- AISHELL-4: An Open Source Dataset for Speech Enhancement, Separation, Recognition and Speaker Diarization in Conference Scenario In this paper, we present AISHELL-4, a sizable real-recorded Mandarin speech dataset collected by 8-channel circular microphone array for speech processing in conference scenario. The dataset consists of 211 recorded meeting sessions, each containing 4 to 8 speakers, with a total length of 120 hours. This dataset aims to bridge the advanced research on multi-speaker processing and the practical application scenario in three aspects. With real recorded meetings, AISHELL-4 provides realistic acoustics and rich natural speech characteristics in conversation such as short pause, speech overlap, quick speaker turn, noise, etc. Meanwhile, accurate transcription and speaker voice activity are provided for each meeting in AISHELL-4. This allows the researchers to explore different aspects in meeting processing, ranging from individual tasks such as speech front-end processing, speech recognition and speaker diarization, to multi-modality modeling and joint optimization of relevant tasks. Given most open source dataset for multi-speaker tasks are in English, AISHELL-4 is the only Mandarin dataset for conversation speech, providing additional value for data diversity in speech community. We also release a PyTorch-based training and evaluation framework as baseline system to promote reproducible research in this field. 13 authors · Apr 8, 2021
- The CHiME-7 Challenge: System Description and Performance of NeMo Team's DASR System We present the NVIDIA NeMo team's multi-channel speech recognition system for the 7th CHiME Challenge Distant Automatic Speech Recognition (DASR) Task, focusing on the development of a multi-channel, multi-speaker speech recognition system tailored to transcribe speech from distributed microphones and microphone arrays. The system predominantly comprises of the following integral modules: the Speaker Diarization Module, Multi-channel Audio Front-End Processing Module, and the ASR Module. These components collectively establish a cascading system, meticulously processing multi-channel and multi-speaker audio input. Moreover, this paper highlights the comprehensive optimization process that significantly enhanced our system's performance. Our team's submission is largely based on NeMo toolkits and will be publicly available. 10 authors · Oct 18, 2023
- HiFiTTS-2: A Large-Scale High Bandwidth Speech Dataset This paper introduces HiFiTTS-2, a large-scale speech dataset designed for high-bandwidth speech synthesis. The dataset is derived from LibriVox audiobooks, and contains approximately 36.7k hours of English speech for 22.05 kHz training, and 31.7k hours for 44.1 kHz training. We present our data processing pipeline, including bandwidth estimation, segmentation, text preprocessing, and multi-speaker detection. The dataset is accompanied by detailed utterance and audiobook metadata generated by our pipeline, enabling researchers to apply data quality filters to adapt the dataset to various use cases. Experimental results demonstrate that our data pipeline and resulting dataset can facilitate the training of high-quality, zero-shot text-to-speech (TTS) models at high bandwidths. 7 authors · Jun 4
- Frequency and Multi-Scale Selective Kernel Attention for Speaker Verification The majority of recent state-of-the-art speaker verification architectures adopt multi-scale processing and frequency-channel attention mechanisms. Convolutional layers of these models typically have a fixed kernel size, e.g., 3 or 5. In this study, we further contribute to this line of research utilising a selective kernel attention (SKA) mechanism. The SKA mechanism allows each convolutional layer to adaptively select the kernel size in a data-driven fashion. It is based on an attention mechanism which exploits both frequency and channel domain. We first apply existing SKA module to our baseline. Then we propose two SKA variants where the first variant is applied in front of the ECAPA-TDNN model and the other is combined with the Res2net backbone block. Through extensive experiments, we demonstrate that our two proposed SKA variants consistently improves the performance and are complementary when tested on three different evaluation protocols. 4 authors · Apr 3, 2022
- LibriheavyMix: A 20,000-Hour Dataset for Single-Channel Reverberant Multi-Talker Speech Separation, ASR and Speaker Diarization The evolving speech processing landscape is increasingly focused on complex scenarios like meetings or cocktail parties with multiple simultaneous speakers and far-field conditions. Existing methodologies for addressing these challenges fall into two categories: multi-channel and single-channel solutions. Single-channel approaches, notable for their generality and convenience, do not require specific information about microphone arrays. This paper presents a large-scale far-field overlapping speech dataset, crafted to advance research in speech separation, recognition, and speaker diarization. This dataset is a critical resource for decoding ``Who said What and When'' in multi-talker, reverberant environments, a daunting challenge in the field. Additionally, we introduce a pipeline system encompassing speech separation, recognition, and diarization as a foundational benchmark. Evaluations on the WHAMR! dataset validate the broad applicability of the proposed data. 13 authors · Sep 1, 2024
- WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing Self-supervised learning (SSL) achieves great success in speech recognition, while limited exploration has been attempted for other speech processing tasks. As speech signal contains multi-faceted information including speaker identity, paralinguistics, spoken content, etc., learning universal representations for all speech tasks is challenging. To tackle the problem, we propose a new pre-trained model, WavLM, to solve full-stack downstream speech tasks. WavLM jointly learns masked speech prediction and denoising in pre-training. By this means, WavLM does not only keep the speech content modeling capability by the masked speech prediction, but also improves the potential to non-ASR tasks by the speech denoising. In addition, WavLM employs gated relative position bias for the Transformer structure to better capture the sequence ordering of input speech. We also scale up the training dataset from 60k hours to 94k hours. WavLM Large achieves state-of-the-art performance on the SUPERB benchmark, and brings significant improvements for various speech processing tasks on their representative benchmarks. The code and pre-trained models are available at https://aka.ms/wavlm. 19 authors · Oct 26, 2021
1 Brouhaha: multi-task training for voice activity detection, speech-to-noise ratio, and C50 room acoustics estimation Most automatic speech processing systems are sensitive to the acoustic environment, with degraded performance when applied to noisy or reverberant speech. But how can one tell whether speech is noisy or reverberant? We propose Brouhaha, a pipeline to simulate audio segments recorded in noisy and reverberant conditions. We then use the simulated audio to jointly train the Brouhaha model for voice activity detection, signal-to-noise ratio estimation, and C50 room acoustics prediction. We show how the predicted SNR and C50 values can be used to investigate and help diagnose errors made by automatic speech processing tools (such as pyannote.audio for speaker diarization or OpenAI's Whisper for automatic speech recognition). Both our pipeline and a pretrained model are open source and shared with the speech community. 10 authors · Oct 24, 2022
- IndicSUPERB: A Speech Processing Universal Performance Benchmark for Indian languages A cornerstone in AI research has been the creation and adoption of standardized training and test datasets to earmark the progress of state-of-the-art models. A particularly successful example is the GLUE dataset for training and evaluating Natural Language Understanding (NLU) models for English. The large body of research around self-supervised BERT-based language models revolved around performance improvements on NLU tasks in GLUE. To evaluate language models in other languages, several language-specific GLUE datasets were created. The area of speech language understanding (SLU) has followed a similar trajectory. The success of large self-supervised models such as wav2vec2 enable creation of speech models with relatively easy to access unlabelled data. These models can then be evaluated on SLU tasks, such as the SUPERB benchmark. In this work, we extend this to Indic languages by releasing the IndicSUPERB benchmark. Specifically, we make the following three contributions. (i) We collect Kathbath containing 1,684 hours of labelled speech data across 12 Indian languages from 1,218 contributors located in 203 districts in India. (ii) Using Kathbath, we create benchmarks across 6 speech tasks: Automatic Speech Recognition, Speaker Verification, Speaker Identification (mono/multi), Language Identification, Query By Example, and Keyword Spotting for 12 languages. (iii) On the released benchmarks, we train and evaluate different self-supervised models alongside a commonly used baseline FBANK. We show that language-specific fine-tuned models are more accurate than baseline on most of the tasks, including a large gap of 76\% for the Language Identification task. However, for speaker identification, self-supervised models trained on large datasets demonstrate an advantage. We hope IndicSUPERB contributes to the progress of developing speech language understanding models for Indian languages. 6 authors · Aug 24, 2022
