Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTowards Training One-Step Diffusion Models Without Distillation
Recent advances in one-step generative models typically follow a two-stage process: first training a teacher diffusion model and then distilling it into a one-step student model. This distillation process traditionally relies on both the teacher model's score function to compute the distillation loss and its weights for student initialization. In this paper, we explore whether one-step generative models can be trained directly without this distillation process. First, we show that the teacher's score function is not essential and propose a family of distillation methods that achieve competitive results without relying on score estimation. Next, we demonstrate that initialization from teacher weights is indispensable in successful training. Surprisingly, we find that this benefit is not due to improved ``input-output" mapping but rather the learned feature representations, which dominate distillation quality. Our findings provide a better understanding of the role of initialization in one-step model training and its impact on distillation quality.
SlimFlow: Training Smaller One-Step Diffusion Models with Rectified Flow
Diffusion models excel in high-quality generation but suffer from slow inference due to iterative sampling. While recent methods have successfully transformed diffusion models into one-step generators, they neglect model size reduction, limiting their applicability in compute-constrained scenarios. This paper aims to develop small, efficient one-step diffusion models based on the powerful rectified flow framework, by exploring joint compression of inference steps and model size. The rectified flow framework trains one-step generative models using two operations, reflow and distillation. Compared with the original framework, squeezing the model size brings two new challenges: (1) the initialization mismatch between large teachers and small students during reflow; (2) the underperformance of naive distillation on small student models. To overcome these issues, we propose Annealing Reflow and Flow-Guided Distillation, which together comprise our SlimFlow framework. With our novel framework, we train a one-step diffusion model with an FID of 5.02 and 15.7M parameters, outperforming the previous state-of-the-art one-step diffusion model (FID=6.47, 19.4M parameters) on CIFAR10. On ImageNet 64times64 and FFHQ 64times64, our method yields small one-step diffusion models that are comparable to larger models, showcasing the effectiveness of our method in creating compact, efficient one-step diffusion models.
Diff-Instruct*: Towards Human-Preferred One-step Text-to-image Generative Models
In this paper, we introduce the Diff-Instruct* (DI*), an image data-free approach for building one-step text-to-image generative models that align with human preference while maintaining the ability to generate highly realistic images. We frame human preference alignment as online reinforcement learning using human feedback (RLHF), where the goal is to maximize the reward function while regularizing the generator distribution to remain close to a reference diffusion process. Unlike traditional RLHF approaches, which rely on the KL divergence for regularization, we introduce a novel score-based divergence regularization, which leads to significantly better performances. Although the direct calculation of this preference alignment objective remains intractable, we demonstrate that we can efficiently compute its gradient by deriving an equivalent yet tractable loss function. Remarkably, we used Diff-Instruct* to train a Stable Diffusion-XL-based 1-step model, the 2.6B DI*-SDXL-1step text-to-image model, which can generate images of a resolution of 1024x1024 with only 1 generation step. DI*-SDXL-1step model uses only 1.88% inference time and 29.30% GPU memory cost to outperform 12B FLUX-dev-50step significantly in PickScore, ImageReward, and CLIPScore on Parti prompt benchmark and HPSv2.1 on Human Preference Score benchmark, establishing a new state-of-the-art benchmark of human-preferred 1-step text-to-image generative models. Besides the strong quantitative performances, extensive qualitative comparisons also confirm the advantages of DI* in terms of maintaining diversity, improving image layouts, and enhancing aesthetic colors. We have released our industry-ready model on the homepage: https://github.com/pkulwj1994/diff_instruct_star.
One Step Diffusion via Shortcut Models
Diffusion models and flow-matching models have enabled generating diverse and realistic images by learning to transfer noise to data. However, sampling from these models involves iterative denoising over many neural network passes, making generation slow and expensive. Previous approaches for speeding up sampling require complex training regimes, such as multiple training phases, multiple networks, or fragile scheduling. We introduce shortcut models, a family of generative models that use a single network and training phase to produce high-quality samples in a single or multiple sampling steps. Shortcut models condition the network not only on the current noise level but also on the desired step size, allowing the model to skip ahead in the generation process. Across a wide range of sampling step budgets, shortcut models consistently produce higher quality samples than previous approaches, such as consistency models and reflow. Compared to distillation, shortcut models reduce complexity to a single network and training phase and additionally allow varying step budgets at inference time.
EM Distillation for One-step Diffusion Models
While diffusion models can learn complex distributions, sampling requires a computationally expensive iterative process. Existing distillation methods enable efficient sampling, but have notable limitations, such as performance degradation with very few sampling steps, reliance on training data access, or mode-seeking optimization that may fail to capture the full distribution. We propose EM Distillation (EMD), a maximum likelihood-based approach that distills a diffusion model to a one-step generator model with minimal loss of perceptual quality. Our approach is derived through the lens of Expectation-Maximization (EM), where the generator parameters are updated using samples from the joint distribution of the diffusion teacher prior and inferred generator latents. We develop a reparametrized sampling scheme and a noise cancellation technique that together stabilizes the distillation process. We further reveal an interesting connection of our method with existing methods that minimize mode-seeking KL. EMD outperforms existing one-step generative methods in terms of FID scores on ImageNet-64 and ImageNet-128, and compares favorably with prior work on distilling text-to-image diffusion models.
One-Step Diffusion Distillation via Deep Equilibrium Models
Diffusion models excel at producing high-quality samples but naively require hundreds of iterations, prompting multiple attempts to distill the generation process into a faster network. However, many existing approaches suffer from a variety of challenges: the process for distillation training can be complex, often requiring multiple training stages, and the resulting models perform poorly when utilized in single-step generative applications. In this paper, we introduce a simple yet effective means of distilling diffusion models directly from initial noise to the resulting image. Of particular importance to our approach is to leverage a new Deep Equilibrium (DEQ) model as the distilled architecture: the Generative Equilibrium Transformer (GET). Our method enables fully offline training with just noise/image pairs from the diffusion model while achieving superior performance compared to existing one-step methods on comparable training budgets. We demonstrate that the DEQ architecture is crucial to this capability, as GET matches a 5times larger ViT in terms of FID scores while striking a critical balance of computational cost and image quality. Code, checkpoints, and datasets are available.
Mean Flows for One-step Generative Modeling
We propose a principled and effective framework for one-step generative modeling. We introduce the notion of average velocity to characterize flow fields, in contrast to instantaneous velocity modeled by Flow Matching methods. A well-defined identity between average and instantaneous velocities is derived and used to guide neural network training. Our method, termed the MeanFlow model, is self-contained and requires no pre-training, distillation, or curriculum learning. MeanFlow demonstrates strong empirical performance: it achieves an FID of 3.43 with a single function evaluation (1-NFE) on ImageNet 256x256 trained from scratch, significantly outperforming previous state-of-the-art one-step diffusion/flow models. Our study substantially narrows the gap between one-step diffusion/flow models and their multi-step predecessors, and we hope it will motivate future research to revisit the foundations of these powerful models.
OFTSR: One-Step Flow for Image Super-Resolution with Tunable Fidelity-Realism Trade-offs
Recent advances in diffusion and flow-based generative models have demonstrated remarkable success in image restoration tasks, achieving superior perceptual quality compared to traditional deep learning approaches. However, these methods either require numerous sampling steps to generate high-quality images, resulting in significant computational overhead, or rely on model distillation, which usually imposes a fixed fidelity-realism trade-off and thus lacks flexibility. In this paper, we introduce OFTSR, a novel flow-based framework for one-step image super-resolution that can produce outputs with tunable levels of fidelity and realism. Our approach first trains a conditional flow-based super-resolution model to serve as a teacher model. We then distill this teacher model by applying a specialized constraint. Specifically, we force the predictions from our one-step student model for same input to lie on the same sampling ODE trajectory of the teacher model. This alignment ensures that the student model's single-step predictions from initial states match the teacher's predictions from a closer intermediate state. Through extensive experiments on challenging datasets including FFHQ (256times256), DIV2K, and ImageNet (256times256), we demonstrate that OFTSR achieves state-of-the-art performance for one-step image super-resolution, while having the ability to flexibly tune the fidelity-realism trade-off. Code and pre-trained models are available at https://github.com/yuanzhi-zhu/OFTSR and https://huggingface.co/Yuanzhi/OFTSR, respectively.
GuideSR: Rethinking Guidance for One-Step High-Fidelity Diffusion-Based Super-Resolution
In this paper, we propose GuideSR, a novel single-step diffusion-based image super-resolution (SR) model specifically designed to enhance image fidelity. Existing diffusion-based SR approaches typically adapt pre-trained generative models to image restoration tasks by adding extra conditioning on a VAE-downsampled representation of the degraded input, which often compromises structural fidelity. GuideSR addresses this limitation by introducing a dual-branch architecture comprising: (1) a Guidance Branch that preserves high-fidelity structures from the original-resolution degraded input, and (2) a Diffusion Branch, which a pre-trained latent diffusion model to enhance perceptual quality. Unlike conventional conditioning mechanisms, our Guidance Branch features a tailored structure for image restoration tasks, combining Full Resolution Blocks (FRBs) with channel attention and an Image Guidance Network (IGN) with guided attention. By embedding detailed structural information directly into the restoration pipeline, GuideSR produces sharper and more visually consistent results. Extensive experiments on benchmark datasets demonstrate that GuideSR achieves state-of-the-art performance while maintaining the low computational cost of single-step approaches, with up to 1.39dB PSNR gain on challenging real-world datasets. Our approach consistently outperforms existing methods across various reference-based metrics including PSNR, SSIM, LPIPS, DISTS and FID, further representing a practical advancement for real-world image restoration.
Self-Corrected Flow Distillation for Consistent One-Step and Few-Step Text-to-Image Generation
Flow matching has emerged as a promising framework for training generative models, demonstrating impressive empirical performance while offering relative ease of training compared to diffusion-based models. However, this method still requires numerous function evaluations in the sampling process. To address these limitations, we introduce a self-corrected flow distillation method that effectively integrates consistency models and adversarial training within the flow-matching framework. This work is a pioneer in achieving consistent generation quality in both few-step and one-step sampling. Our extensive experiments validate the effectiveness of our method, yielding superior results both quantitatively and qualitatively on CelebA-HQ and zero-shot benchmarks on the COCO dataset. Our implementation is released at https://github.com/VinAIResearch/SCFlow
One-Step Diffusion for Detail-Rich and Temporally Consistent Video Super-Resolution
It is a challenging problem to reproduce rich spatial details while maintaining temporal consistency in real-world video super-resolution (Real-VSR), especially when we leverage pre-trained generative models such as stable diffusion (SD) for realistic details synthesis. Existing SD-based Real-VSR methods often compromise spatial details for temporal coherence, resulting in suboptimal visual quality. We argue that the key lies in how to effectively extract the degradation-robust temporal consistency priors from the low-quality (LQ) input video and enhance the video details while maintaining the extracted consistency priors. To achieve this, we propose a Dual LoRA Learning (DLoRAL) paradigm to train an effective SD-based one-step diffusion model, achieving realistic frame details and temporal consistency simultaneously. Specifically, we introduce a Cross-Frame Retrieval (CFR) module to aggregate complementary information across frames, and train a Consistency-LoRA (C-LoRA) to learn robust temporal representations from degraded inputs. After consistency learning, we fix the CFR and C-LoRA modules and train a Detail-LoRA (D-LoRA) to enhance spatial details while aligning with the temporal space defined by C-LoRA to keep temporal coherence. The two phases alternate iteratively for optimization, collaboratively delivering consistent and detail-rich outputs. During inference, the two LoRA branches are merged into the SD model, allowing efficient and high-quality video restoration in a single diffusion step. Experiments show that DLoRAL achieves strong performance in both accuracy and speed. Code and models are available at https://github.com/yjsunnn/DLoRAL.
VideoScene: Distilling Video Diffusion Model to Generate 3D Scenes in One Step
Recovering 3D scenes from sparse views is a challenging task due to its inherent ill-posed problem. Conventional methods have developed specialized solutions (e.g., geometry regularization or feed-forward deterministic model) to mitigate the issue. However, they still suffer from performance degradation by minimal overlap across input views with insufficient visual information. Fortunately, recent video generative models show promise in addressing this challenge as they are capable of generating video clips with plausible 3D structures. Powered by large pretrained video diffusion models, some pioneering research start to explore the potential of video generative prior and create 3D scenes from sparse views. Despite impressive improvements, they are limited by slow inference time and the lack of 3D constraint, leading to inefficiencies and reconstruction artifacts that do not align with real-world geometry structure. In this paper, we propose VideoScene to distill the video diffusion model to generate 3D scenes in one step, aiming to build an efficient and effective tool to bridge the gap from video to 3D. Specifically, we design a 3D-aware leap flow distillation strategy to leap over time-consuming redundant information and train a dynamic denoising policy network to adaptively determine the optimal leap timestep during inference. Extensive experiments demonstrate that our VideoScene achieves faster and superior 3D scene generation results than previous video diffusion models, highlighting its potential as an efficient tool for future video to 3D applications. Project Page: https://hanyang-21.github.io/VideoScene
Continuous-Multiple Image Outpainting in One-Step via Positional Query and A Diffusion-based Approach
Image outpainting aims to generate the content of an input sub-image beyond its original boundaries. It is an important task in content generation yet remains an open problem for generative models. This paper pushes the technical frontier of image outpainting in two directions that have not been resolved in literature: 1) outpainting with arbitrary and continuous multiples (without restriction), and 2) outpainting in a single step (even for large expansion multiples). Moreover, we develop a method that does not depend on a pre-trained backbone network, which is in contrast commonly required by the previous SOTA outpainting methods. The arbitrary multiple outpainting is achieved by utilizing randomly cropped views from the same image during training to capture arbitrary relative positional information. Specifically, by feeding one view and positional embeddings as queries, we can reconstruct another view. At inference, we generate images with arbitrary expansion multiples by inputting an anchor image and its corresponding positional embeddings. The one-step outpainting ability here is particularly noteworthy in contrast to previous methods that need to be performed for N times to obtain a final multiple which is N times of its basic and fixed multiple. We evaluate the proposed approach (called PQDiff as we adopt a diffusion-based generator as our embodiment, under our proposed Positional Query scheme) on public benchmarks, demonstrating its superior performance over state-of-the-art approaches. Specifically, PQDiff achieves state-of-the-art FID scores on the Scenery (21.512), Building Facades (25.310), and WikiArts (36.212) datasets. Furthermore, under the 2.25x, 5x and 11.7x outpainting settings, PQDiff only takes 40.6\%, 20.3\% and 10.2\% of the time of the benchmark state-of-the-art (SOTA) method.
Consistency Models
Diffusion models have made significant breakthroughs in image, audio, and video generation, but they depend on an iterative generation process that causes slow sampling speed and caps their potential for real-time applications. To overcome this limitation, we propose consistency models, a new family of generative models that achieve high sample quality without adversarial training. They support fast one-step generation by design, while still allowing for few-step sampling to trade compute for sample quality. They also support zero-shot data editing, like image inpainting, colorization, and super-resolution, without requiring explicit training on these tasks. Consistency models can be trained either as a way to distill pre-trained diffusion models, or as standalone generative models. Through extensive experiments, we demonstrate that they outperform existing distillation techniques for diffusion models in one- and few-step generation. For example, we achieve the new state-of-the-art FID of 3.55 on CIFAR-10 and 6.20 on ImageNet 64x64 for one-step generation. When trained as standalone generative models, consistency models also outperform single-step, non-adversarial generative models on standard benchmarks like CIFAR-10, ImageNet 64x64 and LSUN 256x256.
Improved Techniques for Training Consistency Models
Consistency models are a nascent family of generative models that can sample high quality data in one step without the need for adversarial training. Current consistency models achieve optimal sample quality by distilling from pre-trained diffusion models and employing learned metrics such as LPIPS. However, distillation limits the quality of consistency models to that of the pre-trained diffusion model, and LPIPS causes undesirable bias in evaluation. To tackle these challenges, we present improved techniques for consistency training, where consistency models learn directly from data without distillation. We delve into the theory behind consistency training and identify a previously overlooked flaw, which we address by eliminating Exponential Moving Average from the teacher consistency model. To replace learned metrics like LPIPS, we adopt Pseudo-Huber losses from robust statistics. Additionally, we introduce a lognormal noise schedule for the consistency training objective, and propose to double total discretization steps every set number of training iterations. Combined with better hyperparameter tuning, these modifications enable consistency models to achieve FID scores of 2.51 and 3.25 on CIFAR-10 and ImageNet 64times 64 respectively in a single sampling step. These scores mark a 3.5times and 4times improvement compared to prior consistency training approaches. Through two-step sampling, we further reduce FID scores to 2.24 and 2.77 on these two datasets, surpassing those obtained via distillation in both one-step and two-step settings, while narrowing the gap between consistency models and other state-of-the-art generative models.
UFOGen: You Forward Once Large Scale Text-to-Image Generation via Diffusion GANs
Text-to-image diffusion models have demonstrated remarkable capabilities in transforming textual prompts into coherent images, yet the computational cost of their inference remains a persistent challenge. To address this issue, we present UFOGen, a novel generative model designed for ultra-fast, one-step text-to-image synthesis. In contrast to conventional approaches that focus on improving samplers or employing distillation techniques for diffusion models, UFOGen adopts a hybrid methodology, integrating diffusion models with a GAN objective. Leveraging a newly introduced diffusion-GAN objective and initialization with pre-trained diffusion models, UFOGen excels in efficiently generating high-quality images conditioned on textual descriptions in a single step. Beyond traditional text-to-image generation, UFOGen showcases versatility in applications. Notably, UFOGen stands among the pioneering models enabling one-step text-to-image generation and diverse downstream tasks, presenting a significant advancement in the landscape of efficient generative models. \blfootnote{*Work done as a student researcher of Google, dagger indicates equal contribution.
Taming generative video models for zero-shot optical flow extraction
Extracting optical flow from videos remains a core computer vision problem. Motivated by the success of large general-purpose models, we ask whether frozen self-supervised video models trained only for future frame prediction can be prompted, without fine-tuning, to output flow. Prior work reading out depth or illumination from video generators required fine-tuning, which is impractical for flow where labels are scarce and synthetic datasets suffer from a sim-to-real gap. Inspired by the Counterfactual World Model (CWM) paradigm, which can obtain point-wise correspondences by injecting a small tracer perturbation into a next-frame predictor and tracking its propagation, we extend this idea to generative video models. We explore several popular architectures and find that successful zero-shot flow extraction in this manner is aided by three model properties: (1) distributional prediction of future frames (avoiding blurry or noisy outputs); (2) factorized latents that treat each spatio-temporal patch independently; and (3) random-access decoding that can condition on any subset of future pixels. These properties are uniquely present in the recent Local Random Access Sequence (LRAS) architecture. Building on LRAS, we propose KL-tracing: a novel test-time procedure that injects a localized perturbation into the first frame, rolls out the model one step, and computes the Kullback-Leibler divergence between perturbed and unperturbed predictive distributions. Without any flow-specific fine-tuning, our method outperforms state-of-the-art models on real-world TAP-Vid DAVIS dataset (16.6% relative improvement for endpoint error) and synthetic TAP-Vid Kubric (4.7% relative improvement). Our results indicate that counterfactual prompting of controllable generative video models is a scalable and effective alternative to supervised or photometric-loss approaches for high-quality flow.
Inductive Moment Matching
Diffusion models and Flow Matching generate high-quality samples but are slow at inference, and distilling them into few-step models often leads to instability and extensive tuning. To resolve these trade-offs, we propose Inductive Moment Matching (IMM), a new class of generative models for one- or few-step sampling with a single-stage training procedure. Unlike distillation, IMM does not require pre-training initialization and optimization of two networks; and unlike Consistency Models, IMM guarantees distribution-level convergence and remains stable under various hyperparameters and standard model architectures. IMM surpasses diffusion models on ImageNet-256x256 with 1.99 FID using only 8 inference steps and achieves state-of-the-art 2-step FID of 1.98 on CIFAR-10 for a model trained from scratch.
One-Line-of-Code Data Mollification Improves Optimization of Likelihood-based Generative Models
Generative Models (GMs) have attracted considerable attention due to their tremendous success in various domains, such as computer vision where they are capable to generate impressive realistic-looking images. Likelihood-based GMs are attractive due to the possibility to generate new data by a single model evaluation. However, they typically achieve lower sample quality compared to state-of-the-art score-based diffusion models (DMs). This paper provides a significant step in the direction of addressing this limitation. The idea is to borrow one of the strengths of score-based DMs, which is the ability to perform accurate density estimation in low-density regions and to address manifold overfitting by means of data mollification. We connect data mollification through the addition of Gaussian noise to Gaussian homotopy, which is a well-known technique to improve optimization. Data mollification can be implemented by adding one line of code in the optimization loop, and we demonstrate that this provides a boost in generation quality of likelihood-based GMs, without computational overheads. We report results on image data sets with popular likelihood-based GMs, including variants of variational autoencoders and normalizing flows, showing large improvements in FID score.
Score identity Distillation: Exponentially Fast Distillation of Pretrained Diffusion Models for One-Step Generation
We introduce Score identity Distillation (SiD), an innovative data-free method that distills the generative capabilities of pretrained diffusion models into a single-step generator. SiD not only facilitates an exponentially fast reduction in Fr\'echet inception distance (FID) during distillation but also approaches or even exceeds the FID performance of the original teacher diffusion models. By reformulating forward diffusion processes as semi-implicit distributions, we leverage three score-related identities to create an innovative loss mechanism. This mechanism achieves rapid FID reduction by training the generator using its own synthesized images, eliminating the need for real data or reverse-diffusion-based generation, all accomplished within significantly shortened generation time. Upon evaluation across four benchmark datasets, the SiD algorithm demonstrates high iteration efficiency during distillation and surpasses competing distillation approaches, whether they are one-step or few-step, data-free, or dependent on training data, in terms of generation quality. This achievement not only redefines the benchmarks for efficiency and effectiveness in diffusion distillation but also in the broader field of diffusion-based generation. The PyTorch implementation is available at https://github.com/mingyuanzhou/SiD
One-Step Diffusion Distillation through Score Implicit Matching
Despite their strong performances on many generative tasks, diffusion models require a large number of sampling steps in order to generate realistic samples. This has motivated the community to develop effective methods to distill pre-trained diffusion models into more efficient models, but these methods still typically require few-step inference or perform substantially worse than the underlying model. In this paper, we present Score Implicit Matching (SIM) a new approach to distilling pre-trained diffusion models into single-step generator models, while maintaining almost the same sample generation ability as the original model as well as being data-free with no need of training samples for distillation. The method rests upon the fact that, although the traditional score-based loss is intractable to minimize for generator models, under certain conditions we can efficiently compute the gradients for a wide class of score-based divergences between a diffusion model and a generator. SIM shows strong empirical performances for one-step generators: on the CIFAR10 dataset, it achieves an FID of 2.06 for unconditional generation and 1.96 for class-conditional generation. Moreover, by applying SIM to a leading transformer-based diffusion model, we distill a single-step generator for text-to-image (T2I) generation that attains an aesthetic score of 6.42 with no performance decline over the original multi-step counterpart, clearly outperforming the other one-step generators including SDXL-TURBO of 5.33, SDXL-LIGHTNING of 5.34 and HYPER-SDXL of 5.85. We will release this industry-ready one-step transformer-based T2I generator along with this paper.
FastVoiceGrad: One-step Diffusion-Based Voice Conversion with Adversarial Conditional Diffusion Distillation
Diffusion-based voice conversion (VC) techniques such as VoiceGrad have attracted interest because of their high VC performance in terms of speech quality and speaker similarity. However, a notable limitation is the slow inference caused by the multi-step reverse diffusion. Therefore, we propose FastVoiceGrad, a novel one-step diffusion-based VC that reduces the number of iterations from dozens to one while inheriting the high VC performance of the multi-step diffusion-based VC. We obtain the model using adversarial conditional diffusion distillation (ACDD), leveraging the ability of generative adversarial networks and diffusion models while reconsidering the initial states in sampling. Evaluations of one-shot any-to-any VC demonstrate that FastVoiceGrad achieves VC performance superior to or comparable to that of previous multi-step diffusion-based VC while enhancing the inference speed. Audio samples are available at https://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/fastvoicegrad/.
Towards Multi-View Consistent Style Transfer with One-Step Diffusion via Vision Conditioning
The stylization of 3D scenes is an increasingly attractive topic in 3D vision. Although image style transfer has been extensively researched with promising results, directly applying 2D style transfer methods to 3D scenes often fails to preserve the structural and multi-view properties of 3D environments, resulting in unpleasant distortions in images from different viewpoints. To address these issues, we leverage the remarkable generative prior of diffusion-based models and propose a novel style transfer method, OSDiffST, based on a pre-trained one-step diffusion model (i.e., SD-Turbo) for rendering diverse styles in multi-view images of 3D scenes. To efficiently adapt the pre-trained model for multi-view style transfer on small datasets, we introduce a vision condition module to extract style information from the reference style image to serve as conditional input for the diffusion model and employ LoRA in diffusion model for adaptation. Additionally, we consider color distribution alignment and structural similarity between the stylized and content images using two specific loss functions. As a result, our method effectively preserves the structural information and multi-view consistency in stylized images without any 3D information. Experiments show that our method surpasses other promising style transfer methods in synthesizing various styles for multi-view images of 3D scenes. Stylized images from different viewpoints generated by our method achieve superior visual quality, with better structural integrity and less distortion. The source code is available at https://github.com/YushenZuo/OSDiffST.
One Token to Fool LLM-as-a-Judge
Generative reward models (also known as LLMs-as-judges), which use large language models (LLMs) to evaluate answer quality, are increasingly adopted in reinforcement learning with verifiable rewards (RLVR). They are often preferred over rigid rule-based metrics, especially for complex reasoning tasks involving free-form outputs. In this paradigm, an LLM is typically prompted to compare a candidate answer against a ground-truth reference and assign a binary reward indicating correctness. Despite the seeming simplicity of this comparison task, we find that generative reward models exhibit surprising vulnerabilities to superficial manipulations: non-word symbols (e.g., ":" or ".") or reasoning openers like "Thought process:" and "Let's solve this problem step by step." can often lead to false positive rewards. We demonstrate that this weakness is widespread across LLMs, datasets, and prompt formats, posing a serious threat for core algorithmic paradigms that rely on generative reward models, such as rejection sampling, preference optimization, and RLVR. To mitigate this issue, we introduce a simple yet effective data augmentation strategy and train a new generative reward model with substantially improved robustness. Our findings highlight the urgent need for more reliable LLM-based evaluation methods. We release our robust, general-domain reward model and its synthetic training data at https://huggingface.co/sarosavo/Master-RM and https://huggingface.co/datasets/sarosavo/Master-RM.
Consistency Trajectory Matching for One-Step Generative Super-Resolution
Current diffusion-based super-resolution (SR) approaches achieve commendable performance at the cost of high inference overhead. Therefore, distillation techniques are utilized to accelerate the multi-step teacher model into one-step student model. Nevertheless, these methods significantly raise training costs and constrain the performance of the student model by the teacher model. To overcome these tough challenges, we propose Consistency Trajectory Matching for Super-Resolution (CTMSR), a distillation-free strategy that is able to generate photo-realistic SR results in one step. Concretely, we first formulate a Probability Flow Ordinary Differential Equation (PF-ODE) trajectory to establish a deterministic mapping from low-resolution (LR) images with noise to high-resolution (HR) images. Then we apply the Consistency Training (CT) strategy to directly learn the mapping in one step, eliminating the necessity of pre-trained diffusion model. To further enhance the performance and better leverage the ground-truth during the training process, we aim to align the distribution of SR results more closely with that of the natural images. To this end, we propose to minimize the discrepancy between their respective PF-ODE trajectories from the LR image distribution by our meticulously designed Distribution Trajectory Matching (DTM) loss, resulting in improved realism of our recovered HR images. Comprehensive experimental results demonstrate that the proposed methods can attain comparable or even superior capabilities on both synthetic and real datasets while maintaining minimal inference latency.
