synthesized speech. However, real-world scenarios often introduce various audio corruptions, such as noise, modification, and compression, that may significantly impact detection performance. This work systematically evaluates the robustness of 10 audio deepfake detection models against 16 common corruptions, categorized into noise perturbation, audio modification, and compression. Using both traditional deep learning models and state-of-the-art foundation models, we make four unique observations. First, our findings show that while most models demonstrate strong robustness to noise, they are notably more vulnerable to modifications and compression, especially when neural codecs are applied. Second, speech foundation models generally outperform traditional models across most scenarios, likely due to their self-supervised learning paradigm and large-scale pre-training. Third, our results show that increasing model size improves robustness, albeit with diminishing returns. Fourth, we demonstrate how targeted data augmentation during training can enhance model resilience to unseen perturbations. A case study on political speech deepfakes highlights the effectiveness of foundation models in achieving high accuracy under real-world conditions. These findings emphasize the importance of developing more robust detection frameworks to ensure reliability in practical deployment settings.

A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks

Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially is a fundamental requirement for deploying a good classifier in many real-world machine learning applications. However, deep neural networks with the softmax classifier are known to produce highly overconfident posterior distributions even for such abnormal samples. In this paper, we propose a simple yet effective method for detecting any abnormal samples, which is applicable to any pre-trained softmax neural classifier. We obtain the class conditional Gaussian distributions with respect to (low- and upper-level) features of the deep models under Gaussian discriminant analysis, which result in a confidence score based on the Mahalanobis distance. While most prior methods have been evaluated for detecting either out-of-distribution or adversarial samples, but not both, the proposed method achieves the state-of-the-art performances for both cases in our experiments. Moreover, we found that our proposed method is more robust in harsh cases, e.g., when the training dataset has noisy labels or small number of samples. Finally, we show that the proposed method enjoys broader usage by applying it to class-incremental learning: whenever out-of-distribution samples are detected, our classification rule can incorporate new classes well without further training deep models.

Unilaterally Aggregated Contrastive Learning with Hierarchical Augmentation for Anomaly Detection

Anomaly detection (AD), aiming to find samples that deviate from the training distribution, is essential in safety-critical applications. Though recent self-supervised learning based attempts achieve promising results by creating virtual outliers, their training objectives are less faithful to AD which requires a concentrated inlier distribution as well as a dispersive outlier distribution. In this paper, we propose Unilaterally Aggregated Contrastive Learning with Hierarchical Augmentation (UniCon-HA), taking into account both the requirements above. Specifically, we explicitly encourage the concentration of inliers and the dispersion of virtual outliers via supervised and unsupervised contrastive losses, respectively. Considering that standard contrastive data augmentation for generating positive views may induce outliers, we additionally introduce a soft mechanism to re-weight each augmented inlier according to its deviation from the inlier distribution, to ensure a purified concentration. Moreover, to prompt a higher concentration, inspired by curriculum learning, we adopt an easy-to-hard hierarchical augmentation strategy and perform contrastive aggregation at different depths of the network based on the strengths of data augmentation. Our method is evaluated under three AD settings including unlabeled one-class, unlabeled multi-class, and labeled multi-class, demonstrating its consistent superiority over other competitors.

Outliers with Opposing Signals Have an Outsized Effect on Neural Network Optimization

We identify a new phenomenon in neural network optimization which arises from the interaction of depth and a particular heavy-tailed structure in natural data. Our result offers intuitive explanations for several previously reported observations about network training dynamics. In particular, it implies a conceptually new cause for progressive sharpening and the edge of stability; we also highlight connections to other concepts in optimization and generalization including grokking, simplicity bias, and Sharpness-Aware Minimization. Experimentally, we demonstrate the significant influence of paired groups of outliers in the training data with strong opposing signals: consistent, large magnitude features which dominate the network output throughout training and provide gradients which point in opposite directions. Due to these outliers, early optimization enters a narrow valley which carefully balances the opposing groups; subsequent sharpening causes their loss to rise rapidly, oscillating between high on one group and then the other, until the overall loss spikes. We describe how to identify these groups, explore what sets them apart, and carefully study their effect on the network's optimization and behavior. We complement these experiments with a mechanistic explanation on a toy example of opposing signals and a theoretical analysis of a two-layer linear network on a simple model. Our finding enables new qualitative predictions of training behavior which we confirm experimentally. It also provides a new lens through which to study and improve modern training practices for stochastic optimization, which we highlight via a case study of Adam versus SGD.

Mixture Outlier Exposure: Towards Out-of-Distribution Detection in Fine-grained Environments

Many real-world scenarios in which DNN-based recognition systems are deployed have inherently fine-grained attributes (e.g., bird-species recognition, medical image classification). In addition to achieving reliable accuracy, a critical subtask for these models is to detect Out-of-distribution (OOD) inputs. Given the nature of the deployment environment, one may expect such OOD inputs to also be fine-grained w.r.t. the known classes (e.g., a novel bird species), which are thus extremely difficult to identify. Unfortunately, OOD detection in fine-grained scenarios remains largely underexplored. In this work, we aim to fill this gap by first carefully constructing four large-scale fine-grained test environments, in which existing methods are shown to have difficulties. Particularly, we find that even explicitly incorporating a diverse set of auxiliary outlier data during training does not provide sufficient coverage over the broad region where fine-grained OOD samples locate. We then propose Mixture Outlier Exposure (MixOE), which mixes ID data and training outliers to expand the coverage of different OOD granularities, and trains the model such that the prediction confidence linearly decays as the input transitions from ID to OOD. Extensive experiments and analyses demonstrate the effectiveness of MixOE for building up OOD detector in fine-grained environments. The code is available at https://github.com/zjysteven/MixOE.

SplitQuant: Layer Splitting for Low-Bit Neural Network Quantization

Quantization for deep neural networks (DNNs) is the process of mapping the parameter values of DNNs from original data types to other data types of lower precision to reduce model sizes and make inference faster. Quantization often maps different original values to a single quantized value because the range of the original values is larger than the range of the quantized values. This leads to the degradation of the accuracy of the quantized DNNs. Outliers are a main cause of the degradation of quantization resolution because they enlarge the range of original values. To solve the problem, the percentile method is often used to clip outliers. However, clipping the outliers has another problem of removing the important and strong signals in the DNNs. This paper proposes SplitQuant to keep the outliers and improve the quantization resolution at the same time. SplitQuant narrows down the range of the original values and mitigates the effect of outliers by splitting each quantizable layer into three mathematically equivalent layers and applies different scaling factors. Especially, weights and biases are clustered into lower, middle and upper clusters for optimized split. By preprocessing DNNs with SplitQuant, quantization algorithms can achieve better results. SplitQuant was applied on two BERT-Tiny models and improved the accuracy of INT2 quantization by 3.3%p and 2.1%p, achieving accuracies comparable to those of the original FP32 models.

Deep Open-Set Recognition for Silicon Wafer Production Monitoring

The chips contained in any electronic device are manufactured over circular silicon wafers, which are monitored by inspection machines at different production stages. Inspection machines detect and locate any defect within the wafer and return a Wafer Defect Map (WDM), i.e., a list of the coordinates where defects lie, which can be considered a huge, sparse, and binary image. In normal conditions, wafers exhibit a small number of randomly distributed defects, while defects grouped in specific patterns might indicate known or novel categories of failures in the production line. Needless to say, a primary concern of semiconductor industries is to identify these patterns and intervene as soon as possible to restore normal production conditions. Here we address WDM monitoring as an open-set recognition problem to accurately classify WDM in known categories and promptly detect novel patterns. In particular, we propose a comprehensive pipeline for wafer monitoring based on a Submanifold Sparse Convolutional Network, a deep architecture designed to process sparse data at an arbitrary resolution, which is trained on the known classes. To detect novelties, we define an outlier detector based on a Gaussian Mixture Model fitted on the latent representation of the classifier. Our experiments on a real dataset of WDMs show that directly processing full-resolution WDMs by Submanifold Sparse Convolutions yields superior classification performance on known classes than traditional Convolutional Neural Networks, which require a preliminary binning to reduce the size of the binary images representing WDMs. Moreover, our solution outperforms state-of-the-art open-set recognition solutions in detecting novelties.