- Property-Aware Multi-Speaker Data Simulation: A Probabilistic Modelling Technique for Synthetic Data Generation We introduce a sophisticated multi-speaker speech data simulator, specifically engineered to generate multi-speaker speech recordings. A notable feature of this simulator is its capacity to modulate the distribution of silence and overlap via the adjustment of statistical parameters. This capability offers a tailored training environment for developing neural models suited for speaker diarization and voice activity detection. The acquisition of substantial datasets for speaker diarization often presents a significant challenge, particularly in multi-speaker scenarios. Furthermore, the precise time stamp annotation of speech data is a critical factor for training both speaker diarization and voice activity detection. Our proposed multi-speaker simulator tackles these problems by generating large-scale audio mixtures that maintain statistical properties closely aligned with the input parameters. We demonstrate that the proposed multi-speaker simulator generates audio mixtures with statistical properties that closely align with the input parameters derived from real-world statistics. Additionally, we present the effectiveness of speaker diarization and voice activity detection models, which have been trained exclusively on the generated simulated datasets. 8 authors · Oct 18, 2023
1 Large Language Model Can Transcribe Speech in Multi-Talker Scenarios with Versatile Instructions Recent advancements in large language models (LLMs) have revolutionized various domains, bringing significant progress and new opportunities. Despite progress in speech-related tasks, LLMs have not been sufficiently explored in multi-talker scenarios. In this work, we present a pioneering effort to investigate the capability of LLMs in transcribing speech in multi-talker environments, following versatile instructions related to multi-talker automatic speech recognition (ASR), target talker ASR, and ASR based on specific talker attributes such as sex, occurrence order, language, and keyword spoken. Our approach utilizes WavLM and Whisper encoder to extract multi-faceted speech representations that are sensitive to speaker characteristics and semantic context. These representations are then fed into an LLM fine-tuned using LoRA, enabling the capabilities for speech comprehension and transcription. Comprehensive experiments reveal the promising performance of our proposed system, MT-LLM, in cocktail party scenarios, highlighting the potential of LLM to handle speech-related tasks based on user instructions in such complex settings. 9 authors · Sep 13, 2024
- ELF: Encoding Speaker-Specific Latent Speech Feature for Speech Synthesis In this work, we propose a novel method for modeling numerous speakers, which enables expressing the overall characteristics of speakers in detail like a trained multi-speaker model without additional training on the target speaker's dataset. Although various works with similar purposes have been actively studied, their performance has not yet reached that of trained multi-speaker models due to their fundamental limitations. To overcome previous limitations, we propose effective methods for feature learning and representing target speakers' speech characteristics by discretizing the features and conditioning them to a speech synthesis model. Our method obtained a significantly higher similarity mean opinion score (SMOS) in subjective similarity evaluation than seen speakers of a high-performance multi-speaker model, even with unseen speakers. The proposed method also outperforms a zero-shot method by significant margins. Furthermore, our method shows remarkable performance in generating new artificial speakers. In addition, we demonstrate that the encoded latent features are sufficiently informative to reconstruct an original speaker's speech completely. It implies that our method can be used as a general methodology to encode and reconstruct speakers' characteristics in various tasks. 8 authors · Nov 20, 2023
2 Voice Separation with an Unknown Number of Multiple Speakers We present a new method for separating a mixed audio sequence, in which multiple voices speak simultaneously. The new method employs gated neural networks that are trained to separate the voices at multiple processing steps, while maintaining the speaker in each output channel fixed. A different model is trained for every number of possible speakers, and the model with the largest number of speakers is employed to select the actual number of speakers in a given sample. Our method greatly outperforms the current state of the art, which, as we show, is not competitive for more than two speakers. 3 authors · Feb 29, 2020
- Single channel voice separation for unknown number of speakers under reverberant and noisy settings We present a unified network for voice separation of an unknown number of speakers. The proposed approach is composed of several separation heads optimized together with a speaker classification branch. The separation is carried out in the time domain, together with parameter sharing between all separation heads. The classification branch estimates the number of speakers while each head is specialized in separating a different number of speakers. We evaluate the proposed model under both clean and noisy reverberant set-tings. Results suggest that the proposed approach is superior to the baseline model by a significant margin. Additionally, we present a new noisy and reverberant dataset of up to five different speakers speaking simultaneously. 4 authors · Nov 4, 2020
- Multi-Decoder DPRNN: High Accuracy Source Counting and Separation We propose an end-to-end trainable approach to single-channel speech separation with unknown number of speakers. Our approach extends the MulCat source separation backbone with additional output heads: a count-head to infer the number of speakers, and decoder-heads for reconstructing the original signals. Beyond the model, we also propose a metric on how to evaluate source separation with variable number of speakers. Specifically, we cleared up the issue on how to evaluate the quality when the ground-truth hasmore or less speakers than the ones predicted by the model. We evaluate our approach on the WSJ0-mix datasets, with mixtures up to five speakers. We demonstrate that our approach outperforms state-of-the-art in counting the number of speakers and remains competitive in quality of reconstructed signals. 3 authors · Nov 24, 2020
- Enhancing Speaker Diarization with Large Language Models: A Contextual Beam Search Approach Large language models (LLMs) have shown great promise for capturing contextual information in natural language processing tasks. We propose a novel approach to speaker diarization that incorporates the prowess of LLMs to exploit contextual cues in human dialogues. Our method builds upon an acoustic-based speaker diarization system by adding lexical information from an LLM in the inference stage. We model the multi-modal decoding process probabilistically and perform joint acoustic and lexical beam search to incorporate cues from both modalities: audio and text. Our experiments demonstrate that infusing lexical knowledge from the LLM into an acoustics-only diarization system improves overall speaker-attributed word error rate (SA-WER). The experimental results show that LLMs can provide complementary information to acoustic models for the speaker diarization task via proposed beam search decoding approach showing up to 39.8% relative delta-SA-WER improvement from the baseline system. Thus, we substantiate that the proposed technique is able to exploit contextual information that is inaccessible to acoustics-only systems which is represented by speaker embeddings. In addition, these findings point to the potential of using LLMs to improve speaker diarization and other speech processing tasks by capturing semantic and contextual cues. 4 authors · Sep 11, 2023
33 Robust Speech Recognition via Large-Scale Weak Supervision We study the capabilities of speech processing systems trained simply to predict large amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual and multitask supervision, the resulting models generalize well to standard benchmarks and are often competitive with prior fully supervised results but in a zero-shot transfer setting without the need for any fine-tuning. When compared to humans, the models approach their accuracy and robustness. We are releasing models and inference code to serve as a foundation for further work on robust speech processing. 6 authors · Dec 6, 2022 6
1 Speak, Read and Prompt: High-Fidelity Text-to-Speech with Minimal Supervision We introduce SPEAR-TTS, a multi-speaker text-to-speech (TTS) system that can be trained with minimal supervision. By combining two types of discrete speech representations, we cast TTS as a composition of two sequence-to-sequence tasks: from text to high-level semantic tokens (akin to "reading") and from semantic tokens to low-level acoustic tokens ("speaking"). Decoupling these two tasks enables training of the "speaking" module using abundant audio-only data, and unlocks the highly efficient combination of pretraining and backtranslation to reduce the need for parallel data when training the "reading" component. To control the speaker identity, we adopt example prompting, which allows SPEAR-TTS to generalize to unseen speakers using only a short sample of 3 seconds, without any explicit speaker representation or speaker-id labels. Our experiments demonstrate that SPEAR-TTS achieves a character error rate that is competitive with state-of-the-art methods using only 15 minutes of parallel data, while matching ground-truth speech in terms of naturalness and acoustic quality, as measured in subjective tests. 9 authors · Feb 7, 2023