Score Mismatching for Generative Modeling
We propose a new score-based model with one-step sampling. Previously, score-based models were burdened with heavy computations due to iterative sampling. For substituting the iterative process, we train a standalone generator to compress all the time steps with the gradient backpropagated from the score network. In order to produce meaningful gradients for the generator, the score network is trained to simultaneously match the real data distribution and mismatch the fake data distribution. This model has the following advantages: 1) For sampling, it generates a fake image with only one step forward. 2) For training, it only needs 10 diffusion steps.3) Compared with consistency model, it is free of the ill-posed problem caused by consistency loss. On the popular CIFAR-10 dataset, our model outperforms Consistency Model and Denoising Score Matching, which demonstrates the potential of the framework. We further provide more examples on the MINIST and LSUN datasets. The code is available on GitHub.
HexaGen3D: StableDiffusion is just one step away from Fast and Diverse Text-to-3D Generation
Despite the latest remarkable advances in generative modeling, efficient generation of high-quality 3D assets from textual prompts remains a difficult task. A key challenge lies in data scarcity: the most extensive 3D datasets encompass merely millions of assets, while their 2D counterparts contain billions of text-image pairs. To address this, we propose a novel approach which harnesses the power of large, pretrained 2D diffusion models. More specifically, our approach, HexaGen3D, fine-tunes a pretrained text-to-image model to jointly predict 6 orthographic projections and the corresponding latent triplane. We then decode these latents to generate a textured mesh. HexaGen3D does not require per-sample optimization, and can infer high-quality and diverse objects from textual prompts in 7 seconds, offering significantly better quality-to-latency trade-offs when comparing to existing approaches. Furthermore, HexaGen3D demonstrates strong generalization to new objects or compositions.
You Only Sample Once: Taming One-Step Text-To-Image Synthesis by Self-Cooperative Diffusion GANs
We introduce YOSO, a novel generative model designed for rapid, scalable, and high-fidelity one-step image synthesis. This is achieved by integrating the diffusion process with GANs. Specifically, we smooth the distribution by the denoising generator itself, performing self-cooperative learning. We show that our method can serve as a one-step generation model training from scratch with competitive performance. Moreover, we show that our method can be extended to finetune pre-trained text-to-image diffusion for high-quality one-step text-to-image synthesis even with LoRA fine-tuning. In particular, we provide the first diffusion transformer that can generate images in one step trained on 512 resolution, with the capability of adapting to 1024 resolution without explicit training. Our code is provided at https://github.com/Luo-Yihong/YOSO.
Protein Discovery with Discrete Walk-Jump Sampling
We resolve difficulties in training and sampling from a discrete generative model by learning a smoothed energy function, sampling from the smoothed data manifold with Langevin Markov chain Monte Carlo (MCMC), and projecting back to the true data manifold with one-step denoising. Our Discrete Walk-Jump Sampling formalism combines the contrastive divergence training of an energy-based model and improved sample quality of a score-based model, while simplifying training and sampling by requiring only a single noise level. We evaluate the robustness of our approach on generative modeling of antibody proteins and introduce the distributional conformity score to benchmark protein generative models. By optimizing and sampling from our models for the proposed distributional conformity score, 97-100% of generated samples are successfully expressed and purified and 70% of functional designs show equal or improved binding affinity compared to known functional antibodies on the first attempt in a single round of laboratory experiments. We also report the first demonstration of long-run fast-mixing MCMC chains where diverse antibody protein classes are visited in a single MCMC chain.
ORIGEN: Zero-Shot 3D Orientation Grounding in Text-to-Image Generation
We introduce ORIGEN, the first zero-shot method for 3D orientation grounding in text-to-image generation across multiple objects and diverse categories. While previous work on spatial grounding in image generation has mainly focused on 2D positioning, it lacks control over 3D orientation. To address this, we propose a reward-guided sampling approach using a pretrained discriminative model for 3D orientation estimation and a one-step text-to-image generative flow model. While gradient-ascent-based optimization is a natural choice for reward-based guidance, it struggles to maintain image realism. Instead, we adopt a sampling-based approach using Langevin dynamics, which extends gradient ascent by simply injecting random noise--requiring just a single additional line of code. Additionally, we introduce adaptive time rescaling based on the reward function to accelerate convergence. Our experiments show that ORIGEN outperforms both training-based and test-time guidance methods across quantitative metrics and user studies.
OSDFace: One-Step Diffusion Model for Face Restoration
Diffusion models have demonstrated impressive performance in face restoration. Yet, their multi-step inference process remains computationally intensive, limiting their applicability in real-world scenarios. Moreover, existing methods often struggle to generate face images that are harmonious, realistic, and consistent with the subject's identity. In this work, we propose OSDFace, a novel one-step diffusion model for face restoration. Specifically, we propose a visual representation embedder (VRE) to better capture prior information and understand the input face. In VRE, low-quality faces are processed by a visual tokenizer and subsequently embedded with a vector-quantized dictionary to generate visual prompts. Additionally, we incorporate a facial identity loss derived from face recognition to further ensure identity consistency. We further employ a generative adversarial network (GAN) as a guidance model to encourage distribution alignment between the restored face and the ground truth. Experimental results demonstrate that OSDFace surpasses current state-of-the-art (SOTA) methods in both visual quality and quantitative metrics, generating high-fidelity, natural face images with high identity consistency. The code and model will be released at https://github.com/jkwang28/OSDFace.
Steering One-Step Diffusion Model with Fidelity-Rich Decoder for Fast Image Compression
Diffusion-based image compression has demonstrated impressive perceptual performance. However, it suffers from two critical drawbacks: (1) excessive decoding latency due to multi-step sampling, and (2) poor fidelity resulting from over-reliance on generative priors. To address these issues, we propose SODEC, a novel single-step diffusion image compression model. We argue that in image compression, a sufficiently informative latent renders multi-step refinement unnecessary. Based on this insight, we leverage a pre-trained VAE-based model to produce latents with rich information, and replace the iterative denoising process with a single-step decoding. Meanwhile, to improve fidelity, we introduce the fidelity guidance module, encouraging output that is faithful to the original image. Furthermore, we design the rate annealing training strategy to enable effective training under extremely low bitrates. Extensive experiments show that SODEC significantly outperforms existing methods, achieving superior rate-distortion-perception performance. Moreover, compared to previous diffusion-based compression models, SODEC improves decoding speed by more than 20times. Code is released at: https://github.com/zhengchen1999/SODEC.
SwiftBrush v2: Make Your One-step Diffusion Model Better Than Its Teacher
In this paper, we aim to enhance the performance of SwiftBrush, a prominent one-step text-to-image diffusion model, to be competitive with its multi-step Stable Diffusion counterpart. Initially, we explore the quality-diversity trade-off between SwiftBrush and SD Turbo: the former excels in image diversity, while the latter excels in image quality. This observation motivates our proposed modifications in the training methodology, including better weight initialization and efficient LoRA training. Moreover, our introduction of a novel clamped CLIP loss enhances image-text alignment and results in improved image quality. Remarkably, by combining the weights of models trained with efficient LoRA and full training, we achieve a new state-of-the-art one-step diffusion model, achieving an FID of 8.14 and surpassing all GAN-based and multi-step Stable Diffusion models. The evaluation code is available at: https://github.com/vinairesearch/swiftbrushv2.
InstaRevive: One-Step Image Enhancement via Dynamic Score Matching
Image enhancement finds wide-ranging applications in real-world scenarios due to complex environments and the inherent limitations of imaging devices. Recent diffusion-based methods yield promising outcomes but necessitate prolonged and computationally intensive iterative sampling. In response, we propose InstaRevive, a straightforward yet powerful image enhancement framework that employs score-based diffusion distillation to harness potent generative capability and minimize the sampling steps. To fully exploit the potential of the pre-trained diffusion model, we devise a practical and effective diffusion distillation pipeline using dynamic control to address inaccuracies in updating direction during score matching. Our control strategy enables a dynamic diffusing scope, facilitating precise learning of denoising trajectories within the diffusion model and ensuring accurate distribution matching gradients during training. Additionally, to enrich guidance for the generative power, we incorporate textual prompts via image captioning as auxiliary conditions, fostering further exploration of the diffusion model. Extensive experiments substantiate the efficacy of our framework across a diverse array of challenging tasks and datasets, unveiling the compelling efficacy and efficiency of InstaRevive in delivering high-quality and visually appealing results. Code is available at https://github.com/EternalEvan/InstaRevive.
Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors
Diffusion-based image super-resolution (SR) methods have achieved remarkable success by leveraging large pre-trained text-to-image diffusion models as priors. However, these methods still face two challenges: the requirement for dozens of sampling steps to achieve satisfactory results, which limits efficiency in real scenarios, and the neglect of degradation models, which are critical auxiliary information in solving the SR problem. In this work, we introduced a novel one-step SR model, which significantly addresses the efficiency issue of diffusion-based SR methods. Unlike existing fine-tuning strategies, we designed a degradation-guided Low-Rank Adaptation (LoRA) module specifically for SR, which corrects the model parameters based on the pre-estimated degradation information from low-resolution images. This module not only facilitates a powerful data-dependent or degradation-dependent SR model but also preserves the generative prior of the pre-trained diffusion model as much as possible. Furthermore, we tailor a novel training pipeline by introducing an online negative sample generation strategy. Combined with the classifier-free guidance strategy during inference, it largely improves the perceptual quality of the super-resolution results. Extensive experiments have demonstrated the superior efficiency and effectiveness of the proposed model compared to recent state-of-the-art methods.
Idempotent Generative Network
We propose a new approach for generative modeling based on training a neural network to be idempotent. An idempotent operator is one that can be applied sequentially without changing the result beyond the initial application, namely f(f(z))=f(z). The proposed model f is trained to map a source distribution (e.g, Gaussian noise) to a target distribution (e.g. realistic images) using the following objectives: (1) Instances from the target distribution should map to themselves, namely f(x)=x. We define the target manifold as the set of all instances that f maps to themselves. (2) Instances that form the source distribution should map onto the defined target manifold. This is achieved by optimizing the idempotence term, f(f(z))=f(z) which encourages the range of f(z) to be on the target manifold. Under ideal assumptions such a process provably converges to the target distribution. This strategy results in a model capable of generating an output in one step, maintaining a consistent latent space, while also allowing sequential applications for refinement. Additionally, we find that by processing inputs from both target and source distributions, the model adeptly projects corrupted or modified data back to the target manifold. This work is a first step towards a ``global projector'' that enables projecting any input into a target data distribution.
Multi-Behavior Generative Recommendation
Multi-behavior sequential recommendation (MBSR) aims to incorporate behavior types of interactions for better recommendations. Existing approaches focus on the next-item prediction objective, neglecting the value of integrating the target behavior type into the learning objective. In this paper, we propose MBGen, a novel Multi-Behavior sequential Generative recommendation framework. We formulate the MBSR task into a consecutive two-step process: (1) given item sequences, MBGen first predicts the next behavior type to frame the user intention, (2) given item sequences and a target behavior type, MBGen then predicts the next items. To model such a two-step process, we tokenize both behaviors and items into tokens and construct one single token sequence with both behaviors and items placed interleaved. Furthermore, MBGen learns to autoregressively generate the next behavior and item tokens in a unified generative recommendation paradigm, naturally enabling a multi-task capability. Additionally, we exploit the heterogeneous nature of token sequences in the generative recommendation and propose a position-routed sparse architecture to efficiently and effectively scale up models. Extensive experiments on public datasets demonstrate that MBGen significantly outperforms existing MBSR models across multiple tasks.
One-step Diffusion Models with $f$-Divergence Distribution Matching
Sampling from diffusion models involves a slow iterative process that hinders their practical deployment, especially for interactive applications. To accelerate generation speed, recent approaches distill a multi-step diffusion model into a single-step student generator via variational score distillation, which matches the distribution of samples generated by the student to the teacher's distribution. However, these approaches use the reverse Kullback-Leibler (KL) divergence for distribution matching which is known to be mode seeking. In this paper, we generalize the distribution matching approach using a novel f-divergence minimization framework, termed f-distill, that covers different divergences with different trade-offs in terms of mode coverage and training variance. We derive the gradient of the f-divergence between the teacher and student distributions and show that it is expressed as the product of their score differences and a weighting function determined by their density ratio. This weighting function naturally emphasizes samples with higher density in the teacher distribution, when using a less mode-seeking divergence. We observe that the popular variational score distillation approach using the reverse-KL divergence is a special case within our framework. Empirically, we demonstrate that alternative f-divergences, such as forward-KL and Jensen-Shannon divergences, outperform the current best variational score distillation methods across image generation tasks. In particular, when using Jensen-Shannon divergence, f-distill achieves current state-of-the-art one-step generation performance on ImageNet64 and zero-shot text-to-image generation on MS-COCO. Project page: https://research.nvidia.com/labs/genair/f-distill
Distilled Decoding 1: One-step Sampling of Image Auto-regressive Models with Flow Matching
Autoregressive (AR) models have achieved state-of-the-art performance in text and image generation but suffer from slow generation due to the token-by-token process. We ask an ambitious question: can a pre-trained AR model be adapted to generate outputs in just one or two steps? If successful, this would significantly advance the development and deployment of AR models. We notice that existing works that try to speed up AR generation by generating multiple tokens at once fundamentally cannot capture the output distribution due to the conditional dependencies between tokens, limiting their effectiveness for few-step generation. To address this, we propose Distilled Decoding (DD), which uses flow matching to create a deterministic mapping from Gaussian distribution to the output distribution of the pre-trained AR model. We then train a network to distill this mapping, enabling few-step generation. DD doesn't need the training data of the original AR model, making it more practical.We evaluate DD on state-of-the-art image AR models and present promising results on ImageNet-256. For VAR, which requires 10-step generation, DD enables one-step generation (6.3times speed-up), with an acceptable increase in FID from 4.19 to 9.96. For LlamaGen, DD reduces generation from 256 steps to 1, achieving an 217.8times speed-up with a comparable FID increase from 4.11 to 11.35. In both cases, baseline methods completely fail with FID>100. DD also excels on text-to-image generation, reducing the generation from 256 steps to 2 for LlamaGen with minimal FID increase from 25.70 to 28.95. As the first work to demonstrate the possibility of one-step generation for image AR models, DD challenges the prevailing notion that AR models are inherently slow, and opens up new opportunities for efficient AR generation. The project website is at https://imagination-research.github.io/distilled-decoding.
Real-time One-Step Diffusion-based Expressive Portrait Videos Generation
Latent diffusion models have made great strides in generating expressive portrait videos with accurate lip-sync and natural motion from a single reference image and audio input. However, these models are far from real-time, often requiring many sampling steps that take minutes to generate even one second of video-significantly limiting practical use. We introduce OSA-LCM (One-Step Avatar Latent Consistency Model), paving the way for real-time diffusion-based avatars. Our method achieves comparable video quality to existing methods but requires only one sampling step, making it more than 10x faster. To accomplish this, we propose a novel avatar discriminator design that guides lip-audio consistency and motion expressiveness to enhance video quality in limited sampling steps. Additionally, we employ a second-stage training architecture using an editing fine-tuned method (EFT), transforming video generation into an editing task during training to effectively address the temporal gap challenge in single-step generation. Experiments demonstrate that OSA-LCM outperforms existing open-source portrait video generation models while operating more efficiently with a single sampling step.
HiPA: Enabling One-Step Text-to-Image Diffusion Models via High-Frequency-Promoting Adaptation
Diffusion models have revolutionized text-to-image generation, but their real-world applications are hampered by the extensive time needed for hundreds of diffusion steps. Although progressive distillation has been proposed to speed up diffusion sampling to 2-8 steps, it still falls short in one-step generation, and necessitates training multiple student models, which is highly parameter-extensive and time-consuming. To overcome these limitations, we introduce High-frequency-Promoting Adaptation (HiPA), a parameter-efficient approach to enable one-step text-to-image diffusion. Grounded in the insight that high-frequency information is essential but highly lacking in one-step diffusion, HiPA focuses on training one-step, low-rank adaptors to specifically enhance the under-represented high-frequency abilities of advanced diffusion models. The learned adaptors empower these diffusion models to generate high-quality images in just a single step. Compared with progressive distillation, HiPA achieves much better performance in one-step text-to-image generation (37.3 rightarrow 23.8 in FID-5k on MS-COCO 2017) and 28.6x training speed-up (108.8 rightarrow 3.8 A100 GPU days), requiring only 0.04% training parameters (7,740 million rightarrow 3.3 million). We also demonstrate HiPA's effectiveness in text-guided image editing, inpainting and super-resolution tasks, where our adapted models consistently deliver high-quality outputs in just one diffusion step. The source code will be released.
Diffusion Adversarial Post-Training for One-Step Video Generation
The diffusion models are widely used for image and video generation, but their iterative generation process is slow and expansive. While existing distillation approaches have demonstrated the potential for one-step generation in the image domain, they still suffer from significant quality degradation. In this work, we propose Adversarial Post-Training (APT) against real data following diffusion pre-training for one-step video generation. To improve the training stability and quality, we introduce several improvements to the model architecture and training procedures, along with an approximated R1 regularization objective. Empirically, our experiments show that our adversarial post-trained model, Seaweed-APT, can generate 2-second, 1280x720, 24fps videos in real time using a single forward evaluation step. Additionally, our model is capable of generating 1024px images in a single step, achieving quality comparable to state-of-the-art methods.
One Diffusion Step to Real-World Super-Resolution via Flow Trajectory Distillation
Diffusion models (DMs) have significantly advanced the development of real-world image super-resolution (Real-ISR), but the computational cost of multi-step diffusion models limits their application. One-step diffusion models generate high-quality images in a one sampling step, greatly reducing computational overhead and inference latency. However, most existing one-step diffusion methods are constrained by the performance of the teacher model, where poor teacher performance results in image artifacts. To address this limitation, we propose FluxSR, a novel one-step diffusion Real-ISR technique based on flow matching models. We use the state-of-the-art diffusion model FLUX.1-dev as both the teacher model and the base model. First, we introduce Flow Trajectory Distillation (FTD) to distill a multi-step flow matching model into a one-step Real-ISR. Second, to improve image realism and address high-frequency artifact issues in generated images, we propose TV-LPIPS as a perceptual loss and introduce Attention Diversification Loss (ADL) as a regularization term to reduce token similarity in transformer, thereby eliminating high-frequency artifacts. Comprehensive experiments demonstrate that our method outperforms existing one-step diffusion-based Real-ISR methods. The code and model will be released at https://github.com/JianzeLi-114/FluxSR.
Adding Additional Control to One-Step Diffusion with Joint Distribution Matching
While diffusion distillation has enabled one-step generation through methods like Variational Score Distillation, adapting distilled models to emerging new controls -- such as novel structural constraints or latest user preferences -- remains challenging. Conventional approaches typically requires modifying the base diffusion model and redistilling it -- a process that is both computationally intensive and time-consuming. To address these challenges, we introduce Joint Distribution Matching (JDM), a novel approach that minimizes the reverse KL divergence between image-condition joint distributions. By deriving a tractable upper bound, JDM decouples fidelity learning from condition learning. This asymmetric distillation scheme enables our one-step student to handle controls unknown to the teacher model and facilitates improved classifier-free guidance (CFG) usage and seamless integration of human feedback learning (HFL). Experimental results demonstrate that JDM surpasses baseline methods such as multi-step ControlNet by mere one-step in most cases, while achieving state-of-the-art performance in one-step text-to-image synthesis through improved usage of CFG or HFL integration.
Bird-Eye Transformers for Text Generation Models
Transformers have become an indispensable module for text generation models since their great success in machine translation. Previous works attribute the~success of transformers to the query-key-value dot-product attention, which provides a robust inductive bias by the fully connected token graphs. However, we found that self-attention has a severe limitation. When predicting the (i+1)-th token, self-attention only takes the i-th token as an information collector, and it tends to give a high attention weight to those tokens similar to itself. Therefore, most of the historical information that occurred before the i-th token is not taken into consideration. Based on this observation, in this paper, we propose a new architecture, called bird-eye transformer(BET), which goes one step further to improve the performance of transformers by reweighting self-attention to encourage it to focus more on important historical information. We have conducted experiments on multiple text generation tasks, including machine translation (2 datasets) and language models (3 datasets). These experimental~results show that our proposed model achieves a better performance than the baseline transformer architectures on~all~datasets. The code is released at: https://sites.google.com/view/bet-transformer/home.
FlashAudio: Rectified Flows for Fast and High-Fidelity Text-to-Audio Generation
Recent advancements in latent diffusion models (LDMs) have markedly enhanced text-to-audio generation, yet their iterative sampling processes impose substantial computational demands, limiting practical deployment. While recent methods utilizing consistency-based distillation aim to achieve few-step or single-step inference, their one-step performance is constrained by curved trajectories, preventing them from surpassing traditional diffusion models. In this work, we introduce FlashAudio with rectified flows to learn straight flow for fast simulation. To alleviate the inefficient timesteps allocation and suboptimal distribution of noise, FlashAudio optimizes the time distribution of rectified flow with Bifocal Samplers and proposes immiscible flow to minimize the total distance of data-noise pairs in a batch vias assignment. Furthermore, to address the amplified accumulation error caused by the classifier-free guidance (CFG), we propose Anchored Optimization, which refines the guidance scale by anchoring it to a reference trajectory. Experimental results on text-to-audio generation demonstrate that FlashAudio's one-step generation performance surpasses the diffusion-based models with hundreds of sampling steps on audio quality and enables a sampling speed of 400x faster than real-time on a single NVIDIA 4090Ti GPU.
Exploring the Latent Capacity of LLMs for One-Step Text Generation
A recent study showed that large language models (LLMs) can reconstruct surprisingly long texts - up to thousands of tokens - via autoregressive generation from just one specially trained input embedding. In this work, we explore whether such reconstruction is possible without autoregression. We show that frozen LLMs can generate hundreds of accurate tokens in just one forward pass, when provided with only two learned embeddings. This reveals a surprising and underexplored capability of LLMs - multi-token generation without iterative decoding. We investigate the behaviour of these embeddings and provide insight into the type of information they encode. We also empirically show that although these representations are not unique for a given text, they form connected and local regions in embedding space - a property that suggests the potential of learning a dedicated encoder into that space.
One-step Diffusion with Distribution Matching Distillation
Diffusion models generate high-quality images but require dozens of forward passes. We introduce Distribution Matching Distillation (DMD), a procedure to transform a diffusion model into a one-step image generator with minimal impact on image quality. We enforce the one-step image generator match the diffusion model at distribution level, by minimizing an approximate KL divergence whose gradient can be expressed as the difference between 2 score functions, one of the target distribution and the other of the synthetic distribution being produced by our one-step generator. The score functions are parameterized as two diffusion models trained separately on each distribution. Combined with a simple regression loss matching the large-scale structure of the multi-step diffusion outputs, our method outperforms all published few-step diffusion approaches, reaching 2.62 FID on ImageNet 64x64 and 11.49 FID on zero-shot COCO-30k, comparable to Stable Diffusion but orders of magnitude faster. Utilizing FP16 inference, our model generates images at 20 FPS on modern hardware.
Multi-student Diffusion Distillation for Better One-step Generators
Diffusion models achieve high-quality sample generation at the cost of a lengthy multistep inference procedure. To overcome this, diffusion distillation techniques produce student generators capable of matching or surpassing the teacher in a single step. However, the student model's inference speed is limited by the size of the teacher architecture, preventing real-time generation for computationally heavy applications. In this work, we introduce Multi-Student Distillation (MSD), a framework to distill a conditional teacher diffusion model into multiple single-step generators. Each student generator is responsible for a subset of the conditioning data, thereby obtaining higher generation quality for the same capacity. MSD trains multiple distilled students, allowing smaller sizes and, therefore, faster inference. Also, MSD offers a lightweight quality boost over single-student distillation with the same architecture. We demonstrate MSD is effective by training multiple same-sized or smaller students on single-step distillation using distribution matching and adversarial distillation techniques. With smaller students, MSD gets competitive results with faster inference for single-step generation. Using 4 same-sized students, MSD significantly outperforms single-student baseline counterparts and achieves remarkable FID scores for one-step image generation: 1.20 on ImageNet-64x64 and 8.20 on zero-shot COCO2014.
Gradient Origin Networks
This paper proposes a new type of generative model that is able to quickly learn a latent representation without an encoder. This is achieved using empirical Bayes to calculate the expectation of the posterior, which is implemented by initialising a latent vector with zeros, then using the gradient of the log-likelihood of the data with respect to this zero vector as new latent points. The approach has similar characteristics to autoencoders, but with a simpler architecture, and is demonstrated in a variational autoencoder equivalent that permits sampling. This also allows implicit representation networks to learn a space of implicit functions without requiring a hypernetwork, retaining their representation advantages across datasets. The experiments show that the proposed method converges faster, with significantly lower reconstruction error than autoencoders, while requiring half the parameters.
DragDiffusion: Harnessing Diffusion Models for Interactive Point-based Image Editing
Precise and controllable image editing is a challenging task that has attracted significant attention. Recently, DragGAN enables an interactive point-based image editing framework and achieves impressive editing results with pixel-level precision. However, since this method is based on generative adversarial networks (GAN), its generality is upper-bounded by the capacity of the pre-trained GAN models. In this work, we extend such an editing framework to diffusion models and propose DragDiffusion. By leveraging large-scale pretrained diffusion models, we greatly improve the applicability of interactive point-based editing in real world scenarios. While most existing diffusion-based image editing methods work on text embeddings, DragDiffusion optimizes the diffusion latent to achieve precise spatial control. Although diffusion models generate images in an iterative manner, we empirically show that optimizing diffusion latent at one single step suffices to generate coherent results, enabling DragDiffusion to complete high-quality editing efficiently. Extensive experiments across a wide range of challenging cases (e.g., multi-objects, diverse object categories, various styles, etc.) demonstrate the versatility and generality of DragDiffusion.
Model-Agnostic Human Preference Inversion in Diffusion Models
Efficient text-to-image generation remains a challenging task due to the high computational costs associated with the multi-step sampling in diffusion models. Although distillation of pre-trained diffusion models has been successful in reducing sampling steps, low-step image generation often falls short in terms of quality. In this study, we propose a novel sampling design to achieve high-quality one-step image generation aligning with human preferences, particularly focusing on exploring the impact of the prior noise distribution. Our approach, Prompt Adaptive Human Preference Inversion (PAHI), optimizes the noise distributions for each prompt based on human preferences without the need for fine-tuning diffusion models. Our experiments showcase that the tailored noise distributions significantly improve image quality with only a marginal increase in computational cost. Our findings underscore the importance of noise optimization and pave the way for efficient and high-quality text-to-image synthesis.
Synthesizing mixed-integer linear programming models from natural language descriptions
Numerous real-world decision-making problems can be formulated and solved using Mixed-Integer Linear Programming (MILP) models. However, the transformation of these problems into MILP models heavily relies on expertise in operations research and mathematical optimization, which restricts non-experts' accessibility to MILP. To address this challenge, we propose a framework for automatically formulating MILP models from unstructured natural language descriptions of decision problems, which integrates Large Language Models (LLMs) and mathematical modeling techniques. This framework consists of three phases: i) identification of decision variables, ii) classification of objective and constraints, and iii) finally, generation of MILP models. In this study, we present a constraint classification scheme and a set of constraint templates that can guide the LLMs in synthesizing a complete MILP model. After fine-tuning LLMs, our approach can identify and synthesize logic constraints in addition to classic demand and resource constraints. The logic constraints have not been studied in existing work. To evaluate the performance of the proposed framework, we extend the NL4Opt dataset with more problem descriptions and constraint types, and with the new dataset, we compare our framework with one-step model generation methods offered by LLMs. The experimental results reveal that with respect to the accuracies of generating the correct model, objective, and constraints, our method which integrates constraint classification and templates with LLMs significantly outperforms the others. The prototype system that we developed has a great potential to capture more constraints for more complex MILPs. It opens up opportunities for developing training tools for operations research practitioners and has the potential to be a powerful tool for automatic decision problem modeling and solving in practice.
