new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Jun 6

Expanding continual few-shot learning benchmarks to include recognition of specific instances

Continual learning and few-shot learning are important frontiers in progress towards broader Machine Learning (ML) capabilities. There is a growing body of work in both, but few works combining the two. One exception is the Continual few-shot Learning (CFSL) framework of Antoniou et al. arXiv:2004.11967. In this study, we extend CFSL in two ways that capture a broader range of challenges, important for intelligent agent behaviour in real-world conditions. First, we modify CFSL to make it more comparable to standard continual learning experiments, where usually a much larger number of classes are presented. Second, we introduce an 'instance test' which requires recognition of specific instances of classes -- a capability of animal cognition that is usually neglected in ML. For an initial exploration of ML model performance under these conditions, we selected representative baseline models from the original CFSL work and added a model variant with replay. As expected, learning more classes is more difficult than the original CFSL experiments, and interestingly, the way in which image instances and classes are presented affects classification performance. Surprisingly, accuracy in the baseline instance test is comparable to other classification tasks, but poor given significant occlusion and noise. The use of replay for consolidation improves performance substantially for both types of tasks, but particularly the instance test.

On the Limitations of Temperature Scaling for Distributions with Overlaps

Despite the impressive generalization capabilities of deep neural networks, they have been repeatedly shown to be overconfident when they are wrong. Fixing this issue is known as model calibration, and has consequently received much attention in the form of modified training schemes and post-training calibration procedures such as temperature scaling. While temperature scaling is frequently used because of its simplicity, it is often outperformed by modified training schemes. In this work, we identify a specific bottleneck for the performance of temperature scaling. We show that for empirical risk minimizers for a general set of distributions in which the supports of classes have overlaps, the performance of temperature scaling degrades with the amount of overlap between classes, and asymptotically becomes no better than random when there are a large number of classes. On the other hand, we prove that optimizing a modified form of the empirical risk induced by the Mixup data augmentation technique can in fact lead to reasonably good calibration performance, showing that training-time calibration may be necessary in some situations. We also verify that our theoretical results reflect practice by showing that Mixup significantly outperforms empirical risk minimization (with respect to multiple calibration metrics) on image classification benchmarks with class overlaps introduced in the form of label noise.

Galaxy Spectra neural Network (GaSNet). II. Using Deep Learning for Spectral Classification and Redshift Predictions

Large sky spectroscopic surveys have reached the scale of photometric surveys in terms of sample sizes and data complexity. These huge datasets require efficient, accurate, and flexible automated tools for data analysis and science exploitation. We present the Galaxy Spectra Network/GaSNet-II, a supervised multi-network deep learning tool for spectra classification and redshift prediction. GaSNet-II can be trained to identify a customized number of classes and optimize the redshift predictions for classified objects in each of them. It also provides redshift errors, using a network-of-networks that reproduces a Monte Carlo test on each spectrum, by randomizing their weight initialization. As a demonstration of the capability of the deep learning pipeline, we use 260k Sloan Digital Sky Survey spectra from Data Release 16, separated into 13 classes including 140k galactic, and 120k extragalactic objects. GaSNet-II achieves 92.4% average classification accuracy over the 13 classes (larger than 90% for the majority of them), and an average redshift error of approximately 0.23% for galaxies and 2.1% for quasars. We further train/test the same pipeline to classify spectra and predict redshifts for a sample of 200k 4MOST mock spectra and 21k publicly released DESI spectra. On 4MOST mock data, we reach 93.4% accuracy in 10-class classification and an average redshift error of 0.55% for galaxies and 0.3% for active galactic nuclei. On DESI data, we reach 96% accuracy in (star/galaxy/quasar only) classification and an average redshift error of 2.8% for galaxies and 4.8% for quasars, despite the small sample size available. GaSNet-II can process ~40k spectra in less than one minute, on a normal Desktop GPU. This makes the pipeline particularly suitable for real-time analyses of Stage-IV survey observations and an ideal tool for feedback loops aimed at night-by-night survey strategy optimization.

Open-vocabulary Object Detection via Vision and Language Knowledge Distillation

We aim at advancing open-vocabulary object detection, which detects objects described by arbitrary text inputs. The fundamental challenge is the availability of training data. It is costly to further scale up the number of classes contained in existing object detection datasets. To overcome this challenge, we propose ViLD, a training method via Vision and Language knowledge Distillation. Our method distills the knowledge from a pretrained open-vocabulary image classification model (teacher) into a two-stage detector (student). Specifically, we use the teacher model to encode category texts and image regions of object proposals. Then we train a student detector, whose region embeddings of detected boxes are aligned with the text and image embeddings inferred by the teacher. We benchmark on LVIS by holding out all rare categories as novel categories that are not seen during training. ViLD obtains 16.1 mask AP_r with a ResNet-50 backbone, even outperforming the supervised counterpart by 3.8. When trained with a stronger teacher model ALIGN, ViLD achieves 26.3 AP_r. The model can directly transfer to other datasets without finetuning, achieving 72.2 AP_{50} on PASCAL VOC, 36.6 AP on COCO and 11.8 AP on Objects365. On COCO, ViLD outperforms the previous state-of-the-art by 4.8 on novel AP and 11.4 on overall AP. Code and demo are open-sourced at https://github.com/tensorflow/tpu/tree/master/models/official/detection/projects/vild.

Dual-Encoders for Extreme Multi-Label Classification

Dual-encoder (DE) models are widely used in retrieval tasks, most commonly studied on open QA benchmarks that are often characterized by multi-class and limited training data. In contrast, their performance in multi-label and data-rich retrieval settings like extreme multi-label classification (XMC), remains under-explored. Current empirical evidence indicates that DE models fall significantly short on XMC benchmarks, where SOTA methods linearly scale the number of learnable parameters with the total number of classes (documents in the corpus) by employing per-class classification head. To this end, we first study and highlight that existing multi-label contrastive training losses are not appropriate for training DE models on XMC tasks. We propose decoupled softmax loss - a simple modification to the InfoNCE loss - that overcomes the limitations of existing contrastive losses. We further extend our loss design to a soft top-k operator-based loss which is tailored to optimize top-k prediction performance. When trained with our proposed loss functions, standard DE models alone can match or outperform SOTA methods by up to 2% at Precision@1 even on the largest XMC datasets while being 20x smaller in terms of the number of trainable parameters. This leads to more parameter-efficient and universally applicable solutions for retrieval tasks. Our code and models are publicly available at https://github.com/nilesh2797/dexml.