Eliminating Catastrophic Overfitting Via Abnormal Adversarial Examples Regularization

Single-step adversarial training (SSAT) has demonstrated the potential to achieve both efficiency and robustness. However, SSAT suffers from catastrophic overfitting (CO), a phenomenon that leads to a severely distorted classifier, making it vulnerable to multi-step adversarial attacks. In this work, we observe that some adversarial examples generated on the SSAT-trained network exhibit anomalous behaviour, that is, although these training samples are generated by the inner maximization process, their associated loss decreases instead, which we named abnormal adversarial examples (AAEs). Upon further analysis, we discover a close relationship between AAEs and classifier distortion, as both the number and outputs of AAEs undergo a significant variation with the onset of CO. Given this observation, we re-examine the SSAT process and uncover that before the occurrence of CO, the classifier already displayed a slight distortion, indicated by the presence of few AAEs. Furthermore, the classifier directly optimizing these AAEs will accelerate its distortion, and correspondingly, the variation of AAEs will sharply increase as a result. In such a vicious circle, the classifier rapidly becomes highly distorted and manifests as CO within a few iterations. These observations motivate us to eliminate CO by hindering the generation of AAEs. Specifically, we design a novel method, termed Abnormal Adversarial Examples Regularization (AAER), which explicitly regularizes the variation of AAEs to hinder the classifier from becoming distorted. Extensive experiments demonstrate that our method can effectively eliminate CO and further boost adversarial robustness with negligible additional computational overhead.

OutRank: Speeding up AutoML-based Model Search for Large Sparse Data sets with Cardinality-aware Feature Ranking

The design of modern recommender systems relies on understanding which parts of the feature space are relevant for solving a given recommendation task. However, real-world data sets in this domain are often characterized by their large size, sparsity, and noise, making it challenging to identify meaningful signals. Feature ranking represents an efficient branch of algorithms that can help address these challenges by identifying the most informative features and facilitating the automated search for more compact and better-performing models (AutoML). We introduce OutRank, a system for versatile feature ranking and data quality-related anomaly detection. OutRank was built with categorical data in mind, utilizing a variant of mutual information that is normalized with regard to the noise produced by features of the same cardinality. We further extend the similarity measure by incorporating information on feature similarity and combined relevance. The proposed approach's feasibility is demonstrated by speeding up the state-of-the-art AutoML system on a synthetic data set with no performance loss. Furthermore, we considered a real-life click-through-rate prediction data set where it outperformed strong baselines such as random forest-based approaches. The proposed approach enables exploration of up to 300% larger feature spaces compared to AutoML-only approaches, enabling faster search for better models on off-the-shelf hardware.

NOVA: A Benchmark for Anomaly Localization and Clinical Reasoning in Brain MRI

In many real-world applications, deployed models encounter inputs that differ from the data seen during training. Out-of-distribution detection identifies whether an input stems from an unseen distribution, while open-world recognition flags such inputs to ensure the system remains robust as ever-emerging, previously unknown categories appear and must be addressed without retraining. Foundation and vision-language models are pre-trained on large and diverse datasets with the expectation of broad generalization across domains, including medical imaging. However, benchmarking these models on test sets with only a few common outlier types silently collapses the evaluation back to a closed-set problem, masking failures on rare or truly novel conditions encountered in clinical use. We therefore present NOVA, a challenging, real-life evaluation-only benchmark of sim900 brain MRI scans that span 281 rare pathologies and heterogeneous acquisition protocols. Each case includes rich clinical narratives and double-blinded expert bounding-box annotations. Together, these enable joint assessment of anomaly localisation, visual captioning, and diagnostic reasoning. Because NOVA is never used for training, it serves as an extreme stress-test of out-of-distribution generalisation: models must bridge a distribution gap both in sample appearance and in semantic space. Baseline results with leading vision-language models (GPT-4o, Gemini 2.0 Flash, and Qwen2.5-VL-72B) reveal substantial performance drops across all tasks, establishing NOVA as a rigorous testbed for advancing models that can detect, localize, and reason about truly unknown anomalies.

OliVe: Accelerating Large Language Models via Hardware-friendly Outlier-Victim Pair Quantization

Transformer-based large language models (LLMs) have achieved great success with the growing model size. LLMs' size grows by 240times every two years, which outpaces the hardware progress and makes model inference increasingly costly. Model quantization is a promising approach to mitigate the widening gap between LLM size and hardware capacity. However, the existence of outliers, values with significant magnitudes, in LLMs makes existing quantization methods less effective. Prior outlier-aware quantization schemes adopt sparsity encoding techniques to separate outliers from normal values where the process requires global coordination (e.g., a global sparsity coordination list). This incurs complex encoding/decoding hardware logics and an extra orchestration controller for the computation between outlier and normal values. As such, it is not hardware-efficient and hence only achieves sub-optimal quantization benefits. We propose OliVe, an algorithm/architecture co-designed solution that adopts an outlier-victim pair (OVP) quantization and handles outlier values locally with low hardware overheads and high performance gains. The key insight of OliVe is that outliers are important while the normal values next to them are not. Thus those normal values (called victims) can be sacrificed to accommodate outliers. This enables a memory-aligned OVP encoding scheme, which can be efficiently integrated to the existing hardware accelerators like systolic array and tensor core. As a result, OliVe-based accelerator surpasses the existing outlier-aware accelerator, GOBO, by 4.5times speedup and 4.0times energy reduction, respectively, with a superior model accuracy.

Going Beyond Conventional OOD Detection

Out-of-distribution (OOD) detection is critical to ensure the safe deployment of deep learning models in critical applications. Deep learning models can often misidentify OOD samples as in-distribution (ID) samples. This vulnerability worsens in the presence of spurious correlation in the training set. Likewise, in fine-grained classification settings, detection of fine-grained OOD samples becomes inherently challenging due to their high similarity to ID samples. However, current research on OOD detection has largely ignored these challenging scenarios, focusing instead on relatively easier (conventional) cases. In this work, we present a unified Approach to Spurious, fine-grained, and Conventional OOD Detection (ASCOOD). First, we propose synthesizing virtual outliers from ID data by approximating the destruction of invariant features. To this end, we identify invariant features with the pixel attribution method using the model being learned. This approach eliminates the burden of curating external OOD datasets. Then, we simultaneously incentivize ID classification and predictive uncertainty towards virtual outliers leveraging standardized feature representation. Our approach effectively mitigates the impact of spurious correlations and encourages capturing fine-grained attributes. Extensive experiments across seven datasets demonstrate the merit of ASCOOD in spurious, fine-grained, and conventional settings. The code is available at: https://github.com/sudarshanregmi/ASCOOD/

Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing

While prior research has proposed a plethora of methods that build neural classifiers robust against adversarial robustness, practitioners are still reluctant to adopt them due to their unacceptably severe clean accuracy penalties. This paper significantly alleviates this accuracy-robustness trade-off by mixing the output probabilities of a standard classifier and a robust classifier, where the standard network is optimized for clean accuracy and is not robust in general. We show that the robust base classifier's confidence difference for correct and incorrect examples is the key to this improvement. In addition to providing intuitions and empirical evidence, we theoretically certify the robustness of the mixed classifier under realistic assumptions. Furthermore, we adapt an adversarial input detector into a mixing network that adaptively adjusts the mixture of the two base models, further reducing the accuracy penalty of achieving robustness. The proposed flexible method, termed "adaptive smoothing", can work in conjunction with existing or even future methods that improve clean accuracy, robustness, or adversary detection. Our empirical evaluation considers strong attack methods, including AutoAttack and adaptive attack. On the CIFAR-100 dataset, our method achieves an 85.21% clean accuracy while maintaining a 38.72% ell_infty-AutoAttacked (epsilon = 8/255) accuracy, becoming the second most robust method on the RobustBench CIFAR-100 benchmark as of submission, while improving the clean accuracy by ten percentage points compared with all listed models. The code that implements our method is available at https://github.com/Bai-YT/AdaptiveSmoothing.