Dirichlet Flow Matching with Applications to DNA Sequence Design
Discrete diffusion or flow models could enable faster and more controllable sequence generation than autoregressive models. We show that na\"ive linear flow matching on the simplex is insufficient toward this goal since it suffers from discontinuities in the training target and further pathologies. To overcome this, we develop Dirichlet flow matching on the simplex based on mixtures of Dirichlet distributions as probability paths. In this framework, we derive a connection between the mixtures' scores and the flow's vector field that allows for classifier and classifier-free guidance. Further, we provide distilled Dirichlet flow matching, which enables one-step sequence generation with minimal performance hits, resulting in O(L) speedups compared to autoregressive models. On complex DNA sequence generation tasks, we demonstrate superior performance compared to all baselines in distributional metrics and in achieving desired design targets for generated sequences. Finally, we show that our classifier-free guidance approach improves unconditional generation and is effective for generating DNA that satisfies design targets. Code is available at https://github.com/HannesStark/dirichlet-flow-matching.
[MASK] is All You Need
In generative models, two paradigms have gained attraction in various applications: next-set prediction-based Masked Generative Models and next-noise prediction-based Non-Autoregressive Models, e.g., Diffusion Models. In this work, we propose using discrete-state models to connect them and explore their scalability in the vision domain. First, we conduct a step-by-step analysis in a unified design space across two types of models including timestep-independence, noise schedule, temperature, guidance strength, etc in a scalable manner. Second, we re-cast typical discriminative tasks, e.g., image segmentation, as an unmasking process from [MASK]tokens on a discrete-state model. This enables us to perform various sampling processes, including flexible conditional sampling by only training once to model the joint distribution. All aforementioned explorations lead to our framework named Discrete Interpolants, which enables us to achieve state-of-the-art or competitive performance compared to previous discrete-state based methods in various benchmarks, like ImageNet256, MS COCO, and video dataset FaceForensics. In summary, by leveraging [MASK] in discrete-state models, we can bridge Masked Generative and Non-autoregressive Diffusion models, as well as generative and discriminative tasks.
MoFlow: One-Step Flow Matching for Human Trajectory Forecasting via Implicit Maximum Likelihood Estimation based Distillation
In this paper, we address the problem of human trajectory forecasting, which aims to predict the inherently multi-modal future movements of humans based on their past trajectories and other contextual cues. We propose a novel motion prediction conditional flow matching model, termed MoFlow, to predict K-shot future trajectories for all agents in a given scene. We design a novel flow matching loss function that not only ensures at least one of the K sets of future trajectories is accurate but also encourages all K sets of future trajectories to be diverse and plausible. Furthermore, by leveraging the implicit maximum likelihood estimation (IMLE), we propose a novel distillation method for flow models that only requires samples from the teacher model. Extensive experiments on the real-world datasets, including SportVU NBA games, ETH-UCY, and SDD, demonstrate that both our teacher flow model and the IMLE-distilled student model achieve state-of-the-art performance. These models can generate diverse trajectories that are physically and socially plausible. Moreover, our one-step student model is 100 times faster than the teacher flow model during sampling. The code, model, and data are available at our project page: https://moflow-imle.github.io
One-Way Ticket:Time-Independent Unified Encoder for Distilling Text-to-Image Diffusion Models
Text-to-Image (T2I) diffusion models have made remarkable advancements in generative modeling; however, they face a trade-off between inference speed and image quality, posing challenges for efficient deployment. Existing distilled T2I models can generate high-fidelity images with fewer sampling steps, but often struggle with diversity and quality, especially in one-step models. From our analysis, we observe redundant computations in the UNet encoders. Our findings suggest that, for T2I diffusion models, decoders are more adept at capturing richer and more explicit semantic information, while encoders can be effectively shared across decoders from diverse time steps. Based on these observations, we introduce the first Time-independent Unified Encoder TiUE for the student model UNet architecture, which is a loop-free image generation approach for distilling T2I diffusion models. Using a one-pass scheme, TiUE shares encoder features across multiple decoder time steps, enabling parallel sampling and significantly reducing inference time complexity. In addition, we incorporate a KL divergence term to regularize noise prediction, which enhances the perceptual realism and diversity of the generated images. Experimental results demonstrate that TiUE outperforms state-of-the-art methods, including LCM, SD-Turbo, and SwiftBrushv2, producing more diverse and realistic results while maintaining the computational efficiency.
TR0N: Translator Networks for 0-Shot Plug-and-Play Conditional Generation
We propose TR0N, a highly general framework to turn pre-trained unconditional generative models, such as GANs and VAEs, into conditional models. The conditioning can be highly arbitrary, and requires only a pre-trained auxiliary model. For example, we show how to turn unconditional models into class-conditional ones with the help of a classifier, and also into text-to-image models by leveraging CLIP. TR0N learns a lightweight stochastic mapping which "translates" between the space of conditions and the latent space of the generative model, in such a way that the generated latent corresponds to a data sample satisfying the desired condition. The translated latent samples are then further improved upon through Langevin dynamics, enabling us to obtain higher-quality data samples. TR0N requires no training data nor fine-tuning, yet can achieve a zero-shot FID of 10.9 on MS-COCO, outperforming competing alternatives not only on this metric, but also in sampling speed -- all while retaining a much higher level of generality. Our code is available at https://github.com/layer6ai-labs/tr0n.
Compositional Generative Modeling: A Single Model is Not All You Need
Large monolithic generative models trained on massive amounts of data have become an increasingly dominant approach in AI research. In this paper, we argue that we should instead construct large generative systems by composing smaller generative models together. We show how such a compositional generative approach enables us to learn distributions in a more data-efficient manner, enabling generalization to parts of the data distribution unseen at training time. We further show how this enables us to program and construct new generative models for tasks completely unseen at training. Finally, we show that in many cases, we can discover separate compositional components from data.
OPT-Tree: Speculative Decoding with Adaptive Draft Tree Structure
Autoregressive language models demonstrate excellent performance in various scenarios. However, the inference efficiency is limited by its one-step-one-word generation mode, which has become a pressing problem recently as the models become increasingly larger. Speculative decoding employs a "draft and then verify" mechanism to allow multiple tokens to be generated in one step, realizing lossless acceleration. Existing methods mainly adopt fixed heuristic draft structures, which fail to adapt to different situations to maximize the acceptance length during verification. To alleviate this dilemma, we proposed OPT-Tree, an algorithm to construct adaptive and scalable draft trees. It searches the optimal tree structure that maximizes the mathematical expectation of the acceptance length in each decoding step. Experimental results reveal that OPT-Tree outperforms the existing draft structures and achieves a speed-up ratio of up to 3.2 compared with autoregressive decoding. If the draft model is powerful enough and the node budget is sufficient, it can generate more than ten tokens in a single step. Our code is available at https://github.com/Jikai0Wang/OPT-Tree.
OSV: One Step is Enough for High-Quality Image to Video Generation
Video diffusion models have shown great potential in generating high-quality videos, making them an increasingly popular focus. However, their inherent iterative nature leads to substantial computational and time costs. While efforts have been made to accelerate video diffusion by reducing inference steps (through techniques like consistency distillation) and GAN training (these approaches often fall short in either performance or training stability). In this work, we introduce a two-stage training framework that effectively combines consistency distillation with GAN training to address these challenges. Additionally, we propose a novel video discriminator design, which eliminates the need for decoding the video latents and improves the final performance. Our model is capable of producing high-quality videos in merely one-step, with the flexibility to perform multi-step refinement for further performance enhancement. Our quantitative evaluation on the OpenWebVid-1M benchmark shows that our model significantly outperforms existing methods. Notably, our 1-step performance(FVD 171.15) exceeds the 8-step performance of the consistency distillation based method, AnimateLCM (FVD 184.79), and approaches the 25-step performance of advanced Stable Video Diffusion (FVD 156.94).
InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation
Diffusion models have revolutionized text-to-image generation with its exceptional quality and creativity. However, its multi-step sampling process is known to be slow, often requiring tens of inference steps to obtain satisfactory results. Previous attempts to improve its sampling speed and reduce computational costs through distillation have been unsuccessful in achieving a functional one-step model. In this paper, we explore a recent method called Rectified Flow, which, thus far, has only been applied to small datasets. The core of Rectified Flow lies in its reflow procedure, which straightens the trajectories of probability flows, refines the coupling between noises and images, and facilitates the distillation process with student models. We propose a novel text-conditioned pipeline to turn Stable Diffusion (SD) into an ultra-fast one-step model, in which we find reflow plays a critical role in improving the assignment between noise and images. Leveraging our new pipeline, we create, to the best of our knowledge, the first one-step diffusion-based text-to-image generator with SD-level image quality, achieving an FID (Frechet Inception Distance) of 23.3 on MS COCO 2017-5k, surpassing the previous state-of-the-art technique, progressive distillation, by a significant margin (37.2 rightarrow 23.3 in FID). By utilizing an expanded network with 1.7B parameters, we further improve the FID to 22.4. We call our one-step models InstaFlow. On MS COCO 2014-30k, InstaFlow yields an FID of 13.1 in just 0.09 second, the best in leq 0.1 second regime, outperforming the recent StyleGAN-T (13.9 in 0.1 second). Notably, the training of InstaFlow only costs 199 A100 GPU days. Project page:~https://github.com/gnobitab/InstaFlow.
One-Step Image Translation with Text-to-Image Models
In this work, we address two limitations of existing conditional diffusion models: their slow inference speed due to the iterative denoising process and their reliance on paired data for model fine-tuning. To tackle these issues, we introduce a general method for adapting a single-step diffusion model to new tasks and domains through adversarial learning objectives. Specifically, we consolidate various modules of the vanilla latent diffusion model into a single end-to-end generator network with small trainable weights, enhancing its ability to preserve the input image structure while reducing overfitting. We demonstrate that, for unpaired settings, our model CycleGAN-Turbo outperforms existing GAN-based and diffusion-based methods for various scene translation tasks, such as day-to-night conversion and adding/removing weather effects like fog, snow, and rain. We extend our method to paired settings, where our model pix2pix-Turbo is on par with recent works like Control-Net for Sketch2Photo and Edge2Image, but with a single-step inference. This work suggests that single-step diffusion models can serve as strong backbones for a range of GAN learning objectives. Our code and models are available at https://github.com/GaParmar/img2img-turbo.
ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise Optimization
Text-to-Image (T2I) models have made significant advancements in recent years, but they still struggle to accurately capture intricate details specified in complex compositional prompts. While fine-tuning T2I models with reward objectives has shown promise, it suffers from "reward hacking" and may not generalize well to unseen prompt distributions. In this work, we propose Reward-based Noise Optimization (ReNO), a novel approach that enhances T2I models at inference by optimizing the initial noise based on the signal from one or multiple human preference reward models. Remarkably, solving this optimization problem with gradient ascent for 50 iterations yields impressive results on four different one-step models across two competitive benchmarks, T2I-CompBench and GenEval. Within a computational budget of 20-50 seconds, ReNO-enhanced one-step models consistently surpass the performance of all current open-source Text-to-Image models. Extensive user studies demonstrate that our model is preferred nearly twice as often compared to the popular SDXL model and is on par with the proprietary Stable Diffusion 3 with 8B parameters. Moreover, given the same computational resources, a ReNO-optimized one-step model outperforms widely-used open-source models such as SDXL and PixArt-alpha, highlighting the efficiency and effectiveness of ReNO in enhancing T2I model performance at inference time. Code is available at https://github.com/ExplainableML/ReNO.
GFlowNet-EM for learning compositional latent variable models
Latent variable models (LVMs) with discrete compositional latents are an important but challenging setting due to a combinatorially large number of possible configurations of the latents. A key tradeoff in modeling the posteriors over latents is between expressivity and tractable optimization. For algorithms based on expectation-maximization (EM), the E-step is often intractable without restrictive approximations to the posterior. We propose the use of GFlowNets, algorithms for sampling from an unnormalized density by learning a stochastic policy for sequential construction of samples, for this intractable E-step. By training GFlowNets to sample from the posterior over latents, we take advantage of their strengths as amortized variational inference algorithms for complex distributions over discrete structures. Our approach, GFlowNet-EM, enables the training of expressive LVMs with discrete compositional latents, as shown by experiments on non-context-free grammar induction and on images using discrete variational autoencoders (VAEs) without conditional independence enforced in the encoder.
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators
Can a generative model be trained to produce images from a specific domain, guided by a text prompt only, without seeing any image? In other words: can an image generator be trained "blindly"? Leveraging the semantic power of large scale Contrastive-Language-Image-Pre-training (CLIP) models, we present a text-driven method that allows shifting a generative model to new domains, without having to collect even a single image. We show that through natural language prompts and a few minutes of training, our method can adapt a generator across a multitude of domains characterized by diverse styles and shapes. Notably, many of these modifications would be difficult or outright impossible to reach with existing methods. We conduct an extensive set of experiments and comparisons across a wide range of domains. These demonstrate the effectiveness of our approach and show that our shifted models maintain the latent-space properties that make generative models appealing for downstream tasks.
SwiftBrush: One-Step Text-to-Image Diffusion Model with Variational Score Distillation
Despite their ability to generate high-resolution and diverse images from text prompts, text-to-image diffusion models often suffer from slow iterative sampling processes. Model distillation is one of the most effective directions to accelerate these models. However, previous distillation methods fail to retain the generation quality while requiring a significant amount of images for training, either from real data or synthetically generated by the teacher model. In response to this limitation, we present a novel image-free distillation scheme named SwiftBrush. Drawing inspiration from text-to-3D synthesis, in which a 3D neural radiance field that aligns with the input prompt can be obtained from a 2D text-to-image diffusion prior via a specialized loss without the use of any 3D data ground-truth, our approach re-purposes that same loss for distilling a pretrained multi-step text-to-image model to a student network that can generate high-fidelity images with just a single inference step. In spite of its simplicity, our model stands as one of the first one-step text-to-image generators that can produce images of comparable quality to Stable Diffusion without reliance on any training image data. Remarkably, SwiftBrush achieves an FID score of 16.67 and a CLIP score of 0.29 on the COCO-30K benchmark, achieving competitive results or even substantially surpassing existing state-of-the-art distillation techniques.
Towards Hierarchical Multi-Step Reward Models for Enhanced Reasoning in Large Language Models
Recent studies show that Large Language Models (LLMs) achieve strong reasoning capabilities through supervised fine-tuning or reinforcement learning. However, a key approach, the Process Reward Model (PRM), suffers from reward hacking, making it unreliable in identifying the best intermediate steps. In this paper, we propose a novel reward model approach, Hierarchical Reward Model (HRM), which evaluates both individual and consecutive reasoning steps from fine-grained and coarse-grained level. HRM performs better in assessing reasoning coherence and self-reflection, particularly when the previous reasoning step is incorrect. Furthermore, to address the inefficiency of autonomous generating PRM training data via Monte Carlo Tree Search (MCTS), we introduce a lightweight and effective data augmentation strategy called Hierarchical Node Compression (HNC) based on node merging (combining two consecutive reasoning steps into one step) in the tree structure. This approach diversifies MCTS results for HRM with negligible computational overhead, enhancing label robustness by introducing noise. Empirical results on the PRM800K dataset demonstrate that HRM, in conjunction with HNC, achieves superior stability and reliability in evaluation compared to PRM. Furthermore, cross-domain evaluations on MATH500 and GSM8K confirm HRM's superior generalization and robustness across diverse reasoning tasks. The code for all experiments will be released at https: //github.com/tengwang0318/hierarchial_reward_model.
SwinGNN: Rethinking Permutation Invariance in Diffusion Models for Graph Generation
Diffusion models based on permutation-equivariant networks can learn permutation-invariant distributions for graph data. However, in comparison to their non-invariant counterparts, we have found that these invariant models encounter greater learning challenges since 1) their effective target distributions exhibit more modes; 2) their optimal one-step denoising scores are the score functions of Gaussian mixtures with more components. Motivated by this analysis, we propose a non-invariant diffusion model, called SwinGNN, which employs an efficient edge-to-edge 2-WL message passing network and utilizes shifted window based self-attention inspired by SwinTransformers. Further, through systematic ablations, we identify several critical training and sampling techniques that significantly improve the sample quality of graph generation. At last, we introduce a simple post-processing trick, i.e., randomly permuting the generated graphs, which provably converts any graph generative model to a permutation-invariant one. Extensive experiments on synthetic and real-world protein and molecule datasets show that our SwinGNN achieves state-of-the-art performances. Our code is released at https://github.com/qiyan98/SwinGNN.
Unsupervised Compositional Concepts Discovery with Text-to-Image Generative Models
Text-to-image generative models have enabled high-resolution image synthesis across different domains, but require users to specify the content they wish to generate. In this paper, we consider the inverse problem -- given a collection of different images, can we discover the generative concepts that represent each image? We present an unsupervised approach to discover generative concepts from a collection of images, disentangling different art styles in paintings, objects, and lighting from kitchen scenes, and discovering image classes given ImageNet images. We show how such generative concepts can accurately represent the content of images, be recombined and composed to generate new artistic and hybrid images, and be further used as a representation for downstream classification tasks.
Attention Sorting Combats Recency Bias In Long Context Language Models
Current language models often fail to incorporate long contexts efficiently during generation. We show that a major contributor to this issue are attention priors that are likely learned during pre-training: relevant information located earlier in context is attended to less on average. Yet even when models fail to use the information from a relevant document in their response, they still pay preferential attention to that document compared to an irrelevant document at the same position. We leverage this fact to introduce ``attention sorting'': perform one step of decoding, sort documents by the attention they receive (highest attention going last), repeat the process, generate the answer with the newly sorted context. We find that attention sorting improves performance of long context models. Our findings highlight some challenges in using off-the-shelf language models for retrieval augmented generation.
Score Forgetting Distillation: A Swift, Data-Free Method for Machine Unlearning in Diffusion Models
The machine learning community is increasingly recognizing the importance of fostering trust and safety in modern generative AI (GenAI) models. We posit machine unlearning (MU) as a crucial foundation for developing safe, secure, and trustworthy GenAI models. Traditional MU methods often rely on stringent assumptions and require access to real data. This paper introduces Score Forgetting Distillation (SFD), an innovative MU approach that promotes the forgetting of undesirable information in diffusion models by aligning the conditional scores of "unsafe" classes or concepts with those of "safe" ones. To eliminate the need for real data, our SFD framework incorporates a score-based MU loss into the score distillation objective of a pretrained diffusion model. This serves as a regularization term that preserves desired generation capabilities while enabling the production of synthetic data through a one-step generator. Our experiments on pretrained label-conditional and text-to-image diffusion models demonstrate that our method effectively accelerates the forgetting of target classes or concepts during generation, while preserving the quality of other classes or concepts. This unlearned and distilled diffusion not only pioneers a novel concept in MU but also accelerates the generation speed of diffusion models. Our experiments and studies on a range of diffusion models and datasets confirm that our approach is generalizable, effective, and advantageous for MU in diffusion models. (Warning: This paper contains sexually explicit imagery, discussions of pornography, racially-charged terminology, and other content that some readers may find disturbing, distressing, and/or offensive.)
Distilling ODE Solvers of Diffusion Models into Smaller Steps
Distillation techniques have substantially improved the sampling speed of diffusion models, allowing of the generation within only one step or a few steps. However, these distillation methods require extensive training for each dataset, sampler, and network, which limits their practical applicability. To address this limitation, we propose a straightforward distillation approach, Distilled-ODE solvers (D-ODE solvers), that optimizes the ODE solver rather than training the denoising network. D-ODE solvers are formulated by simply applying a single parameter adjustment to existing ODE solvers. Subsequently, D-ODE solvers with smaller steps are optimized by ODE solvers with larger steps through distillation over a batch of samples. Our comprehensive experiments indicate that D-ODE solvers outperform existing ODE solvers, including DDIM, PNDM, DPM-Solver, DEIS, and EDM, especially when generating samples with fewer steps. Our method incur negligible computational overhead compared to previous distillation techniques, enabling simple and rapid integration with previous samplers. Qualitative analysis further shows that D-ODE solvers enhance image quality while preserving the sampling trajectory of ODE solvers.
Learning to Model Editing Processes
Most existing sequence generation models produce outputs in one pass, usually left-to-right. However, this is in contrast with a more natural approach that humans use in generating content; iterative refinement and editing. Recent work has introduced edit-based models for various tasks (such as neural machine translation and text style transfer), but these generally model a single edit step. In this work, we propose modeling editing processes, modeling the whole process of iteratively generating sequences. We form a conceptual framework to describe the likelihood of multi-step edits, and describe neural models that can learn a generative model of sequences based on these multistep edits. We introduce baseline results and metrics on this task, finding that modeling editing processes improves performance on a variety of axes on both our proposed task and related downstream tasks compared to previous single-step models of edits.
GAN Cocktail: mixing GANs without dataset access
Today's generative models are capable of synthesizing high-fidelity images, but each model specializes on a specific target domain. This raises the need for model merging: combining two or more pretrained generative models into a single unified one. In this work we tackle the problem of model merging, given two constraints that often come up in the real world: (1) no access to the original training data, and (2) without increasing the size of the neural network. To the best of our knowledge, model merging under these constraints has not been studied thus far. We propose a novel, two-stage solution. In the first stage, we transform the weights of all the models to the same parameter space by a technique we term model rooting. In the second stage, we merge the rooted models by averaging their weights and fine-tuning them for each specific domain, using only data generated by the original trained models. We demonstrate that our approach is superior to baseline methods and to existing transfer learning techniques, and investigate several applications.
Plug-and-Play Context Feature Reuse for Efficient Masked Generation
Masked generative models (MGMs) have emerged as a powerful framework for image synthesis, combining parallel decoding with strong bidirectional context modeling. However, generating high-quality samples typically requires many iterative decoding steps, resulting in high inference costs. A straightforward way to speed up generation is by decoding more tokens in each step, thereby reducing the total number of steps. However, when many tokens are decoded simultaneously, the model can only estimate the univariate marginal distributions independently, failing to capture the dependency among them. As a result, reducing the number of steps significantly compromises generation fidelity. In this work, we introduce ReCAP (Reused Context-Aware Prediction), a plug-and-play module that accelerates inference in MGMs by constructing low-cost steps via reusing feature embeddings from previously decoded context tokens. ReCAP interleaves standard full evaluations with lightweight steps that cache and reuse context features, substantially reducing computation while preserving the benefits of fine-grained, iterative generation. We demonstrate its effectiveness on top of three representative MGMs (MaskGIT, MAGE, and MAR), including both discrete and continuous token spaces and covering diverse architectural designs. In particular, on ImageNet256 class-conditional generation, ReCAP achieves up to 2.4x faster inference than the base model with minimal performance drop, and consistently delivers better efficiency-fidelity trade-offs under various generation settings.
IRGen: Generative Modeling for Image Retrieval
While generative modeling has become prevalent across numerous research fields, its integration into the realm of image retrieval remains largely unexplored and underjustified. In this paper, we present a novel methodology, reframing image retrieval as a variant of generative modeling and employing a sequence-to-sequence model. This approach is harmoniously aligned with the current trend towards unification in research, presenting a cohesive framework that allows for end-to-end differentiable searching. This, in turn, facilitates superior performance via direct optimization techniques. The development of our model, dubbed IRGen, addresses the critical technical challenge of converting an image into a concise sequence of semantic units, which is pivotal for enabling efficient and effective search. Extensive experiments demonstrate that our model achieves state-of-the-art performance on three widely-used image retrieval benchmarks as well as two million-scale datasets, yielding significant improvement compared to prior competitive retrieval methods. In addition, the notable surge in precision scores facilitated by generative modeling presents the potential to bypass the reranking phase, which is traditionally indispensable in practical retrieval workflows.
End-to-End Diffusion Latent Optimization Improves Classifier Guidance
Classifier guidance -- using the gradients of an image classifier to steer the generations of a diffusion model -- has the potential to dramatically expand the creative control over image generation and editing. However, currently classifier guidance requires either training new noise-aware models to obtain accurate gradients or using a one-step denoising approximation of the final generation, which leads to misaligned gradients and sub-optimal control. We highlight this approximation's shortcomings and propose a novel guidance method: Direct Optimization of Diffusion Latents (DOODL), which enables plug-and-play guidance by optimizing diffusion latents w.r.t. the gradients of a pre-trained classifier on the true generated pixels, using an invertible diffusion process to achieve memory-efficient backpropagation. Showcasing the potential of more precise guidance, DOODL outperforms one-step classifier guidance on computational and human evaluation metrics across different forms of guidance: using CLIP guidance to improve generations of complex prompts from DrawBench, using fine-grained visual classifiers to expand the vocabulary of Stable Diffusion, enabling image-conditioned generation with a CLIP visual encoder, and improving image aesthetics using an aesthetic scoring network. Code at https://github.com/salesforce/DOODL.
Towards Accurate Guided Diffusion Sampling through Symplectic Adjoint Method
Training-free guided sampling in diffusion models leverages off-the-shelf pre-trained networks, such as an aesthetic evaluation model, to guide the generation process. Current training-free guided sampling algorithms obtain the guidance energy function based on a one-step estimate of the clean image. However, since the off-the-shelf pre-trained networks are trained on clean images, the one-step estimation procedure of the clean image may be inaccurate, especially in the early stages of the generation process in diffusion models. This causes the guidance in the early time steps to be inaccurate. To overcome this problem, we propose Symplectic Adjoint Guidance (SAG), which calculates the gradient guidance in two inner stages. Firstly, SAG estimates the clean image via n function calls, where n serves as a flexible hyperparameter that can be tailored to meet specific image quality requirements. Secondly, SAG uses the symplectic adjoint method to obtain the gradients accurately and efficiently in terms of the memory requirements. Extensive experiments demonstrate that SAG generates images with higher qualities compared to the baselines in both guided image and video generation tasks.
Semi-Parametric Neural Image Synthesis
Novel architectures have recently improved generative image synthesis leading to excellent visual quality in various tasks. Much of this success is due to the scalability of these architectures and hence caused by a dramatic increase in model complexity and in the computational resources invested in training these models. Our work questions the underlying paradigm of compressing large training data into ever growing parametric representations. We rather present an orthogonal, semi-parametric approach. We complement comparably small diffusion or autoregressive models with a separate image database and a retrieval strategy. During training we retrieve a set of nearest neighbors from this external database for each training instance and condition the generative model on these informative samples. While the retrieval approach is providing the (local) content, the model is focusing on learning the composition of scenes based on this content. As demonstrated by our experiments, simply swapping the database for one with different contents transfers a trained model post-hoc to a novel domain. The evaluation shows competitive performance on tasks which the generative model has not been trained on, such as class-conditional synthesis, zero-shot stylization or text-to-image synthesis without requiring paired text-image data. With negligible memory and computational overhead for the external database and retrieval we can significantly reduce the parameter count of the generative model and still outperform the state-of-the-art.
Glow: Generative Flow with Invertible 1x1 Convolutions
Flow-based generative models (Dinh et al., 2014) are conceptually attractive due to tractability of the exact log-likelihood, tractability of exact latent-variable inference, and parallelizability of both training and synthesis. In this paper we propose Glow, a simple type of generative flow using an invertible 1x1 convolution. Using our method we demonstrate a significant improvement in log-likelihood on standard benchmarks. Perhaps most strikingly, we demonstrate that a generative model optimized towards the plain log-likelihood objective is capable of efficient realistic-looking synthesis and manipulation of large images. The code for our model is available at https://github.com/openai/glow
Graphically Structured Diffusion Models
We introduce a framework for automatically defining and learning deep generative models with problem-specific structure. We tackle problem domains that are more traditionally solved by algorithms such as sorting, constraint satisfaction for Sudoku, and matrix factorization. Concretely, we train diffusion models with an architecture tailored to the problem specification. This problem specification should contain a graphical model describing relationships between variables, and often benefits from explicit representation of subcomputations. Permutation invariances can also be exploited. Across a diverse set of experiments we improve the scaling relationship between problem dimension and our model's performance, in terms of both training time and final accuracy. Our code can be found at https://github.com/plai-group/gsdm.