CaBaGe: Data-Free Model Extraction using ClAss BAlanced Generator Ensemble

Machine Learning as a Service (MLaaS) is often provided as a pay-per-query, black-box system to clients. Such a black-box approach not only hinders open replication, validation, and interpretation of model results, but also makes it harder for white-hat researchers to identify vulnerabilities in the MLaaS systems. Model extraction is a promising technique to address these challenges by reverse-engineering black-box models. Since training data is typically unavailable for MLaaS models, this paper focuses on the realistic version of it: data-free model extraction. We propose a data-free model extraction approach, CaBaGe, to achieve higher model extraction accuracy with a small number of queries. Our innovations include (1) a novel experience replay for focusing on difficult training samples; (2) an ensemble of generators for steadily producing diverse synthetic data; and (3) a selective filtering process for querying the victim model with harder, more balanced samples. In addition, we create a more realistic setting, for the first time, where the attacker has no knowledge of the number of classes in the victim training data, and create a solution to learn the number of classes on the fly. Our evaluation shows that CaBaGe outperforms existing techniques on seven datasets -- MNIST, FMNIST, SVHN, CIFAR-10, CIFAR-100, ImageNet-subset, and Tiny ImageNet -- with an accuracy improvement of the extracted models by up to 43.13%. Furthermore, the number of queries required to extract a clone model matching the final accuracy of prior work is reduced by up to 75.7%.

GraphPrompter: Multi-stage Adaptive Prompt Optimization for Graph In-Context Learning

Graph In-Context Learning, with the ability to adapt pre-trained graph models to novel and diverse downstream graphs without updating any parameters, has gained much attention in the community. The key to graph in-context learning is to perform downstream graphs conditioned on chosen prompt examples. Existing methods randomly select subgraphs or edges as prompts, leading to noisy graph prompts and inferior model performance. Additionally, due to the gap between pre-training and testing graphs, when the number of classes in the testing graphs is much greater than that in the training, the in-context learning ability will also significantly deteriorate. To tackle the aforementioned challenges, we develop a multi-stage adaptive prompt optimization method GraphPrompter, which optimizes the entire process of generating, selecting, and using graph prompts for better in-context learning capabilities. Firstly, Prompt Generator introduces a reconstruction layer to highlight the most informative edges and reduce irrelevant noise for graph prompt construction. Furthermore, in the selection stage, Prompt Selector employs the k-nearest neighbors algorithm and pre-trained selection layers to dynamically choose appropriate samples and minimize the influence of irrelevant prompts. Finally, we leverage a Prompt Augmenter with a cache replacement strategy to enhance the generalization capability of the pre-trained model on new datasets. Extensive experiments show that GraphPrompter effectively enhances the in-context learning ability of graph models. On average across all the settings, our approach surpasses the state-of-the-art baselines by over 8%. Our code is released at https://github.com/karin0018/GraphPrompter.

TuneVLSeg: Prompt Tuning Benchmark for Vision-Language Segmentation Models

Vision-Language Models (VLMs) have shown impressive performance in vision tasks, but adapting them to new domains often requires expensive fine-tuning. Prompt tuning techniques, including textual, visual, and multimodal prompting, offer efficient alternatives by leveraging learnable prompts. However, their application to Vision-Language Segmentation Models (VLSMs) and evaluation under significant domain shifts remain unexplored. This work presents an open-source benchmarking framework, TuneVLSeg, to integrate various unimodal and multimodal prompt tuning techniques into VLSMs, making prompt tuning usable for downstream segmentation datasets with any number of classes. TuneVLSeg includes 6 prompt tuning strategies on various prompt depths used in 2 VLSMs totaling of 8 different combinations. We test various prompt tuning on 8 diverse medical datasets, including 3 radiology datasets (breast tumor, echocardiograph, chest X-ray pathologies) and 5 non-radiology datasets (polyp, ulcer, skin cancer), and two natural domain segmentation datasets. Our study found that textual prompt tuning struggles under significant domain shifts, from natural-domain images to medical data. Furthermore, visual prompt tuning, with fewer hyperparameters than multimodal prompt tuning, often achieves performance competitive to multimodal approaches, making it a valuable first attempt. Our work advances the understanding and applicability of different prompt-tuning techniques for robust domain-specific segmentation. The source code is available at https://github.com/naamiinepal/tunevlseg.

Automatic Perturbation Analysis for Scalable Certified Robustness and Beyond

Linear relaxation based perturbation analysis (LiRPA) for neural networks, which computes provable linear bounds of output neurons given a certain amount of input perturbation, has become a core component in robustness verification and certified defense. The majority of LiRPA-based methods focus on simple feed-forward networks and need particular manual derivations and implementations when extended to other architectures. In this paper, we develop an automatic framework to enable perturbation analysis on any neural network structures, by generalizing existing LiRPA algorithms such as CROWN to operate on general computational graphs. The flexibility, differentiability and ease of use of our framework allow us to obtain state-of-the-art results on LiRPA based certified defense on fairly complicated networks like DenseNet, ResNeXt and Transformer that are not supported by prior works. Our framework also enables loss fusion, a technique that significantly reduces the computational complexity of LiRPA for certified defense. For the first time, we demonstrate LiRPA based certified defense on Tiny ImageNet and Downscaled ImageNet where previous approaches cannot scale to due to the relatively large number of classes. Our work also yields an open-source library for the community to apply LiRPA to areas beyond certified defense without much LiRPA expertise, e.g., we create a neural network with a probably flat optimization landscape by applying LiRPA to network parameters. Our opensource library is available at https://github.com/KaidiXu/auto_LiRPA.