- Sortformer: Seamless Integration of Speaker Diarization and ASR by Bridging Timestamps and Tokens We propose Sortformer, a novel neural model for speaker diarization, trained with unconventional objectives compared to existing end-to-end diarization models. The permutation problem in speaker diarization has long been regarded as a critical challenge. Most prior end-to-end diarization systems employ permutation invariant loss (PIL), which optimizes for the permutation that yields the lowest error. In contrast, we introduce Sort Loss, which enables a diarization model to autonomously resolve permutation, with or without PIL. We demonstrate that combining Sort Loss and PIL achieves performance competitive with state-of-the-art end-to-end diarization models trained exclusively with PIL. Crucially, we present a streamlined multispeaker ASR architecture that leverages Sortformer as a speaker supervision model, embedding speaker label estimation within the ASR encoder state using a sinusoidal kernel function. This approach resolves the speaker permutation problem through sorted objectives, effectively bridging speaker-label timestamps and speaker tokens. In our experiments, we show that the proposed multispeaker ASR architecture, enhanced with speaker supervision, improves performance via adapter techniques. Code and trained models will be made publicly available via the NVIDIA NeMo framework 9 authors · Sep 10, 2024
- Sparks of Large Audio Models: A Survey and Outlook This survey paper provides a comprehensive overview of the recent advancements and challenges in applying large language models to the field of audio signal processing. Audio processing, with its diverse signal representations and a wide range of sources--from human voices to musical instruments and environmental sounds--poses challenges distinct from those found in traditional Natural Language Processing scenarios. Nevertheless, Large Audio Models, epitomized by transformer-based architectures, have shown marked efficacy in this sphere. By leveraging massive amount of data, these models have demonstrated prowess in a variety of audio tasks, spanning from Automatic Speech Recognition and Text-To-Speech to Music Generation, among others. Notably, recently these Foundational Audio Models, like SeamlessM4T, have started showing abilities to act as universal translators, supporting multiple speech tasks for up to 100 languages without any reliance on separate task-specific systems. This paper presents an in-depth analysis of state-of-the-art methodologies regarding Foundational Large Audio Models, their performance benchmarks, and their applicability to real-world scenarios. We also highlight current limitations and provide insights into potential future research directions in the realm of Large Audio Models with the intent to spark further discussion, thereby fostering innovation in the next generation of audio-processing systems. Furthermore, to cope with the rapid development in this area, we will consistently update the relevant repository with relevant recent articles and their open-source implementations at https://github.com/EmulationAI/awesome-large-audio-models. 11 authors · Aug 24, 2023
- Multi-scale Speaker Diarization with Dynamic Scale Weighting Speaker diarization systems are challenged by a trade-off between the temporal resolution and the fidelity of the speaker representation. By obtaining a superior temporal resolution with an enhanced accuracy, a multi-scale approach is a way to cope with such a trade-off. In this paper, we propose a more advanced multi-scale diarization system based on a multi-scale diarization decoder. There are two main contributions in this study that significantly improve the diarization performance. First, we use multi-scale clustering as an initialization to estimate the number of speakers and obtain the average speaker representation vector for each speaker and each scale. Next, we propose the use of 1-D convolutional neural networks that dynamically determine the importance of each scale at each time step. To handle a variable number of speakers and overlapping speech, the proposed system can estimate the number of existing speakers. Our proposed system achieves a state-of-art performance on the CALLHOME and AMI MixHeadset datasets, with 3.92% and 1.05% diarization error rates, respectively. 4 authors · Mar 29, 2022
- Cross-Attention is all you need: Real-Time Streaming Transformers for Personalised Speech Enhancement Personalised speech enhancement (PSE), which extracts only the speech of a target user and removes everything else from a recorded audio clip, can potentially improve users' experiences of audio AI modules deployed in the wild. To support a large variety of downstream audio tasks, such as real-time ASR and audio-call enhancement, a PSE solution should operate in a streaming mode, i.e., input audio cleaning should happen in real-time with a small latency and real-time factor. Personalisation is typically achieved by extracting a target speaker's voice profile from an enrolment audio, in the form of a static embedding vector, and then using it to condition the output of a PSE model. However, a fixed target speaker embedding may not be optimal under all conditions. In this work, we present a streaming Transformer-based PSE model and propose a novel cross-attention approach that gives adaptive target speaker representations. We present extensive experiments and show that our proposed cross-attention approach outperforms competitive baselines consistently, even when our model is only approximately half the size. 4 authors · Nov 8, 2022
- Attention Back-end for Automatic Speaker Verification with Multiple Enrollment Utterances Probabilistic linear discriminant analysis (PLDA) or cosine similarity have been widely used in traditional speaker verification systems as back-end techniques to measure pairwise similarities. To make better use of multiple enrollment utterances, we propose a novel attention back-end model, which can be used for both text-independent (TI) and text-dependent (TD) speaker verification, and employ scaled-dot self-attention and feed-forward self-attention networks as architectures that learn the intra-relationships of the enrollment utterances. In order to verify the proposed attention back-end, we conduct a series of experiments on CNCeleb and VoxCeleb datasets by combining it with several sate-of-the-art speaker encoders including TDNN and ResNet. Experimental results using multiple enrollment utterances on CNCeleb show that the proposed attention back-end model leads to lower EER and minDCF score than the PLDA and cosine similarity counterparts for each speaker encoder and an experiment on VoxCeleb indicate that our model can be used even for single enrollment case. 5 authors · Apr 4, 2021
- Improved Long-Form Speech Recognition by Jointly Modeling the Primary and Non-primary Speakers ASR models often suffer from a long-form deletion problem where the model predicts sequential blanks instead of words when transcribing a lengthy audio (in the order of minutes or hours). From the perspective of a user or downstream system consuming the ASR results, this behavior can be perceived as the model "being stuck", and potentially make the product hard to use. One of the culprits for long-form deletion is training-test data mismatch, which can happen even when the model is trained on diverse and large-scale data collected from multiple application domains. In this work, we introduce a novel technique to simultaneously model different groups of speakers in the audio along with the standard transcript tokens. Speakers are grouped as primary and non-primary, which connects the application domains and significantly alleviates the long-form deletion problem. This improved model neither needs any additional training data nor incurs additional training or inference cost. 6 authors · Dec 18, 2023
1 Echotune: A Modular Extractor Leveraging the Variable-Length Nature of Speech in ASR Tasks The Transformer architecture has proven to be highly effective for Automatic Speech Recognition (ASR) tasks, becoming a foundational component for a plethora of research in the domain. Historically, many approaches have leaned on fixed-length attention windows, which becomes problematic for varied speech samples in duration and complexity, leading to data over-smoothing and neglect of essential long-term connectivity. Addressing this limitation, we introduce Echo-MSA, a nimble module equipped with a variable-length attention mechanism that accommodates a range of speech sample complexities and durations. This module offers the flexibility to extract speech features across various granularities, spanning from frames and phonemes to words and discourse. The proposed design captures the variable length feature of speech and addresses the limitations of fixed-length attention. Our evaluation leverages a parallel attention architecture complemented by a dynamic gating mechanism that amalgamates traditional attention with the Echo-MSA module output. Empirical evidence from our study reveals that integrating Echo-MSA into the primary model's training regime significantly enhances the word error rate (WER) performance, all while preserving the intrinsic stability of the original model. 3 authors · Sep 14, 2023