Towards Open-Set Test-Time Adaptation Utilizing the Wisdom of Crowds in Entropy Minimization

Test-time adaptation (TTA) methods, which generally rely on the model's predictions (e.g., entropy minimization) to adapt the source pretrained model to the unlabeled target domain, suffer from noisy signals originating from 1) incorrect or 2) open-set predictions. Long-term stable adaptation is hampered by such noisy signals, so training models without such error accumulation is crucial for practical TTA. To address these issues, including open-set TTA, we propose a simple yet effective sample selection method inspired by the following crucial empirical finding. While entropy minimization compels the model to increase the probability of its predicted label (i.e., confidence values), we found that noisy samples rather show decreased confidence values. To be more specific, entropy minimization attempts to raise the confidence values of an individual sample's prediction, but individual confidence values may rise or fall due to the influence of signals from numerous other predictions (i.e., wisdom of crowds). Due to this fact, noisy signals misaligned with such 'wisdom of crowds', generally found in the correct signals, fail to raise the individual confidence values of wrong samples, despite attempts to increase them. Based on such findings, we filter out the samples whose confidence values are lower in the adapted model than in the original model, as they are likely to be noisy. Our method is widely applicable to existing TTA methods and improves their long-term adaptation performance in both image classification (e.g., 49.4% reduced error rates with TENT) and semantic segmentation (e.g., 11.7% gain in mIoU with TENT).

Are Anomaly Scores Telling the Whole Story? A Benchmark for Multilevel Anomaly Detection

Anomaly detection (AD) is a machine learning task that identifies anomalies by learning patterns from normal training data. In many real-world scenarios, anomalies vary in severity, from minor anomalies with little risk to severe abnormalities requiring immediate attention. However, existing models primarily operate in a binary setting, and the anomaly scores they produce are usually based on the deviation of data points from normal data, which may not accurately reflect practical severity. In this paper, we address this gap by making three key contributions. First, we propose a novel setting, Multilevel AD (MAD), in which the anomaly score represents the severity of anomalies in real-world applications, and we highlight its diverse applications across various domains. Second, we introduce a novel benchmark, MAD-Bench, that evaluates models not only on their ability to detect anomalies, but also on how effectively their anomaly scores reflect severity. This benchmark incorporates multiple types of baselines and real-world applications involving severity. Finally, we conduct a comprehensive performance analysis on MAD-Bench. We evaluate models on their ability to assign severity-aligned scores, investigate the correspondence between their performance on binary and multilevel detection, and study their robustness. This analysis offers key insights into improving AD models for practical severity alignment. The code framework and datasets used for the benchmark will be made publicly available.

IOMatch: Simplifying Open-Set Semi-Supervised Learning with Joint Inliers and Outliers Utilization

Semi-supervised learning (SSL) aims to leverage massive unlabeled data when labels are expensive to obtain. Unfortunately, in many real-world applications, the collected unlabeled data will inevitably contain unseen-class outliers not belonging to any of the labeled classes. To deal with the challenging open-set SSL task, the mainstream methods tend to first detect outliers and then filter them out. However, we observe a surprising fact that such approach could result in more severe performance degradation when labels are extremely scarce, as the unreliable outlier detector may wrongly exclude a considerable portion of valuable inliers. To tackle with this issue, we introduce a novel open-set SSL framework, IOMatch, which can jointly utilize inliers and outliers, even when it is difficult to distinguish exactly between them. Specifically, we propose to employ a multi-binary classifier in combination with the standard closed-set classifier for producing unified open-set classification targets, which regard all outliers as a single new class. By adopting these targets as open-set pseudo-labels, we optimize an open-set classifier with all unlabeled samples including both inliers and outliers. Extensive experiments have shown that IOMatch significantly outperforms the baseline methods across different benchmark datasets and different settings despite its remarkable simplicity. Our code and models are available at https://github.com/nukezil/IOMatch.

Noise Augmented Fine Tuning for Mitigating Hallucinations in Large Language Models

Large language models (LLMs) often produce inaccurate or misleading content-hallucinations. To address this challenge, we introduce Noise-Augmented Fine-Tuning (NoiseFiT), a novel framework that leverages adaptive noise injection based on the signal-to-noise ratio (SNR) to enhance model robustness. In particular, NoiseFiT selectively perturbs layers identified as either high-SNR (more robust) or low-SNR (potentially under-regularized) using a dynamically scaled Gaussian noise. We further propose a hybrid loss that combines standard cross-entropy, soft cross-entropy, and consistency regularization to ensure stable and accurate outputs under noisy training conditions. Our theoretical analysis shows that adaptive noise injection is both unbiased and variance-preserving, providing strong guarantees for convergence in expectation. Empirical results on multiple test and benchmark datasets demonstrate that NoiseFiT significantly reduces hallucination rates, often improving or matching baseline performance in key tasks. These findings highlight the promise of noise-driven strategies for achieving robust, trustworthy language modeling without incurring prohibitive computational overhead. Given the comprehensive and detailed nature of our experiments, we have publicly released the fine-tuning logs, benchmark evaluation artifacts, and source code online at W&B, Hugging Face, and GitHub, respectively, to foster further research, accessibility and reproducibility.

Learning with Mixture of Prototypes for Out-of-Distribution Detection

Out-of-distribution (OOD) detection aims to detect testing samples far away from the in-distribution (ID) training data, which is crucial for the safe deployment of machine learning models in the real world. Distance-based OOD detection methods have emerged with enhanced deep representation learning. They identify unseen OOD samples by measuring their distances from ID class centroids or prototypes. However, existing approaches learn the representation relying on oversimplified data assumptions, e.g, modeling ID data of each class with one centroid class prototype or using loss functions not designed for OOD detection, which overlook the natural diversities within the data. Naively enforcing data samples of each class to be compact around only one prototype leads to inadequate modeling of realistic data and limited performance. To tackle these issues, we propose PrototypicAl Learning with a Mixture of prototypes (PALM) which models each class with multiple prototypes to capture the sample diversities, and learns more faithful and compact samples embeddings to enhance OOD detection. Our method automatically identifies and dynamically updates prototypes, assigning each sample to a subset of prototypes via reciprocal neighbor soft assignment weights. PALM optimizes a maximum likelihood estimation (MLE) loss to encourage the sample embeddings to be compact around the associated prototypes, as well as a contrastive loss on all prototypes to enhance intra-class compactness and inter-class discrimination at the prototype level. Moreover, the automatic estimation of prototypes enables our approach to be extended to the challenging OOD detection task with unlabelled ID data. Extensive experiments demonstrate the superiority of PALM, achieving state-of-the-art average AUROC performance of 93.82 on the challenging CIFAR-100 benchmark. Code is available at https://github.com/jeff024/PALM.