Remote Sensing Image Scene Classification: Benchmark and State of the Art

Remote sensing image scene classification plays an important role in a wide range of applications and hence has been receiving remarkable attention. During the past years, significant efforts have been made to develop various datasets or present a variety of approaches for scene classification from remote sensing images. However, a systematic review of the literature concerning datasets and methods for scene classification is still lacking. In addition, almost all existing datasets have a number of limitations, including the small scale of scene classes and the image numbers, the lack of image variations and diversity, and the saturation of accuracy. These limitations severely limit the development of new approaches especially deep learning-based methods. This paper first provides a comprehensive review of the recent progress. Then, we propose a large-scale dataset, termed "NWPU-RESISC45", which is a publicly available benchmark for REmote Sensing Image Scene Classification (RESISC), created by Northwestern Polytechnical University (NWPU). This dataset contains 31,500 images, covering 45 scene classes with 700 images in each class. The proposed NWPU-RESISC45 (i) is large-scale on the scene classes and the total image number, (ii) holds big variations in translation, spatial resolution, viewpoint, object pose, illumination, background, and occlusion, and (iii) has high within-class diversity and between-class similarity. The creation of this dataset will enable the community to develop and evaluate various data-driven algorithms. Finally, several representative methods are evaluated using the proposed dataset and the results are reported as a useful baseline for future research.

On the Provable Advantage of Unsupervised Pretraining

Unsupervised pretraining, which learns a useful representation using a large amount of unlabeled data to facilitate the learning of downstream tasks, is a critical component of modern large-scale machine learning systems. Despite its tremendous empirical success, the rigorous theoretical understanding of why unsupervised pretraining generally helps remains rather limited -- most existing results are restricted to particular methods or approaches for unsupervised pretraining with specialized structural assumptions. This paper studies a generic framework, where the unsupervised representation learning task is specified by an abstract class of latent variable models Phi and the downstream task is specified by a class of prediction functions Psi. We consider a natural approach of using Maximum Likelihood Estimation (MLE) for unsupervised pretraining and Empirical Risk Minimization (ERM) for learning downstream tasks. We prove that, under a mild ''informative'' condition, our algorithm achieves an excess risk of mathcal{O}(mathcal{C_Phi/m} + mathcal{C_Psi/n}) for downstream tasks, where C_Phi, C_Psi are complexity measures of function classes Phi, Psi, and m, n are the number of unlabeled and labeled data respectively. Comparing to the baseline of mathcal{O}(mathcal{C_{Phi circ Psi}/n}) achieved by performing supervised learning using only the labeled data, our result rigorously shows the benefit of unsupervised pretraining when m gg n and C_{Phicirc Psi} > C_Psi. This paper further shows that our generic framework covers a wide range of approaches for unsupervised pretraining, including factor models, Gaussian mixture models, and contrastive learning.

A Practical Approach to Novel Class Discovery in Tabular Data

The problem of Novel Class Discovery (NCD) consists in extracting knowledge from a labeled set of known classes to accurately partition an unlabeled set of novel classes. While NCD has recently received a lot of attention from the community, it is often solved on computer vision problems and under unrealistic conditions. In particular, the number of novel classes is usually assumed to be known in advance, and their labels are sometimes used to tune hyperparameters. Methods that rely on these assumptions are not applicable in real-world scenarios. In this work, we focus on solving NCD in tabular data when no prior knowledge of the novel classes is available. To this end, we propose to tune the hyperparameters of NCD methods by adapting the k-fold cross-validation process and hiding some of the known classes in each fold. Since we have found that methods with too many hyperparameters are likely to overfit these hidden classes, we define a simple deep NCD model. This method is composed of only the essential elements necessary for the NCD problem and performs impressively well under realistic conditions. Furthermore, we find that the latent space of this method can be used to reliably estimate the number of novel classes. Additionally, we adapt two unsupervised clustering algorithms (k-means and Spectral Clustering) to leverage the knowledge of the known classes. Extensive experiments are conducted on 7 tabular datasets and demonstrate the effectiveness of the proposed method and hyperparameter tuning process, and show that the NCD problem can be solved without relying on knowledge from the novel classes.

UMD: Unsupervised Model Detection for X2X Backdoor Attacks

Backdoor (Trojan) attack is a common threat to deep neural networks, where samples from one or more source classes embedded with a backdoor trigger will be misclassified to adversarial target classes. Existing methods for detecting whether a classifier is backdoor attacked are mostly designed for attacks with a single adversarial target (e.g., all-to-one attack). To the best of our knowledge, without supervision, no existing methods can effectively address the more general X2X attack with an arbitrary number of source classes, each paired with an arbitrary target class. In this paper, we propose UMD, the first Unsupervised Model Detection method that effectively detects X2X backdoor attacks via a joint inference of the adversarial (source, target) class pairs. In particular, we first define a novel transferability statistic to measure and select a subset of putative backdoor class pairs based on a proposed clustering approach. Then, these selected class pairs are jointly assessed based on an aggregation of their reverse-engineered trigger size for detection inference, using a robust and unsupervised anomaly detector we proposed. We conduct comprehensive evaluations on CIFAR-10, GTSRB, and Imagenette dataset, and show that our unsupervised UMD outperforms SOTA detectors (even with supervision) by 17%, 4%, and 8%, respectively, in terms of the detection accuracy against diverse X2X attacks. We also show the strong detection performance of UMD against several strong adaptive attacks.