- An Empirical Analysis on the Vulnerabilities of End-to-End Speech Segregation Models End-to-end learning models have demonstrated a remarkable capability in performing speech segregation. Despite their wide-scope of real-world applications, little is known about the mechanisms they employ to group and consequently segregate individual speakers. Knowing that harmonicity is a critical cue for these networks to group sources, in this work, we perform a thorough investigation on ConvTasnet and DPT-Net to analyze how they perform a harmonic analysis of the input mixture. We perform ablation studies where we apply low-pass, high-pass, and band-stop filters of varying pass-bands to empirically analyze the harmonics most critical for segregation. We also investigate how these networks decide which output channel to assign to an estimated source by introducing discontinuities in synthetic mixtures. We find that end-to-end networks are highly unstable, and perform poorly when confronted with deformations which are imperceptible to humans. Replacing the encoder in these networks with a spectrogram leads to lower overall performance, but much higher stability. This work helps us to understand what information these network rely on for speech segregation, and exposes two sources of generalization-errors. It also pinpoints the encoder as the part of the network responsible for these errors, allowing for a redesign with expert knowledge or transfer learning. 4 authors · Jun 19, 2022
- Speech Recognition and Multi-Speaker Diarization of Long Conversations Speech recognition (ASR) and speaker diarization (SD) models have traditionally been trained separately to produce rich conversation transcripts with speaker labels. Recent advances have shown that joint ASR and SD models can learn to leverage audio-lexical inter-dependencies to improve word diarization performance. We introduce a new benchmark of hour-long podcasts collected from the weekly This American Life radio program to better compare these approaches when applied to extended multi-speaker conversations. We find that training separate ASR and SD models perform better when utterance boundaries are known but otherwise joint models can perform better. To handle long conversations with unknown utterance boundaries, we introduce a striding attention decoding algorithm and data augmentation techniques which, combined with model pre-training, improves ASR and SD. 4 authors · May 16, 2020
- MoWE-Audio: Multitask AudioLLMs with Mixture of Weak Encoders The rapid advancements in large language models (LLMs) have significantly enhanced natural language processing capabilities, facilitating the development of AudioLLMs that process and understand speech and audio inputs alongside text. Existing AudioLLMs typically combine a pre-trained audio encoder with a pre-trained LLM, which are subsequently finetuned on specific audio tasks. However, the pre-trained audio encoder has constrained capacity to capture features for new tasks and datasets. To address this, we propose to incorporate mixtures of `weak' encoders (MoWE) into the AudioLLM framework. MoWE supplements a base encoder with a pool of relatively light weight encoders, selectively activated based on the audio input to enhance feature extraction without significantly increasing model size. Our empirical results demonstrate that MoWE effectively improves multi-task performance, broadening the applicability of AudioLLMs to more diverse audio tasks. 9 authors · Sep 10, 2024
- Latent space representation for multi-target speaker detection and identification with a sparse dataset using Triplet neural networks We present an approach to tackle the speaker recognition problem using Triplet Neural Networks. Currently, the i-vector representation with probabilistic linear discriminant analysis (PLDA) is the most commonly used technique to solve this problem, due to high classification accuracy with a relatively short computation time. In this paper, we explore a neural network approach, namely Triplet Neural Networks (TNNs), to built a latent space for different classifiers to solve the Multi-Target Speaker Detection and Identification Challenge Evaluation 2018 (MCE 2018) dataset. This training set contains i-vectors from 3,631 speakers, with only 3 samples for each speaker, thus making speaker recognition a challenging task. When using the train and development set for training both the TNN and baseline model (i.e., similarity evaluation directly on the i-vector representation), our proposed model outperforms the baseline by 23%. When reducing the training data to only using the train set, our method results in 309 confusions for the Multi-target speaker identification task, which is 46% better than the baseline model. These results show that the representational power of TNNs is especially evident when training on small datasets with few instances available per class. 4 authors · Oct 1, 2019
- Transformer Transducer: A Streamable Speech Recognition Model with Transformer Encoders and RNN-T Loss In this paper we present an end-to-end speech recognition model with Transformer encoders that can be used in a streaming speech recognition system. Transformer computation blocks based on self-attention are used to encode both audio and label sequences independently. The activations from both audio and label encoders are combined with a feed-forward layer to compute a probability distribution over the label space for every combination of acoustic frame position and label history. This is similar to the Recurrent Neural Network Transducer (RNN-T) model, which uses RNNs for information encoding instead of Transformer encoders. The model is trained with the RNN-T loss well-suited to streaming decoding. We present results on the LibriSpeech dataset showing that limiting the left context for self-attention in the Transformer layers makes decoding computationally tractable for streaming, with only a slight degradation in accuracy. We also show that the full attention version of our model beats the-state-of-the art accuracy on the LibriSpeech benchmarks. Our results also show that we can bridge the gap between full attention and limited attention versions of our model by attending to a limited number of future frames. 7 authors · Feb 6, 2020
1 NanoVoice: Efficient Speaker-Adaptive Text-to-Speech for Multiple Speakers We present NanoVoice, a personalized text-to-speech model that efficiently constructs voice adapters for multiple speakers simultaneously. NanoVoice introduces a batch-wise speaker adaptation technique capable of fine-tuning multiple references in parallel, significantly reducing training time. Beyond building separate adapters for each speaker, we also propose a parameter sharing technique that reduces the number of parameters used for speaker adaptation. By incorporating a novel trainable scale matrix, NanoVoice mitigates potential performance degradation during parameter sharing. NanoVoice achieves performance comparable to the baselines, while training 4 times faster and using 45 percent fewer parameters for speaker adaptation with 40 reference voices. Extensive ablation studies and analysis further validate the efficiency of our model. 6 authors · Sep 24, 2024
- A Light Weight Model for Active Speaker Detection Active speaker detection is a challenging task in audio-visual scenario understanding, which aims to detect who is speaking in one or more speakers scenarios. This task has received extensive attention as it is crucial in applications such as speaker diarization, speaker tracking, and automatic video editing. The existing studies try to improve performance by inputting multiple candidate information and designing complex models. Although these methods achieved outstanding performance, their high consumption of memory and computational power make them difficult to be applied in resource-limited scenarios. Therefore, we construct a lightweight active speaker detection architecture by reducing input candidates, splitting 2D and 3D convolutions for audio-visual feature extraction, and applying gated recurrent unit (GRU) with low computational complexity for cross-modal modeling. Experimental results on the AVA-ActiveSpeaker dataset show that our framework achieves competitive mAP performance (94.1% vs. 94.2%), while the resource costs are significantly lower than the state-of-the-art method, especially in model parameters (1.0M vs. 22.5M, about 23x) and FLOPs (0.6G vs. 2.6G, about 4x). In addition, our framework also performs well on the Columbia dataset showing good robustness. The code and model weights are available at https://github.com/Junhua-Liao/Light-ASD. 6 authors · Mar 8, 2023 1
1 VoxVietnam: a Large-Scale Multi-Genre Dataset for Vietnamese Speaker Recognition Recent research in speaker recognition aims to address vulnerabilities due to variations between enrolment and test utterances, particularly in the multi-genre phenomenon where the utterances are in different speech genres. Previous resources for Vietnamese speaker recognition are either limited in size or do not focus on genre diversity, leaving studies in multi-genre effects unexplored. This paper introduces VoxVietnam, the first multi-genre dataset for Vietnamese speaker recognition with over 187,000 utterances from 1,406 speakers and an automated pipeline to construct a dataset on a large scale from public sources. Our experiments show the challenges posed by the multi-genre phenomenon to models trained on a single-genre dataset, and demonstrate a significant increase in performance upon incorporating the VoxVietnam into the training process. Our experiments are conducted to study the challenges of the multi-genre phenomenon in speaker recognition and the performance gain when the proposed dataset is used for multi-genre training. 5 authors · Dec 31, 2024