Hallucinations in Neural Automatic Speech Recognition: Identifying Errors and Hallucinatory Models

Hallucinations are a type of output error produced by deep neural networks. While this has been studied in natural language processing, they have not been researched previously in automatic speech recognition. Here, we define hallucinations in ASR as transcriptions generated by a model that are semantically unrelated to the source utterance, yet still fluent and coherent. The similarity of hallucinations to probable natural language outputs of the model creates a danger of deception and impacts the credibility of the system. We show that commonly used metrics, such as word error rates, cannot differentiate between hallucinatory and non-hallucinatory models. To address this, we propose a perturbation-based method for assessing the susceptibility of an automatic speech recognition (ASR) model to hallucination at test time, which does not require access to the training dataset. We demonstrate that this method helps to distinguish between hallucinatory and non-hallucinatory models that have similar baseline word error rates. We further explore the relationship between the types of ASR errors and the types of dataset noise to determine what types of noise are most likely to create hallucinatory outputs. We devise a framework for identifying hallucinations by analysing their semantic connection with the ground truth and their fluency. Finally, we discover how to induce hallucinations with a random noise injection to the utterance.

Accurate Block Quantization in LLMs with Outliers

The demand for inference on extremely large scale LLMs has seen enormous growth in the recent months. It made evident the colossal shortage of dedicated hardware capable of efficient and fast processing of the involved compute and memory movement. The problem is aggravated by the exploding raise in the lengths of the sequences being processed, since those require efficient on-chip storage of the KV-cache of size proportional to the sequence length. To make the required compute feasible and fit the involved data into available memory, numerous quantization techniques have been proposed that allow accurate quantization for both weights and activations. One of the main recent breakthroughs in this direction was introduction of the family of Block Floating Point (BFP) formats characterized by a block of mantissas with a shared scale factor. These enable memory- power-, and compute- efficient hardware support of the tensor operations and provide extremely good quantization accuracy. The main issues preventing widespread application of block formats is caused by the presence of outliers in weights and activations since those affect the accuracy of the other values in the same block. In this paper, we focus on the most critical problem of limited KV-cache storage. We propose a novel approach enabling usage of low precision BFP formats without compromising the resulting model accuracy. We exploit the common channel-wise patterns exhibited by the outliers to rearrange them in such a way, that their quantization quality is significantly improved. The methodology yields 2x savings in the memory footprint without significant degradation of the model's accuracy. Importantly, the rearrangement of channels happens at the compile time and thus has no impact on the inference latency.

Are we certain it's anomalous?

The progress in modelling time series and, more generally, sequences of structured data has recently revamped research in anomaly detection. The task stands for identifying abnormal behaviors in financial series, IT systems, aerospace measurements, and the medical domain, where anomaly detection may aid in isolating cases of depression and attend the elderly. Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations and since the definition of anomalous is sometimes subjective. Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD). HypAD learns self-supervisedly to reconstruct the input signal. We adopt best practices from the state-of-the-art to encode the sequence by an LSTM, jointly learned with a decoder to reconstruct the signal, with the aid of GAN critics. Uncertainty is estimated end-to-end by means of a hyperbolic neural network. By using uncertainty, HypAD may assess whether it is certain about the input signal but it fails to reconstruct it because this is anomalous; or whether the reconstruction error does not necessarily imply anomaly, as the model is uncertain, e.g. a complex but regular input signal. The novel key idea is that a detectable anomaly is one where the model is certain but it predicts wrongly. HypAD outperforms the current state-of-the-art for univariate anomaly detection on established benchmarks based on data from NASA, Yahoo, Numenta, Amazon, and Twitter. It also yields state-of-the-art performance on a multivariate dataset of anomaly activities in elderly home residences, and it outperforms the baseline on SWaT. Overall, HypAD yields the lowest false alarms at the best performance rate, thanks to successfully identifying detectable anomalies.

Effective Spectral Unmixing via Robust Representation and Learning-based Sparsity

Hyperspectral unmixing (HU) plays a fundamental role in a wide range of hyperspectral applications. It is still challenging due to the common presence of outlier channels and the large solution space. To address the above two issues, we propose a novel model by emphasizing both robust representation and learning-based sparsity. Specifically, we apply the ell_{2,1}-norm to measure the representation error, preventing outlier channels from dominating our objective. In this way, the side effects of outlier channels are greatly relieved. Besides, we observe that the mixed level of each pixel varies over image grids. Based on this observation, we exploit a learning-based sparsity method to simultaneously learn the HU results and a sparse guidance map. Via this guidance map, the sparsity constraint in the ell_{p}!left(!0!<! p!leq!1right)-norm is adaptively imposed according to the learnt mixed level of each pixel. Compared with state-of-the-art methods, our model is better suited to the real situation, thus expected to achieve better HU results. The resulted objective is highly non-convex and non-smooth, and so it is hard to optimize. As a profound theoretical contribution, we propose an efficient algorithm to solve it. Meanwhile, the convergence proof and the computational complexity analysis are systematically provided. Extensive evaluations verify that our method is highly promising for the HU task---it achieves very accurate guidance maps and much better HU results compared with state-of-the-art methods.

Excision And Recovery: Visual Defect Obfuscation Based Self-Supervised Anomaly Detection Strategy

Due to scarcity of anomaly situations in the early manufacturing stage, an unsupervised anomaly detection (UAD) approach is widely adopted which only uses normal samples for training. This approach is based on the assumption that the trained UAD model will accurately reconstruct normal patterns but struggles with unseen anomalous patterns. To enhance the UAD performance, reconstruction-by-inpainting based methods have recently been investigated, especially on the masking strategy of suspected defective regions. However, there are still issues to overcome: 1) time-consuming inference due to multiple masking, 2) output inconsistency by random masking strategy, and 3) inaccurate reconstruction of normal patterns when the masked area is large. Motivated by this, we propose a novel reconstruction-by-inpainting method, dubbed Excision And Recovery (EAR), that features single deterministic masking based on the ImageNet pre-trained DINO-ViT and visual obfuscation for hint-providing. Experimental results on the MVTec AD dataset show that deterministic masking by pre-trained attention effectively cuts out suspected defective regions and resolve the aforementioned issues 1 and 2. Also, hint-providing by mosaicing proves to enhance the UAD performance than emptying those regions by binary masking, thereby overcomes issue 3. Our approach achieves a high UAD performance without any change of the neural network structure. Thus, we suggest that EAR be adopted in various manufacturing industries as a practically deployable solution.

When Good Sounds Go Adversarial: Jailbreaking Audio-Language Models with Benign Inputs

As large language models become increasingly integrated into daily life, audio has emerged as a key interface for human-AI interaction. However, this convenience also introduces new vulnerabilities, making audio a potential attack surface for adversaries. Our research introduces WhisperInject, a two-stage adversarial audio attack framework that can manipulate state-of-the-art audio language models to generate harmful content. Our method uses imperceptible perturbations in audio inputs that remain benign to human listeners. The first stage uses a novel reward-based optimization method, Reinforcement Learning with Projected Gradient Descent (RL-PGD), to guide the target model to circumvent its own safety protocols and generate harmful native responses. This native harmful response then serves as the target for Stage 2, Payload Injection, where we use Projected Gradient Descent (PGD) to optimize subtle perturbations that are embedded into benign audio carriers, such as weather queries or greeting messages. Validated under the rigorous StrongREJECT, LlamaGuard, as well as Human Evaluation safety evaluation framework, our experiments demonstrate a success rate exceeding 86% across Qwen2.5-Omni-3B, Qwen2.5-Omni-7B, and Phi-4-Multimodal. Our work demonstrates a new class of practical, audio-native threats, moving beyond theoretical exploits to reveal a feasible and covert method for manipulating AI behavior.