Understanding the Neutron Star Population with the SKA

Since their discovery in the late 1960's the population of known neutron stars (NSs) has grown to ~2500. The last five decades of observations have yielded many surprises and demonstrated that the observational properties of NSs are remarkably diverse. The surveys that will be performed with SKA (the Square Kilometre Array) will produce a further tenfold increase in the number of Galactic NSs known. Moreover, the SKA's broad spectral coverage, sub-arraying and multi-beaming capabilities will allow us to characterise these sources with unprecedented efficiency, in turn enabling a giant leap in the understanding of their properties. Here we review the NS population and outline our strategies for studying each of the growing number of diverse classes that are populating the "NS zoo". Some of the main scientific questions that will be addressed by the much larger statistical samples and vastly improved timing efficiency provided by SKA include: (i) the spin period and spin-down rate distributions (and thus magnetic fields) at birth, and the associated information about the SNe wherein they are formed; (ii) the radio pulsar-magnetar connection; (iii) the link between normal radio pulsars, intermittent pulsars and rotating radio transients; (iv) the slowest possible spin period for a radio pulsar (revealing the conditions at the pulsar death-line); (v) proper motions of pulsars (revealing SN kick physics); (vi) the mass distribution of NSs (vii) the fastest possible spin period for a recycled pulsar (constraining magnetosphere-accretion disc interactions, gravitational wave radiation and the equation-of-state); (viii) the origin of high eccentricity millisecond pulsars (MSPs); (ix) the formation channels for recently identified triple systems; and finally (x) how isolated MSPs are formed. We expect that the SKA will break new ground unveiling exotic systems that will challenge... [abridged]

The Z-loss: a shift and scale invariant classification loss belonging to the Spherical Family

Despite being the standard loss function to train multi-class neural networks, the log-softmax has two potential limitations. First, it involves computations that scale linearly with the number of output classes, which can restrict the size of problems we are able to tackle with current hardware. Second, it remains unclear how close it matches the task loss such as the top-k error rate or other non-differentiable evaluation metrics which we aim to optimize ultimately. In this paper, we introduce an alternative classification loss function, the Z-loss, which is designed to address these two issues. Unlike the log-softmax, it has the desirable property of belonging to the spherical loss family (Vincent et al., 2015), a class of loss functions for which training can be performed very efficiently with a complexity independent of the number of output classes. We show experimentally that it significantly outperforms the other spherical loss functions previously investigated. Furthermore, we show on a word language modeling task that it also outperforms the log-softmax with respect to certain ranking scores, such as top-k scores, suggesting that the Z-loss has the flexibility to better match the task loss. These qualities thus makes the Z-loss an appealing candidate to train very efficiently large output networks such as word-language models or other extreme classification problems. On the One Billion Word (Chelba et al., 2014) dataset, we are able to train a model with the Z-loss 40 times faster than the log-softmax and more than 4 times faster than the hierarchical softmax.

Pointer Networks

We introduce a new neural architecture to learn the conditional probability of an output sequence with elements that are discrete tokens corresponding to positions in an input sequence. Such problems cannot be trivially addressed by existent approaches such as sequence-to-sequence and Neural Turing Machines, because the number of target classes in each step of the output depends on the length of the input, which is variable. Problems such as sorting variable sized sequences, and various combinatorial optimization problems belong to this class. Our model solves the problem of variable size output dictionaries using a recently proposed mechanism of neural attention. It differs from the previous attention attempts in that, instead of using attention to blend hidden units of an encoder to a context vector at each decoder step, it uses attention as a pointer to select a member of the input sequence as the output. We call this architecture a Pointer Net (Ptr-Net). We show Ptr-Nets can be used to learn approximate solutions to three challenging geometric problems -- finding planar convex hulls, computing Delaunay triangulations, and the planar Travelling Salesman Problem -- using training examples alone. Ptr-Nets not only improve over sequence-to-sequence with input attention, but also allow us to generalize to variable size output dictionaries. We show that the learnt models generalize beyond the maximum lengths they were trained on. We hope our results on these tasks will encourage a broader exploration of neural learning for discrete problems.

ProtoGCD: Unified and Unbiased Prototype Learning for Generalized Category Discovery

Generalized category discovery (GCD) is a pragmatic but underexplored problem, which requires models to automatically cluster and discover novel categories by leveraging the labeled samples from old classes. The challenge is that unlabeled data contain both old and new classes. Early works leveraging pseudo-labeling with parametric classifiers handle old and new classes separately, which brings about imbalanced accuracy between them. Recent methods employing contrastive learning neglect potential positives and are decoupled from the clustering objective, leading to biased representations and sub-optimal results. To address these issues, we introduce a unified and unbiased prototype learning framework, namely ProtoGCD, wherein old and new classes are modeled with joint prototypes and unified learning objectives, {enabling unified modeling between old and new classes}. Specifically, we propose a dual-level adaptive pseudo-labeling mechanism to mitigate confirmation bias, together with two regularization terms to collectively help learn more suitable representations for GCD. Moreover, for practical considerations, we devise a criterion to estimate the number of new classes. Furthermore, we extend ProtoGCD to detect unseen outliers, achieving task-level unification. Comprehensive experiments show that ProtoGCD achieves state-of-the-art performance on both generic and fine-grained datasets. The code is available at https://github.com/mashijie1028/ProtoGCD.

PEEKABOO: Hiding parts of an image for unsupervised object localization

Localizing objects in an unsupervised manner poses significant challenges due to the absence of key visual information such as the appearance, type and number of objects, as well as the lack of labeled object classes typically available in supervised settings. While recent approaches to unsupervised object localization have demonstrated significant progress by leveraging self-supervised visual representations, they often require computationally intensive training processes, resulting in high resource demands in terms of computation, learnable parameters, and data. They also lack explicit modeling of visual context, potentially limiting their accuracy in object localization. To tackle these challenges, we propose a single-stage learning framework, dubbed PEEKABOO, for unsupervised object localization by learning context-based representations at both the pixel- and shape-level of the localized objects through image masking. The key idea is to selectively hide parts of an image and leverage the remaining image information to infer the location of objects without explicit supervision. The experimental results, both quantitative and qualitative, across various benchmark datasets, demonstrate the simplicity, effectiveness and competitive performance of our approach compared to state-of-the-art methods in both single object discovery and unsupervised salient object detection tasks. Code and pre-trained models are available at: https://github.com/hasibzunair/peekaboo

Understanding the Role of Invariance in Transfer Learning

Transfer learning is a powerful technique for knowledge-sharing between different tasks. Recent work has found that the representations of models with certain invariances, such as to adversarial input perturbations, achieve higher performance on downstream tasks. These findings suggest that invariance may be an important property in the context of transfer learning. However, the relationship of invariance with transfer performance is not fully understood yet and a number of questions remain. For instance, how important is invariance compared to other factors of the pretraining task? How transferable is learned invariance? In this work, we systematically investigate the importance of representational invariance for transfer learning, as well as how it interacts with other parameters during pretraining. To do so, we introduce a family of synthetic datasets that allow us to precisely control factors of variation both in training and test data. Using these datasets, we a) show that for learning representations with high transfer performance, invariance to the right transformations is as, or often more, important than most other factors such as the number of training samples, the model architecture and the identity of the pretraining classes, b) show conditions under which invariance can harm the ability to transfer representations and c) explore how transferable invariance is between tasks. The code is available at https://github.com/tillspeicher/representation-invariance-transfer.