16 LiveSpeech: Low-Latency Zero-shot Text-to-Speech via Autoregressive Modeling of Audio Discrete Codes Prior works have demonstrated zero-shot text-to-speech by using a generative language model on audio tokens obtained via a neural audio codec. It is still challenging, however, to adapt them to low-latency scenarios. In this paper, we present LiveSpeech - a fully autoregressive language model-based approach for zero-shot text-to-speech, enabling low-latency streaming of the output audio. To allow multiple token prediction within a single decoding step, we propose (1) using adaptive codebook loss weights that consider codebook contribution in each frame and focus on hard instances, and (2) grouping codebooks and processing groups in parallel. Experiments show our proposed models achieve competitive results to state-of-the-art baselines in terms of content accuracy, speaker similarity, audio quality, and inference speed while being suitable for low-latency streaming applications. 4 authors · Jun 4, 2024 2
1 Adaptive Sparse and Monotonic Attention for Transformer-based Automatic Speech Recognition The Transformer architecture model, based on self-attention and multi-head attention, has achieved remarkable success in offline end-to-end Automatic Speech Recognition (ASR). However, self-attention and multi-head attention cannot be easily applied for streaming or online ASR. For self-attention in Transformer ASR, the softmax normalization function-based attention mechanism makes it impossible to highlight important speech information. For multi-head attention in Transformer ASR, it is not easy to model monotonic alignments in different heads. To overcome these two limits, we integrate sparse attention and monotonic attention into Transformer-based ASR. The sparse mechanism introduces a learned sparsity scheme to enable each self-attention structure to fit the corresponding head better. The monotonic attention deploys regularization to prune redundant heads for the multi-head attention structure. The experiments show that our method can effectively improve the attention mechanism on widely used benchmarks of speech recognition. 6 authors · Sep 29, 2022 1
- Disentangled Speech Embeddings using Cross-modal Self-supervision The objective of this paper is to learn representations of speaker identity without access to manually annotated data. To do so, we develop a self-supervised learning objective that exploits the natural cross-modal synchrony between faces and audio in video. The key idea behind our approach is to tease apart--without annotation--the representations of linguistic content and speaker identity. We construct a two-stream architecture which: (1) shares low-level features common to both representations; and (2) provides a natural mechanism for explicitly disentangling these factors, offering the potential for greater generalisation to novel combinations of content and identity and ultimately producing speaker identity representations that are more robust. We train our method on a large-scale audio-visual dataset of talking heads `in the wild', and demonstrate its efficacy by evaluating the learned speaker representations for standard speaker recognition performance. 4 authors · Feb 20, 2020
- VoxCeleb2: Deep Speaker Recognition The objective of this paper is speaker recognition under noisy and unconstrained conditions. We make two key contributions. First, we introduce a very large-scale audio-visual speaker recognition dataset collected from open-source media. Using a fully automated pipeline, we curate VoxCeleb2 which contains over a million utterances from over 6,000 speakers. This is several times larger than any publicly available speaker recognition dataset. Second, we develop and compare Convolutional Neural Network (CNN) models and training strategies that can effectively recognise identities from voice under various conditions. The models trained on the VoxCeleb2 dataset surpass the performance of previous works on a benchmark dataset by a significant margin. 3 authors · Jun 14, 2018
- TitaNet: Neural Model for speaker representation with 1D Depth-wise separable convolutions and global context In this paper, we propose TitaNet, a novel neural network architecture for extracting speaker representations. We employ 1D depth-wise separable convolutions with Squeeze-and-Excitation (SE) layers with global context followed by channel attention based statistics pooling layer to map variable-length utterances to a fixed-length embedding (t-vector). TitaNet is a scalable architecture and achieves state-of-the-art performance on speaker verification task with an equal error rate (EER) of 0.68% on the VoxCeleb1 trial file and also on speaker diarization tasks with diarization error rate (DER) of 1.73% on AMI-MixHeadset, 1.99% on AMI-Lapel and 1.11% on CH109. Furthermore, we investigate various sizes of TitaNet and present a light TitaNet-S model with only 6M parameters that achieve near state-of-the-art results in diarization tasks. 3 authors · Oct 8, 2021
- SpeakerStew: Scaling to Many Languages with a Triaged Multilingual Text-Dependent and Text-Independent Speaker Verification System In this paper, we describe SpeakerStew - a hybrid system to perform speaker verification on 46 languages. Two core ideas were explored in this system: (1) Pooling training data of different languages together for multilingual generalization and reducing development cycles; (2) A novel triage mechanism between text-dependent and text-independent models to reduce runtime cost and expected latency. To the best of our knowledge, this is the first study of speaker verification systems at the scale of 46 languages. The problem is framed from the perspective of using a smart speaker device with interactions consisting of a wake-up keyword (text-dependent) followed by a speech query (text-independent). Experimental evidence suggests that training on multiple languages can generalize to unseen varieties while maintaining performance on seen varieties. We also found that it can reduce computational requirements for training models by an order of magnitude. Furthermore, during model inference on English data, we observe that leveraging a triage framework can reduce the number of calls to the more computationally expensive text-independent system by 73% (and reduce latency by 59%) while maintaining an EER no worse than the text-independent setup. 4 authors · Apr 5, 2021
- Efficient Parallel Audio Generation using Group Masked Language Modeling We present a fast and high-quality codec language model for parallel audio generation. While SoundStorm, a state-of-the-art parallel audio generation model, accelerates inference speed compared to autoregressive models, it still suffers from slow inference due to iterative sampling. To resolve this problem, we propose Group-Masked Language Modeling~(G-MLM) and Group Iterative Parallel Decoding~(G-IPD) for efficient parallel audio generation. Both the training and sampling schemes enable the model to synthesize high-quality audio with a small number of iterations by effectively modeling the group-wise conditional dependencies. In addition, our model employs a cross-attention-based architecture to capture the speaker style of the prompt voice and improves computational efficiency. Experimental results demonstrate that our proposed model outperforms the baselines in prompt-based audio generation. 4 authors · Jan 2, 2024
- Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis We describe a neural network-based system for text-to-speech (TTS) synthesis that is able to generate speech audio in the voice of many different speakers, including those unseen during training. Our system consists of three independently trained components: (1) a speaker encoder network, trained on a speaker verification task using an independent dataset of noisy speech from thousands of speakers without transcripts, to generate a fixed-dimensional embedding vector from seconds of reference speech from a target speaker; (2) a sequence-to-sequence synthesis network based on Tacotron 2, which generates a mel spectrogram from text, conditioned on the speaker embedding; (3) an auto-regressive WaveNet-based vocoder that converts the mel spectrogram into a sequence of time domain waveform samples. We demonstrate that the proposed model is able to transfer the knowledge of speaker variability learned by the discriminatively-trained speaker encoder to the new task, and is able to synthesize natural speech from speakers that were not seen during training. We quantify the importance of training the speaker encoder on a large and diverse speaker set in order to obtain the best generalization performance. Finally, we show that randomly sampled speaker embeddings can be used to synthesize speech in the voice of novel speakers dissimilar from those used in training, indicating that the model has learned a high quality speaker representation. 11 authors · Jun 12, 2018