Efficient and Scalable Graph Generation through Iterative Local Expansion
In the realm of generative models for graphs, extensive research has been conducted. However, most existing methods struggle with large graphs due to the complexity of representing the entire joint distribution across all node pairs and capturing both global and local graph structures simultaneously. To overcome these issues, we introduce a method that generates a graph by progressively expanding a single node to a target graph. In each step, nodes and edges are added in a localized manner through denoising diffusion, building first the global structure, and then refining the local details. The local generation avoids modeling the entire joint distribution over all node pairs, achieving substantial computational savings with subquadratic runtime relative to node count while maintaining high expressivity through multiscale generation. Our experiments show that our model achieves state-of-the-art performance on well-established benchmark datasets while successfully scaling to graphs with at least 5000 nodes. Our method is also the first to successfully extrapolate to graphs outside of the training distribution, showcasing a much better generalization capability over existing methods.
You Only Submit One Image to Find the Most Suitable Generative Model
Deep generative models have achieved promising results in image generation, and various generative model hubs, e.g., Hugging Face and Civitai, have been developed that enable model developers to upload models and users to download models. However, these model hubs lack advanced model management and identification mechanisms, resulting in users only searching for models through text matching, download sorting, etc., making it difficult to efficiently find the model that best meets user requirements. In this paper, we propose a novel setting called Generative Model Identification (GMI), which aims to enable the user to identify the most appropriate generative model(s) for the user's requirements from a large number of candidate models efficiently. To our best knowledge, it has not been studied yet. In this paper, we introduce a comprehensive solution consisting of three pivotal modules: a weighted Reduced Kernel Mean Embedding (RKME) framework for capturing the generated image distribution and the relationship between images and prompts, a pre-trained vision-language model aimed at addressing dimensionality challenges, and an image interrogator designed to tackle cross-modality issues. Extensive empirical results demonstrate the proposal is both efficient and effective. For example, users only need to submit a single example image to describe their requirements, and the model platform can achieve an average top-4 identification accuracy of more than 80%.
SinGAN: Learning a Generative Model from a Single Natural Image
We introduce SinGAN, an unconditional generative model that can be learned from a single natural image. Our model is trained to capture the internal distribution of patches within the image, and is then able to generate high quality, diverse samples that carry the same visual content as the image. SinGAN contains a pyramid of fully convolutional GANs, each responsible for learning the patch distribution at a different scale of the image. This allows generating new samples of arbitrary size and aspect ratio, that have significant variability, yet maintain both the global structure and the fine textures of the training image. In contrast to previous single image GAN schemes, our approach is not limited to texture images, and is not conditional (i.e. it generates samples from noise). User studies confirm that the generated samples are commonly confused to be real images. We illustrate the utility of SinGAN in a wide range of image manipulation tasks.
Personalized Image Generation with Deep Generative Models: A Decade Survey
Recent advancements in generative models have significantly facilitated the development of personalized content creation. Given a small set of images with user-specific concept, personalized image generation allows to create images that incorporate the specified concept and adhere to provided text descriptions. Due to its wide applications in content creation, significant effort has been devoted to this field in recent years. Nonetheless, the technologies used for personalization have evolved alongside the development of generative models, with their distinct and interrelated components. In this survey, we present a comprehensive review of generalized personalized image generation across various generative models, including traditional GANs, contemporary text-to-image diffusion models, and emerging multi-model autoregressive models. We first define a unified framework that standardizes the personalization process across different generative models, encompassing three key components, i.e., inversion spaces, inversion methods, and personalization schemes. This unified framework offers a structured approach to dissecting and comparing personalization techniques across different generative architectures. Building upon this unified framework, we further provide an in-depth analysis of personalization techniques within each generative model, highlighting their unique contributions and innovations. Through comparative analysis, this survey elucidates the current landscape of personalized image generation, identifying commonalities and distinguishing features among existing methods. Finally, we discuss the open challenges in the field and propose potential directions for future research. We keep tracing related works at https://github.com/csyxwei/Awesome-Personalized-Image-Generation.
Generating Images from Captions with Attention
Motivated by the recent progress in generative models, we introduce a model that generates images from natural language descriptions. The proposed model iteratively draws patches on a canvas, while attending to the relevant words in the description. After training on Microsoft COCO, we compare our model with several baseline generative models on image generation and retrieval tasks. We demonstrate that our model produces higher quality samples than other approaches and generates images with novel scene compositions corresponding to previously unseen captions in the dataset.
One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion Schedule Flaws and Enhancing Low-Frequency Controls
It is well known that many open-released foundational diffusion models have difficulty in generating images that substantially depart from average brightness, despite such images being present in the training data. This is due to an inconsistency: while denoising starts from pure Gaussian noise during inference, the training noise schedule retains residual data even in the final timestep distribution, due to difficulties in numerical conditioning in mainstream formulation, leading to unintended bias during inference. To mitigate this issue, certain epsilon-prediction models are combined with an ad-hoc offset-noise methodology. In parallel, some contemporary models have adopted zero-terminal SNR noise schedules together with v-prediction, which necessitate major alterations to pre-trained models. However, such changes risk destabilizing a large multitude of community-driven applications anchored on these pre-trained models. In light of this, our investigation revisits the fundamental causes, leading to our proposal of an innovative and principled remedy, called One More Step (OMS). By integrating a compact network and incorporating an additional simple yet effective step during inference, OMS elevates image fidelity and harmonizes the dichotomy between training and inference, while preserving original model parameters. Once trained, various pre-trained diffusion models with the same latent domain can share the same OMS module.
TBAC-UniImage: Unified Understanding and Generation by Ladder-Side Diffusion Tuning
This paper introduces TBAC-UniImage, a novel unified model for multimodal understanding and generation. We achieve this by deeply integrating a pre-trained Diffusion Model, acting as a generative ladder, with a Multimodal Large Language Model (MLLM). Previous diffusion-based unified models face two primary limitations. One approach uses only the MLLM's final hidden state as the generative condition. This creates a shallow connection, as the generator is isolated from the rich, hierarchical representations within the MLLM's intermediate layers. The other approach, pretraining a unified generative architecture from scratch, is computationally expensive and prohibitive for many researchers. To overcome these issues, our work explores a new paradigm. Instead of relying on a single output, we use representations from multiple, diverse layers of the MLLM as generative conditions for the diffusion model. This method treats the pre-trained generator as a ladder, receiving guidance from various depths of the MLLM's understanding process. Consequently, TBAC-UniImage achieves a much deeper and more fine-grained unification of understanding and generation.
Ref-Diff: Zero-shot Referring Image Segmentation with Generative Models
Zero-shot referring image segmentation is a challenging task because it aims to find an instance segmentation mask based on the given referring descriptions, without training on this type of paired data. Current zero-shot methods mainly focus on using pre-trained discriminative models (e.g., CLIP). However, we have observed that generative models (e.g., Stable Diffusion) have potentially understood the relationships between various visual elements and text descriptions, which are rarely investigated in this task. In this work, we introduce a novel Referring Diffusional segmentor (Ref-Diff) for this task, which leverages the fine-grained multi-modal information from generative models. We demonstrate that without a proposal generator, a generative model alone can achieve comparable performance to existing SOTA weakly-supervised models. When we combine both generative and discriminative models, our Ref-Diff outperforms these competing methods by a significant margin. This indicates that generative models are also beneficial for this task and can complement discriminative models for better referring segmentation. Our code is publicly available at https://github.com/kodenii/Ref-Diff.
Improved Techniques for Training GANs
We present a variety of new architectural features and training procedures that we apply to the generative adversarial networks (GANs) framework. We focus on two applications of GANs: semi-supervised learning, and the generation of images that humans find visually realistic. Unlike most work on generative models, our primary goal is not to train a model that assigns high likelihood to test data, nor do we require the model to be able to learn well without using any labels. Using our new techniques, we achieve state-of-the-art results in semi-supervised classification on MNIST, CIFAR-10 and SVHN. The generated images are of high quality as confirmed by a visual Turing test: our model generates MNIST samples that humans cannot distinguish from real data, and CIFAR-10 samples that yield a human error rate of 21.3%. We also present ImageNet samples with unprecedented resolution and show that our methods enable the model to learn recognizable features of ImageNet classes.
Multi-Concept Customization of Text-to-Image Diffusion
While generative models produce high-quality images of concepts learned from a large-scale database, a user often wishes to synthesize instantiations of their own concepts (for example, their family, pets, or items). Can we teach a model to quickly acquire a new concept, given a few examples? Furthermore, can we compose multiple new concepts together? We propose Custom Diffusion, an efficient method for augmenting existing text-to-image models. We find that only optimizing a few parameters in the text-to-image conditioning mechanism is sufficiently powerful to represent new concepts while enabling fast tuning (~6 minutes). Additionally, we can jointly train for multiple concepts or combine multiple fine-tuned models into one via closed-form constrained optimization. Our fine-tuned model generates variations of multiple, new concepts and seamlessly composes them with existing concepts in novel settings. Our method outperforms several baselines and concurrent works, regarding both qualitative and quantitative evaluations, while being memory and computationally efficient.
Conditional Generative Adversarial Nets
Generative Adversarial Nets [8] were recently introduced as a novel way to train generative models. In this work we introduce the conditional version of generative adversarial nets, which can be constructed by simply feeding the data, y, we wish to condition on to both the generator and discriminator. We show that this model can generate MNIST digits conditioned on class labels. We also illustrate how this model could be used to learn a multi-modal model, and provide preliminary examples of an application to image tagging in which we demonstrate how this approach can generate descriptive tags which are not part of training labels.
ProSpect: Prompt Spectrum for Attribute-Aware Personalization of Diffusion Models
Personalizing generative models offers a way to guide image generation with user-provided references. Current personalization methods can invert an object or concept into the textual conditioning space and compose new natural sentences for text-to-image diffusion models. However, representing and editing specific visual attributes such as material, style, and layout remains a challenge, leading to a lack of disentanglement and editability. To address this problem, we propose a novel approach that leverages the step-by-step generation process of diffusion models, which generate images from low to high frequency information, providing a new perspective on representing, generating, and editing images. We develop the Prompt Spectrum Space P*, an expanded textual conditioning space, and a new image representation method called \sysname. ProSpect represents an image as a collection of inverted textual token embeddings encoded from per-stage prompts, where each prompt corresponds to a specific generation stage (i.e., a group of consecutive steps) of the diffusion model. Experimental results demonstrate that P* and ProSpect offer better disentanglement and controllability compared to existing methods. We apply ProSpect in various personalized attribute-aware image generation applications, such as image-guided or text-driven manipulations of materials, style, and layout, achieving previously unattainable results from a single image input without fine-tuning the diffusion models. Our source code is available athttps://github.com/zyxElsa/ProSpect.
Scaling Up Probabilistic Circuits by Latent Variable Distillation
Probabilistic Circuits (PCs) are a unified framework for tractable probabilistic models that support efficient computation of various probabilistic queries (e.g., marginal probabilities). One key challenge is to scale PCs to model large and high-dimensional real-world datasets: we observe that as the number of parameters in PCs increases, their performance immediately plateaus. This phenomenon suggests that the existing optimizers fail to exploit the full expressive power of large PCs. We propose to overcome such bottleneck by latent variable distillation: we leverage the less tractable but more expressive deep generative models to provide extra supervision over the latent variables of PCs. Specifically, we extract information from Transformer-based generative models to assign values to latent variables of PCs, providing guidance to PC optimizers. Experiments on both image and language modeling benchmarks (e.g., ImageNet and WikiText-2) show that latent variable distillation substantially boosts the performance of large PCs compared to their counterparts without latent variable distillation. In particular, on the image modeling benchmarks, PCs achieve competitive performance against some of the widely-used deep generative models, including variational autoencoders and flow-based models, opening up new avenues for tractable generative modeling.
Unified Continuous Generative Models
Recent advances in continuous generative models, including multi-step approaches like diffusion and flow-matching (typically requiring 8-1000 sampling steps) and few-step methods such as consistency models (typically 1-8 steps), have demonstrated impressive generative performance. However, existing work often treats these approaches as distinct paradigms, resulting in separate training and sampling methodologies. We introduce a unified framework for training, sampling, and analyzing these models. Our implementation, the Unified Continuous Generative Models Trainer and Sampler (UCGM-{T,S}), achieves state-of-the-art (SOTA) performance. For example, on ImageNet 256x256 using a 675M diffusion transformer, UCGM-T trains a multi-step model achieving 1.30 FID in 20 steps and a few-step model reaching 1.42 FID in just 2 steps. Additionally, applying UCGM-S to a pre-trained model (previously 1.26 FID at 250 steps) improves performance to 1.06 FID in only 40 steps. Code is available at: https://github.com/LINs-lab/UCGM.
Do text-free diffusion models learn discriminative visual representations?
While many unsupervised learning models focus on one family of tasks, either generative or discriminative, we explore the possibility of a unified representation learner: a model which addresses both families of tasks simultaneously. We identify diffusion models, a state-of-the-art method for generative tasks, as a prime candidate. Such models involve training a U-Net to iteratively predict and remove noise, and the resulting model can synthesize high-fidelity, diverse, novel images. We find that the intermediate feature maps of the U-Net are diverse, discriminative feature representations. We propose a novel attention mechanism for pooling feature maps and further leverage this mechanism as DifFormer, a transformer feature fusion of features from different diffusion U-Net blocks and noise steps. We also develop DifFeed, a novel feedback mechanism tailored to diffusion. We find that diffusion models are better than GANs, and, with our fusion and feedback mechanisms, can compete with state-of-the-art unsupervised image representation learning methods for discriminative tasks - image classification with full and semi-supervision, transfer for fine-grained classification, object detection and segmentation, and semantic segmentation. Our project website (https://mgwillia.github.io/diffssl/) and code (https://github.com/soumik-kanad/diffssl) are available publicly.
Rewriting a Deep Generative Model
A deep generative model such as a GAN learns to model a rich set of semantic and physical rules about the target distribution, but up to now, it has been obscure how such rules are encoded in the network, or how a rule could be changed. In this paper, we introduce a new problem setting: manipulation of specific rules encoded by a deep generative model. To address the problem, we propose a formulation in which the desired rule is changed by manipulating a layer of a deep network as a linear associative memory. We derive an algorithm for modifying one entry of the associative memory, and we demonstrate that several interesting structural rules can be located and modified within the layers of state-of-the-art generative models. We present a user interface to enable users to interactively change the rules of a generative model to achieve desired effects, and we show several proof-of-concept applications. Finally, results on multiple datasets demonstrate the advantage of our method against standard fine-tuning methods and edit transfer algorithms.
Generative Visual Prompt: Unifying Distributional Control of Pre-Trained Generative Models
Generative models (e.g., GANs, diffusion models) learn the underlying data distribution in an unsupervised manner. However, many applications of interest require sampling from a particular region of the output space or sampling evenly over a range of characteristics. For efficient sampling in these scenarios, we propose Generative Visual Prompt (PromptGen), a framework for distributional control over pre-trained generative models by incorporating knowledge of other off-the-shelf models. PromptGen defines control as energy-based models (EBMs) and samples images in a feed-forward manner by approximating the EBM with invertible neural networks, avoiding optimization at inference. Our experiments demonstrate how PromptGen can efficiently sample from several unconditional generative models (e.g., StyleGAN2, StyleNeRF, diffusion autoencoder, NVAE) in a controlled or/and de-biased manner using various off-the-shelf models: (1) with the CLIP model as control, PromptGen can sample images guided by text, (2) with image classifiers as control, PromptGen can de-bias generative models across a set of attributes or attribute combinations, and (3) with inverse graphics models as control, PromptGen can sample images of the same identity in different poses. (4) Finally, PromptGen reveals that the CLIP model shows a "reporting bias" when used as control, and PromptGen can further de-bias this controlled distribution in an iterative manner. The code is available at https://github.com/ChenWu98/Generative-Visual-Prompt.
Progressive Distillation for Fast Sampling of Diffusion Models
Diffusion models have recently shown great promise for generative modeling, outperforming GANs on perceptual quality and autoregressive models at density estimation. A remaining downside is their slow sampling time: generating high quality samples takes many hundreds or thousands of model evaluations. Here we make two contributions to help eliminate this downside: First, we present new parameterizations of diffusion models that provide increased stability when using few sampling steps. Second, we present a method to distill a trained deterministic diffusion sampler, using many steps, into a new diffusion model that takes half as many sampling steps. We then keep progressively applying this distillation procedure to our model, halving the number of required sampling steps each time. On standard image generation benchmarks like CIFAR-10, ImageNet, and LSUN, we start out with state-of-the-art samplers taking as many as 8192 steps, and are able to distill down to models taking as few as 4 steps without losing much perceptual quality; achieving, for example, a FID of 3.0 on CIFAR-10 in 4 steps. Finally, we show that the full progressive distillation procedure does not take more time than it takes to train the original model, thus representing an efficient solution for generative modeling using diffusion at both train and test time.
DreamTeacher: Pretraining Image Backbones with Deep Generative Models
In this work, we introduce a self-supervised feature representation learning framework DreamTeacher that utilizes generative networks for pre-training downstream image backbones. We propose to distill knowledge from a trained generative model into standard image backbones that have been well engineered for specific perception tasks. We investigate two types of knowledge distillation: 1) distilling learned generative features onto target image backbones as an alternative to pretraining these backbones on large labeled datasets such as ImageNet, and 2) distilling labels obtained from generative networks with task heads onto logits of target backbones. We perform extensive analyses on multiple generative models, dense prediction benchmarks, and several pre-training regimes. We empirically find that our DreamTeacher significantly outperforms existing self-supervised representation learning approaches across the board. Unsupervised ImageNet pre-training with DreamTeacher leads to significant improvements over ImageNet classification pre-training on downstream datasets, showcasing generative models, and diffusion generative models specifically, as a promising approach to representation learning on large, diverse datasets without requiring manual annotation.
Diffusion Self-Guidance for Controllable Image Generation
Large-scale generative models are capable of producing high-quality images from detailed text descriptions. However, many aspects of an image are difficult or impossible to convey through text. We introduce self-guidance, a method that provides greater control over generated images by guiding the internal representations of diffusion models. We demonstrate that properties such as the shape, location, and appearance of objects can be extracted from these representations and used to steer sampling. Self-guidance works similarly to classifier guidance, but uses signals present in the pretrained model itself, requiring no additional models or training. We show how a simple set of properties can be composed to perform challenging image manipulations, such as modifying the position or size of objects, merging the appearance of objects in one image with the layout of another, composing objects from many images into one, and more. We also show that self-guidance can be used to edit real images. For results and an interactive demo, see our project page at https://dave.ml/selfguidance/
Align Your Flow: Scaling Continuous-Time Flow Map Distillation
Diffusion- and flow-based models have emerged as state-of-the-art generative modeling approaches, but they require many sampling steps. Consistency models can distill these models into efficient one-step generators; however, unlike flow- and diffusion-based methods, their performance inevitably degrades when increasing the number of steps, which we show both analytically and empirically. Flow maps generalize these approaches by connecting any two noise levels in a single step and remain effective across all step counts. In this paper, we introduce two new continuous-time objectives for training flow maps, along with additional novel training techniques, generalizing existing consistency and flow matching objectives. We further demonstrate that autoguidance can improve performance, using a low-quality model for guidance during distillation, and an additional boost can be achieved by adversarial finetuning, with minimal loss in sample diversity. We extensively validate our flow map models, called Align Your Flow, on challenging image generation benchmarks and achieve state-of-the-art few-step generation performance on both ImageNet 64x64 and 512x512, using small and efficient neural networks. Finally, we show text-to-image flow map models that outperform all existing non-adversarially trained few-step samplers in text-conditioned synthesis.
Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space
Generating high-resolution, photo-realistic images has been a long-standing goal in machine learning. Recently, Nguyen et al. (2016) showed one interesting way to synthesize novel images by performing gradient ascent in the latent space of a generator network to maximize the activations of one or multiple neurons in a separate classifier network. In this paper we extend this method by introducing an additional prior on the latent code, improving both sample quality and sample diversity, leading to a state-of-the-art generative model that produces high quality images at higher resolutions (227x227) than previous generative models, and does so for all 1000 ImageNet categories. In addition, we provide a unified probabilistic interpretation of related activation maximization methods and call the general class of models "Plug and Play Generative Networks". PPGNs are composed of 1) a generator network G that is capable of drawing a wide range of image types and 2) a replaceable "condition" network C that tells the generator what to draw. We demonstrate the generation of images conditioned on a class (when C is an ImageNet or MIT Places classification network) and also conditioned on a caption (when C is an image captioning network). Our method also improves the state of the art of Multifaceted Feature Visualization, which generates the set of synthetic inputs that activate a neuron in order to better understand how deep neural networks operate. Finally, we show that our model performs reasonably well at the task of image inpainting. While image models are used in this paper, the approach is modality-agnostic and can be applied to many types of data.
A survey of Generative AI Applications
Generative AI has experienced remarkable growth in recent years, leading to a wide array of applications across diverse domains. In this paper, we present a comprehensive survey of more than 350 generative AI applications, providing a structured taxonomy and concise descriptions of various unimodal and even multimodal generative AIs. The survey is organized into sections, covering a wide range of unimodal generative AI applications such as text, images, video, gaming and brain information. Our survey aims to serve as a valuable resource for researchers and practitioners to navigate the rapidly expanding landscape of generative AI, facilitating a better understanding of the current state-of-the-art and fostering further innovation in the field.
Diffusion Models: A Comprehensive Survey of Methods and Applications
Diffusion models have emerged as a powerful new family of deep generative models with record-breaking performance in many applications, including image synthesis, video generation, and molecule design. In this survey, we provide an overview of the rapidly expanding body of work on diffusion models, categorizing the research into three key areas: efficient sampling, improved likelihood estimation, and handling data with special structures. We also discuss the potential for combining diffusion models with other generative models for enhanced results. We further review the wide-ranging applications of diffusion models in fields spanning from computer vision, natural language generation, temporal data modeling, to interdisciplinary applications in other scientific disciplines. This survey aims to provide a contextualized, in-depth look at the state of diffusion models, identifying the key areas of focus and pointing to potential areas for further exploration. Github: https://github.com/YangLing0818/Diffusion-Models-Papers-Survey-Taxonomy.
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
We marry ideas from deep neural networks and approximate Bayesian inference to derive a generalised class of deep, directed generative models, endowed with a new algorithm for scalable inference and learning. Our algorithm introduces a recognition model to represent approximate posterior distributions, and that acts as a stochastic encoder of the data. We develop stochastic back-propagation -- rules for back-propagation through stochastic variables -- and use this to develop an algorithm that allows for joint optimisation of the parameters of both the generative and recognition model. We demonstrate on several real-world data sets that the model generates realistic samples, provides accurate imputations of missing data and is a useful tool for high-dimensional data visualisation.
Visual Generation Without Guidance
Classifier-Free Guidance (CFG) has been a default technique in various visual generative models, yet it requires inference from both conditional and unconditional models during sampling. We propose to build visual models that are free from guided sampling. The resulting algorithm, Guidance-Free Training (GFT), matches the performance of CFG while reducing sampling to a single model, halving the computational cost. Unlike previous distillation-based approaches that rely on pretrained CFG networks, GFT enables training directly from scratch. GFT is simple to implement. It retains the same maximum likelihood objective as CFG and differs mainly in the parameterization of conditional models. Implementing GFT requires only minimal modifications to existing codebases, as most design choices and hyperparameters are directly inherited from CFG. Our extensive experiments across five distinct visual models demonstrate the effectiveness and versatility of GFT. Across domains of diffusion, autoregressive, and masked-prediction modeling, GFT consistently achieves comparable or even lower FID scores, with similar diversity-fidelity trade-offs compared with CFG baselines, all while being guidance-free. Code will be available at https://github.com/thu-ml/GFT.
A theory of continuous generative flow networks
Generative flow networks (GFlowNets) are amortized variational inference algorithms that are trained to sample from unnormalized target distributions over compositional objects. A key limitation of GFlowNets until this time has been that they are restricted to discrete spaces. We present a theory for generalized GFlowNets, which encompasses both existing discrete GFlowNets and ones with continuous or hybrid state spaces, and perform experiments with two goals in mind. First, we illustrate critical points of the theory and the importance of various assumptions. Second, we empirically demonstrate how observations about discrete GFlowNets transfer to the continuous case and show strong results compared to non-GFlowNet baselines on several previously studied tasks. This work greatly widens the perspectives for the application of GFlowNets in probabilistic inference and various modeling settings.
On the Stability of Iterative Retraining of Generative Models on their own Data
Deep generative models have made tremendous progress in modeling complex data, often exhibiting generation quality that surpasses a typical human's ability to discern the authenticity of samples. Undeniably, a key driver of this success is enabled by the massive amounts of web-scale data consumed by these models. Due to these models' striking performance and ease of availability, the web will inevitably be increasingly populated with synthetic content. Such a fact directly implies that future iterations of generative models must contend with the reality that their training is curated from both clean data and artificially generated data from past models. In this paper, we develop a framework to rigorously study the impact of training generative models on mixed datasets (of real and synthetic data) on their stability. We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough and the proportion of clean training data (w.r.t. synthetic data) is large enough. We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models on CIFAR10 and FFHQ.
AdaDiff: Adaptive Step Selection for Fast Diffusion
Diffusion models, as a type of generative models, have achieved impressive results in generating images and videos conditioned on textual conditions. However, the generation process of diffusion models involves denoising for dozens of steps to produce photorealistic images/videos, which is computationally expensive. Unlike previous methods that design ``one-size-fits-all'' approaches for speed up, we argue denoising steps should be sample-specific conditioned on the richness of input texts. To this end, we introduce AdaDiff, a lightweight framework designed to learn instance-specific step usage policies, which are then used by the diffusion model for generation. AdaDiff is optimized using a policy gradient method to maximize a carefully designed reward function, balancing inference time and generation quality. We conduct experiments on three image generation and two video generation benchmarks and demonstrate that our approach achieves similar results in terms of visual quality compared to the baseline using a fixed 50 denoising steps while reducing inference time by at least 33%, going as high as 40%. Furthermore, our qualitative analysis shows that our method allocates more steps to more informative text conditions and fewer steps to simpler text conditions.
SynthForge: Synthesizing High-Quality Face Dataset with Controllable 3D Generative Models
Recent advancements in generative models have unlocked the capabilities to render photo-realistic data in a controllable fashion. Trained on the real data, these generative models are capable of producing realistic samples with minimal to no domain gap, as compared to the traditional graphics rendering. However, using the data generated using such models for training downstream tasks remains under-explored, mainly due to the lack of 3D consistent annotations. Moreover, controllable generative models are learned from massive data and their latent space is often too vast to obtain meaningful sample distributions for downstream task with limited generation. To overcome these challenges, we extract 3D consistent annotations from an existing controllable generative model, making the data useful for downstream tasks. Our experiments show competitive performance against state-of-the-art models using only generated synthetic data, demonstrating potential for solving downstream tasks. Project page: https://synth-forge.github.io
Discrete Latent Graph Generative Modeling with Diffusion Bridges
Learning graph generative models over latent spaces has received less attention compared to models that operate on the original data space and has so far demonstrated lacklustre performance. We present GLAD a latent space graph generative model. Unlike most previous latent space graph generative models, GLAD operates on a discrete latent space that preserves to a significant extent the discrete nature of the graph structures making no unnatural assumptions such as latent space continuity. We learn the prior of our discrete latent space by adapting diffusion bridges to its structure. By operating over an appropriately constructed latent space we avoid relying on decompositions that are often used in models that operate in the original data space. We present experiments on a series of graph benchmark datasets which clearly show the superiority of the discrete latent space and obtain state of the art graph generative performance, making GLAD the first latent space graph generative model with competitive performance. Our source code is published at: https://github.com/v18nguye/GLAD.