COCO-O: A Benchmark for Object Detectors under Natural Distribution Shifts

Practical object detection application can lose its effectiveness on image inputs with natural distribution shifts. This problem leads the research community to pay more attention on the robustness of detectors under Out-Of-Distribution (OOD) inputs. Existing works construct datasets to benchmark the detector's OOD robustness for a specific application scenario, e.g., Autonomous Driving. However, these datasets lack universality and are hard to benchmark general detectors built on common tasks such as COCO. To give a more comprehensive robustness assessment, we introduce COCO-O(ut-of-distribution), a test dataset based on COCO with 6 types of natural distribution shifts. COCO-O has a large distribution gap with training data and results in a significant 55.7% relative performance drop on a Faster R-CNN detector. We leverage COCO-O to conduct experiments on more than 100 modern object detectors to investigate if their improvements are credible or just over-fitting to the COCO test set. Unfortunately, most classic detectors in early years do not exhibit strong OOD generalization. We further study the robustness effect on recent breakthroughs of detector's architecture design, augmentation and pre-training techniques. Some empirical findings are revealed: 1) Compared with detection head or neck, backbone is the most important part for robustness; 2) An end-to-end detection transformer design brings no enhancement, and may even reduce robustness; 3) Large-scale foundation models have made a great leap on robust object detection. We hope our COCO-O could provide a rich testbed for robustness study of object detection. The dataset will be available at https://github.com/alibaba/easyrobust/tree/main/benchmarks/coco_o.

Rayleigh Quotient Graph Neural Networks for Graph-level Anomaly Detection

Graph-level anomaly detection has gained significant attention as it finds applications in various domains, such as cancer diagnosis and enzyme prediction. However, existing methods fail to capture the spectral properties of graph anomalies, resulting in unexplainable framework design and unsatisfying performance. In this paper, we re-investigate the spectral differences between anomalous and normal graphs. Our main observation shows a significant disparity in the accumulated spectral energy between these two classes. Moreover, we prove that the accumulated spectral energy of the graph signal can be represented by its Rayleigh Quotient, indicating that the Rayleigh Quotient is a driving factor behind the anomalous properties of graphs. Motivated by this, we propose Rayleigh Quotient Graph Neural Network (RQGNN), the first spectral GNN that explores the inherent spectral features of anomalous graphs for graph-level anomaly detection. Specifically, we introduce a novel framework with two components: the Rayleigh Quotient learning component (RQL) and Chebyshev Wavelet GNN with RQ-pooling (CWGNN-RQ). RQL explicitly captures the Rayleigh Quotient of graphs and CWGNN-RQ implicitly explores the spectral space of graphs. Extensive experiments on 10 real-world datasets show that RQGNN outperforms the best rival by 6.74% in Macro-F1 score and 1.44% in AUC, demonstrating the effectiveness of our framework. Our code is available at https://github.com/xydong127/RQGNN.

Less or More From Teacher: Exploiting Trilateral Geometry For Knowledge Distillation

Knowledge distillation aims to train a compact student network using soft supervision from a larger teacher network and hard supervision from ground truths. However, determining an optimal knowledge fusion ratio that balances these supervisory signals remains challenging. Prior methods generally resort to a constant or heuristic-based fusion ratio, which often falls short of a proper balance. In this study, we introduce a novel adaptive method for learning a sample-wise knowledge fusion ratio, exploiting both the correctness of teacher and student, as well as how well the student mimics the teacher on each sample. Our method naturally leads to the intra-sample trilateral geometric relations among the student prediction (S), teacher prediction (T), and ground truth (G). To counterbalance the impact of outliers, we further extend to the inter-sample relations, incorporating the teacher's global average prediction T for samples within the same class. A simple neural network then learns the implicit mapping from the intra- and inter-sample relations to an adaptive, sample-wise knowledge fusion ratio in a bilevel-optimization manner. Our approach provides a simple, practical, and adaptable solution for knowledge distillation that can be employed across various architectures and model sizes. Extensive experiments demonstrate consistent improvements over other loss re-weighting methods on image classification, attack detection, and click-through rate prediction.

Audio Jailbreak: An Open Comprehensive Benchmark for Jailbreaking Large Audio-Language Models

The rise of Large Audio Language Models (LAMs) brings both potential and risks, as their audio outputs may contain harmful or unethical content. However, current research lacks a systematic, quantitative evaluation of LAM safety especially against jailbreak attacks, which are challenging due to the temporal and semantic nature of speech. To bridge this gap, we introduce AJailBench, the first benchmark specifically designed to evaluate jailbreak vulnerabilities in LAMs. We begin by constructing AJailBench-Base, a dataset of 1,495 adversarial audio prompts spanning 10 policy-violating categories, converted from textual jailbreak attacks using realistic text to speech synthesis. Using this dataset, we evaluate several state-of-the-art LAMs and reveal that none exhibit consistent robustness across attacks. To further strengthen jailbreak testing and simulate more realistic attack conditions, we propose a method to generate dynamic adversarial variants. Our Audio Perturbation Toolkit (APT) applies targeted distortions across time, frequency, and amplitude domains. To preserve the original jailbreak intent, we enforce a semantic consistency constraint and employ Bayesian optimization to efficiently search for perturbations that are both subtle and highly effective. This results in AJailBench-APT, an extended dataset of optimized adversarial audio samples. Our findings demonstrate that even small, semantically preserved perturbations can significantly reduce the safety performance of leading LAMs, underscoring the need for more robust and semantically aware defense mechanisms.

Look Once to Hear: Target Speech Hearing with Noisy Examples

In crowded settings, the human brain can focus on speech from a target speaker, given prior knowledge of how they sound. We introduce a novel intelligent hearable system that achieves this capability, enabling target speech hearing to ignore all interfering speech and noise, but the target speaker. A naive approach is to require a clean speech example to enroll the target speaker. This is however not well aligned with the hearable application domain since obtaining a clean example is challenging in real world scenarios, creating a unique user interface problem. We present the first enrollment interface where the wearer looks at the target speaker for a few seconds to capture a single, short, highly noisy, binaural example of the target speaker. This noisy example is used for enrollment and subsequent speech extraction in the presence of interfering speakers and noise. Our system achieves a signal quality improvement of 7.01 dB using less than 5 seconds of noisy enrollment audio and can process 8 ms of audio chunks in 6.24 ms on an embedded CPU. Our user studies demonstrate generalization to real-world static and mobile speakers in previously unseen indoor and outdoor multipath environments. Finally, our enrollment interface for noisy examples does not cause performance degradation compared to clean examples, while being convenient and user-friendly. Taking a step back, this paper takes an important step towards enhancing the human auditory perception with artificial intelligence. We provide code and data at: https://github.com/vb000/LookOnceToHear.