7 3D-Speaker: A Large-Scale Multi-Device, Multi-Distance, and Multi-Dialect Corpus for Speech Representation Disentanglement Disentangling uncorrelated information in speech utterances is a crucial research topic within speech community. Different speech-related tasks focus on extracting distinct speech representations while minimizing the affects of other uncorrelated information. We present a large-scale speech corpus to facilitate the research of speech representation disentanglement. 3D-Speaker contains over 10,000 speakers, each of whom are simultaneously recorded by multiple Devices, locating at different Distances, and some speakers are speaking multiple Dialects. The controlled combinations of multi-dimensional audio data yield a matrix of a diverse blend of speech representation entanglement, thereby motivating intriguing methods to untangle them. The multi-domain nature of 3D-Speaker also makes it a suitable resource to evaluate large universal speech models and experiment methods of out-of-domain learning and self-supervised learning. https://3dspeaker.github.io/ 5 authors · Jun 27, 2023
- ESPnet-SPK: full pipeline speaker embedding toolkit with reproducible recipes, self-supervised front-ends, and off-the-shelf models This paper introduces ESPnet-SPK, a toolkit designed with several objectives for training speaker embedding extractors. First, we provide an open-source platform for researchers in the speaker recognition community to effortlessly build models. We provide several models, ranging from x-vector to recent SKA-TDNN. Through the modularized architecture design, variants can be developed easily. We also aspire to bridge developed models with other domains, facilitating the broad research community to effortlessly incorporate state-of-the-art embedding extractors. Pre-trained embedding extractors can be accessed in an off-the-shelf manner and we demonstrate the toolkit's versatility by showcasing its integration with two tasks. Another goal is to integrate with diverse self-supervised learning features. We release a reproducible recipe that achieves an equal error rate of 0.39% on the Vox1-O evaluation protocol using WavLM-Large with ECAPA-TDNN. 8 authors · Jan 30, 2024
- Hi-Fi Multi-Speaker English TTS Dataset This paper introduces a new multi-speaker English dataset for training text-to-speech models. The dataset is based on LibriVox audiobooks and Project Gutenberg texts, both in the public domain. The new dataset contains about 292 hours of speech from 10 speakers with at least 17 hours per speaker sampled at 44.1 kHz. To select speech samples with high quality, we considered audio recordings with a signal bandwidth of at least 13 kHz and a signal-to-noise ratio (SNR) of at least 32 dB. The dataset is publicly released at http://www.openslr.org/109/ . 4 authors · Apr 3, 2021
- Transformers in Speech Processing: A Survey The remarkable success of transformers in the field of natural language processing has sparked the interest of the speech-processing community, leading to an exploration of their potential for modeling long-range dependencies within speech sequences. Recently, transformers have gained prominence across various speech-related domains, including automatic speech recognition, speech synthesis, speech translation, speech para-linguistics, speech enhancement, spoken dialogue systems, and numerous multimodal applications. In this paper, we present a comprehensive survey that aims to bridge research studies from diverse subfields within speech technology. By consolidating findings from across the speech technology landscape, we provide a valuable resource for researchers interested in harnessing the power of transformers to advance the field. We identify the challenges encountered by transformers in speech processing while also offering insights into potential solutions to address these issues. 6 authors · Mar 21, 2023
1 WavChat: A Survey of Spoken Dialogue Models Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain. Compared to traditional three-tier cascaded spoken dialogue models that comprise speech recognition (ASR), large language models (LLMs), and text-to-speech (TTS), modern spoken dialogue models exhibit greater intelligence. These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech. Moreover, they generate high-quality, multi-turn speech responses with low latency, enabling real-time interaction through simultaneous listening and speaking capability. Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems and the underlying technologies. To address this, we have first compiled existing spoken dialogue systems in the chronological order and categorized them into the cascaded and end-to-end paradigms. We then provide an in-depth overview of the core technologies in spoken dialogue models, covering aspects such as speech representation, training paradigm, streaming, duplex, and interaction capabilities. Each section discusses the limitations of these technologies and outlines considerations for future research. Additionally, we present a thorough review of relevant datasets, evaluation metrics, and benchmarks from the perspectives of training and evaluating spoken dialogue systems. We hope this survey will contribute to advancing both academic research and industrial applications in the field of spoken dialogue systems. The related material is available at https://github.com/jishengpeng/WavChat. 19 authors · Nov 14, 2024
- Monotonic segmental attention for automatic speech recognition We introduce a novel segmental-attention model for automatic speech recognition. We restrict the decoder attention to segments to avoid quadratic runtime of global attention, better generalize to long sequences, and eventually enable streaming. We directly compare global-attention and different segmental-attention modeling variants. We develop and compare two separate time-synchronous decoders, one specifically taking the segmental nature into account, yielding further improvements. Using time-synchronous decoding for segmental models is novel and a step towards streaming applications. Our experiments show the importance of a length model to predict the segment boundaries. The final best segmental-attention model using segmental decoding performs better than global-attention, in contrast to other monotonic attention approaches in the literature. Further, we observe that the segmental model generalizes much better to long sequences of up to several minutes. 5 authors · Oct 26, 2022
1 SpeechBrain: A General-Purpose Speech Toolkit SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to facilitate the research and development of neural speech processing technologies by being simple, flexible, user-friendly, and well-documented. This paper describes the core architecture designed to support several tasks of common interest, allowing users to naturally conceive, compare and share novel speech processing pipelines. SpeechBrain achieves competitive or state-of-the-art performance in a wide range of speech benchmarks. It also provides training recipes, pretrained models, and inference scripts for popular speech datasets, as well as tutorials which allow anyone with basic Python proficiency to familiarize themselves with speech technologies. 21 authors · Jun 8, 2021
2 End-to-end speaker segmentation for overlap-aware resegmentation Speaker segmentation consists in partitioning a conversation between one or more speakers into speaker turns. Usually addressed as the late combination of three sub-tasks (voice activity detection, speaker change detection, and overlapped speech detection), we propose to train an end-to-end segmentation model that does it directly. Inspired by the original end-to-end neural speaker diarization approach (EEND), the task is modeled as a multi-label classification problem using permutation-invariant training. The main difference is that our model operates on short audio chunks (5 seconds) but at a much higher temporal resolution (every 16ms). Experiments on multiple speaker diarization datasets conclude that our model can be used with great success on both voice activity detection and overlapped speech detection. Our proposed model can also be used as a post-processing step, to detect and correctly assign overlapped speech regions. Relative diarization error rate improvement over the best considered baseline (VBx) reaches 17% on AMI, 13% on DIHARD 3, and 13% on VoxConverse. 2 authors · Apr 8, 2021
- A Surprisingly Simple yet Effective Multi-Query Rewriting Method for Conversational Passage Retrieval Conversational passage retrieval is challenging as it often requires the resolution of references to previous utterances and needs to deal with the complexities of natural language, such as coreference and ellipsis. To address these challenges, pre-trained sequence-to-sequence neural query rewriters are commonly used to generate a single de-contextualized query based on conversation history. Previous research shows that combining multiple query rewrites for the same user utterance has a positive effect on retrieval performance. We propose the use of a neural query rewriter to generate multiple queries and show how to integrate those queries in the passage retrieval pipeline efficiently. The main strength of our approach lies in its simplicity: it leverages how the beam search algorithm works and can produce multiple query rewrites at no additional cost. Our contributions further include devising ways to utilize multi-query rewrites in both sparse and dense first-pass retrieval. We demonstrate that applying our approach on top of a standard passage retrieval pipeline delivers state-of-the-art performance without sacrificing efficiency. 2 authors · Jun 27, 2024 2