ViPer: Visual Personalization of Generative Models via Individual Preference Learning
Different users find different images generated for the same prompt desirable. This gives rise to personalized image generation which involves creating images aligned with an individual's visual preference. Current generative models are, however, unpersonalized, as they are tuned to produce outputs that appeal to a broad audience. Using them to generate images aligned with individual users relies on iterative manual prompt engineering by the user which is inefficient and undesirable. We propose to personalize the image generation process by first capturing the generic preferences of the user in a one-time process by inviting them to comment on a small selection of images, explaining why they like or dislike each. Based on these comments, we infer a user's structured liked and disliked visual attributes, i.e., their visual preference, using a large language model. These attributes are used to guide a text-to-image model toward producing images that are tuned towards the individual user's visual preference. Through a series of user studies and large language model guided evaluations, we demonstrate that the proposed method results in generations that are well aligned with individual users' visual preferences.
OneGen: Efficient One-Pass Unified Generation and Retrieval for LLMs
Despite the recent advancements in Large Language Models (LLMs), which have significantly enhanced the generative capabilities for various NLP tasks, LLMs still face limitations in directly handling retrieval tasks. However, many practical applications demand the seamless integration of both retrieval and generation. This paper introduces a novel and efficient One-pass Generation and retrieval framework (OneGen), designed to improve LLMs' performance on tasks that require both generation and retrieval. The proposed framework bridges the traditionally separate training approaches for generation and retrieval by incorporating retrieval tokens generated autoregressively. This enables a single LLM to handle both tasks simultaneously in a unified forward pass. We conduct experiments on two distinct types of composite tasks, RAG and Entity Linking, to validate the pluggability, effectiveness, and efficiency of OneGen in training and inference. Furthermore, our results show that integrating generation and retrieval within the same context preserves the generative capabilities of LLMs while improving retrieval performance. To the best of our knowledge, OneGen is the first to enable LLMs to conduct vector retrieval during the generation.
On the Statistical Capacity of Deep Generative Models
Deep generative models are routinely used in generating samples from complex, high-dimensional distributions. Despite their apparent successes, their statistical properties are not well understood. A common assumption is that with enough training data and sufficiently large neural networks, deep generative model samples will have arbitrarily small errors in sampling from any continuous target distribution. We set up a unifying framework that debunks this belief. We demonstrate that broad classes of deep generative models, including variational autoencoders and generative adversarial networks, are not universal generators. Under the predominant case of Gaussian latent variables, these models can only generate concentrated samples that exhibit light tails. Using tools from concentration of measure and convex geometry, we give analogous results for more general log-concave and strongly log-concave latent variable distributions. We extend our results to diffusion models via a reduction argument. We use the Gromov--Levy inequality to give similar guarantees when the latent variables lie on manifolds with positive Ricci curvature. These results shed light on the limited capacity of common deep generative models to handle heavy tails. We illustrate the empirical relevance of our work with simulations and financial data.
Unifying Self-Supervised Clustering and Energy-Based Models
Self-supervised learning excels at learning representations from large amounts of data. At the same time, generative models offer the complementary property of learning information about the underlying data generation process. In this study, we aim at establishing a principled connection between these two paradigms and highlight the benefits of their complementarity. In particular, we perform an analysis of self-supervised learning objectives, elucidating the underlying probabilistic graphical models and presenting a standardized methodology for their derivation from first principles. The analysis suggests a natural means of integrating self-supervised learning with likelihood-based generative models. We instantiate this concept within the realm of cluster-based self-supervised learning and energy models, introducing a lower bound proven to reliably penalize the most important failure modes and unlocking full unification. Our theoretical findings are substantiated through experiments on synthetic and real-world data, including SVHN, CIFAR10, and CIFAR100, demonstrating that our objective function allows to jointly train a backbone network in a discriminative and generative fashion, consequently outperforming existing self-supervised learning strategies in terms of clustering, generation and out-of-distribution detection performance by a wide margin. We also demonstrate that the solution can be integrated into a neuro-symbolic framework to tackle a simple yet non-trivial instantiation of the symbol grounding problem. The code is publicly available at https://github.com/emsansone/GEDI.
Ensembling Large Language Models with Process Reward-Guided Tree Search for Better Complex Reasoning
Despite recent advances in large language models, open-source models often struggle to consistently perform well on complex reasoning tasks. Existing ensemble methods, whether applied at the token or output levels, fail to address these challenges. In response, we present Language model Ensemble with Monte Carlo Tree Search (LE-MCTS), a novel framework for process-level ensembling of language models. LE-MCTS formulates step-by-step reasoning with an ensemble of language models as a Markov decision process. In this framework, states represent intermediate reasoning paths, while actions consist of generating the next reasoning step using one of the language models selected from a predefined pool. Guided by a process-based reward model, LE-MCTS performs a tree search over the reasoning steps generated by different language models, identifying the most accurate reasoning chain. Experimental results on five mathematical reasoning benchmarks demonstrate that our approach outperforms both single language model decoding algorithms and language model ensemble methods. Notably, LE-MCTS improves performance by 3.6% and 4.3% on the MATH and MQA datasets, respectively, highlighting its effectiveness in solving complex reasoning problems.
A Survey on Generative Modeling with Limited Data, Few Shots, and Zero Shot
In machine learning, generative modeling aims to learn to generate new data statistically similar to the training data distribution. In this paper, we survey learning generative models under limited data, few shots and zero shot, referred to as Generative Modeling under Data Constraint (GM-DC). This is an important topic when data acquisition is challenging, e.g. healthcare applications. We discuss background, challenges, and propose two taxonomies: one on GM-DC tasks and another on GM-DC approaches. Importantly, we study interactions between different GM-DC tasks and approaches. Furthermore, we highlight research gaps, research trends, and potential avenues for future exploration. Project website: https://gmdc-survey.github.io.
Automatic Chain of Thought Prompting in Large Language Models
Large language models (LLMs) can perform complex reasoning by generating intermediate reasoning steps. Providing these steps for prompting demonstrations is called chain-of-thought (CoT) prompting. CoT prompting has two major paradigms. One leverages a simple prompt like "Let's think step by step" to facilitate step-by-step thinking before answering a question. The other uses a few manual demonstrations one by one, each composed of a question and a reasoning chain that leads to an answer. The superior performance of the second paradigm hinges on the hand-crafting of task-specific demonstrations one by one. We show that such manual efforts may be eliminated by leveraging LLMs with the "Let's think step by step" prompt to generate reasoning chains for demonstrations one by one, i.e., let's think not just step by step, but also one by one. However, these generated chains often come with mistakes. To mitigate the effect of such mistakes, we find that diversity matters for automatically constructing demonstrations. We propose an automatic CoT prompting method: Auto-CoT. It samples questions with diversity and generates reasoning chains to construct demonstrations. On ten public benchmark reasoning tasks with GPT-3, Auto-CoT consistently matches or exceeds the performance of the CoT paradigm that requires manual designs of demonstrations. Code is available at https://github.com/amazon-research/auto-cot
Let Models Speak Ciphers: Multiagent Debate through Embeddings
Discussion and debate among Large Language Models (LLMs) have gained considerable attention due to their potential to enhance the reasoning ability of LLMs. Although natural language is an obvious choice for communication due to LLM's language understanding capability, the token sampling step needed when generating natural language poses a potential risk of information loss, as it uses only one token to represent the model's belief across the entire vocabulary. In this paper, we introduce a communication regime named CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue. Specifically, we remove the token sampling step from LLMs and let them communicate their beliefs across the vocabulary through the expectation of the raw transformer output embeddings. Remarkably, by deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights, outperforming the state-of-the-art LLM debate methods using natural language by 0.5-5.0% across five reasoning tasks and multiple open-source LLMs of varying sizes. This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs. We anticipate that CIPHER will inspire further exploration for the design of interactions within LLM agent systems, offering a new direction that could significantly influence future developments in the field.
Generative Models from the perspective of Continual Learning
Which generative model is the most suitable for Continual Learning? This paper aims at evaluating and comparing generative models on disjoint sequential image generation tasks. We investigate how several models learn and forget, considering various strategies: rehearsal, regularization, generative replay and fine-tuning. We used two quantitative metrics to estimate the generation quality and memory ability. We experiment with sequential tasks on three commonly used benchmarks for Continual Learning (MNIST, Fashion MNIST and CIFAR10). We found that among all models, the original GAN performs best and among Continual Learning strategies, generative replay outperforms all other methods. Even if we found satisfactory combinations on MNIST and Fashion MNIST, training generative models sequentially on CIFAR10 is particularly instable, and remains a challenge. Our code is available online \url{https://github.com/TLESORT/Generative\_Continual\_Learning}.
LLM Blueprint: Enabling Text-to-Image Generation with Complex and Detailed Prompts
Diffusion-based generative models have significantly advanced text-to-image generation but encounter challenges when processing lengthy and intricate text prompts describing complex scenes with multiple objects. While excelling in generating images from short, single-object descriptions, these models often struggle to faithfully capture all the nuanced details within longer and more elaborate textual inputs. In response, we present a novel approach leveraging Large Language Models (LLMs) to extract critical components from text prompts, including bounding box coordinates for foreground objects, detailed textual descriptions for individual objects, and a succinct background context. These components form the foundation of our layout-to-image generation model, which operates in two phases. The initial Global Scene Generation utilizes object layouts and background context to create an initial scene but often falls short in faithfully representing object characteristics as specified in the prompts. To address this limitation, we introduce an Iterative Refinement Scheme that iteratively evaluates and refines box-level content to align them with their textual descriptions, recomposing objects as needed to ensure consistency. Our evaluation on complex prompts featuring multiple objects demonstrates a substantial improvement in recall compared to baseline diffusion models. This is further validated by a user study, underscoring the efficacy of our approach in generating coherent and detailed scenes from intricate textual inputs.
Hard Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Discovery
The strength of modern generative models lies in their ability to be controlled through text-based prompts. Typical "hard" prompts are made from interpretable words and tokens, and must be hand-crafted by humans. There are also "soft" prompts, which consist of continuous feature vectors. These can be discovered using powerful optimization methods, but they cannot be easily interpreted, re-used across models, or plugged into a text-based interface. We describe an approach to robustly optimize hard text prompts through efficient gradient-based optimization. Our approach automatically generates hard text-based prompts for both text-to-image and text-to-text applications. In the text-to-image setting, the method creates hard prompts for diffusion models, allowing API users to easily generate, discover, and mix and match image concepts without prior knowledge on how to prompt the model. In the text-to-text setting, we show that hard prompts can be automatically discovered that are effective in tuning LMs for classification.
Data-to-text Generation with Variational Sequential Planning
We consider the task of data-to-text generation, which aims to create textual output from non-linguistic input. We focus on generating long-form text, i.e., documents with multiple paragraphs, and propose a neural model enhanced with a planning component responsible for organizing high-level information in a coherent and meaningful way. We infer latent plans sequentially with a structured variational model, while interleaving the steps of planning and generation. Text is generated by conditioning on previous variational decisions and previously generated text. Experiments on two data-to-text benchmarks (RotoWire and MLB) show that our model outperforms strong baselines and is sample efficient in the face of limited training data (e.g., a few hundred instances).
Nested Diffusion Models Using Hierarchical Latent Priors
We introduce nested diffusion models, an efficient and powerful hierarchical generative framework that substantially enhances the generation quality of diffusion models, particularly for images of complex scenes. Our approach employs a series of diffusion models to progressively generate latent variables at different semantic levels. Each model in this series is conditioned on the output of the preceding higher-level models, culminating in image generation. Hierarchical latent variables guide the generation process along predefined semantic pathways, allowing our approach to capture intricate structural details while significantly improving image quality. To construct these latent variables, we leverage a pre-trained visual encoder, which learns strong semantic visual representations, and modulate its capacity via dimensionality reduction and noise injection. Across multiple datasets, our system demonstrates significant enhancements in image quality for both unconditional and class/text conditional generation. Moreover, our unconditional generation system substantially outperforms the baseline conditional system. These advancements incur minimal computational overhead as the more abstract levels of our hierarchy work with lower-dimensional representations.
InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists
Recent advances in generative diffusion models have enabled text-controlled synthesis of realistic and diverse images with impressive quality. Despite these remarkable advances, the application of text-to-image generative models in computer vision for standard visual recognition tasks remains limited. The current de facto approach for these tasks is to design model architectures and loss functions that are tailored to the task at hand. In this paper, we develop a unified language interface for computer vision tasks that abstracts away task-specific design choices and enables task execution by following natural language instructions. Our approach involves casting multiple computer vision tasks as text-to-image generation problems. Here, the text represents an instruction describing the task, and the resulting image is a visually-encoded task output. To train our model, we pool commonly-used computer vision datasets covering a range of tasks, including segmentation, object detection, depth estimation, and classification. We then use a large language model to paraphrase prompt templates that convey the specific tasks to be conducted on each image, and through this process, we create a multi-modal and multi-task training dataset comprising input and output images along with annotated instructions. Following the InstructPix2Pix architecture, we apply instruction-tuning to a text-to-image diffusion model using our constructed dataset, steering its functionality from a generative model to an instruction-guided multi-task vision learner. Experiments demonstrate that our model, dubbed InstructCV, performs competitively compared to other generalist and task-specific vision models. Moreover, it exhibits compelling generalization capabilities to unseen data, categories, and user instructions.
ObjectComposer: Consistent Generation of Multiple Objects Without Fine-tuning
Recent text-to-image generative models can generate high-fidelity images from text prompts. However, these models struggle to consistently generate the same objects in different contexts with the same appearance. Consistent object generation is important to many downstream tasks like generating comic book illustrations with consistent characters and setting. Numerous approaches attempt to solve this problem by extending the vocabulary of diffusion models through fine-tuning. However, even lightweight fine-tuning approaches can be prohibitively expensive to run at scale and in real-time. We introduce a method called ObjectComposer for generating compositions of multiple objects that resemble user-specified images. Our approach is training-free, leveraging the abilities of preexisting models. We build upon the recent BLIP-Diffusion model, which can generate images of single objects specified by reference images. ObjectComposer enables the consistent generation of compositions containing multiple specific objects simultaneously, all without modifying the weights of the underlying models.
Analyzing and Improving the Image Quality of StyleGAN
The style-based GAN architecture (StyleGAN) yields state-of-the-art results in data-driven unconditional generative image modeling. We expose and analyze several of its characteristic artifacts, and propose changes in both model architecture and training methods to address them. In particular, we redesign the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images. In addition to improving image quality, this path length regularizer yields the additional benefit that the generator becomes significantly easier to invert. This makes it possible to reliably attribute a generated image to a particular network. We furthermore visualize how well the generator utilizes its output resolution, and identify a capacity problem, motivating us to train larger models for additional quality improvements. Overall, our improved model redefines the state of the art in unconditional image modeling, both in terms of existing distribution quality metrics as well as perceived image quality.
On the Challenges and Opportunities in Generative AI
The field of deep generative modeling has grown rapidly and consistently over the years. With the availability of massive amounts of training data coupled with advances in scalable unsupervised learning paradigms, recent large-scale generative models show tremendous promise in synthesizing high-resolution images and text, as well as structured data such as videos and molecules. However, we argue that current large-scale generative AI models do not sufficiently address several fundamental issues that hinder their widespread adoption across domains. In this work, we aim to identify key unresolved challenges in modern generative AI paradigms that should be tackled to further enhance their capabilities, versatility, and reliability. By identifying these challenges, we aim to provide researchers with valuable insights for exploring fruitful research directions, thereby fostering the development of more robust and accessible generative AI solutions.
Provable Copyright Protection for Generative Models
There is a growing concern that learned conditional generative models may output samples that are substantially similar to some copyrighted data C that was in their training set. We give a formal definition of near access-freeness (NAF) and prove bounds on the probability that a model satisfying this definition outputs a sample similar to C, even if C is included in its training set. Roughly speaking, a generative model p is $k-NAF if for every potentially copyrighted data C, the output of p diverges by at most k-bits from the output of a model q that did not access C at all$. We also give generative model learning algorithms, which efficiently modify the original generative model learning algorithm in a black box manner, that output generative models with strong bounds on the probability of sampling protected content. Furthermore, we provide promising experiments for both language (transformers) and image (diffusion) generative models, showing minimal degradation in output quality while ensuring strong protections against sampling protected content.
Autoregressive Diffusion Transformer for Text-to-Speech Synthesis
Audio language models have recently emerged as a promising approach for various audio generation tasks, relying on audio tokenizers to encode waveforms into sequences of discrete symbols. Audio tokenization often poses a necessary compromise between code bitrate and reconstruction accuracy. When dealing with low-bitrate audio codes, language models are constrained to process only a subset of the information embedded in the audio, which in turn restricts their generative capabilities. To circumvent these issues, we propose encoding audio as vector sequences in continuous space mathbb R^d and autoregressively generating these sequences using a decoder-only diffusion transformer (ARDiT). Our findings indicate that ARDiT excels in zero-shot text-to-speech and exhibits performance that compares to or even surpasses that of state-of-the-art models. High-bitrate continuous speech representation enables almost flawless reconstruction, allowing our model to achieve nearly perfect speech editing. Our experiments reveal that employing Integral Kullback-Leibler (IKL) divergence for distillation at each autoregressive step significantly boosts the perceived quality of the samples. Simultaneously, it condenses the iterative sampling process of the diffusion model into a single step. Furthermore, ARDiT can be trained to predict several continuous vectors in one step, significantly reducing latency during sampling. Impressively, one of our models can generate 170 ms of 24 kHz speech per evaluation step with minimal degradation in performance. Audio samples are available at http://ardit-tts.github.io/ .
ITI-GEN: Inclusive Text-to-Image Generation
Text-to-image generative models often reflect the biases of the training data, leading to unequal representations of underrepresented groups. This study investigates inclusive text-to-image generative models that generate images based on human-written prompts and ensure the resulting images are uniformly distributed across attributes of interest. Unfortunately, directly expressing the desired attributes in the prompt often leads to sub-optimal results due to linguistic ambiguity or model misrepresentation. Hence, this paper proposes a drastically different approach that adheres to the maxim that "a picture is worth a thousand words". We show that, for some attributes, images can represent concepts more expressively than text. For instance, categories of skin tones are typically hard to specify by text but can be easily represented by example images. Building upon these insights, we propose a novel approach, ITI-GEN, that leverages readily available reference images for Inclusive Text-to-Image GENeration. The key idea is learning a set of prompt embeddings to generate images that can effectively represent all desired attribute categories. More importantly, ITI-GEN requires no model fine-tuning, making it computationally efficient to augment existing text-to-image models. Extensive experiments demonstrate that ITI-GEN largely improves over state-of-the-art models to generate inclusive images from a prompt. Project page: https://czhang0528.github.io/iti-gen.
Improving Physical Object State Representation in Text-to-Image Generative Systems
Current text-to-image generative models struggle to accurately represent object states (e.g., "a table without a bottle," "an empty tumbler"). In this work, we first design a fully-automatic pipeline to generate high-quality synthetic data that accurately captures objects in varied states. Next, we fine-tune several open-source text-to-image models on this synthetic data. We evaluate the performance of the fine-tuned models by quantifying the alignment of the generated images to their prompts using GPT4o-mini, and achieve an average absolute improvement of 8+% across four models on the public GenAI-Bench dataset. We also curate a collection of 200 prompts with a specific focus on common objects in various physical states. We demonstrate a significant improvement of an average of 24+% over the baseline on this dataset. We release all evaluation prompts and code.
Massive-scale Decoding for Text Generation using Lattices
Conditional neural text generation models generate high-quality outputs, but often concentrate around a mode when what we really want is a diverse set of options. We present a search algorithm to construct lattices encoding a massive number of generation options. First, we restructure decoding as a best-first search, which explores the space differently than beam search and improves efficiency by avoiding pruning paths. Second, we revisit the idea of hypothesis recombination: we can identify pairs of similar generation candidates during search and merge them as an approximation. On both summarization and machine translation, we show that our algorithm encodes thousands of diverse options that remain grammatical and high-quality into one lattice. This algorithm provides a foundation for building downstream generation applications on top of massive-scale diverse outputs.
Glauber Generative Model: Discrete Diffusion Models via Binary Classification
We introduce the Glauber Generative Model (GGM), a new class of discrete diffusion models, to obtain new samples from a distribution given samples from a discrete space. GGM deploys a discrete Markov chain called the heat bath dynamics (or the Glauber dynamics) to denoise a sequence of noisy tokens to a sample from a joint distribution of discrete tokens. Our novel conceptual framework provides an exact reduction of the task of learning the denoising Markov chain to solving a class of binary classification tasks. More specifically, the model learns to classify a given token in a noisy sequence as signal or noise. In contrast, prior works on discrete diffusion models either solve regression problems to learn importance ratios, or minimize loss functions given by variational approximations. We apply GGM to language modeling and image generation, where images are discretized using image tokenizers like VQGANs. We show that it outperforms existing discrete diffusion models in language generation, and demonstrates strong performance for image generation without using dataset-specific image tokenizers. We also show that our model is capable of performing well in zero-shot control settings like text and image infilling.
Towards Practical Plug-and-Play Diffusion Models
Diffusion-based generative models have achieved remarkable success in image generation. Their guidance formulation allows an external model to plug-and-play control the generation process for various tasks without finetuning the diffusion model. However, the direct use of publicly available off-the-shelf models for guidance fails due to their poor performance on noisy inputs. For that, the existing practice is to fine-tune the guidance models with labeled data corrupted with noises. In this paper, we argue that this practice has limitations in two aspects: (1) performing on inputs with extremely various noises is too hard for a single guidance model; (2) collecting labeled datasets hinders scaling up for various tasks. To tackle the limitations, we propose a novel strategy that leverages multiple experts where each expert is specialized in a particular noise range and guides the reverse process of the diffusion at its corresponding timesteps. However, as it is infeasible to manage multiple networks and utilize labeled data, we present a practical guidance framework termed Practical Plug-And-Play (PPAP), which leverages parameter-efficient fine-tuning and data-free knowledge transfer. We exhaustively conduct ImageNet class conditional generation experiments to show that our method can successfully guide diffusion with small trainable parameters and no labeled data. Finally, we show that image classifiers, depth estimators, and semantic segmentation models can guide publicly available GLIDE through our framework in a plug-and-play manner. Our code is available at https://github.com/riiid/PPAP.
A Modern Perspective on Query Likelihood with Deep Generative Retrieval Models
Existing neural ranking models follow the text matching paradigm, where document-to-query relevance is estimated through predicting the matching score. Drawing from the rich literature of classical generative retrieval models, we introduce and formalize the paradigm of deep generative retrieval models defined via the cumulative probabilities of generating query terms. This paradigm offers a grounded probabilistic view on relevance estimation while still enabling the use of modern neural architectures. In contrast to the matching paradigm, the probabilistic nature of generative rankers readily offers a fine-grained measure of uncertainty. We adopt several current neural generative models in our framework and introduce a novel generative ranker (T-PGN), which combines the encoding capacity of Transformers with the Pointer Generator Network model. We conduct an extensive set of evaluation experiments on passage retrieval, leveraging the MS MARCO Passage Re-ranking and TREC Deep Learning 2019 Passage Re-ranking collections. Our results show the significantly higher performance of the T-PGN model when compared with other generative models. Lastly, we demonstrate that exploiting the uncertainty information of deep generative rankers opens new perspectives to query/collection understanding, and significantly improves the cut-off prediction task.
Conditional Generative Modeling is All You Need for Marked Temporal Point Processes
Recent advancements in generative modeling have made it possible to generate high-quality content from context information, but a key question remains: how to teach models to know when to generate content? To answer this question, this study proposes a novel event generative model that draws its statistical intuition from marked temporal point processes, and offers a clean, flexible, and computationally efficient solution for a wide range of applications involving multi-dimensional marks. We aim to capture the distribution of the point process without explicitly specifying the conditional intensity or probability density. Instead, we use a conditional generator that takes the history of events as input and generates the high-quality subsequent event that is likely to occur given the prior observations. The proposed framework offers a host of benefits, including exceptional efficiency in learning the model and generating samples, as well as considerable representational power to capture intricate dynamics in multi- or even high-dimensional event space. Our numerical results demonstrate superior performance compared to other state-of-the-art baselines.
GEMRec: Towards Generative Model Recommendation
Recommender Systems are built to retrieve relevant items to satisfy users' information needs. The candidate corpus usually consists of a finite set of items that are ready to be served, such as videos, products, or articles. With recent advances in Generative AI such as GPT and Diffusion models, a new form of recommendation task is yet to be explored where items are to be created by generative models with personalized prompts. Taking image generation as an example, with a single prompt from the user and access to a generative model, it is possible to generate hundreds of new images in a few minutes. How shall we attain personalization in the presence of "infinite" items? In this preliminary study, we propose a two-stage framework, namely Prompt-Model Retrieval and Generated Item Ranking, to approach this new task formulation. We release GEMRec-18K, a prompt-model interaction dataset with 18K images generated by 200 publicly-available generative models paired with a diverse set of 90 textual prompts. Our findings demonstrate the promise of generative model recommendation as a novel personalization problem and the limitations of existing evaluation metrics. We highlight future directions for the RecSys community to advance towards generative recommender systems. Our code and dataset are available at https://github.com/MAPS-research/GEMRec.
JEN-1: Text-Guided Universal Music Generation with Omnidirectional Diffusion Models
Music generation has attracted growing interest with the advancement of deep generative models. However, generating music conditioned on textual descriptions, known as text-to-music, remains challenging due to the complexity of musical structures and high sampling rate requirements. Despite the task's significance, prevailing generative models exhibit limitations in music quality, computational efficiency, and generalization. This paper introduces JEN-1, a universal high-fidelity model for text-to-music generation. JEN-1 is a diffusion model incorporating both autoregressive and non-autoregressive training. Through in-context learning, JEN-1 performs various generation tasks including text-guided music generation, music inpainting, and continuation. Evaluations demonstrate JEN-1's superior performance over state-of-the-art methods in text-music alignment and music quality while maintaining computational efficiency. Our demos are available at http://futureverse.com/research/jen/demos/jen1
StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis
Text-to-image synthesis has recently seen significant progress thanks to large pretrained language models, large-scale training data, and the introduction of scalable model families such as diffusion and autoregressive models. However, the best-performing models require iterative evaluation to generate a single sample. In contrast, generative adversarial networks (GANs) only need a single forward pass. They are thus much faster, but they currently remain far behind the state-of-the-art in large-scale text-to-image synthesis. This paper aims to identify the necessary steps to regain competitiveness. Our proposed model, StyleGAN-T, addresses the specific requirements of large-scale text-to-image synthesis, such as large capacity, stable training on diverse datasets, strong text alignment, and controllable variation vs. text alignment tradeoff. StyleGAN-T significantly improves over previous GANs and outperforms distilled diffusion models - the previous state-of-the-art in fast text-to-image synthesis - in terms of sample quality and speed.
Direct Discriminative Optimization: Your Likelihood-Based Visual Generative Model is Secretly a GAN Discriminator
While likelihood-based generative models, particularly diffusion and autoregressive models, have achieved remarkable fidelity in visual generation, the maximum likelihood estimation (MLE) objective inherently suffers from a mode-covering tendency that limits the generation quality under limited model capacity. In this work, we propose Direct Discriminative Optimization (DDO) as a unified framework that bridges likelihood-based generative training and the GAN objective to bypass this fundamental constraint. Our key insight is to parameterize a discriminator implicitly using the likelihood ratio between a learnable target model and a fixed reference model, drawing parallels with the philosophy of Direct Preference Optimization (DPO). Unlike GANs, this parameterization eliminates the need for joint training of generator and discriminator networks, allowing for direct, efficient, and effective finetuning of a well-trained model to its full potential beyond the limits of MLE. DDO can be performed iteratively in a self-play manner for progressive model refinement, with each round requiring less than 1% of pretraining epochs. Our experiments demonstrate the effectiveness of DDO by significantly advancing the previous SOTA diffusion model EDM, reducing FID scores from 1.79/1.58 to new records of 1.30/0.97 on CIFAR-10/ImageNet-64 datasets, and by consistently improving both guidance-free and CFG-enhanced FIDs of visual autoregressive models on ImageNet 256times256.