Persistent homology of the cosmic web. I: Hierarchical topology in $Λ$CDM cosmologies

Using a set of LambdaCDM simulations of cosmic structure formation, we study the evolving connectivity and changing topological structure of the cosmic web using state-of-the-art tools of multiscale topological data analysis (TDA). We follow the development of the cosmic web topology in terms of the evolution of Betti number curves and feature persistence diagrams of the three (topological) classes of structural features: matter concentrations, filaments and tunnels, and voids. The Betti curves specify the prominence of features as a function of density level, and their evolution with cosmic epoch reflects the changing network connections between these structural features. The persistence diagrams quantify the longevity and stability of topological features. In this study we establish, for the first time, the link between persistence diagrams, the features they show, and the gravitationally driven cosmic structure formation process. By following the diagrams' development over cosmic time, the link between the multiscale topology of the cosmic web and the hierarchical buildup of cosmic structure is established. The sharp apexes in the diagrams are intimately related to key transitions in the structure formation process. The apex in the matter concentration diagrams coincides with the density level at which, typically, they detach from the Hubble expansion and begin to collapse. At that level many individual islands merge to form the network of the cosmic web and a large number of filaments and tunnels emerge to establish its connecting bridges. The location trends of the apex possess a self-similar character that can be related to the cosmic web's hierarchical buildup. We find that persistence diagrams provide a significantly higher and more profound level of information on the structure formation process than more global summary statistics like Euler characteristic or Betti numbers.

One-shot recognition of any material anywhere using contrastive learning with physics-based rendering

Visual recognition of materials and their states is essential for understanding most aspects of the world, from determining whether food is cooked, metal is rusted, or a chemical reaction has occurred. However, current image recognition methods are limited to specific classes and properties and can't handle the vast number of material states in the world. To address this, we present MatSim: the first dataset and benchmark for computer vision-based recognition of similarities and transitions between materials and textures, focusing on identifying any material under any conditions using one or a few examples. The dataset contains synthetic and natural images. The synthetic images were rendered using giant collections of textures, objects, and environments generated by computer graphics artists. We use mixtures and gradual transitions between materials to allow the system to learn cases with smooth transitions between states (like gradually cooked food). We also render images with materials inside transparent containers to support beverage and chemistry lab use cases. We use this dataset to train a siamese net that identifies the same material in different objects, mixtures, and environments. The descriptor generated by this net can be used to identify the states of materials and their subclasses using a single image. We also present the first few-shot material recognition benchmark with images from a wide range of fields, including the state of foods and drinks, types of grounds, and many other use cases. We show that a net trained on the MatSim synthetic dataset outperforms state-of-the-art models like Clip on the benchmark and also achieves good results on other unsupervised material classification tasks.

ProxyDet: Synthesizing Proxy Novel Classes via Classwise Mixup for Open-Vocabulary Object Detection

Open-vocabulary object detection (OVOD) aims to recognize novel objects whose categories are not included in the training set. In order to classify these unseen classes during training, many OVOD frameworks leverage the zero-shot capability of largely pretrained vision and language models, such as CLIP. To further improve generalization on the unseen novel classes, several approaches proposed to additionally train with pseudo region labeling on the external data sources that contain a substantial number of novel category labels beyond the existing training data. Albeit its simplicity, these pseudo-labeling methods still exhibit limited improvement with regard to the truly unseen novel classes that were not pseudo-labeled. In this paper, we present a novel, yet simple technique that helps generalization on the overall distribution of novel classes. Inspired by our observation that numerous novel classes reside within the convex hull constructed by the base (seen) classes in the CLIP embedding space, we propose to synthesize proxy-novel classes approximating novel classes via linear mixup between a pair of base classes. By training our detector with these synthetic proxy-novel classes, we effectively explore the embedding space of novel classes. The experimental results on various OVOD benchmarks such as LVIS and COCO demonstrate superior performance on novel classes compared to the other state-of-the-art methods. Code is available at https://github.com/clovaai/ProxyDet.

Zero-shot and Few-shot Learning with Knowledge Graphs: A Comprehensive Survey

Machine learning especially deep neural networks have achieved great success but many of them often rely on a number of labeled samples for supervision. As sufficient labeled training data are not always ready due to e.g., continuously emerging prediction targets and costly sample annotation in real world applications, machine learning with sample shortage is now being widely investigated. Among all these studies, many prefer to utilize auxiliary information including those in the form of Knowledge Graph (KG) to reduce the reliance on labeled samples. In this survey, we have comprehensively reviewed over 90 papers about KG-aware research for two major sample shortage settings -- zero-shot learning (ZSL) where some classes to be predicted have no labeled samples, and few-shot learning (FSL) where some classes to be predicted have only a small number of labeled samples that are available. We first introduce KGs used in ZSL and FSL as well as their construction methods, and then systematically categorize and summarize KG-aware ZSL and FSL methods, dividing them into different paradigms such as the mapping-based, the data augmentation, the propagation-based and the optimization-based. We next present different applications, including not only KG augmented prediction tasks such as image classification, question answering, text classification and knowledge extraction, but also KG completion tasks, and some typical evaluation resources for each task. We eventually discuss some challenges and open problems from different perspectives.

GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models

Recent advancements in Large Language Models (LLMs) have sparked interest in their formal reasoning capabilities, particularly in mathematics. The GSM8K benchmark is widely used to assess the mathematical reasoning of models on grade-school-level questions. While the performance of LLMs on GSM8K has significantly improved in recent years, it remains unclear whether their mathematical reasoning capabilities have genuinely advanced, raising questions about the reliability of the reported metrics. To address these concerns, we conduct a large-scale study on several SOTA open and closed models. To overcome the limitations of existing evaluations, we introduce GSM-Symbolic, an improved benchmark created from symbolic templates that allow for the generation of a diverse set of questions. GSM-Symbolic enables more controllable evaluations, providing key insights and more reliable metrics for measuring the reasoning capabilities of models.Our findings reveal that LLMs exhibit noticeable variance when responding to different instantiations of the same question. Specifically, the performance of all models declines when only the numerical values in the question are altered in the GSM-Symbolic benchmark. Furthermore, we investigate the fragility of mathematical reasoning in these models and show that their performance significantly deteriorates as the number of clauses in a question increases. We hypothesize that this decline is because current LLMs cannot perform genuine logical reasoning; they replicate reasoning steps from their training data. Adding a single clause that seems relevant to the question causes significant performance drops (up to 65%) across all state-of-the-art models, even though the clause doesn't contribute to the reasoning chain needed for the final answer. Overall, our work offers a more nuanced understanding of LLMs' capabilities and limitations in mathematical reasoning.

Data Distributional Properties Drive Emergent In-Context Learning in Transformers

Large transformer-based models are able to perform in-context few-shot learning, without being explicitly trained for it. This observation raises the question: what aspects of the training regime lead to this emergent behavior? Here, we show that this behavior is driven by the distributions of the training data itself. In-context learning emerges when the training data exhibits particular distributional properties such as burstiness (items appear in clusters rather than being uniformly distributed over time) and having large numbers of rarely occurring classes. In-context learning also emerges more strongly when item meanings or interpretations are dynamic rather than fixed. These properties are exemplified by natural language, but are also inherent to naturalistic data in a wide range of other domains. They also depart significantly from the uniform, i.i.d. training distributions typically used for standard supervised learning. In our initial experiments, we found that in-context learning traded off against more conventional weight-based learning, and models were unable to achieve both simultaneously. However, our later experiments uncovered that the two modes of learning could co-exist in a single model when it was trained on data following a skewed Zipfian distribution -- another common property of naturalistic data, including language. In further experiments, we found that naturalistic data distributions were only able to elicit in-context learning in transformers, and not in recurrent models. In sum, our findings indicate how the transformer architecture works together with particular properties of the training data to drive the intriguing emergent in-context learning behaviour of large language models, and how future work might encourage both in-context and in-weights learning in domains beyond language.

Towards Mitigating Perceived Unfairness in Contracts from a Non-Legal Stakeholder's Perspective

Commercial contracts are known to be a valuable source for deriving project-specific requirements. However, contract negotiations mainly occur among the legal counsel of the parties involved. The participation of non-legal stakeholders, including requirement analysts, engineers, and solution architects, whose primary responsibility lies in ensuring the seamless implementation of contractual terms, is often indirect and inadequate. Consequently, a significant number of sentences in contractual clauses, though legally accurate, can appear unfair from an implementation perspective to non-legal stakeholders. This perception poses a problem since requirements indicated in the clauses are obligatory and can involve punitive measures and penalties if not implemented as committed in the contract. Therefore, the identification of potentially unfair clauses in contracts becomes crucial. In this work, we conduct an empirical study to analyze the perspectives of different stakeholders regarding contractual fairness. We then investigate the ability of Pre-trained Language Models (PLMs) to identify unfairness in contractual sentences by comparing chain of thought prompting and semi-supervised fine-tuning approaches. Using BERT-based fine-tuning, we achieved an accuracy of 84% on a dataset consisting of proprietary contracts. It outperformed chain of thought prompting using Vicuna-13B by a margin of 9%.

ClassEval: A Manually-Crafted Benchmark for Evaluating LLMs on Class-level Code Generation

In this work, we make the first attempt to evaluate LLMs in a more challenging code generation scenario, i.e. class-level code generation. We first manually construct the first class-level code generation benchmark ClassEval of 100 class-level Python code generation tasks with approximately 500 person-hours. Based on it, we then perform the first study of 11 state-of-the-art LLMs on class-level code generation. Based on our results, we have the following main findings. First, we find that all existing LLMs show much worse performance on class-level code generation compared to on standalone method-level code generation benchmarks like HumanEval; and the method-level coding ability cannot equivalently reflect the class-level coding ability among LLMs. Second, we find that GPT-4 and GPT-3.5 still exhibit dominate superior than other LLMs on class-level code generation, and the second-tier models includes Instruct-Starcoder, Instruct-Codegen, and Wizardcoder with very similar performance. Third, we find that generating the entire class all at once (i.e. holistic generation strategy) is the best generation strategy only for GPT-4 and GPT-3.5, while method-by-method generation (i.e. incremental and compositional) is better strategies for the other models with limited ability of understanding long instructions and utilizing the middle information. Lastly, we find the limited model ability of generating method-dependent code and discuss the frequent error types in generated classes. Our benchmark is available at https://github.com/FudanSELab/ClassEval.

Class-relation Knowledge Distillation for Novel Class Discovery

We tackle the problem of novel class discovery, which aims to learn novel classes without supervision based on labeled data from known classes. A key challenge lies in transferring the knowledge in the known-class data to the learning of novel classes. Previous methods mainly focus on building a shared representation space for knowledge transfer and often ignore modeling class relations. To address this, we introduce a class relation representation for the novel classes based on the predicted class distribution of a model trained on known classes. Empirically, we find that such class relation becomes less informative during typical discovery training. To prevent such information loss, we propose a novel knowledge distillation framework, which utilizes our class-relation representation to regularize the learning of novel classes. In addition, to enable a flexible knowledge distillation scheme for each data point in novel classes, we develop a learnable weighting function for the regularization, which adaptively promotes knowledge transfer based on the semantic similarity between the novel and known classes. To validate the effectiveness and generalization of our method, we conduct extensive experiments on multiple benchmarks, including CIFAR100, Stanford Cars, CUB, and FGVC-Aircraft datasets. Our results demonstrate that the proposed method outperforms the previous state-of-the-art methods by a significant margin on almost all benchmarks. Code is available at https://github.com/kleinzcy/Cr-KD-NCD{here}.