2 Are Sixteen Heads Really Better than One? Attention is a powerful and ubiquitous mechanism for allowing neural models to focus on particular salient pieces of information by taking their weighted average when making predictions. In particular, multi-headed attention is a driving force behind many recent state-of-the-art NLP models such as Transformer-based MT models and BERT. These models apply multiple attention mechanisms in parallel, with each attention "head" potentially focusing on different parts of the input, which makes it possible to express sophisticated functions beyond the simple weighted average. In this paper we make the surprising observation that even if models have been trained using multiple heads, in practice, a large percentage of attention heads can be removed at test time without significantly impacting performance. In fact, some layers can even be reduced to a single head. We further examine greedy algorithms for pruning down models, and the potential speed, memory efficiency, and accuracy improvements obtainable therefrom. Finally, we analyze the results with respect to which parts of the model are more reliant on having multiple heads, and provide precursory evidence that training dynamics play a role in the gains provided by multi-head attention. 3 authors · May 25, 2019 1
1 Learning Factored Representations in a Deep Mixture of Experts Mixtures of Experts combine the outputs of several "expert" networks, each of which specializes in a different part of the input space. This is achieved by training a "gating" network that maps each input to a distribution over the experts. Such models show promise for building larger networks that are still cheap to compute at test time, and more parallelizable at training time. In this this work, we extend the Mixture of Experts to a stacked model, the Deep Mixture of Experts, with multiple sets of gating and experts. This exponentially increases the number of effective experts by associating each input with a combination of experts at each layer, yet maintains a modest model size. On a randomly translated version of the MNIST dataset, we find that the Deep Mixture of Experts automatically learns to develop location-dependent ("where") experts at the first layer, and class-specific ("what") experts at the second layer. In addition, we see that the different combinations are in use when the model is applied to a dataset of speech monophones. These demonstrate effective use of all expert combinations. 3 authors · Dec 16, 2013
2 Towards Holistic Evaluation of Large Audio-Language Models: A Comprehensive Survey With advancements in large audio-language models (LALMs), which enhance large language models (LLMs) with auditory capabilities, these models are expected to demonstrate universal proficiency across various auditory tasks. While numerous benchmarks have emerged to assess LALMs' performance, they remain fragmented and lack a structured taxonomy. To bridge this gap, we conduct a comprehensive survey and propose a systematic taxonomy for LALM evaluations, categorizing them into four dimensions based on their objectives: (1) General Auditory Awareness and Processing, (2) Knowledge and Reasoning, (3) Dialogue-oriented Ability, and (4) Fairness, Safety, and Trustworthiness. We provide detailed overviews within each category and highlight challenges in this field, offering insights into promising future directions. To the best of our knowledge, this is the first survey specifically focused on the evaluations of LALMs, providing clear guidelines for the community. We will release the collection of the surveyed papers and actively maintain it to support ongoing advancements in the field. 3 authors · May 21 2
- UniTalk: Towards Universal Active Speaker Detection in Real World Scenarios We present UniTalk, a novel dataset specifically designed for the task of active speaker detection, emphasizing challenging scenarios to enhance model generalization. Unlike previously established benchmarks such as AVA, which predominantly features old movies and thus exhibits significant domain gaps, UniTalk focuses explicitly on diverse and difficult real-world conditions. These include underrepresented languages, noisy backgrounds, and crowded scenes - such as multiple visible speakers speaking concurrently or in overlapping turns. It contains over 44.5 hours of video with frame-level active speaker annotations across 48,693 speaking identities, and spans a broad range of video types that reflect real-world conditions. Through rigorous evaluation, we show that state-of-the-art models, while achieving nearly perfect scores on AVA, fail to reach saturation on UniTalk, suggesting that the ASD task remains far from solved under realistic conditions. Nevertheless, models trained on UniTalk demonstrate stronger generalization to modern "in-the-wild" datasets like Talkies and ASW, as well as to AVA. UniTalk thus establishes a new benchmark for active speaker detection, providing researchers with a valuable resource for developing and evaluating versatile and resilient models. Dataset: https://huggingface.co/datasets/plnguyen2908/UniTalk-ASD Code: https://github.com/plnguyen2908/UniTalk-ASD-code 10 authors · May 28
3 Look Once to Hear: Target Speech Hearing with Noisy Examples In crowded settings, the human brain can focus on speech from a target speaker, given prior knowledge of how they sound. We introduce a novel intelligent hearable system that achieves this capability, enabling target speech hearing to ignore all interfering speech and noise, but the target speaker. A naive approach is to require a clean speech example to enroll the target speaker. This is however not well aligned with the hearable application domain since obtaining a clean example is challenging in real world scenarios, creating a unique user interface problem. We present the first enrollment interface where the wearer looks at the target speaker for a few seconds to capture a single, short, highly noisy, binaural example of the target speaker. This noisy example is used for enrollment and subsequent speech extraction in the presence of interfering speakers and noise. Our system achieves a signal quality improvement of 7.01 dB using less than 5 seconds of noisy enrollment audio and can process 8 ms of audio chunks in 6.24 ms on an embedded CPU. Our user studies demonstrate generalization to real-world static and mobile speakers in previously unseen indoor and outdoor multipath environments. Finally, our enrollment interface for noisy examples does not cause performance degradation compared to clean examples, while being convenient and user-friendly. Taking a step back, this paper takes an important step towards enhancing the human auditory perception with artificial intelligence. We provide code and data at: https://github.com/vb000/LookOnceToHear. 5 authors · May 10, 2024
- A Detailed Audio-Text Data Simulation Pipeline using Single-Event Sounds Recently, there has been an increasing focus on audio-text cross-modal learning. However, most of the existing audio-text datasets contain only simple descriptions of sound events. Compared with classification labels, the advantages of such descriptions are significantly limited. In this paper, we first analyze the detailed information that human descriptions of audio may contain beyond sound event labels. Based on the analysis, we propose an automatic pipeline for curating audio-text pairs with rich details. Leveraging the property that sounds can be mixed and concatenated in the time domain, we control details in four aspects: temporal relationship, loudness, speaker identity, and occurrence number, in simulating audio mixtures. Corresponding details are transformed into captions by large language models. Audio-text pairs with rich details in text descriptions are thereby obtained. We validate the effectiveness of our pipeline with a small amount of simulated data, demonstrating that the simulated data enables models to learn detailed audio captioning. 6 authors · Mar 7, 2024
5 AAD-LLM: Neural Attention-Driven Auditory Scene Understanding Auditory foundation models, including auditory large language models (LLMs), process all sound inputs equally, independent of listener perception. However, human auditory perception is inherently selective: listeners focus on specific speakers while ignoring others in complex auditory scenes. Existing models do not incorporate this selectivity, limiting their ability to generate perception-aligned responses. To address this, we introduce Intention-Informed Auditory Scene Understanding (II-ASU) and present Auditory Attention-Driven LLM (AAD-LLM), a prototype system that integrates brain signals to infer listener attention. AAD-LLM extends an auditory LLM by incorporating intracranial electroencephalography (iEEG) recordings to decode which speaker a listener is attending to and refine responses accordingly. The model first predicts the attended speaker from neural activity, then conditions response generation on this inferred attentional state. We evaluate AAD-LLM on speaker description, speech transcription and extraction, and question answering in multitalker scenarios, with both objective and subjective ratings showing improved alignment with listener intention. By taking a first step toward intention-aware auditory AI, this work explores a new paradigm where listener perception informs machine listening, paving the way for future listener-centered auditory systems. Demo and code available: https://aad-llm.github.io. 9 authors · Feb 23 3