Training Ensembles with Inliers and Outliers for Semi-supervised Active Learning

Deep active learning in the presence of outlier examples poses a realistic yet challenging scenario. Acquiring unlabeled data for annotation requires a delicate balance between avoiding outliers to conserve the annotation budget and prioritizing useful inlier examples for effective training. In this work, we present an approach that leverages three highly synergistic components, which are identified as key ingredients: joint classifier training with inliers and outliers, semi-supervised learning through pseudo-labeling, and model ensembling. Our work demonstrates that ensembling significantly enhances the accuracy of pseudo-labeling and improves the quality of data acquisition. By enabling semi-supervision through the joint training process, where outliers are properly handled, we observe a substantial boost in classifier accuracy through the use of all available unlabeled examples. Notably, we reveal that the integration of joint training renders explicit outlier detection unnecessary; a conventional component for acquisition in prior work. The three key components align seamlessly with numerous existing approaches. Through empirical evaluations, we showcase that their combined use leads to a performance increase. Remarkably, despite its simplicity, our proposed approach outperforms all other methods in terms of performance. Code: https://github.com/vladan-stojnic/active-outliers

FedSVD: Adaptive Orthogonalization for Private Federated Learning with LoRA

Low-Rank Adaptation (LoRA), which introduces a product of two trainable low-rank matrices into frozen pre-trained weights, is widely used for efficient fine-tuning of language models in federated learning (FL). However, when combined with differentially private stochastic gradient descent (DP-SGD), LoRA faces substantial noise amplification: DP-SGD perturbs per-sample gradients, and the matrix multiplication of the LoRA update (BA) intensifies this effect. Freezing one matrix (e.g., A) reduces the noise but restricts model expressiveness, often resulting in suboptimal adaptation. To address this, we propose FedSVD, a simple yet effective method that introduces a global reparameterization based on singular value decomposition (SVD). In our approach, each client optimizes only the B matrix and transmits it to the server. The server aggregates the B matrices, computes the product BA using the previous A, and refactorizes the result via SVD. This yields a new adaptive A composed of the orthonormal right singular vectors of BA, and an updated B containing the remaining SVD components. This reparameterization avoids quadratic noise amplification, while allowing A to better capture the principal directions of the aggregate updates. Moreover, the orthonormal structure of A bounds the gradient norms of B and preserves more signal under DP-SGD, as confirmed by our theoretical analysis. As a result, FedSVD consistently improves stability and performance across a variety of privacy settings and benchmarks, outperforming relevant baselines under both private and non-private regimes.

A Linear Reconstruction Approach for Attribute Inference Attacks against Synthetic Data

Recent advances in synthetic data generation (SDG) have been hailed as a solution to the difficult problem of sharing sensitive data while protecting privacy. SDG aims to learn statistical properties of real data in order to generate "artificial" data that are structurally and statistically similar to sensitive data. However, prior research suggests that inference attacks on synthetic data can undermine privacy, but only for specific outlier records. In this work, we introduce a new attribute inference attack against synthetic data. The attack is based on linear reconstruction methods for aggregate statistics, which target all records in the dataset, not only outliers. We evaluate our attack on state-of-the-art SDG algorithms, including Probabilistic Graphical Models, Generative Adversarial Networks, and recent differentially private SDG mechanisms. By defining a formal privacy game, we show that our attack can be highly accurate even on arbitrary records, and that this is the result of individual information leakage (as opposed to population-level inference). We then systematically evaluate the tradeoff between protecting privacy and preserving statistical utility. Our findings suggest that current SDG methods cannot consistently provide sufficient privacy protection against inference attacks while retaining reasonable utility. The best method evaluated, a differentially private SDG mechanism, can provide both protection against inference attacks and reasonable utility, but only in very specific settings. Lastly, we show that releasing a larger number of synthetic records can improve utility but at the cost of making attacks far more effective.

Few-Shot Anomaly-Driven Generation for Anomaly Classification and Segmentation

Anomaly detection is a practical and challenging task due to the scarcity of anomaly samples in industrial inspection. Some existing anomaly detection methods address this issue by synthesizing anomalies with noise or external data. However, there is always a large semantic gap between synthetic and real-world anomalies, resulting in weak performance in anomaly detection. To solve the problem, we propose a few-shot Anomaly-driven Generation (AnoGen) method, which guides the diffusion model to generate realistic and diverse anomalies with only a few real anomalies, thereby benefiting training anomaly detection models. Specifically, our work is divided into three stages. In the first stage, we learn the anomaly distribution based on a few given real anomalies and inject the learned knowledge into an embedding. In the second stage, we use the embedding and given bounding boxes to guide the diffusion model to generate realistic and diverse anomalies on specific objects (or textures). In the final stage, we propose a weakly-supervised anomaly detection method to train a more powerful model with generated anomalies. Our method builds upon DRAEM and DesTSeg as the foundation model and conducts experiments on the commonly used industrial anomaly detection dataset, MVTec. The experiments demonstrate that our generated anomalies effectively improve the model performance of both anomaly classification and segmentation tasks simultaneously, \eg, DRAEM and DseTSeg achieved a 5.8\% and 1.5\% improvement in AU-PR metric on segmentation task, respectively. The code and generated anomalous data are available at https://github.com/gaobb/AnoGen.

Meta OOD Learning for Continuously Adaptive OOD Detection

Out-of-distribution (OOD) detection is crucial to modern deep learning applications by identifying and alerting about the OOD samples that should not be tested or used for making predictions. Current OOD detection methods have made significant progress when in-distribution (ID) and OOD samples are drawn from static distributions. However, this can be unrealistic when applied to real-world systems which often undergo continuous variations and shifts in ID and OOD distributions over time. Therefore, for an effective application in real-world systems, the development of OOD detection methods that can adapt to these dynamic and evolving distributions is essential. In this paper, we propose a novel and more realistic setting called continuously adaptive out-of-distribution (CAOOD) detection which targets on developing an OOD detection model that enables dynamic and quick adaptation to a new arriving distribution, with insufficient ID samples during deployment time. To address CAOOD, we develop meta OOD learning (MOL) by designing a learning-to-adapt diagram such that a good initialized OOD detection model is learned during the training process. In the testing process, MOL ensures OOD detection performance over shifting distributions by quickly adapting to new distributions with a few adaptations. Extensive experiments on several OOD benchmarks endorse the effectiveness of our method in preserving both ID classification accuracy and OOD detection performance on continuously shifting distributions.

Entity Embedding-based Anomaly Detection for Heterogeneous Categorical Events

Anomaly detection plays an important role in modern data-driven security applications, such as detecting suspicious access to a socket from a process. In many cases, such events can be described as a collection of categorical values that are considered as entities of different types, which we call heterogeneous categorical events. Due to the lack of intrinsic distance measures among entities, and the exponentially large event space, most existing work relies heavily on heuristics to calculate abnormal scores for events. Different from previous work, we propose a principled and unified probabilistic model APE (Anomaly detection via Probabilistic pairwise interaction and Entity embedding) that directly models the likelihood of events. In this model, we embed entities into a common latent space using their observed co-occurrence in different events. More specifically, we first model the compatibility of each pair of entities according to their embeddings. Then we utilize the weighted pairwise interactions of different entity types to define the event probability. Using Noise-Contrastive Estimation with "context-dependent" noise distribution, our model can be learned efficiently regardless of the large event space. Experimental results on real enterprise surveillance data show that our methods can accurately detect abnormal events compared to other state-of-the-art abnormal detection techniques.

Focus the Discrepancy: Intra- and Inter-Correlation Learning for Image Anomaly Detection

Humans recognize anomalies through two aspects: larger patch-wise representation discrepancies and weaker patch-to-normal-patch correlations. However, the previous AD methods didn't sufficiently combine the two complementary aspects to design AD models. To this end, we find that Transformer can ideally satisfy the two aspects as its great power in the unified modeling of patch-wise representations and patch-to-patch correlations. In this paper, we propose a novel AD framework: FOcus-the-Discrepancy (FOD), which can simultaneously spot the patch-wise, intra- and inter-discrepancies of anomalies. The major characteristic of our method is that we renovate the self-attention maps in transformers to Intra-Inter-Correlation (I2Correlation). The I2Correlation contains a two-branch structure to first explicitly establish intra- and inter-image correlations, and then fuses the features of two-branch to spotlight the abnormal patterns. To learn the intra- and inter-correlations adaptively, we propose the RBF-kernel-based target-correlations as learning targets for self-supervised learning. Besides, we introduce an entropy constraint strategy to solve the mode collapse issue in optimization and further amplify the normal-abnormal distinguishability. Extensive experiments on three unsupervised real-world AD benchmarks show the superior performance of our approach. Code will be available at https://github.com/xcyao00/FOD.