Multimarginal generative modeling with stochastic interpolants
Given a set of K probability densities, we consider the multimarginal generative modeling problem of learning a joint distribution that recovers these densities as marginals. The structure of this joint distribution should identify multi-way correspondences among the prescribed marginals. We formalize an approach to this task within a generalization of the stochastic interpolant framework, leading to efficient learning algorithms built upon dynamical transport of measure. Our generative models are defined by velocity and score fields that can be characterized as the minimizers of simple quadratic objectives, and they are defined on a simplex that generalizes the time variable in the usual dynamical transport framework. The resulting transport on the simplex is influenced by all marginals, and we show that multi-way correspondences can be extracted. The identification of such correspondences has applications to style transfer, algorithmic fairness, and data decorruption. In addition, the multimarginal perspective enables an efficient algorithm for reducing the dynamical transport cost in the ordinary two-marginal setting. We demonstrate these capacities with several numerical examples.
Multisample Flow Matching: Straightening Flows with Minibatch Couplings
Simulation-free methods for training continuous-time generative models construct probability paths that go between noise distributions and individual data samples. Recent works, such as Flow Matching, derived paths that are optimal for each data sample. However, these algorithms rely on independent data and noise samples, and do not exploit underlying structure in the data distribution for constructing probability paths. We propose Multisample Flow Matching, a more general framework that uses non-trivial couplings between data and noise samples while satisfying the correct marginal constraints. At very small overhead costs, this generalization allows us to (i) reduce gradient variance during training, (ii) obtain straighter flows for the learned vector field, which allows us to generate high-quality samples using fewer function evaluations, and (iii) obtain transport maps with lower cost in high dimensions, which has applications beyond generative modeling. Importantly, we do so in a completely simulation-free manner with a simple minimization objective. We show that our proposed methods improve sample consistency on downsampled ImageNet data sets, and lead to better low-cost sample generation.
CanvasVAE: Learning to Generate Vector Graphic Documents
Vector graphic documents present visual elements in a resolution free, compact format and are often seen in creative applications. In this work, we attempt to learn a generative model of vector graphic documents. We define vector graphic documents by a multi-modal set of attributes associated to a canvas and a sequence of visual elements such as shapes, images, or texts, and train variational auto-encoders to learn the representation of the documents. We collect a new dataset of design templates from an online service that features complete document structure including occluded elements. In experiments, we show that our model, named CanvasVAE, constitutes a strong baseline for generative modeling of vector graphic documents.
Are GANs Created Equal? A Large-Scale Study
Generative adversarial networks (GAN) are a powerful subclass of generative models. Despite a very rich research activity leading to numerous interesting GAN algorithms, it is still very hard to assess which algorithm(s) perform better than others. We conduct a neutral, multi-faceted large-scale empirical study on state-of-the art models and evaluation measures. We find that most models can reach similar scores with enough hyperparameter optimization and random restarts. This suggests that improvements can arise from a higher computational budget and tuning more than fundamental algorithmic changes. To overcome some limitations of the current metrics, we also propose several data sets on which precision and recall can be computed. Our experimental results suggest that future GAN research should be based on more systematic and objective evaluation procedures. Finally, we did not find evidence that any of the tested algorithms consistently outperforms the non-saturating GAN introduced in goodfellow2014generative.
Is One GPU Enough? Pushing Image Generation at Higher-Resolutions with Foundation Models
In this work, we introduce Pixelsmith, a zero-shot text-to-image generative framework to sample images at higher resolutions with a single GPU. We are the first to show that it is possible to scale the output of a pre-trained diffusion model by a factor of 1000, opening the road for gigapixel image generation at no additional cost. Our cascading method uses the image generated at the lowest resolution as a baseline to sample at higher resolutions. For the guidance, we introduce the Slider, a tunable mechanism that fuses the overall structure contained in the first-generated image with enhanced fine details. At each inference step, we denoise patches rather than the entire latent space, minimizing memory demands such that a single GPU can handle the process, regardless of the image's resolution. Our experimental results show that Pixelsmith not only achieves higher quality and diversity compared to existing techniques, but also reduces sampling time and artifacts. The code for our work is available at https://github.com/Thanos-DB/Pixelsmith.
Uncovering Conceptual Blindspots in Generative Image Models Using Sparse Autoencoders
Despite their impressive performance, generative image models trained on large-scale datasets frequently fail to produce images with seemingly simple concepts -- e.g., human hands or objects appearing in groups of four -- that are reasonably expected to appear in the training data. These failure modes have largely been documented anecdotally, leaving open the question of whether they reflect idiosyncratic anomalies or more structural limitations of these models. To address this, we introduce a systematic approach for identifying and characterizing "conceptual blindspots" -- concepts present in the training data but absent or misrepresented in a model's generations. Our method leverages sparse autoencoders (SAEs) to extract interpretable concept embeddings, enabling a quantitative comparison of concept prevalence between real and generated images. We train an archetypal SAE (RA-SAE) on DINOv2 features with 32,000 concepts -- the largest such SAE to date -- enabling fine-grained analysis of conceptual disparities. Applied to four popular generative models (Stable Diffusion 1.5/2.1, PixArt, and Kandinsky), our approach reveals specific suppressed blindspots (e.g., bird feeders, DVD discs, and whitespaces on documents) and exaggerated blindspots (e.g., wood background texture and palm trees). At the individual datapoint level, we further isolate memorization artifacts -- instances where models reproduce highly specific visual templates seen during training. Overall, we propose a theoretically grounded framework for systematically identifying conceptual blindspots in generative models by assessing their conceptual fidelity with respect to the underlying data-generating process.
Forte : Finding Outliers with Representation Typicality Estimation
Generative models can now produce photorealistic synthetic data which is virtually indistinguishable from the real data used to train it. This is a significant evolution over previous models which could produce reasonable facsimiles of the training data, but ones which could be visually distinguished from the training data by human evaluation. Recent work on OOD detection has raised doubts that generative model likelihoods are optimal OOD detectors due to issues involving likelihood misestimation, entropy in the generative process, and typicality. We speculate that generative OOD detectors also failed because their models focused on the pixels rather than the semantic content of the data, leading to failures in near-OOD cases where the pixels may be similar but the information content is significantly different. We hypothesize that estimating typical sets using self-supervised learners leads to better OOD detectors. We introduce a novel approach that leverages representation learning, and informative summary statistics based on manifold estimation, to address all of the aforementioned issues. Our method outperforms other unsupervised approaches and achieves state-of-the art performance on well-established challenging benchmarks, and new synthetic data detection tasks.
Conditional Image Generation with Pretrained Generative Model
In recent years, diffusion models have gained popularity for their ability to generate higher-quality images in comparison to GAN models. However, like any other large generative models, these models require a huge amount of data, computational resources, and meticulous tuning for successful training. This poses a significant challenge, rendering it infeasible for most individuals. As a result, the research community has devised methods to leverage pre-trained unconditional diffusion models with additional guidance for the purpose of conditional image generative. These methods enable conditional image generations on diverse inputs and, most importantly, circumvent the need for training the diffusion model. In this paper, our objective is to reduce the time-required and computational overhead introduced by the addition of guidance in diffusion models -- while maintaining comparable image quality. We propose a set of methods based on our empirical analysis, demonstrating a reduction in computation time by approximately threefold.
OneRec: Unifying Retrieve and Rank with Generative Recommender and Iterative Preference Alignment
Recently, generative retrieval-based recommendation systems have emerged as a promising paradigm. However, most modern recommender systems adopt a retrieve-and-rank strategy, where the generative model functions only as a selector during the retrieval stage. In this paper, we propose OneRec, which replaces the cascaded learning framework with a unified generative model. To the best of our knowledge, this is the first end-to-end generative model that significantly surpasses current complex and well-designed recommender systems in real-world scenarios. Specifically, OneRec includes: 1) an encoder-decoder structure, which encodes the user's historical behavior sequences and gradually decodes the videos that the user may be interested in. We adopt sparse Mixture-of-Experts (MoE) to scale model capacity without proportionally increasing computational FLOPs. 2) a session-wise generation approach. In contrast to traditional next-item prediction, we propose a session-wise generation, which is more elegant and contextually coherent than point-by-point generation that relies on hand-crafted rules to properly combine the generated results. 3) an Iterative Preference Alignment module combined with Direct Preference Optimization (DPO) to enhance the quality of the generated results. Unlike DPO in NLP, a recommendation system typically has only one opportunity to display results for each user's browsing request, making it impossible to obtain positive and negative samples simultaneously. To address this limitation, We design a reward model to simulate user generation and customize the sampling strategy. Extensive experiments have demonstrated that a limited number of DPO samples can align user interest preferences and significantly improve the quality of generated results. We deployed OneRec in the main scene of Kuaishou, achieving a 1.6\% increase in watch-time, which is a substantial improvement.
Concept Steerers: Leveraging K-Sparse Autoencoders for Controllable Generations
Despite the remarkable progress in text-to-image generative models, they are prone to adversarial attacks and inadvertently generate unsafe, unethical content. Existing approaches often rely on fine-tuning models to remove specific concepts, which is computationally expensive, lack scalability, and/or compromise generation quality. In this work, we propose a novel framework leveraging k-sparse autoencoders (k-SAEs) to enable efficient and interpretable concept manipulation in diffusion models. Specifically, we first identify interpretable monosemantic concepts in the latent space of text embeddings and leverage them to precisely steer the generation away or towards a given concept (e.g., nudity) or to introduce a new concept (e.g., photographic style). Through extensive experiments, we demonstrate that our approach is very simple, requires no retraining of the base model nor LoRA adapters, does not compromise the generation quality, and is robust to adversarial prompt manipulations. Our method yields an improvement of 20.01% in unsafe concept removal, is effective in style manipulation, and is sim5x faster than current state-of-the-art.
Rejection Sampling IMLE: Designing Priors for Better Few-Shot Image Synthesis
An emerging area of research aims to learn deep generative models with limited training data. Prior generative models like GANs and diffusion models require a lot of data to perform well, and their performance degrades when they are trained on only a small amount of data. A recent technique called Implicit Maximum Likelihood Estimation (IMLE) has been adapted to the few-shot setting, achieving state-of-the-art performance. However, current IMLE-based approaches encounter challenges due to inadequate correspondence between the latent codes selected for training and those drawn during inference. This results in suboptimal test-time performance. We theoretically show a way to address this issue and propose RS-IMLE, a novel approach that changes the prior distribution used for training. This leads to substantially higher quality image generation compared to existing GAN and IMLE-based methods, as validated by comprehensive experiments conducted on nine few-shot image datasets.
Elucidating the Design Space of Diffusion-Based Generative Models
We argue that the theory and practice of diffusion-based generative models are currently unnecessarily convoluted and seek to remedy the situation by presenting a design space that clearly separates the concrete design choices. This lets us identify several changes to both the sampling and training processes, as well as preconditioning of the score networks. Together, our improvements yield new state-of-the-art FID of 1.79 for CIFAR-10 in a class-conditional setting and 1.97 in an unconditional setting, with much faster sampling (35 network evaluations per image) than prior designs. To further demonstrate their modular nature, we show that our design changes dramatically improve both the efficiency and quality obtainable with pre-trained score networks from previous work, including improving the FID of a previously trained ImageNet-64 model from 2.07 to near-SOTA 1.55, and after re-training with our proposed improvements to a new SOTA of 1.36.
Progressive Growing of GANs for Improved Quality, Stability, and Variation
We describe a new training methodology for generative adversarial networks. The key idea is to grow both the generator and discriminator progressively: starting from a low resolution, we add new layers that model increasingly fine details as training progresses. This both speeds the training up and greatly stabilizes it, allowing us to produce images of unprecedented quality, e.g., CelebA images at 1024^2. We also propose a simple way to increase the variation in generated images, and achieve a record inception score of 8.80 in unsupervised CIFAR10. Additionally, we describe several implementation details that are important for discouraging unhealthy competition between the generator and discriminator. Finally, we suggest a new metric for evaluating GAN results, both in terms of image quality and variation. As an additional contribution, we construct a higher-quality version of the CelebA dataset.
A Latent Variable Model Approach to PMI-based Word Embeddings
Semantic word embeddings represent the meaning of a word via a vector, and are created by diverse methods. Many use nonlinear operations on co-occurrence statistics, and have hand-tuned hyperparameters and reweighting methods. This paper proposes a new generative model, a dynamic version of the log-linear topic model of~mnih2007three. The methodological novelty is to use the prior to compute closed form expressions for word statistics. This provides a theoretical justification for nonlinear models like PMI, word2vec, and GloVe, as well as some hyperparameter choices. It also helps explain why low-dimensional semantic embeddings contain linear algebraic structure that allows solution of word analogies, as shown by~mikolov2013efficient and many subsequent papers. Experimental support is provided for the generative model assumptions, the most important of which is that latent word vectors are fairly uniformly dispersed in space.
UNO: Unlearning via Orthogonalization in Generative models
As generative models become increasingly powerful and pervasive, the ability to unlearn specific data, whether due to privacy concerns, legal requirements, or the correction of harmful content, has become increasingly important. Unlike in conventional training, where data are accumulated and knowledge is reinforced, unlearning aims to selectively remove the influence of particular data points without costly retraining from scratch. To be effective and reliable, such algorithms need to achieve (i) forgetting of the undesired data, (ii) preservation of the quality of the generation, (iii) preservation of the influence of the desired training data on the model parameters, and (iv) small number of training steps. We propose fast unlearning algorithms based on loss gradient orthogonalization. We show that our algorithms are able to forget data while maintaining the fidelity of the original model. Using MNIST and CelebA data, we demonstrate that our algorithms achieve orders of magnitude faster unlearning times than their predecessors, such as gradient surgery.
Sparse Probabilistic Circuits via Pruning and Growing
Probabilistic circuits (PCs) are a tractable representation of probability distributions allowing for exact and efficient computation of likelihoods and marginals. There has been significant recent progress on improving the scale and expressiveness of PCs. However, PC training performance plateaus as model size increases. We discover that most capacity in existing large PC structures is wasted: fully-connected parameter layers are only sparsely used. We propose two operations: pruning and growing, that exploit the sparsity of PC structures. Specifically, the pruning operation removes unimportant sub-networks of the PC for model compression and comes with theoretical guarantees. The growing operation increases model capacity by increasing the size of the latent space. By alternatingly applying pruning and growing, we increase the capacity that is meaningfully used, allowing us to significantly scale up PC learning. Empirically, our learner achieves state-of-the-art likelihoods on MNIST-family image datasets and on Penn Tree Bank language data compared to other PC learners and less tractable deep generative models such as flow-based models and variational autoencoders (VAEs).
ViCo: Detail-Preserving Visual Condition for Personalized Text-to-Image Generation
Personalized text-to-image generation using diffusion models has recently been proposed and attracted lots of attention. Given a handful of images containing a novel concept (e.g., a unique toy), we aim to tune the generative model to capture fine visual details of the novel concept and generate photorealistic images following a text condition. We present a plug-in method, named ViCo, for fast and lightweight personalized generation. Specifically, we propose an image attention module to condition the diffusion process on the patch-wise visual semantics. We introduce an attention-based object mask that comes almost at no cost from the attention module. In addition, we design a simple regularization based on the intrinsic properties of text-image attention maps to alleviate the common overfitting degradation. Unlike many existing models, our method does not finetune any parameters of the original diffusion model. This allows more flexible and transferable model deployment. With only light parameter training (~6% of the diffusion U-Net), our method achieves comparable or even better performance than all state-of-the-art models both qualitatively and quantitatively.
Toffee: Efficient Million-Scale Dataset Construction for Subject-Driven Text-to-Image Generation
In subject-driven text-to-image generation, recent works have achieved superior performance by training the model on synthetic datasets containing numerous image pairs. Trained on these datasets, generative models can produce text-aligned images for specific subject from arbitrary testing image in a zero-shot manner. They even outperform methods which require additional fine-tuning on testing images. However, the cost of creating such datasets is prohibitive for most researchers. To generate a single training pair, current methods fine-tune a pre-trained text-to-image model on the subject image to capture fine-grained details, then use the fine-tuned model to create images for the same subject based on creative text prompts. Consequently, constructing a large-scale dataset with millions of subjects can require hundreds of thousands of GPU hours. To tackle this problem, we propose Toffee, an efficient method to construct datasets for subject-driven editing and generation. Specifically, our dataset construction does not need any subject-level fine-tuning. After pre-training two generative models, we are able to generate infinite number of high-quality samples. We construct the first large-scale dataset for subject-driven image editing and generation, which contains 5 million image pairs, text prompts, and masks. Our dataset is 5 times the size of previous largest dataset, yet our cost is tens of thousands of GPU hours lower. To test the proposed dataset, we also propose a model which is capable of both subject-driven image editing and generation. By simply training the model on our proposed dataset, it obtains competitive results, illustrating the effectiveness of the proposed dataset construction framework.
Rewards Are Enough for Fast Photo-Realistic Text-to-image Generation
Aligning generated images to complicated text prompts and human preferences is a central challenge in Artificial Intelligence-Generated Content (AIGC). With reward-enhanced diffusion distillation emerging as a promising approach that boosts controllability and fidelity of text-to-image models, we identify a fundamental paradigm shift: as conditions become more specific and reward signals stronger, the rewards themselves become the dominant force in generation. In contrast, the diffusion losses serve as an overly expensive form of regularization. To thoroughly validate our hypothesis, we introduce R0, a novel conditional generation approach via regularized reward maximization. Instead of relying on tricky diffusion distillation losses, R0 proposes a new perspective that treats image generations as an optimization problem in data space which aims to search for valid images that have high compositional rewards. By innovative designs of the generator parameterization and proper regularization techniques, we train state-of-the-art few-step text-to-image generative models with R0 at scales. Our results challenge the conventional wisdom of diffusion post-training and conditional generation by demonstrating that rewards play a dominant role in scenarios with complex conditions. We hope our findings can contribute to further research into human-centric and reward-centric generation paradigms across the broader field of AIGC. Code is available at https://github.com/Luo-Yihong/R0.
GRADEO: Towards Human-Like Evaluation for Text-to-Video Generation via Multi-Step Reasoning
Recent great advances in video generation models have demonstrated their potential to produce high-quality videos, bringing challenges to effective evaluation. Unlike human evaluation, existing automated evaluation metrics lack high-level semantic understanding and reasoning capabilities for video, thus making them infeasible and unexplainable. To fill this gap, we curate GRADEO-Instruct, a multi-dimensional T2V evaluation instruction tuning dataset, including 3.3k videos from over 10 existing video generation models and multi-step reasoning assessments converted by 16k human annotations. We then introduce GRADEO, one of the first specifically designed video evaluation models, which grades AI-generated videos for explainable scores and assessments through multi-step reasoning. Experiments show that our method aligns better with human evaluations than existing methods. Furthermore, our benchmarking reveals that current video generation models struggle to produce content that aligns with human reasoning and complex real-world scenarios. The models, datasets, and codes will be released soon.
Magic 1-For-1: Generating One Minute Video Clips within One Minute
In this technical report, we present Magic 1-For-1 (Magic141), an efficient video generation model with optimized memory consumption and inference latency. The key idea is simple: factorize the text-to-video generation task into two separate easier tasks for diffusion step distillation, namely text-to-image generation and image-to-video generation. We verify that with the same optimization algorithm, the image-to-video task is indeed easier to converge over the text-to-video task. We also explore a bag of optimization tricks to reduce the computational cost of training the image-to-video (I2V) models from three aspects: 1) model convergence speedup by using a multi-modal prior condition injection; 2) inference latency speed up by applying an adversarial step distillation, and 3) inference memory cost optimization with parameter sparsification. With those techniques, we are able to generate 5-second video clips within 3 seconds. By applying a test time sliding window, we are able to generate a minute-long video within one minute with significantly improved visual quality and motion dynamics, spending less than 1 second for generating 1 second video clips on average. We conduct a series of preliminary explorations to find out the optimal tradeoff between computational cost and video quality during diffusion step distillation and hope this could be a good foundation model for open-source explorations. The code and the model weights are available at https://github.com/DA-Group-PKU/Magic-1-For-1.
ConceptLab: Creative Generation using Diffusion Prior Constraints
Recent text-to-image generative models have enabled us to transform our words into vibrant, captivating imagery. The surge of personalization techniques that has followed has also allowed us to imagine unique concepts in new scenes. However, an intriguing question remains: How can we generate a new, imaginary concept that has never been seen before? In this paper, we present the task of creative text-to-image generation, where we seek to generate new members of a broad category (e.g., generating a pet that differs from all existing pets). We leverage the under-studied Diffusion Prior models and show that the creative generation problem can be formulated as an optimization process over the output space of the diffusion prior, resulting in a set of "prior constraints". To keep our generated concept from converging into existing members, we incorporate a question-answering model that adaptively adds new constraints to the optimization problem, encouraging the model to discover increasingly more unique creations. Finally, we show that our prior constraints can also serve as a strong mixing mechanism allowing us to create hybrids between generated concepts, introducing even more flexibility into the creative process.
InstanceGen: Image Generation with Instance-level Instructions
Despite rapid advancements in the capabilities of generative models, pretrained text-to-image models still struggle in capturing the semantics conveyed by complex prompts that compound multiple objects and instance-level attributes. Consequently, we are witnessing growing interests in integrating additional structural constraints, typically in the form of coarse bounding boxes, to better guide the generation process in such challenging cases. In this work, we take the idea of structural guidance a step further by making the observation that contemporary image generation models can directly provide a plausible fine-grained structural initialization. We propose a technique that couples this image-based structural guidance with LLM-based instance-level instructions, yielding output images that adhere to all parts of the text prompt, including object counts, instance-level attributes, and spatial relations between instances.
Generative Modeling of Weights: Generalization or Memorization?
Generative models, with their success in image and video generation, have recently been explored for synthesizing effective neural network weights. These approaches take trained neural network checkpoints as training data, and aim to generate high-performing neural network weights during inference. In this work, we examine four representative methods on their ability to generate novel model weights, i.e., weights that are different from the checkpoints seen during training. Surprisingly, we find that these methods synthesize weights largely by memorization: they produce either replicas, or at best simple interpolations, of the training checkpoints. Current methods fail to outperform simple baselines, such as adding noise to the weights or taking a simple weight ensemble, in obtaining different and simultaneously high-performing models. We further show that this memorization cannot be effectively mitigated by modifying modeling factors commonly associated with memorization in image diffusion models, or applying data augmentations. Our findings provide a realistic assessment of what types of data current generative models can model, and highlight the need for more careful evaluation of generative models in new domains. Our code is available at https://github.com/boyazeng/weight_memorization.
Conformal Language Modeling
We propose a novel approach to conformal prediction for generative language models (LMs). Standard conformal prediction produces prediction sets -- in place of single predictions -- that have rigorous, statistical performance guarantees. LM responses are typically sampled from the model's predicted distribution over the large, combinatorial output space of natural language. Translating this process to conformal prediction, we calibrate a stopping rule for sampling different outputs from the LM that get added to a growing set of candidates until we are confident that the output set is sufficient. Since some samples may be low-quality, we also simultaneously calibrate and apply a rejection rule for removing candidates from the output set to reduce noise. Similar to conformal prediction, we prove that the sampled set returned by our procedure contains at least one acceptable answer with high probability, while still being empirically precise (i.e., small) on average. Furthermore, within this set of candidate responses, we show that we can also accurately identify subsets of individual components -- such as phrases or sentences -- that are each independently correct (e.g., that are not "hallucinations"), again with statistical guarantees. We demonstrate the promise of our approach on multiple tasks in open-domain question answering, text summarization, and radiology report generation using different LM variants.
Gen4Gen: Generative Data Pipeline for Generative Multi-Concept Composition
Recent text-to-image diffusion models are able to learn and synthesize images containing novel, personalized concepts (e.g., their own pets or specific items) with just a few examples for training. This paper tackles two interconnected issues within this realm of personalizing text-to-image diffusion models. First, current personalization techniques fail to reliably extend to multiple concepts -- we hypothesize this to be due to the mismatch between complex scenes and simple text descriptions in the pre-training dataset (e.g., LAION). Second, given an image containing multiple personalized concepts, there lacks a holistic metric that evaluates performance on not just the degree of resemblance of personalized concepts, but also whether all concepts are present in the image and whether the image accurately reflects the overall text description. To address these issues, we introduce Gen4Gen, a semi-automated dataset creation pipeline utilizing generative models to combine personalized concepts into complex compositions along with text-descriptions. Using this, we create a dataset called MyCanvas, that can be used to benchmark the task of multi-concept personalization. In addition, we design a comprehensive metric comprising two scores (CP-CLIP and TI-CLIP) for better quantifying the performance of multi-concept, personalized text-to-image diffusion methods. We provide a simple baseline built on top of Custom Diffusion with empirical prompting strategies for future researchers to evaluate on MyCanvas. We show that by improving data quality and prompting strategies, we can significantly increase multi-concept personalized image generation quality, without requiring any modifications to model architecture or training algorithms.
Mesh-Informed Neural Operator : A Transformer Generative Approach
Generative models in function spaces, situated at the intersection of generative modeling and operator learning, are attracting increasing attention due to their immense potential in diverse scientific and engineering applications. While functional generative models are theoretically domain- and discretization-agnostic, current implementations heavily rely on the Fourier Neural Operator (FNO), limiting their applicability to regular grids and rectangular domains. To overcome these critical limitations, we introduce the Mesh-Informed Neural Operator (MINO). By leveraging graph neural operators and cross-attention mechanisms, MINO offers a principled, domain- and discretization-agnostic backbone for generative modeling in function spaces. This advancement significantly expands the scope of such models to more diverse applications in generative, inverse, and regression tasks. Furthermore, MINO provides a unified perspective on integrating neural operators with general advanced deep learning architectures. Finally, we introduce a suite of standardized evaluation metrics that enable objective comparison of functional generative models, addressing another critical gap in the field.
Training-free Subject-Enhanced Attention Guidance for Compositional Text-to-image Generation
Existing subject-driven text-to-image generation models suffer from tedious fine-tuning steps and struggle to maintain both text-image alignment and subject fidelity. For generating compositional subjects, it often encounters problems such as object missing and attribute mixing, where some subjects in the input prompt are not generated or their attributes are incorrectly combined. To address these limitations, we propose a subject-driven generation framework and introduce training-free guidance to intervene in the generative process during inference time. This approach strengthens the attention map, allowing for precise attribute binding and feature injection for each subject. Notably, our method exhibits exceptional zero-shot generation ability, especially in the challenging task of compositional generation. Furthermore, we propose a novel metric GroundingScore to evaluate subject alignment thoroughly. The obtained quantitative results serve as compelling evidence showcasing the effectiveness of our proposed method. The code will be released soon.
Bayesian Flow Networks
This paper introduces Bayesian Flow Networks (BFNs), a new class of generative model in which the parameters of a set of independent distributions are modified with Bayesian inference in the light of noisy data samples, then passed as input to a neural network that outputs a second, interdependent distribution. Starting from a simple prior and iteratively updating the two distributions yields a generative procedure similar to the reverse process of diffusion models; however it is conceptually simpler in that no forward process is required. Discrete and continuous-time loss functions are derived for continuous, discretised and discrete data, along with sample generation procedures. Notably, the network inputs for discrete data lie on the probability simplex, and are therefore natively differentiable, paving the way for gradient-based sample guidance and few-step generation in discrete domains such as language modelling. The loss function directly optimises data compression and places no restrictions on the network architecture. In our experiments BFNs achieve competitive log-likelihoods for image modelling on dynamically binarized MNIST and CIFAR-10, and outperform all known discrete diffusion models on the text8 character-level language modelling task.