Profitable Trade-Off Between Memory and Performance In Multi-Domain Chatbot Architectures

Text classification problem is a very broad field of study in the field of natural language processing. In short, the text classification problem is to determine which of the previously determined classes the given text belongs to. Successful studies have been carried out in this field in the past studies. In the study, Bidirectional Encoder Representations for Transformers (BERT), which is a frequently preferred method for solving the classification problem in the field of natural language processing, is used. By solving classification problems through a single model to be used in a chatbot architecture, it is aimed to alleviate the load on the server that will be created by more than one model used for solving more than one classification problem. At this point, with the masking method applied during the estimation of a single BERT model, which was created for classification in more than one subject, the estimation of the model was provided on a problem-based basis. Three separate data sets covering different fields from each other are divided by various methods in order to complicate the problem, and classification problems that are very close to each other in terms of field are also included in this way. The dataset used in this way consists of five classification problems with 154 classes. A BERT model containing all classification problems and other BERT models trained specifically for the problems were compared with each other in terms of performance and the space they occupied on the server.

Learning to Learn: How to Continuously Teach Humans and Machines

Curriculum design is a fundamental component of education. For example, when we learn mathematics at school, we build upon our knowledge of addition to learn multiplication. These and other concepts must be mastered before our first algebra lesson, which also reinforces our addition and multiplication skills. Designing a curriculum for teaching either a human or a machine shares the underlying goal of maximizing knowledge transfer from earlier to later tasks, while also minimizing forgetting of learned tasks. Prior research on curriculum design for image classification focuses on the ordering of training examples during a single offline task. Here, we investigate the effect of the order in which multiple distinct tasks are learned in a sequence. We focus on the online class-incremental continual learning setting, where algorithms or humans must learn image classes one at a time during a single pass through a dataset. We find that curriculum consistently influences learning outcomes for humans and for multiple continual machine learning algorithms across several benchmark datasets. We introduce a novel-object recognition dataset for human curriculum learning experiments and observe that curricula that are effective for humans are highly correlated with those that are effective for machines. As an initial step towards automated curriculum design for online class-incremental learning, we propose a novel algorithm, dubbed Curriculum Designer (CD), that designs and ranks curricula based on inter-class feature similarities. We find significant overlap between curricula that are empirically highly effective and those that are highly ranked by our CD. Our study establishes a framework for further research on teaching humans and machines to learn continuously using optimized curricula.

Deep Class-Incremental Learning: A Survey

Deep models, e.g., CNNs and Vision Transformers, have achieved impressive achievements in many vision tasks in the closed world. However, novel classes emerge from time to time in our ever-changing world, requiring a learning system to acquire new knowledge continually. For example, a robot needs to understand new instructions, and an opinion monitoring system should analyze emerging topics every day. Class-Incremental Learning (CIL) enables the learner to incorporate the knowledge of new classes incrementally and build a universal classifier among all seen classes. Correspondingly, when directly training the model with new class instances, a fatal problem occurs -- the model tends to catastrophically forget the characteristics of former ones, and its performance drastically degrades. There have been numerous efforts to tackle catastrophic forgetting in the machine learning community. In this paper, we survey comprehensively recent advances in deep class-incremental learning and summarize these methods from three aspects, i.e., data-centric, model-centric, and algorithm-centric. We also provide a rigorous and unified evaluation of 16 methods in benchmark image classification tasks to find out the characteristics of different algorithms empirically. Furthermore, we notice that the current comparison protocol ignores the influence of memory budget in model storage, which may result in unfair comparison and biased results. Hence, we advocate fair comparison by aligning the memory budget in evaluation, as well as several memory-agnostic performance measures. The source code to reproduce these evaluations is available at https://github.com/zhoudw-zdw/CIL_Survey/

Cyclical Curriculum Learning

Artificial neural networks (ANN) are inspired by human learning. However, unlike human education, classical ANN does not use a curriculum. Curriculum Learning (CL) refers to the process of ANN training in which examples are used in a meaningful order. When using CL, training begins with a subset of the dataset and new samples are added throughout the training, or training begins with the entire dataset and the number of samples used is reduced. With these changes in training dataset size, better results can be obtained with curriculum, anti-curriculum, or random-curriculum methods than the vanilla method. However, a generally efficient CL method for various architectures and data sets is not found. In this paper, we propose cyclical curriculum learning (CCL), in which the data size used during training changes cyclically rather than simply increasing or decreasing. Instead of using only the vanilla method or only the curriculum method, using both methods cyclically like in CCL provides more successful results. We tested the method on 18 different data sets and 15 architectures in image and text classification tasks and obtained more successful results than no-CL and existing CL methods. We also have shown theoretically that it is less erroneous to apply CL and vanilla cyclically instead of using only CL or only vanilla method. The code of Cyclical Curriculum is available at https://github.com/CyclicalCurriculum/Cyclical-Curriculum.

NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision Research

A shared goal of several machine learning communities like continual learning, meta-learning and transfer learning, is to design algorithms and models that efficiently and robustly adapt to unseen tasks. An even more ambitious goal is to build models that never stop adapting, and that become increasingly more efficient through time by suitably transferring the accrued knowledge. Beyond the study of the actual learning algorithm and model architecture, there are several hurdles towards our quest to build such models, such as the choice of learning protocol, metric of success and data needed to validate research hypotheses. In this work, we introduce the Never-Ending VIsual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks, sorted chronologically and extracted from papers sampled uniformly from computer vision proceedings spanning the last three decades. The resulting stream reflects what the research community thought was meaningful at any point in time, and it serves as an ideal test bed to assess how well models can adapt to new tasks, and do so better and more efficiently as time goes by. Despite being limited to classification, the resulting stream has a rich diversity of tasks from OCR, to texture analysis, scene recognition, and so forth. The diversity is also reflected in the wide range of dataset sizes, spanning over four orders of magnitude. Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks, yet with a low entry barrier as it is limited to a single modality and well understood supervised learning problems. Moreover, we provide a reference implementation including strong baselines and an evaluation protocol to compare methods in terms of their trade-off between accuracy and compute.