An Efficient Tester-Learner for Halfspaces

We give the first efficient algorithm for learning halfspaces in the testable learning model recently defined by Rubinfeld and Vasilyan (2023). In this model, a learner certifies that the accuracy of its output hypothesis is near optimal whenever the training set passes an associated test, and training sets drawn from some target distribution -- e.g., the Gaussian -- must pass the test. This model is more challenging than distribution-specific agnostic or Massart noise models where the learner is allowed to fail arbitrarily if the distributional assumption does not hold. We consider the setting where the target distribution is Gaussian (or more generally any strongly log-concave distribution) in d dimensions and the noise model is either Massart or adversarial (agnostic). For Massart noise, our tester-learner runs in polynomial time and outputs a hypothesis with (information-theoretically optimal) error opt + epsilon for any strongly log-concave target distribution. For adversarial noise, our tester-learner obtains error O(opt) + epsilon in polynomial time when the target distribution is Gaussian; for strongly log-concave distributions, we obtain O(opt) + epsilon in quasipolynomial time. Prior work on testable learning ignores the labels in the training set and checks that the empirical moments of the covariates are close to the moments of the base distribution. Here we develop new tests of independent interest that make critical use of the labels and combine them with the moment-matching approach of Gollakota et al. (2023). This enables us to simulate a variant of the algorithm of Diakonikolas et al. (2020) for learning noisy halfspaces using nonconvex SGD but in the testable learning setting.

SeaS: Few-shot Industrial Anomaly Image Generation with Separation and Sharing Fine-tuning

We introduce SeaS, a unified industrial generative model for automatically creating diverse anomalies, authentic normal products, and precise anomaly masks. While extensive research exists, most efforts either focus on specific tasks, i.e., anomalies or normal products only, or require separate models for each anomaly type. Consequently, prior methods either offer limited generative capability or depend on a vast array of anomaly-specific models. We demonstrate that U-Net's differentiated learning ability captures the distinct visual traits of slightly-varied normal products and diverse anomalies, enabling us to construct a unified model for all tasks. Specifically, we first introduce an Unbalanced Abnormal (UA) Text Prompt, comprising one normal token and multiple anomaly tokens. More importantly, our Decoupled Anomaly Alignment (DA) loss decouples anomaly attributes and binds them to distinct anomaly tokens of UA, enabling SeaS to create unseen anomalies by recombining these attributes. Furthermore, our Normal-image Alignment (NA) loss aligns the normal token to normal patterns, making generated normal products globally consistent and locally varied. Finally, SeaS produces accurate anomaly masks by fusing discriminative U-Net features with high-resolution VAE features. SeaS sets a new benchmark for industrial generation, significantly enhancing downstream applications, with average improvements of +8.66% pixel-level AP for synthesis-based AD approaches, +1.10% image-level AP for unsupervised AD methods, and +12.79% IoU for supervised segmentation models. Code is available at https://github.com/HUST-SLOW/SeaS{https://github.com/HUST-SLOW/SeaS}.

Towards Stable Test-Time Adaptation in Dynamic Wild World

Test-time adaptation (TTA) has shown to be effective at tackling distribution shifts between training and testing data by adapting a given model on test samples. However, the online model updating of TTA may be unstable and this is often a key obstacle preventing existing TTA methods from being deployed in the real world. Specifically, TTA may fail to improve or even harm the model performance when test data have: 1) mixed distribution shifts, 2) small batch sizes, and 3) online imbalanced label distribution shifts, which are quite common in practice. In this paper, we investigate the unstable reasons and find that the batch norm layer is a crucial factor hindering TTA stability. Conversely, TTA can perform more stably with batch-agnostic norm layers, \ie, group or layer norm. However, we observe that TTA with group and layer norms does not always succeed and still suffers many failure cases. By digging into the failure cases, we find that certain noisy test samples with large gradients may disturb the model adaption and result in collapsed trivial solutions, \ie, assigning the same class label for all samples. To address the above collapse issue, we propose a sharpness-aware and reliable entropy minimization method, called SAR, for further stabilizing TTA from two aspects: 1) remove partial noisy samples with large gradients, 2) encourage model weights to go to a flat minimum so that the model is robust to the remaining noisy samples. Promising results demonstrate that SAR performs more stably over prior methods and is computationally efficient under the above wild test scenarios.

Towards robust audio spoofing detection: a detailed comparison of traditional and learned features

Automatic speaker verification, like every other biometric system, is vulnerable to spoofing attacks. Using only a few minutes of recorded voice of a genuine client of a speaker verification system, attackers can develop a variety of spoofing attacks that might trick such systems. Detecting these attacks using the audio cues present in the recordings is an important challenge. Most existing spoofing detection systems depend on knowing the used spoofing technique. With this research, we aim at overcoming this limitation, by examining robust audio features, both traditional and those learned through an autoencoder, that are generalizable over different types of replay spoofing. Furthermore, we provide a detailed account of all the steps necessary in setting up state-of-the-art audio feature detection, pre-, and postprocessing, such that the (non-audio expert) machine learning researcher can implement such systems. Finally, we evaluate the performance of our robust replay speaker detection system with a wide variety and different combinations of both extracted and machine learned audio features on the `out in the wild' ASVspoof 2017 dataset. This dataset contains a variety of new spoofing configurations. Since our focus is on examining which features will ensure robustness, we base our system on a traditional Gaussian Mixture Model-Universal Background Model. We then systematically investigate the relative contribution of each feature set. The fused models, based on both the known audio features and the machine learned features respectively, have a comparable performance with an Equal Error Rate (EER) of 12. The final best performing model, which obtains an EER of 10.8, is a hybrid model that contains both known and machine learned features, thus revealing the importance of incorporating both types of features when developing a robust spoofing prediction model.

MERT: Acoustic Music Understanding Model with Large-Scale Self-supervised Training

Self-supervised learning (SSL) has recently emerged as a promising paradigm for training generalisable models on large-scale data in the fields of vision, text, and speech. Although SSL has been proven effective in speech and audio, its application to music audio has yet to be thoroughly explored. This is primarily due to the distinctive challenges associated with modelling musical knowledge, particularly its tonal and pitched characteristics of music. To address this research gap, we propose an acoustic Music undERstanding model with large-scale self-supervised Training (MERT), which incorporates teacher models to provide pseudo labels in the masked language modelling (MLM) style acoustic pre-training. In our exploration, we identified a superior combination of teacher models, which outperforms conventional speech and audio approaches in terms of performance. This combination includes an acoustic teacher based on Residual Vector Quantization - Variational AutoEncoder (RVQ-VAE) and a musical teacher based on the Constant-Q Transform (CQT). These teachers effectively guide our student model, a BERT-style transformer encoder, to better model music audio. In addition, we introduce an in-batch noise mixture augmentation to enhance the representation robustness. Furthermore, we explore a wide range of settings to overcome the instability in acoustic language model pre-training, which allows our designed paradigm to scale from 95M to 330M parameters. Experimental results indicate that our model can generalise and perform well on 14 music understanding tasks and attains state-of-the-art (SOTA) overall scores. The code and models are online: https://github.com/yizhilll/MERT.