Self-Consuming Generative Models with Curated Data Provably Optimize Human Preferences
The rapid progress in generative models has resulted in impressive leaps in generation quality, blurring the lines between synthetic and real data. Web-scale datasets are now prone to the inevitable contamination by synthetic data, directly impacting the training of future generated models. Already, some theoretical results on self-consuming generative models (a.k.a., iterative retraining) have emerged in the literature, showcasing that either model collapse or stability could be possible depending on the fraction of generated data used at each retraining step. However, in practice, synthetic data is often subject to human feedback and curated by users before being used and uploaded online. For instance, many interfaces of popular text-to-image generative models, such as Stable Diffusion or Midjourney, produce several variations of an image for a given query which can eventually be curated by the users. In this paper, we theoretically study the impact of data curation on iterated retraining of generative models and show that it can be seen as an implicit preference optimization mechanism. However, unlike standard preference optimization, the generative model does not have access to the reward function or negative samples needed for pairwise comparisons. Moreover, our study doesn't require access to the density function, only to samples. We prove that, if the data is curated according to a reward model, then the expected reward of the iterative retraining procedure is maximized. We further provide theoretical results on the stability of the retraining loop when using a positive fraction of real data at each step. Finally, we conduct illustrative experiments on both synthetic datasets and on CIFAR10 showing that such a procedure amplifies biases of the reward model.
Diffusion Models as Data Mining Tools
This paper demonstrates how to use generative models trained for image synthesis as tools for visual data mining. Our insight is that since contemporary generative models learn an accurate representation of their training data, we can use them to summarize the data by mining for visual patterns. Concretely, we show that after finetuning conditional diffusion models to synthesize images from a specific dataset, we can use these models to define a typicality measure on that dataset. This measure assesses how typical visual elements are for different data labels, such as geographic location, time stamps, semantic labels, or even the presence of a disease. This analysis-by-synthesis approach to data mining has two key advantages. First, it scales much better than traditional correspondence-based approaches since it does not require explicitly comparing all pairs of visual elements. Second, while most previous works on visual data mining focus on a single dataset, our approach works on diverse datasets in terms of content and scale, including a historical car dataset, a historical face dataset, a large worldwide street-view dataset, and an even larger scene dataset. Furthermore, our approach allows for translating visual elements across class labels and analyzing consistent changes.
RealRAG: Retrieval-augmented Realistic Image Generation via Self-reflective Contrastive Learning
Recent text-to-image generative models, e.g., Stable Diffusion V3 and Flux, have achieved notable progress. However, these models are strongly restricted to their limited knowledge, a.k.a., their own fixed parameters, that are trained with closed datasets. This leads to significant hallucinations or distortions when facing fine-grained and unseen novel real-world objects, e.g., the appearance of the Tesla Cybertruck. To this end, we present the first real-object-based retrieval-augmented generation framework (RealRAG), which augments fine-grained and unseen novel object generation by learning and retrieving real-world images to overcome the knowledge gaps of generative models. Specifically, to integrate missing memory for unseen novel object generation, we train a reflective retriever by self-reflective contrastive learning, which injects the generator's knowledge into the sef-reflective negatives, ensuring that the retrieved augmented images compensate for the model's missing knowledge. Furthermore, the real-object-based framework integrates fine-grained visual knowledge for the generative models, tackling the distortion problem and improving the realism for fine-grained object generation. Our Real-RAG is superior in its modular application to all types of state-of-the-art text-to-image generative models and also delivers remarkable performance boosts with all of them, such as a gain of 16.18% FID score with the auto-regressive model on the Stanford Car benchmark.
RecycleGPT: An Autoregressive Language Model with Recyclable Module
Existing large language models have to run K times to generate a sequence of K tokens. In this paper, we present RecycleGPT, a generative language model with fast decoding speed by recycling pre-generated model states without running the whole model in multiple steps. Our approach relies on the observation that adjacent tokens in a sequence usually have strong correlations and the next token in a sequence can be reasonably guessed or inferred based on the preceding ones. Through theoretical evaluations and practical tests on downstream text generation tasks, we demonstrate the effectiveness of our approach in lowering inference latency, achieving up to 1.4x speedup while preserving high performance.
Emergent Asymmetry of Precision and Recall for Measuring Fidelity and Diversity of Generative Models in High Dimensions
Precision and Recall are two prominent metrics of generative performance, which were proposed to separately measure the fidelity and diversity of generative models. Given their central role in comparing and improving generative models, understanding their limitations are crucially important. To that end, in this work, we identify a critical flaw in the common approximation of these metrics using k-nearest-neighbors, namely, that the very interpretations of fidelity and diversity that are assigned to Precision and Recall can fail in high dimensions, resulting in very misleading conclusions. Specifically, we empirically and theoretically show that as the number of dimensions grows, two model distributions with supports at equal point-wise distance from the support of the real distribution, can have vastly different Precision and Recall regardless of their respective distributions, hence an emergent asymmetry in high dimensions. Based on our theoretical insights, we then provide simple yet effective modifications to these metrics to construct symmetric metrics regardless of the number of dimensions. Finally, we provide experiments on real-world datasets to illustrate that the identified flaw is not merely a pathological case, and that our proposed metrics are effective in alleviating its impact.
Score-based generative models break the curse of dimensionality in learning a family of sub-Gaussian probability distributions
While score-based generative models (SGMs) have achieved remarkable success in enormous image generation tasks, their mathematical foundations are still limited. In this paper, we analyze the approximation and generalization of SGMs in learning a family of sub-Gaussian probability distributions. We introduce a notion of complexity for probability distributions in terms of their relative density with respect to the standard Gaussian measure. We prove that if the log-relative density can be locally approximated by a neural network whose parameters can be suitably bounded, then the distribution generated by empirical score matching approximates the target distribution in total variation with a dimension-independent rate. We illustrate our theory through examples, which include certain mixtures of Gaussians. An essential ingredient of our proof is to derive a dimension-free deep neural network approximation rate for the true score function associated with the forward process, which is interesting in its own right.
Large Generative Graph Models
Large Generative Models (LGMs) such as GPT, Stable Diffusion, Sora, and Suno are trained on a huge amount of language corpus, images, videos, and audio that are extremely diverse from numerous domains. This training paradigm over diverse well-curated data lies at the heart of generating creative and sensible content. However, all previous graph generative models (e.g., GraphRNN, MDVAE, MoFlow, GDSS, and DiGress) have been trained only on one dataset each time, which cannot replicate the revolutionary success achieved by LGMs in other fields. To remedy this crucial gap, we propose a new class of graph generative model called Large Graph Generative Model (LGGM) that is trained on a large corpus of graphs (over 5000 graphs) from 13 different domains. We empirically demonstrate that the pre-trained LGGM has superior zero-shot generative capability to existing graph generative models. Furthermore, our pre-trained LGGM can be easily fine-tuned with graphs from target domains and demonstrate even better performance than those directly trained from scratch, behaving as a solid starting point for real-world customization. Inspired by Stable Diffusion, we further equip LGGM with the capability to generate graphs given text prompts (Text-to-Graph), such as the description of the network name and domain (i.e., "The power-1138-bus graph represents a network of buses in a power distribution system."), and network statistics (i.e., "The graph has a low average degree, suitable for modeling social media interactions."). This Text-to-Graph capability integrates the extensive world knowledge in the underlying language model, offering users fine-grained control of the generated graphs. We release the code, the model checkpoint, and the datasets at https://lggm-lg.github.io/.
Reinforcement Learning for Generative AI: A Survey
Deep Generative AI has been a long-standing essential topic in the machine learning community, which can impact a number of application areas like text generation and computer vision. The major paradigm to train a generative model is maximum likelihood estimation, which pushes the learner to capture and approximate the target data distribution by decreasing the divergence between the model distribution and the target distribution. This formulation successfully establishes the objective of generative tasks, while it is incapable of satisfying all the requirements that a user might expect from a generative model. Reinforcement learning, serving as a competitive option to inject new training signals by creating new objectives that exploit novel signals, has demonstrated its power and flexibility to incorporate human inductive bias from multiple angles, such as adversarial learning, hand-designed rules and learned reward model to build a performant model. Thereby, reinforcement learning has become a trending research field and has stretched the limits of generative AI in both model design and application. It is reasonable to summarize and conclude advances in recent years with a comprehensive review. Although there are surveys in different application areas recently, this survey aims to shed light on a high-level review that spans a range of application areas. We provide a rigorous taxonomy in this area and make sufficient coverage on various models and applications. Notably, we also surveyed the fast-developing large language model area. We conclude this survey by showing the potential directions that might tackle the limit of current models and expand the frontiers for generative AI.
Understanding Diffusion Models: A Unified Perspective
Diffusion models have shown incredible capabilities as generative models; indeed, they power the current state-of-the-art models on text-conditioned image generation such as Imagen and DALL-E 2. In this work we review, demystify, and unify the understanding of diffusion models across both variational and score-based perspectives. We first derive Variational Diffusion Models (VDM) as a special case of a Markovian Hierarchical Variational Autoencoder, where three key assumptions enable tractable computation and scalable optimization of the ELBO. We then prove that optimizing a VDM boils down to learning a neural network to predict one of three potential objectives: the original source input from any arbitrary noisification of it, the original source noise from any arbitrarily noisified input, or the score function of a noisified input at any arbitrary noise level. We then dive deeper into what it means to learn the score function, and connect the variational perspective of a diffusion model explicitly with the Score-based Generative Modeling perspective through Tweedie's Formula. Lastly, we cover how to learn a conditional distribution using diffusion models via guidance.
MAUVE Scores for Generative Models: Theory and Practice
Generative AI has matured to a point where large-scale models can generate text that seems indistinguishable from human-written text and remarkably photorealistic images. Automatically measuring how close the distribution of generated data is to the target real data distribution is a key step in diagnosing existing models and developing better models. We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images. These scores are statistical summaries of divergence frontiers capturing two types of errors in generative modeling. We explore four approaches to statistically estimate these scores: vector quantization, non-parametric estimation, classifier-based estimation, and parametric Gaussian approximations. We provide statistical bounds for the vector quantization approach. Empirically, we find that the proposed scores paired with a range of f-divergences and statistical estimation methods can quantify the gaps between the distributions of human-written text and those of modern neural language models by correlating with human judgments and identifying known properties of the generated texts. We conclude the paper by demonstrating its applications to other AI domains and discussing practical recommendations.
A Style-Based Generator Architecture for Generative Adversarial Networks
We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.
Optimizing the Latent Space of Generative Networks
Generative Adversarial Networks (GANs) have achieved remarkable results in the task of generating realistic natural images. In most successful applications, GAN models share two common aspects: solving a challenging saddle point optimization problem, interpreted as an adversarial game between a generator and a discriminator functions; and parameterizing the generator and the discriminator as deep convolutional neural networks. The goal of this paper is to disentangle the contribution of these two factors to the success of GANs. In particular, we introduce Generative Latent Optimization (GLO), a framework to train deep convolutional generators using simple reconstruction losses. Throughout a variety of experiments, we show that GLO enjoys many of the desirable properties of GANs: synthesizing visually-appealing samples, interpolating meaningfully between samples, and performing linear arithmetic with noise vectors; all of this without the adversarial optimization scheme.
Multi-modal Latent Diffusion
Multi-modal data-sets are ubiquitous in modern applications, and multi-modal Variational Autoencoders are a popular family of models that aim to learn a joint representation of the different modalities. However, existing approaches suffer from a coherence-quality tradeoff, where models with good generation quality lack generative coherence across modalities, and vice versa. We discuss the limitations underlying the unsatisfactory performance of existing methods, to motivate the need for a different approach. We propose a novel method that uses a set of independently trained, uni-modal, deterministic autoencoders. Individual latent variables are concatenated into a common latent space, which is fed to a masked diffusion model to enable generative modeling. We also introduce a new multi-time training method to learn the conditional score network for multi-modal diffusion. Our methodology substantially outperforms competitors in both generation quality and coherence, as shown through an extensive experimental campaign.
Text Editing by Command
A prevailing paradigm in neural text generation is one-shot generation, where text is produced in a single step. The one-shot setting is inadequate, however, when the constraints the user wishes to impose on the generated text are dynamic, especially when authoring longer documents. We address this limitation with an interactive text generation setting in which the user interacts with the system by issuing commands to edit existing text. To this end, we propose a novel text editing task, and introduce WikiDocEdits, a dataset of single-sentence edits crawled from Wikipedia. We show that our Interactive Editor, a transformer-based model trained on this dataset, outperforms baselines and obtains positive results in both automatic and human evaluations. We present empirical and qualitative analyses of this model's performance.
Has an AI model been trained on your images?
From a simple text prompt, generative-AI image models can create stunningly realistic and creative images bounded, it seems, by only our imagination. These models have achieved this remarkable feat thanks, in part, to the ingestion of billions of images collected from nearly every corner of the internet. Many creators have understandably expressed concern over how their intellectual property has been ingested without their permission or a mechanism to opt out of training. As a result, questions of fair use and copyright infringement have quickly emerged. We describe a method that allows us to determine if a model was trained on a specific image or set of images. This method is computationally efficient and assumes no explicit knowledge of the model architecture or weights (so-called black-box membership inference). We anticipate that this method will be crucial for auditing existing models and, looking ahead, ensuring the fairer development and deployment of generative AI models.
Piece it Together: Part-Based Concepting with IP-Priors
Advanced generative models excel at synthesizing images but often rely on text-based conditioning. Visual designers, however, often work beyond language, directly drawing inspiration from existing visual elements. In many cases, these elements represent only fragments of a potential concept-such as an uniquely structured wing, or a specific hairstyle-serving as inspiration for the artist to explore how they can come together creatively into a coherent whole. Recognizing this need, we introduce a generative framework that seamlessly integrates a partial set of user-provided visual components into a coherent composition while simultaneously sampling the missing parts needed to generate a plausible and complete concept. Our approach builds on a strong and underexplored representation space, extracted from IP-Adapter+, on which we train IP-Prior, a lightweight flow-matching model that synthesizes coherent compositions based on domain-specific priors, enabling diverse and context-aware generations. Additionally, we present a LoRA-based fine-tuning strategy that significantly improves prompt adherence in IP-Adapter+ for a given task, addressing its common trade-off between reconstruction quality and prompt adherence.
A Neural Space-Time Representation for Text-to-Image Personalization
A key aspect of text-to-image personalization methods is the manner in which the target concept is represented within the generative process. This choice greatly affects the visual fidelity, downstream editability, and disk space needed to store the learned concept. In this paper, we explore a new text-conditioning space that is dependent on both the denoising process timestep (time) and the denoising U-Net layers (space) and showcase its compelling properties. A single concept in the space-time representation is composed of hundreds of vectors, one for each combination of time and space, making this space challenging to optimize directly. Instead, we propose to implicitly represent a concept in this space by optimizing a small neural mapper that receives the current time and space parameters and outputs the matching token embedding. In doing so, the entire personalized concept is represented by the parameters of the learned mapper, resulting in a compact, yet expressive, representation. Similarly to other personalization methods, the output of our neural mapper resides in the input space of the text encoder. We observe that one can significantly improve the convergence and visual fidelity of the concept by introducing a textual bypass, where our neural mapper additionally outputs a residual that is added to the output of the text encoder. Finally, we show how one can impose an importance-based ordering over our implicit representation, providing users control over the reconstruction and editability of the learned concept using a single trained model. We demonstrate the effectiveness of our approach over a range of concepts and prompts, showing our method's ability to generate high-quality and controllable compositions without fine-tuning any parameters of the generative model itself.
Towards the Unification of Generative and Discriminative Visual Foundation Model: A Survey
The advent of foundation models, which are pre-trained on vast datasets, has ushered in a new era of computer vision, characterized by their robustness and remarkable zero-shot generalization capabilities. Mirroring the transformative impact of foundation models like large language models (LLMs) in natural language processing, visual foundation models (VFMs) have become a catalyst for groundbreaking developments in computer vision. This review paper delineates the pivotal trajectories of VFMs, emphasizing their scalability and proficiency in generative tasks such as text-to-image synthesis, as well as their adeptness in discriminative tasks including image segmentation. While generative and discriminative models have historically charted distinct paths, we undertake a comprehensive examination of the recent strides made by VFMs in both domains, elucidating their origins, seminal breakthroughs, and pivotal methodologies. Additionally, we collate and discuss the extensive resources that facilitate the development of VFMs and address the challenges that pave the way for future research endeavors. A crucial direction for forthcoming innovation is the amalgamation of generative and discriminative paradigms. The nascent application of generative models within discriminative contexts signifies the early stages of this confluence. This survey aspires to be a contemporary compendium for scholars and practitioners alike, charting the course of VFMs and illuminating their multifaceted landscape.
Prompting Forgetting: Unlearning in GANs via Textual Guidance
State-of-the-art generative models exhibit powerful image-generation capabilities, introducing various ethical and legal challenges to service providers hosting these models. Consequently, Content Removal Techniques (CRTs) have emerged as a growing area of research to control outputs without full-scale retraining. Recent work has explored the use of Machine Unlearning in generative models to address content removal. However, the focus of such research has been on diffusion models, and unlearning in Generative Adversarial Networks (GANs) has remained largely unexplored. We address this gap by proposing Text-to-Unlearn, a novel framework that selectively unlearns concepts from pre-trained GANs using only text prompts, enabling feature unlearning, identity unlearning, and fine-grained tasks like expression and multi-attribute removal in models trained on human faces. Leveraging natural language descriptions, our approach guides the unlearning process without requiring additional datasets or supervised fine-tuning, offering a scalable and efficient solution. To evaluate its effectiveness, we introduce an automatic unlearning assessment method adapted from state-of-the-art image-text alignment metrics, providing a comprehensive analysis of the unlearning methodology. To our knowledge, Text-to-Unlearn is the first cross-modal unlearning framework for GANs, representing a flexible and efficient advancement in managing generative model behavior.
Consistent Subject Generation via Contrastive Instantiated Concepts
While text-to-image generative models can synthesize diverse and faithful contents, subject variation across multiple creations limits the application in long content generation. Existing approaches require time-consuming tuning, references for all subjects, or access to other creations. We introduce Contrastive Concept Instantiation (CoCoIns) to effectively synthesize consistent subjects across multiple independent creations. The framework consists of a generative model and a mapping network, which transforms input latent codes into pseudo-words associated with certain instances of concepts. Users can generate consistent subjects with the same latent codes. To construct such associations, we propose a contrastive learning approach that trains the network to differentiate the combination of prompts and latent codes. Extensive evaluations of human faces with a single subject show that CoCoIns performs comparably to existing methods while maintaining higher flexibility. We also demonstrate the potential of extending CoCoIns to multiple subjects and other object categories.
How Realistic Is Your Synthetic Data? Constraining Deep Generative Models for Tabular Data
Deep Generative Models (DGMs) have been shown to be powerful tools for generating tabular data, as they have been increasingly able to capture the complex distributions that characterize them. However, to generate realistic synthetic data, it is often not enough to have a good approximation of their distribution, as it also requires compliance with constraints that encode essential background knowledge on the problem at hand. In this paper, we address this limitation and show how DGMs for tabular data can be transformed into Constrained Deep Generative Models (C-DGMs), whose generated samples are guaranteed to be compliant with the given constraints. This is achieved by automatically parsing the constraints and transforming them into a Constraint Layer (CL) seamlessly integrated with the DGM. Our extensive experimental analysis with various DGMs and tasks reveals that standard DGMs often violate constraints, some exceeding 95% non-compliance, while their corresponding C-DGMs are never non-compliant. Then, we quantitatively demonstrate that, at training time, C-DGMs are able to exploit the background knowledge expressed by the constraints to outperform their standard counterparts with up to 6.5% improvement in utility and detection. Further, we show how our CL does not necessarily need to be integrated at training time, as it can be also used as a guardrail at inference time, still producing some improvements in the overall performance of the models. Finally, we show that our CL does not hinder the sample generation time of the models.
Intriguing properties of generative classifiers
What is the best paradigm to recognize objects -- discriminative inference (fast but potentially prone to shortcut learning) or using a generative model (slow but potentially more robust)? We build on recent advances in generative modeling that turn text-to-image models into classifiers. This allows us to study their behavior and to compare them against discriminative models and human psychophysical data. We report four intriguing emergent properties of generative classifiers: they show a record-breaking human-like shape bias (99% for Imagen), near human-level out-of-distribution accuracy, state-of-the-art alignment with human classification errors, and they understand certain perceptual illusions. Our results indicate that while the current dominant paradigm for modeling human object recognition is discriminative inference, zero-shot generative models approximate human object recognition data surprisingly well.
LaDI-VTON: Latent Diffusion Textual-Inversion Enhanced Virtual Try-On
The rapidly evolving fields of e-commerce and metaverse continue to seek innovative approaches to enhance the consumer experience. At the same time, recent advancements in the development of diffusion models have enabled generative networks to create remarkably realistic images. In this context, image-based virtual try-on, which consists in generating a novel image of a target model wearing a given in-shop garment, has yet to capitalize on the potential of these powerful generative solutions. This work introduces LaDI-VTON, the first Latent Diffusion textual Inversion-enhanced model for the Virtual Try-ON task. The proposed architecture relies on a latent diffusion model extended with a novel additional autoencoder module that exploits learnable skip connections to enhance the generation process preserving the model's characteristics. To effectively maintain the texture and details of the in-shop garment, we propose a textual inversion component that can map the visual features of the garment to the CLIP token embedding space and thus generate a set of pseudo-word token embeddings capable of conditioning the generation process. Experimental results on Dress Code and VITON-HD datasets demonstrate that our approach outperforms the competitors by a consistent margin, achieving a significant milestone for the task. Source code and trained models are publicly available at: https://github.com/miccunifi/ladi-vton.
Boost-and-Skip: A Simple Guidance-Free Diffusion for Minority Generation
Minority samples are underrepresented instances located in low-density regions of a data manifold, and are valuable in many generative AI applications, such as data augmentation, creative content generation, etc. Unfortunately, existing diffusion-based minority generators often rely on computationally expensive guidance dedicated for minority generation. To address this, here we present a simple yet powerful guidance-free approach called Boost-and-Skip for generating minority samples using diffusion models. The key advantage of our framework requires only two minimal changes to standard generative processes: (i) variance-boosted initialization and (ii) timestep skipping. We highlight that these seemingly-trivial modifications are supported by solid theoretical and empirical evidence, thereby effectively promoting emergence of underrepresented minority features. Our comprehensive experiments demonstrate that Boost-and-Skip greatly enhances the capability of generating minority samples, even rivaling guidance-based state-of-the-art approaches while requiring significantly fewer computations. Code is available at https://github.com/soobin-um/BnS.
Conditional LoRA Parameter Generation
Generative models have achieved remarkable success in image, video, and text domains. Inspired by this, researchers have explored utilizing generative models to generate neural network parameters. However, these efforts have been limited by the parameter size and the practicality of generating high-performance parameters. In this paper, we propose COND P-DIFF, a novel approach that demonstrates the feasibility of controllable high-performance parameter generation, particularly for LoRA (Low-Rank Adaptation) weights, during the fine-tuning process. Specifically, we employ an autoencoder to extract efficient latent representations for parameters. We then train a conditional latent diffusion model to synthesize high-performing model parameters from random noise based on specific task conditions. Experimental results in both computer vision and natural language processing domains consistently demonstrate that COND P-DIFF can generate high-performance parameters conditioned on the given task. Moreover, we observe that the parameter distribution generated by COND P-DIFF exhibits differences compared to the distribution obtained through normal optimization methods, indicating a certain level of generalization capability. Our work paves the way for further exploration of condition-driven parameter generation, offering a promising direction for task-specific adaptation of neural networks.
GPT Self-Supervision for a Better Data Annotator
The task of annotating data into concise summaries poses a significant challenge across various domains, frequently requiring the allocation of significant time and specialized knowledge by human experts. Despite existing efforts to use large language models for annotation tasks, significant problems such as limited applicability to unlabeled data, the absence of self-supervised methods, and the lack of focus on complex structured data still persist. In this work, we propose a GPT self-supervision annotation method, which embodies a generating-recovering paradigm that leverages the one-shot learning capabilities of the Generative Pretrained Transformer (GPT). The proposed approach comprises a one-shot tuning phase followed by a generation phase. In the one-shot tuning phase, we sample a data from the support set as part of the prompt for GPT to generate a textual summary, which is then used to recover the original data. The alignment score between the recovered and original data serves as a self-supervision navigator to refine the process. In the generation stage, the optimally selected one-shot sample serves as a template in the prompt and is applied to generating summaries from challenging datasets. The annotation performance is evaluated by tuning several human feedback reward networks and by calculating alignment scores between original and recovered data at both sentence and structure levels. Our self-supervised annotation method consistently achieves competitive scores, convincingly demonstrating its robust strength in various data-to-summary annotation tasks.
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Autoencoders and their variants are among the most widely used models in representation learning and generative modeling. However, autoencoder-based models usually assume that the learned representations are i.i.d. and fail to capture the correlations between the data samples. To address this issue, we propose a novel Sparse Gaussian Process Bayesian Autoencoder (SGPBAE) model in which we impose fully Bayesian sparse Gaussian Process priors on the latent space of a Bayesian Autoencoder. We perform posterior estimation for this model via stochastic gradient Hamiltonian Monte Carlo. We evaluate our approach qualitatively and quantitatively on a wide range of representation learning and generative modeling tasks and show that our approach consistently outperforms multiple alternatives relying on Variational Autoencoders.
Generative Diffusions in Augmented Spaces: A Complete Recipe
Score-based Generative Models (SGMs) have achieved state-of-the-art synthesis results on diverse tasks. However, the current design space of the forward diffusion process is largely unexplored and often relies on physical intuition or simplifying assumptions. Leveraging results from the design of scalable Bayesian posterior samplers, we present a complete recipe for constructing forward processes in SGMs, all of which are guaranteed to converge to the target distribution of interest. We show that several existing SGMs can be cast as specific instantiations of this parameterization. Furthermore, building on this recipe, we construct a novel SGM: Phase Space Langevin Diffusion (PSLD), which performs score-based modeling in a space augmented with auxiliary variables akin to a physical phase space. We show that PSLD outperforms competing baselines in terms of sample quality and the speed-vs-quality tradeoff across different samplers on various standard image synthesis benchmarks. Moreover, we show that PSLD achieves sample quality comparable to state-of-the-art SGMs (FID: 2.10 on unconditional CIFAR-10 generation), providing an attractive alternative as an SGM backbone for further development. We will publish our code and model checkpoints for reproducibility at https://github.com/mandt-lab/PSLD.
Generative Adversarial Networks
We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to 1/2 everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.
Improved Precision and Recall Metric for Assessing Generative Models
The ability to automatically estimate the quality and coverage of the samples produced by a generative model is a vital requirement for driving algorithm research. We present an evaluation metric that can separately and reliably measure both of these aspects in image generation tasks by forming explicit, non-parametric representations of the manifolds of real and generated data. We demonstrate the effectiveness of our metric in StyleGAN and BigGAN by providing several illustrative examples where existing metrics yield uninformative or contradictory results. Furthermore, we analyze multiple design variants of StyleGAN to better understand the relationships between the model architecture, training methods, and the properties of the resulting sample distribution. In the process, we identify new variants that improve the state-of-the-art. We also perform the first principled analysis of truncation methods and identify an improved method. Finally, we extend our metric to estimate the perceptual quality of individual samples, and use this to study latent space interpolations.
Subject-driven Text-to-Image Generation via Preference-based Reinforcement Learning
Text-to-image generative models have recently attracted considerable interest, enabling the synthesis of high-quality images from textual prompts. However, these models often lack the capability to generate specific subjects from given reference images or to synthesize novel renditions under varying conditions. Methods like DreamBooth and Subject-driven Text-to-Image (SuTI) have made significant progress in this area. Yet, both approaches primarily focus on enhancing similarity to reference images and require expensive setups, often overlooking the need for efficient training and avoiding overfitting to the reference images. In this work, we present the lambda-Harmonic reward function, which provides a reliable reward signal and enables early stopping for faster training and effective regularization. By combining the Bradley-Terry preference model, the lambda-Harmonic reward function also provides preference labels for subject-driven generation tasks. We propose Reward Preference Optimization (RPO), which offers a simpler setup (requiring only 3% of the negative samples used by DreamBooth) and fewer gradient steps for fine-tuning. Unlike most existing methods, our approach does not require training a text encoder or optimizing text embeddings and achieves text-image alignment by fine-tuning only the U-Net component. Empirically, lambda-Harmonic proves to be a reliable approach for model selection in subject-driven generation tasks. Based on preference labels and early stopping validation from the lambda-Harmonic reward function, our algorithm achieves a state-of-the-art CLIP-I score of 0.833 and a CLIP-T score of 0.314 on DreamBench.