A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental Learning

Real-world applications require the classification model to adapt to new classes without forgetting old ones. Correspondingly, Class-Incremental Learning (CIL) aims to train a model with limited memory size to meet this requirement. Typical CIL methods tend to save representative exemplars from former classes to resist forgetting, while recent works find that storing models from history can substantially boost the performance. However, the stored models are not counted into the memory budget, which implicitly results in unfair comparisons. We find that when counting the model size into the total budget and comparing methods with aligned memory size, saving models do not consistently work, especially for the case with limited memory budgets. As a result, we need to holistically evaluate different CIL methods at different memory scales and simultaneously consider accuracy and memory size for measurement. On the other hand, we dive deeply into the construction of the memory buffer for memory efficiency. By analyzing the effect of different layers in the network, we find that shallow and deep layers have different characteristics in CIL. Motivated by this, we propose a simple yet effective baseline, denoted as MEMO for Memory-efficient Expandable MOdel. MEMO extends specialized layers based on the shared generalized representations, efficiently extracting diverse representations with modest cost and maintaining representative exemplars. Extensive experiments on benchmark datasets validate MEMO's competitive performance. Code is available at: https://github.com/wangkiw/ICLR23-MEMO

Geometry-Aware Adaptation for Pretrained Models

Machine learning models -- including prominent zero-shot models -- are often trained on datasets whose labels are only a small proportion of a larger label space. Such spaces are commonly equipped with a metric that relates the labels via distances between them. We propose a simple approach to exploit this information to adapt the trained model to reliably predict new classes -- or, in the case of zero-shot prediction, to improve its performance -- without any additional training. Our technique is a drop-in replacement of the standard prediction rule, swapping argmax with the Fr\'echet mean. We provide a comprehensive theoretical analysis for this approach, studying (i) learning-theoretic results trading off label space diameter, sample complexity, and model dimension, (ii) characterizations of the full range of scenarios in which it is possible to predict any unobserved class, and (iii) an optimal active learning-like next class selection procedure to obtain optimal training classes for when it is not possible to predict the entire range of unobserved classes. Empirically, using easily-available external metrics, our proposed approach, Loki, gains up to 29.7% relative improvement over SimCLR on ImageNet and scales to hundreds of thousands of classes. When no such metric is available, Loki can use self-derived metrics from class embeddings and obtains a 10.5% improvement on pretrained zero-shot models such as CLIP.

SIGHT: A Large Annotated Dataset on Student Insights Gathered from Higher Education Transcripts

Lectures are a learning experience for both students and teachers. Students learn from teachers about the subject material, while teachers learn from students about how to refine their instruction. However, online student feedback is unstructured and abundant, making it challenging for teachers to learn and improve. We take a step towards tackling this challenge. First, we contribute a dataset for studying this problem: SIGHT is a large dataset of 288 math lecture transcripts and 15,784 comments collected from the Massachusetts Institute of Technology OpenCourseWare (MIT OCW) YouTube channel. Second, we develop a rubric for categorizing feedback types using qualitative analysis. Qualitative analysis methods are powerful in uncovering domain-specific insights, however they are costly to apply to large data sources. To overcome this challenge, we propose a set of best practices for using large language models (LLMs) to cheaply classify the comments at scale. We observe a striking correlation between the model's and humans' annotation: Categories with consistent human annotations (>0.9 inter-rater reliability, IRR) also display higher human-model agreement (>0.7), while categories with less consistent human annotations (0.7-0.8 IRR) correspondingly demonstrate lower human-model agreement (0.3-0.5). These techniques uncover useful student feedback from thousands of comments, costing around 0.002$ per comment. We conclude by discussing exciting future directions on using online student feedback and improving automated annotation techniques for qualitative research.

G-ACIL: Analytic Learning for Exemplar-Free Generalized Class Incremental Learning

Class incremental learning (CIL) trains a network on sequential tasks with separated categories but suffers from catastrophic forgetting, where models quickly lose previously learned knowledge when acquiring new tasks. The generalized CIL (GCIL) aims to address the CIL problem in a more real-world scenario, where incoming data have mixed data categories and unknown sample size distribution, leading to intensified forgetting. Existing attempts for the GCIL either have poor performance, or invade data privacy by saving historical exemplars. To address this, in this paper, we propose an exemplar-free generalized analytic class incremental learning (G-ACIL). The G-ACIL adopts analytic learning (a gradient-free training technique), and delivers an analytical solution (i.e., closed-form) to the GCIL scenario. This solution is derived via decomposing the incoming data into exposed and unexposed classes, allowing an equivalence between the incremental learning and its joint training, i.e., the weight-invariant property. Such an equivalence is theoretically validated through matrix analysis tools, and hence contributes interpretability in GCIL. It is also empirically evidenced by experiments on various datasets and settings of GCIL. The results show that the G-ACIL exhibits leading performance with high robustness compared with existing competitive GCIL methods. Codes will be ready at https://github.com/ZHUANGHP/Analytic-continual-learning.

Few-Shot Class-Incremental Learning via Training-Free Prototype Calibration

Real-world scenarios are usually accompanied by continuously appearing classes with scare labeled samples, which require the machine learning model to incrementally learn new classes and maintain the knowledge of base classes. In this Few-Shot Class-Incremental Learning (FSCIL) scenario, existing methods either introduce extra learnable components or rely on a frozen feature extractor to mitigate catastrophic forgetting and overfitting problems. However, we find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes. In other words, the strong discriminability of base classes distracts the classification of new classes. To figure out this intriguing phenomenon, we observe that although the feature extractor is only trained on base classes, it can surprisingly represent the semantic similarity between the base and unseen new classes. Building upon these analyses, we propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes by fusing the new prototypes (i.e., mean features of a class) with weighted base prototypes. In addition to standard benchmarks in FSCIL, TEEN demonstrates remarkable performance and consistent improvements over baseline methods in the few-shot learning scenario. Code is available at: https://github.com/wangkiw/TEEN