Exploring Intrinsic Normal Prototypes within a Single Image for Universal Anomaly Detection

Anomaly detection (AD) is essential for industrial inspection, yet existing methods typically rely on ``comparing'' test images to normal references from a training set. However, variations in appearance and positioning often complicate the alignment of these references with the test image, limiting detection accuracy. We observe that most anomalies manifest as local variations, meaning that even within anomalous images, valuable normal information remains. We argue that this information is useful and may be more aligned with the anomalies since both the anomalies and the normal information originate from the same image. Therefore, rather than relying on external normality from the training set, we propose INP-Former, a novel method that extracts Intrinsic Normal Prototypes (INPs) directly from the test image. Specifically, we introduce the INP Extractor, which linearly combines normal tokens to represent INPs. We further propose an INP Coherence Loss to ensure INPs can faithfully represent normality for the testing image. These INPs then guide the INP-Guided Decoder to reconstruct only normal tokens, with reconstruction errors serving as anomaly scores. Additionally, we propose a Soft Mining Loss to prioritize hard-to-optimize samples during training. INP-Former achieves state-of-the-art performance in single-class, multi-class, and few-shot AD tasks across MVTec-AD, VisA, and Real-IAD, positioning it as a versatile and universal solution for AD. Remarkably, INP-Former also demonstrates some zero-shot AD capability. Code is available at:https://github.com/luow23/INP-Former.

Towards Zero-Shot Anomaly Detection and Reasoning with Multimodal Large Language Models

Zero-Shot Anomaly Detection (ZSAD) is an emerging AD paradigm. Unlike the traditional unsupervised AD setting that requires a large number of normal samples to train a model, ZSAD is more practical for handling data-restricted real-world scenarios. Recently, Multimodal Large Language Models (MLLMs) have shown revolutionary reasoning capabilities in various vision tasks. However, the reasoning of image abnormalities remains underexplored due to the lack of corresponding datasets and benchmarks. To facilitate research in AD & reasoning, we establish the first visual instruction tuning dataset, Anomaly-Instruct-125k, and the evaluation benchmark, VisA-D&R. Through investigation with our benchmark, we reveal that current MLLMs like GPT-4o cannot accurately detect and describe fine-grained anomalous details in images. To address this, we propose Anomaly-OneVision (Anomaly-OV), the first specialist visual assistant for ZSAD and reasoning. Inspired by human behavior in visual inspection, Anomaly-OV leverages a Look-Twice Feature Matching (LTFM) mechanism to adaptively select and emphasize abnormal visual tokens. Extensive experiments demonstrate that Anomaly-OV achieves significant improvements over advanced generalist models in both detection and reasoning. Extensions to medical and 3D AD are provided for future study. The link to our project page: https://xujiacong.github.io/Anomaly-OV/

Understanding the Impact of Adversarial Robustness on Accuracy Disparity

While it has long been empirically observed that adversarial robustness may be at odds with standard accuracy and may have further disparate impacts on different classes, it remains an open question to what extent such observations hold and how the class imbalance plays a role within. In this paper, we attempt to understand this question of accuracy disparity by taking a closer look at linear classifiers under a Gaussian mixture model. We decompose the impact of adversarial robustness into two parts: an inherent effect that will degrade the standard accuracy on all classes due to the robustness constraint, and the other caused by the class imbalance ratio, which will increase the accuracy disparity compared to standard training. Furthermore, we also show that such effects extend beyond the Gaussian mixture model, by generalizing our data model to the general family of stable distributions. More specifically, we demonstrate that while the constraint of adversarial robustness consistently degrades the standard accuracy in the balanced class setting, the class imbalance ratio plays a fundamentally different role in accuracy disparity compared to the Gaussian case, due to the heavy tail of the stable distribution. We additionally perform experiments on both synthetic and real-world datasets to corroborate our theoretical findings. Our empirical results also suggest that the implications may extend to nonlinear models over real-world datasets. Our code is publicly available on GitHub at https://github.com/Accuracy-Disparity/AT-on-AD.

Noise-Robust and Resource-Efficient ADMM-based Federated Learning

Federated learning (FL) leverages client-server communications to train global models on decentralized data. However, communication noise or errors can impair model accuracy. To address this problem, we propose a novel FL algorithm that enhances robustness against communication noise while also reducing communication load. We derive the proposed algorithm through solving the weighted least-squares (WLS) regression problem as an illustrative example. We first frame WLS regression as a distributed convex optimization problem over a federated network employing random scheduling for improved communication efficiency. We then apply the alternating direction method of multipliers (ADMM) to iteratively solve this problem. To counteract the detrimental effects of cumulative communication noise, we introduce a key modification by eliminating the dual variable and implementing a new local model update at each participating client. This subtle yet effective change results in using a single noisy global model update at each client instead of two, improving robustness against additive communication noise. Furthermore, we incorporate another modification enabling clients to continue local updates even when not selected by the server, leading to substantial performance improvements. Our theoretical analysis confirms the convergence of our algorithm in both mean and the mean-square senses, even when the server communicates with a random subset of clients over noisy links at each iteration. Numerical results validate the effectiveness of our proposed algorithm and corroborate our theoretical findings.

Robust Representation Consistency Model via Contrastive Denoising

Robustness is essential for deep neural networks, especially in security-sensitive applications. To this end, randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations. Recently, diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples before making predictions with a standard classifier. While these methods excel at small perturbation radii, they struggle with larger perturbations and incur a significant computational overhead during inference compared to classical methods. To address this, we reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space. Specifically, we use instance discrimination to achieve consistent representations along the trajectories by aligning temporally adjacent points. After fine-tuning based on the learned representations, our model enables implicit denoising-then-classification via a single prediction, substantially reducing inference costs. We conduct extensive experiments on various datasets and achieve state-of-the-art performance with minimal computation budget during inference. For example, our method outperforms the certified accuracy of diffusion-based methods on ImageNet across all perturbation radii by 5.3% on average, with up to 11.6% at larger radii, while reducing inference costs by 85times on average. Codes are available at: https://github.com/jiachenlei/rRCM.

Follow the Rules: Reasoning for Video Anomaly Detection with Large Language Models

Video Anomaly Detection (VAD) is crucial for applications such as security surveillance and autonomous driving. However, existing VAD methods provide little rationale behind detection, hindering public trust in real-world deployments. In this paper, we approach VAD with a reasoning framework. Although Large Language Models (LLMs) have shown revolutionary reasoning ability, we find that their direct use falls short of VAD. Specifically, the implicit knowledge pre-trained in LLMs focuses on general context and thus may not apply to every specific real-world VAD scenario, leading to inflexibility and inaccuracy. To address this, we propose AnomalyRuler, a novel rule-based reasoning framework for VAD with LLMs. AnomalyRuler comprises two main stages: induction and deduction. In the induction stage, the LLM is fed with few-shot normal reference samples and then summarizes these normal patterns to induce a set of rules for detecting anomalies. The deduction stage follows the induced rules to spot anomalous frames in test videos. Additionally, we design rule aggregation, perception smoothing, and robust reasoning strategies to further enhance AnomalyRuler's robustness. AnomalyRuler is the first reasoning approach for the one-class VAD task, which requires only few-normal-shot prompting without the need for full-shot training, thereby enabling fast adaption to various VAD scenarios. Comprehensive experiments across four VAD benchmarks demonstrate AnomalyRuler's state-of-the-art detection performance and reasoning ability. AnomalyRuler is open-source and available at: https://github.com/Yuchen413/AnomalyRuler