DiffusionGPT: LLM-Driven Text-to-Image Generation System
Diffusion models have opened up new avenues for the field of image generation, resulting in the proliferation of high-quality models shared on open-source platforms. However, a major challenge persists in current text-to-image systems are often unable to handle diverse inputs, or are limited to single model results. Current unified attempts often fall into two orthogonal aspects: i) parse Diverse Prompts in input stage; ii) activate expert model to output. To combine the best of both worlds, we propose DiffusionGPT, which leverages Large Language Models (LLM) to offer a unified generation system capable of seamlessly accommodating various types of prompts and integrating domain-expert models. DiffusionGPT constructs domain-specific Trees for various generative models based on prior knowledge. When provided with an input, the LLM parses the prompt and employs the Trees-of-Thought to guide the selection of an appropriate model, thereby relaxing input constraints and ensuring exceptional performance across diverse domains. Moreover, we introduce Advantage Databases, where the Tree-of-Thought is enriched with human feedback, aligning the model selection process with human preferences. Through extensive experiments and comparisons, we demonstrate the effectiveness of DiffusionGPT, showcasing its potential for pushing the boundaries of image synthesis in diverse domains.
MULTISCRIPT: Multimodal Script Learning for Supporting Open Domain Everyday Tasks
Automatically generating scripts (i.e. sequences of key steps described in text) from video demonstrations and reasoning about the subsequent steps are crucial to the modern AI virtual assistants to guide humans to complete everyday tasks, especially unfamiliar ones. However, current methods for generative script learning rely heavily on well-structured preceding steps described in text and/or images or are limited to a certain domain, resulting in a disparity with real-world user scenarios. To address these limitations, we present a new benchmark challenge -- MultiScript, with two new tasks on task-oriented multimodal script learning: (1) multimodal script generation, and (2) subsequent step prediction. For both tasks, the input consists of a target task name and a video illustrating what has been done to complete the target task, and the expected output is (1) a sequence of structured step descriptions in text based on the demonstration video, and (2) a single text description for the subsequent step, respectively. Built from WikiHow, MultiScript covers multimodal scripts in videos and text descriptions for over 6,655 human everyday tasks across 19 diverse domains. To establish baseline performance on MultiScript, we propose two knowledge-guided multimodal generative frameworks that incorporate the task-related knowledge prompted from large language models such as Vicuna. Experimental results show that our proposed approaches significantly improve over the competitive baselines.
Face Generation from Textual Features using Conditionally Trained Inputs to Generative Adversarial Networks
Generative Networks have proved to be extremely effective in image restoration and reconstruction in the past few years. Generating faces from textual descriptions is one such application where the power of generative algorithms can be used. The task of generating faces can be useful for a number of applications such as finding missing persons, identifying criminals, etc. This paper discusses a novel approach to generating human faces given a textual description regarding the facial features. We use the power of state of the art natural language processing models to convert face descriptions into learnable latent vectors which are then fed to a generative adversarial network which generates faces corresponding to those features. While this paper focuses on high level descriptions of faces only, the same approach can be tailored to generate any image based on fine grained textual features.
Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective
Latent-based image generative models, such as Latent Diffusion Models (LDMs) and Mask Image Models (MIMs), have achieved notable success in image generation tasks. These models typically leverage reconstructive autoencoders like VQGAN or VAE to encode pixels into a more compact latent space and learn the data distribution in the latent space instead of directly from pixels. However, this practice raises a pertinent question: Is it truly the optimal choice? In response, we begin with an intriguing observation: despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation. This finding contrasts sharply with the field of NLP, where the autoregressive model GPT has established a commanding presence. To address this discrepancy, we introduce a unified perspective on the relationship between latent space and generative models, emphasizing the stability of latent space in image generative modeling. Furthermore, we propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling. Experimental results show that image autoregressive modeling with our tokenizer (DiGIT) benefits both image understanding and image generation with the next token prediction principle, which is inherently straightforward for GPT models but challenging for other generative models. Remarkably, for the first time, a GPT-style autoregressive model for images outperforms LDMs, which also exhibits substantial improvement akin to GPT when scaling up model size. Our findings underscore the potential of an optimized latent space and the integration of discrete tokenization in advancing the capabilities of image generative models. The code is available at https://github.com/DAMO-NLP-SG/DiGIT.
Data-Copying in Generative Models: A Formal Framework
There has been some recent interest in detecting and addressing memorization of training data by deep neural networks. A formal framework for memorization in generative models, called "data-copying," was proposed by Meehan et. al. (2020). We build upon their work to show that their framework may fail to detect certain kinds of blatant memorization. Motivated by this and the theory of non-parametric methods, we provide an alternative definition of data-copying that applies more locally. We provide a method to detect data-copying, and provably show that it works with high probability when enough data is available. We also provide lower bounds that characterize the sample requirement for reliable detection.
Distilling Diffusion Models into Conditional GANs
We propose a method to distill a complex multistep diffusion model into a single-step conditional GAN student model, dramatically accelerating inference, while preserving image quality. Our approach interprets diffusion distillation as a paired image-to-image translation task, using noise-to-image pairs of the diffusion model's ODE trajectory. For efficient regression loss computation, we propose E-LatentLPIPS, a perceptual loss operating directly in diffusion model's latent space, utilizing an ensemble of augmentations. Furthermore, we adapt a diffusion model to construct a multi-scale discriminator with a text alignment loss to build an effective conditional GAN-based formulation. E-LatentLPIPS converges more efficiently than many existing distillation methods, even accounting for dataset construction costs. We demonstrate that our one-step generator outperforms cutting-edge one-step diffusion distillation models -- DMD, SDXL-Turbo, and SDXL-Lightning -- on the zero-shot COCO benchmark.
Toward a Visual Concept Vocabulary for GAN Latent Space
A large body of recent work has identified transformations in the latent spaces of generative adversarial networks (GANs) that consistently and interpretably transform generated images. But existing techniques for identifying these transformations rely on either a fixed vocabulary of pre-specified visual concepts, or on unsupervised disentanglement techniques whose alignment with human judgments about perceptual salience is unknown. This paper introduces a new method for building open-ended vocabularies of primitive visual concepts represented in a GAN's latent space. Our approach is built from three components: (1) automatic identification of perceptually salient directions based on their layer selectivity; (2) human annotation of these directions with free-form, compositional natural language descriptions; and (3) decomposition of these annotations into a visual concept vocabulary, consisting of distilled directions labeled with single words. Experiments show that concepts learned with our approach are reliable and composable -- generalizing across classes, contexts, and observers, and enabling fine-grained manipulation of image style and content.
The Nature of Mathematical Modeling and Probabilistic Optimization Engineering in Generative AI
In this paper, we give an in-depth analysis on the mathematical problem formulations and the probabilistic optimization explorations for some of the key components in Transformer model [33] in the field of generative AI. We explore and discuss some potential further enhancement for current state of the art methods for some key underlying technologies of generative AI models from algorithmic and probabilistic optimization perspective. In particular, we present an optimal solution for sub-word encoding (SWE) based on similar initial settings as that of byte-pair encoding (BPE) algorithm in [9] with similar objectives as that of WordPiece approach in [28, 31] to maximize the likelihood of the training data. We also present cross entropy optimization method to optimize hyperparameters for word2vec model [17]. In addition, we propose a factored combination of rotary positional encoding (RoPE) [32] and attention with linear biases (ALiBi) [23] with a harmonic series. We also present a probabilistic FlashAttention [6, 7] (PrFlashAttention) method with a probability distribution over block distances in the matrix to decide which block is likely to participate in a given round of attention computation while maintaining the lower triangle shape of the tensor for autoregressive language models by re-shaping the tensors. Finally, we present staircase adaptive quantization (SAQ) of key-value (KV) cache for multi-query attention (MQA) based on the framework presented in [16] to have gradual quantization degradation while achieving reasonable model quality and cost savings.
Ideas in Inference-time Scaling can Benefit Generative Pre-training Algorithms
Recent years have seen significant advancements in foundation models through generative pre-training, yet algorithmic innovation in this space has largely stagnated around autoregressive models for discrete signals and diffusion models for continuous signals. This stagnation creates a bottleneck that prevents us from fully unlocking the potential of rich multi-modal data, which in turn limits the progress on multimodal intelligence. We argue that an inference-first perspective, which prioritizes scaling efficiency during inference time across sequence length and refinement steps, can inspire novel generative pre-training algorithms. Using Inductive Moment Matching (IMM) as a concrete example, we demonstrate how addressing limitations in diffusion models' inference process through targeted modifications yields a stable, single-stage algorithm that achieves superior sample quality with over an order of magnitude greater inference efficiency.
Can We Find Strong Lottery Tickets in Generative Models?
Yes. In this paper, we investigate strong lottery tickets in generative models, the subnetworks that achieve good generative performance without any weight update. Neural network pruning is considered the main cornerstone of model compression for reducing the costs of computation and memory. Unfortunately, pruning a generative model has not been extensively explored, and all existing pruning algorithms suffer from excessive weight-training costs, performance degradation, limited generalizability, or complicated training. To address these problems, we propose to find a strong lottery ticket via moment-matching scores. Our experimental results show that the discovered subnetwork can perform similarly or better than the trained dense model even when only 10% of the weights remain. To the best of our knowledge, we are the first to show the existence of strong lottery tickets in generative models and provide an algorithm to find it stably. Our code and supplementary materials are publicly available.
Best Prompts for Text-to-Image Models and How to Find Them
Recent progress in generative models, especially in text-guided diffusion models, has enabled the production of aesthetically-pleasing imagery resembling the works of professional human artists. However, one has to carefully compose the textual description, called the prompt, and augment it with a set of clarifying keywords. Since aesthetics are challenging to evaluate computationally, human feedback is needed to determine the optimal prompt formulation and keyword combination. In this paper, we present a human-in-the-loop approach to learning the most useful combination of prompt keywords using a genetic algorithm. We also show how such an approach can improve the aesthetic appeal of images depicting the same descriptions.
On the De-duplication of LAION-2B
Generative models, such as DALL-E, Midjourney, and Stable Diffusion, have societal implications that extend beyond the field of computer science. These models require large image databases like LAION-2B, which contain two billion images. At this scale, manual inspection is difficult and automated analysis is challenging. In addition, recent studies show that duplicated images pose copyright problems for models trained on LAION2B, which hinders its usability. This paper proposes an algorithmic chain that runs with modest compute, that compresses CLIP features to enable efficient duplicate detection, even for vast image volumes. Our approach demonstrates that roughly 700 million images, or about 30\%, of LAION-2B's images are likely duplicated. Our method also provides the histograms of duplication on this dataset, which we use to reveal more examples of verbatim copies by Stable Diffusion and further justify the approach. The current version of the de-duplicated set will be distributed online.
A Bayesian Flow Network Framework for Chemistry Tasks
In this work, we introduce ChemBFN, a language model that handles chemistry tasks based on Bayesian flow networks working on discrete data. A new accuracy schedule is proposed to improve the sampling quality by significantly reducing the reconstruction loss. We show evidence that our method is appropriate for generating molecules with satisfied diversity even when a smaller number of sampling steps is used. A classifier-free guidance method is adapted for conditional generation. It is also worthwhile to point out that after generative training, our model can be fine-tuned on regression and classification tasks with the state-of-the-art performance, which opens the gate of building all-in-one models in a single module style. Our model has been open sourced at https://github.com/Augus1999/bayesian-flow-network-for-chemistry.
DDMI: Domain-Agnostic Latent Diffusion Models for Synthesizing High-Quality Implicit Neural Representations
Recent studies have introduced a new class of generative models for synthesizing implicit neural representations (INRs) that capture arbitrary continuous signals in various domains. These models opened the door for domain-agnostic generative models, but they often fail to achieve high-quality generation. We observed that the existing methods generate the weights of neural networks to parameterize INRs and evaluate the network with fixed positional embeddings (PEs). Arguably, this architecture limits the expressive power of generative models and results in low-quality INR generation. To address this limitation, we propose Domain-agnostic Latent Diffusion Model for INRs (DDMI) that generates adaptive positional embeddings instead of neural networks' weights. Specifically, we develop a Discrete-to-continuous space Variational AutoEncoder (D2C-VAE), which seamlessly connects discrete data and the continuous signal functions in the shared latent space. Additionally, we introduce a novel conditioning mechanism for evaluating INRs with the hierarchically decomposed PEs to further enhance expressive power. Extensive experiments across four modalities, e.g., 2D images, 3D shapes, Neural Radiance Fields, and videos, with seven benchmark datasets, demonstrate the versatility of DDMI and its superior performance compared to the existing INR generative models.
Generative Teaching Networks: Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data
This paper investigates the intriguing question of whether we can create learning algorithms that automatically generate training data, learning environments, and curricula in order to help AI agents rapidly learn. We show that such algorithms are possible via Generative Teaching Networks (GTNs), a general approach that is, in theory, applicable to supervised, unsupervised, and reinforcement learning, although our experiments only focus on the supervised case. GTNs are deep neural networks that generate data and/or training environments that a learner (e.g. a freshly initialized neural network) trains on for a few SGD steps before being tested on a target task. We then differentiate through the entire learning process via meta-gradients to update the GTN parameters to improve performance on the target task. GTNs have the beneficial property that they can theoretically generate any type of data or training environment, making their potential impact large. This paper introduces GTNs, discusses their potential, and showcases that they can substantially accelerate learning. We also demonstrate a practical and exciting application of GTNs: accelerating the evaluation of candidate architectures for neural architecture search (NAS), which is rate-limited by such evaluations, enabling massive speed-ups in NAS. GTN-NAS improves the NAS state of the art, finding higher performing architectures when controlling for the search proposal mechanism. GTN-NAS also is competitive with the overall state of the art approaches, which achieve top performance while using orders of magnitude less computation than typical NAS methods. Speculating forward, GTNs may represent a first step toward the ambitious goal of algorithms that generate their own training data and, in doing so, open a variety of interesting new research questions and directions.
Text-to-Image Diffusion Models Cannot Count, and Prompt Refinement Cannot Help
Generative modeling is widely regarded as one of the most essential problems in today's AI community, with text-to-image generation having gained unprecedented real-world impacts. Among various approaches, diffusion models have achieved remarkable success and have become the de facto solution for text-to-image generation. However, despite their impressive performance, these models exhibit fundamental limitations in adhering to numerical constraints in user instructions, frequently generating images with an incorrect number of objects. While several prior works have mentioned this issue, a comprehensive and rigorous evaluation of this limitation remains lacking. To address this gap, we introduce T2ICountBench, a novel benchmark designed to rigorously evaluate the counting ability of state-of-the-art text-to-image diffusion models. Our benchmark encompasses a diverse set of generative models, including both open-source and private systems. It explicitly isolates counting performance from other capabilities, provides structured difficulty levels, and incorporates human evaluations to ensure high reliability. Extensive evaluations with T2ICountBench reveal that all state-of-the-art diffusion models fail to generate the correct number of objects, with accuracy dropping significantly as the number of objects increases. Additionally, an exploratory study on prompt refinement demonstrates that such simple interventions generally do not improve counting accuracy. Our findings highlight the inherent challenges in numerical understanding within diffusion models and point to promising directions for future improvements.
Scaling Laws for Generative Mixed-Modal Language Models
Generative language models define distributions over sequences of tokens that can represent essentially any combination of data modalities (e.g., any permutation of image tokens from VQ-VAEs, speech tokens from HuBERT, BPE tokens for language or code, and so on). To better understand the scaling properties of such mixed-modal models, we conducted over 250 experiments using seven different modalities and model sizes ranging from 8 million to 30 billion, trained on 5-100 billion tokens. We report new mixed-modal scaling laws that unify the contributions of individual modalities and the interactions between them. Specifically, we explicitly model the optimal synergy and competition due to data and model size as an additive term to previous uni-modal scaling laws. We also find four empirical phenomena observed during the training, such as emergent coordinate-ascent style training that naturally alternates between modalities, guidelines for selecting critical hyper-parameters, and connections between mixed-modal competition and training stability. Finally, we test our scaling law by training a 30B speech-text model, which significantly outperforms the corresponding unimodal models. Overall, our research provides valuable insights into the design and training of mixed-modal generative models, an important new class of unified models that have unique distributional properties.
MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis
In recent years, the use of Generative Adversarial Networks (GANs) has become very popular in generative image modeling. While style-based GAN architectures yield state-of-the-art results in high-fidelity image synthesis, computationally, they are highly complex. In our work, we focus on the performance optimization of style-based generative models. We analyze the most computationally hard parts of StyleGAN2, and propose changes in the generator network to make it possible to deploy style-based generative networks in the edge devices. We introduce MobileStyleGAN architecture, which has x3.5 fewer parameters and is x9.5 less computationally complex than StyleGAN2, while providing comparable quality.
One-Prompt-One-Story: Free-Lunch Consistent Text-to-Image Generation Using a Single Prompt
Text-to-image generation models can create high-quality images from input prompts. However, they struggle to support the consistent generation of identity-preserving requirements for storytelling. Existing approaches to this problem typically require extensive training in large datasets or additional modifications to the original model architectures. This limits their applicability across different domains and diverse diffusion model configurations. In this paper, we first observe the inherent capability of language models, coined context consistency, to comprehend identity through context with a single prompt. Drawing inspiration from the inherent context consistency, we propose a novel training-free method for consistent text-to-image (T2I) generation, termed "One-Prompt-One-Story" (1Prompt1Story). Our approach 1Prompt1Story concatenates all prompts into a single input for T2I diffusion models, initially preserving character identities. We then refine the generation process using two novel techniques: Singular-Value Reweighting and Identity-Preserving Cross-Attention, ensuring better alignment with the input description for each frame. In our experiments, we compare our method against various existing consistent T2I generation approaches to demonstrate its effectiveness through quantitative metrics and qualitative assessments. Code is available at https://github.com/byliutao/1Prompt1Story.
Who's Harry Potter? Approximate Unlearning in LLMs
Large language models (LLMs) are trained on massive internet corpora that often contain copyrighted content. This poses legal and ethical challenges for the developers and users of these models, as well as the original authors and publishers. In this paper, we propose a novel technique for unlearning a subset of the training data from a LLM, without having to retrain it from scratch. We evaluate our technique on the task of unlearning the Harry Potter books from the Llama2-7b model (a generative language model recently open-sourced by Meta). While the model took over 184K GPU-hours to pretrain, we show that in about 1 GPU hour of finetuning, we effectively erase the model's ability to generate or recall Harry Potter-related content, while its performance on common benchmarks (such as Winogrande, Hellaswag, arc, boolq and piqa) remains almost unaffected. We make our fine-tuned model publicly available on HuggingFace for community evaluation. To the best of our knowledge, this is the first paper to present an effective technique for unlearning in generative language models. Our technique consists of three main components: First, we use a reinforced model that is further trained on the target data to identify the tokens that are most related to the unlearning target, by comparing its logits with those of a baseline model. Second, we replace idiosyncratic expressions in the target data with generic counterparts, and leverage the model's own predictions to generate alternative labels for every token. These labels aim to approximate the next-token predictions of a model that has not been trained on the target data. Third, we finetune the model on these alternative labels, which effectively erases the original text from the model's memory whenever it is prompted with its context.
Exposing flaws of generative model evaluation metrics and their unfair treatment of diffusion models
We systematically study a wide variety of image-based generative models spanning semantically-diverse datasets to understand and improve the feature extractors and metrics used to evaluate them. Using best practices in psychophysics, we measure human perception of image realism for generated samples by conducting the largest experiment evaluating generative models to date, and find that no existing metric strongly correlates with human evaluations. Comparing to 16 modern metrics for evaluating the overall performance, fidelity, diversity, and memorization of generative models, we find that the state-of-the-art perceptual realism of diffusion models as judged by humans is not reflected in commonly reported metrics such as FID. This discrepancy is not explained by diversity in generated samples, though one cause is over-reliance on Inception-V3. We address these flaws through a study of alternative self-supervised feature extractors, find that the semantic information encoded by individual networks strongly depends on their training procedure, and show that DINOv2-ViT-L/14 allows for much richer evaluation of generative models. Next, we investigate data memorization, and find that generative models do memorize training examples on simple, smaller datasets like CIFAR10, but not necessarily on more complex datasets like ImageNet. However, our experiments show that current metrics do not properly detect memorization; none in the literature is able to separate memorization from other phenomena such as underfitting or mode shrinkage. To facilitate further development of generative models and their evaluation we release all generated image datasets, human evaluation data, and a modular library to compute 16 common metrics for 8 different encoders at https://github.com/layer6ai-labs/dgm-eval.
Circumventing Concept Erasure Methods For Text-to-Image Generative Models
Text-to-image generative models can produce photo-realistic images for an extremely broad range of concepts, and their usage has proliferated widely among the general public. On the flip side, these models have numerous drawbacks, including their potential to generate images featuring sexually explicit content, mirror artistic styles without permission, or even hallucinate (or deepfake) the likenesses of celebrities. Consequently, various methods have been proposed in order to "erase" sensitive concepts from text-to-image models. In this work, we examine five recently proposed concept erasure methods, and show that targeted concepts are not fully excised from any of these methods. Specifically, we leverage the existence of special learned word embeddings that can retrieve "erased" concepts from the sanitized models with no alterations to their weights. Our results highlight the brittleness of post hoc concept erasure methods, and call into question their use in the algorithmic toolkit for AI safety.
Diffusion Self-Distillation for Zero-Shot Customized Image Generation
Text-to-image diffusion models produce impressive results but are frustrating tools for artists who desire fine-grained control. For example, a common use case is to create images of a specific instance in novel contexts, i.e., "identity-preserving generation". This setting, along with many other tasks (e.g., relighting), is a natural fit for image+text-conditional generative models. However, there is insufficient high-quality paired data to train such a model directly. We propose Diffusion Self-Distillation, a method for using a pre-trained text-to-image model to generate its own dataset for text-conditioned image-to-image tasks. We first leverage a text-to-image diffusion model's in-context generation ability to create grids of images and curate a large paired dataset with the help of a Visual-Language Model. We then fine-tune the text-to-image model into a text+image-to-image model using the curated paired dataset. We demonstrate that Diffusion Self-Distillation outperforms existing zero-shot methods and is competitive with per-instance tuning techniques on a wide range of identity-preservation generation tasks, without requiring test-time optimization.
A Markov Categorical Framework for Language Modeling
Auto-regressive language models factorize sequence probabilities and are trained by minimizing the negative log-likelihood (NLL) objective. While empirically powerful, a deep theoretical understanding of why this simple objective yields such versatile representations remains elusive. This work introduces a unifying analytical framework using Markov Categories (MCs) to deconstruct the AR generation process and the NLL objective. We model the single-step generation map as a composition of Markov kernels in the category Stoch. This compositional view, when enriched with statistical divergences, allows us to dissect information flow and learned geometry. Our framework makes three main contributions. First, we provide a formal, information-theoretic rationale for the success of modern speculative decoding methods like EAGLE, quantifying the information surplus in hidden states that these methods exploit. Second, we formalize how NLL minimization forces the model to learn not just the next token, but the data's intrinsic conditional stochasticity, a process we analyze using categorical entropy. Third, and most centrally, we prove that NLL training acts as an implicit form of spectral contrastive learning. By analyzing the information geometry of the model's prediction head, we show that NLL implicitly forces the learned representation space to align with the eigenspectrum of a predictive similarity operator, thereby learning a geometrically structured space without explicit contrastive pairs. This compositional and information-geometric perspective reveals the deep structural principles underlying the effectiveness of modern LMs. Project Page: https://github.com/asiresearch/lm-theory
Edge-based sequential graph generation with recurrent neural networks
Graph generation with Machine Learning is an open problem with applications in various research fields. In this work, we propose to cast the generative process of a graph into a sequential one, relying on a node ordering procedure. We use this sequential process to design a novel generative model composed of two recurrent neural networks that learn to predict the edges of graphs: the first network generates one endpoint of each edge, while the second network generates the other endpoint conditioned on the state of the first. We test our approach extensively on five different datasets, comparing with two well-known baselines coming from graph literature, and two recurrent approaches, one of which holds state of the art performances. Evaluation is conducted considering quantitative and qualitative characteristics of the generated samples. Results show that our approach is able to yield novel, and unique graphs originating from very different distributions, while retaining structural properties very similar to those in the training sample. Under the proposed evaluation framework, our approach is able to reach performances comparable to the current state of the art on the graph generation task.
GraPE: A Generate-Plan-Edit Framework for Compositional T2I Synthesis
Text-to-image (T2I) generation has seen significant progress with diffusion models, enabling generation of photo-realistic images from text prompts. Despite this progress, existing methods still face challenges in following complex text prompts, especially those requiring compositional and multi-step reasoning. Given such complex instructions, SOTA models often make mistakes in faithfully modeling object attributes, and relationships among them. In this work, we present an alternate paradigm for T2I synthesis, decomposing the task of complex multi-step generation into three steps, (a) Generate: we first generate an image using existing diffusion models (b) Plan: we make use of Multi-Modal LLMs (MLLMs) to identify the mistakes in the generated image expressed in terms of individual objects and their properties, and produce a sequence of corrective steps required in the form of an edit-plan. (c) Edit: we make use of an existing text-guided image editing models to sequentially execute our edit-plan over the generated image to get the desired image which is faithful to the original instruction. Our approach derives its strength from the fact that it is modular in nature, is training free, and can be applied over any combination of image generation and editing models. As an added contribution, we also develop a model capable of compositional editing, which further helps improve the overall accuracy of our proposed approach. Our method flexibly trades inference time compute with performance on compositional text prompts. We perform extensive experimental evaluation across 3 benchmarks and 10 T2I models including DALLE-3 and the latest -- SD-3.5-Large. Our approach not only improves the performance of the SOTA models, by upto 3 points, it also reduces the performance gap between weaker and stronger models. https://dair-iitd.github.io/GraPE/{https://dair-iitd.github.io/GraPE/}
LazyDiT: Lazy Learning for the Acceleration of Diffusion Transformers
Diffusion Transformers have emerged as the preeminent models for a wide array of generative tasks, demonstrating superior performance and efficacy across various applications. The promising results come at the cost of slow inference, as each denoising step requires running the whole transformer model with a large amount of parameters. In this paper, we show that performing the full computation of the model at each diffusion step is unnecessary, as some computations can be skipped by lazily reusing the results of previous steps. Furthermore, we show that the lower bound of similarity between outputs at consecutive steps is notably high, and this similarity can be linearly approximated using the inputs. To verify our demonstrations, we propose the LazyDiT, a lazy learning framework that efficiently leverages cached results from earlier steps to skip redundant computations. Specifically, we incorporate lazy learning layers into the model, effectively trained to maximize laziness, enabling dynamic skipping of redundant computations. Experimental results show that LazyDiT outperforms the DDIM sampler across multiple diffusion transformer models at various resolutions. Furthermore, we implement our method on mobile devices, achieving better performance than DDIM with similar latency. Code: https://github.com/shawnricecake/lazydit
Personalized Residuals for Concept-Driven Text-to-Image Generation
We present personalized residuals and localized attention-guided sampling for efficient concept-driven generation using text-to-image diffusion models. Our method first represents concepts by freezing the weights of a pretrained text-conditioned diffusion model and learning low-rank residuals for a small subset of the model's layers. The residual-based approach then directly enables application of our proposed sampling technique, which applies the learned residuals only in areas where the concept is localized via cross-attention and applies the original diffusion weights in all other regions. Localized sampling therefore combines the learned identity of the concept with the existing generative prior of the underlying diffusion model. We show that personalized residuals effectively capture the identity of a concept in ~3 minutes on a single GPU without the use of regularization images and with fewer parameters than previous models, and localized sampling allows using the original model as strong prior for large parts of the image.