- Audio Retrieval with Natural Language Queries We consider the task of retrieving audio using free-form natural language queries. To study this problem, which has received limited attention in the existing literature, we introduce challenging new benchmarks for text-based audio retrieval using text annotations sourced from the Audiocaps and Clotho datasets. We then employ these benchmarks to establish baselines for cross-modal audio retrieval, where we demonstrate the benefits of pre-training on diverse audio tasks. We hope that our benchmarks will inspire further research into cross-modal text-based audio retrieval with free-form text queries. 5 authors · May 5, 2021
- Advancing Multi-Party Dialogue Systems with Speaker-ware Contrastive Learning Dialogue response generation has made significant progress, but most research has focused on dyadic dialogue. In contrast, multi-party dialogues involve more participants, each potentially discussing different topics, making the task more complex. Current methods often rely on graph neural networks to model dialogue context, which helps capture the structural dynamics of multi-party conversations. However, these methods are heavily dependent on intricate graph structures and dataset annotations, and they often overlook the distinct speaking styles of participants. To address these challenges, we propose CMR, a Contrastive learning-based Multi-party dialogue Response generation model. CMR uses self-supervised contrastive learning to better distinguish "who says what." Additionally, by comparing speakers within the same conversation, the model captures differences in speaking styles and thematic transitions. To the best of our knowledge, this is the first approach to apply contrastive learning in multi-party dialogue generation. Experimental results show that CMR significantly outperforms state-of-the-art models in multi-party dialogue response tasks. 5 authors · Jan 20
- Transformer-based Model for ASR N-Best Rescoring and Rewriting Voice assistants increasingly use on-device Automatic Speech Recognition (ASR) to ensure speed and privacy. However, due to resource constraints on the device, queries pertaining to complex information domains often require further processing by a search engine. For such applications, we propose a novel Transformer based model capable of rescoring and rewriting, by exploring full context of the N-best hypotheses in parallel. We also propose a new discriminative sequence training objective that can work well for both rescore and rewrite tasks. We show that our Rescore+Rewrite model outperforms the Rescore-only baseline, and achieves up to an average 8.6% relative Word Error Rate (WER) reduction over the ASR system by itself. 3 authors · Jun 12, 2024
- Spoken SQuAD: A Study of Mitigating the Impact of Speech Recognition Errors on Listening Comprehension Reading comprehension has been widely studied. One of the most representative reading comprehension tasks is Stanford Question Answering Dataset (SQuAD), on which machine is already comparable with human. On the other hand, accessing large collections of multimedia or spoken content is much more difficult and time-consuming than plain text content for humans. It's therefore highly attractive to develop machines which can automatically understand spoken content. In this paper, we propose a new listening comprehension task - Spoken SQuAD. On the new task, we found that speech recognition errors have catastrophic impact on machine comprehension, and several approaches are proposed to mitigate the impact. 4 authors · Apr 1, 2018
8 Towards General-Purpose Speech Abilities for Large Language Models Using Unpaired Data In this work, we extend the instruction-tuned Llama-2 model with end-to-end general-purpose speech processing and reasoning abilities while maintaining the wide range of LLM capabilities, without using any carefully curated paired data. The proposed model can utilize audio prompts as a replacement for text and sustain a conversation. Such a model also has extended cross-modal capabilities such as being able to perform speech question answering, speech translation, and audio summarization amongst many other closed and open-domain tasks. This is unlike prior approaches in speech, in which LLMs are extended to handle audio for a limited number of pre-designated tasks. Experiments show that our end-to-end approach is on par with or outperforms a cascaded system (speech recognizer + LLM) in terms of modeling the response to a prompt. Furthermore, unlike a cascade, our approach shows the ability to interchange text and audio modalities and utilize the prior context in a conversation to provide better results. 9 authors · Nov 12, 2023
- WHAM!: Extending Speech Separation to Noisy Environments Recent progress in separating the speech signals from multiple overlapping speakers using a single audio channel has brought us closer to solving the cocktail party problem. However, most studies in this area use a constrained problem setup, comparing performance when speakers overlap almost completely, at artificially low sampling rates, and with no external background noise. In this paper, we strive to move the field towards more realistic and challenging scenarios. To that end, we created the WSJ0 Hipster Ambient Mixtures (WHAM!) dataset, consisting of two speaker mixtures from the wsj0-2mix dataset combined with real ambient noise samples. The samples were collected in coffee shops, restaurants, and bars in the San Francisco Bay Area, and are made publicly available. We benchmark various speech separation architectures and objective functions to evaluate their robustness to noise. While separation performance decreases as a result of noise, we still observe substantial gains relative to the noisy signals for most approaches. 8 authors · Jul 2, 2019
2 VocalNet: Speech LLM with Multi-Token Prediction for Faster and High-Quality Generation Speech large language models (LLMs) have emerged as a prominent research focus in speech processing. We propose VocalNet-1B and VocalNet-8B, a series of high-performance, low-latency speech LLMs enabled by a scalable and model-agnostic training framework for real-time voice interaction. Departing from the conventional next-token prediction (NTP), we introduce multi-token prediction (MTP), a novel approach optimized for speech LLMs that simultaneously improves generation speed and quality. Experiments show that VocalNet outperforms mainstream Omni LLMs despite using significantly less training data, while also surpassing existing open-source speech LLMs by a substantial margin. To support reproducibility and community advancement, we will open-source all model weights, inference code, training data, and framework implementations upon publication. 7 authors · Apr 5
- TokenVerse: Towards Unifying Speech and NLP Tasks via Transducer-based ASR In traditional conversational intelligence from speech, a cascaded pipeline is used, involving tasks such as voice activity detection, diarization, transcription, and subsequent processing with different NLP models for tasks like semantic endpointing and named entity recognition (NER). Our paper introduces TokenVerse, a single Transducer-based model designed to handle multiple tasks. This is achieved by integrating task-specific tokens into the reference text during ASR model training, streamlining the inference and eliminating the need for separate NLP models. In addition to ASR, we conduct experiments on 3 different tasks: speaker change detection, endpointing, and NER. Our experiments on a public and a private dataset show that the proposed method improves ASR by up to 7.7% in relative WER while outperforming the cascaded pipeline approach in individual task performance. Our code is publicly available: https://github.com/idiap/tokenverse-unifying-speech-nlp 9 authors · Jul 5, 2024
- Label-Efficient Self-Supervised Speaker Verification With Information Maximization and Contrastive Learning State-of-the-art speaker verification systems are inherently dependent on some kind of human supervision as they are trained on massive amounts of labeled data. However, manually annotating utterances is slow, expensive and not scalable to the amount of data available today. In this study, we explore self-supervised learning for speaker verification by learning representations directly from raw audio. The objective is to produce robust speaker embeddings that have small intra-speaker and large inter-speaker variance. Our approach is based on recent information maximization learning frameworks and an intensive data augmentation pre-processing step. We evaluate the ability of these methods to work without contrastive samples before showing that they achieve better performance when combined with a contrastive loss. Furthermore, we conduct experiments to show that our method reaches competitive results compared to existing techniques and can get better performances compared to a supervised baseline when fine-tuned with a small portion of labeled data. 2 authors · Jul 12, 2022
- dMel: Speech Tokenization made Simple Large language models have revolutionized natural language processing by leveraging self-supervised pretraining on vast textual data. Inspired by this success, researchers have investigated complicated speech tokenization methods to discretize continuous speech signals so that language modeling techniques can be applied to speech data. However, existing approaches either model semantic tokens, potentially losing acoustic information, or model acoustic tokens, risking the loss of semantic information. Having multiple token types also complicates the architecture and requires additional pretraining. Here we show that discretizing mel-filterbank channels into discrete intensity bins produces a simple representation (dMel), that performs better than other existing speech tokenization methods. Using a transformer decoder-only architecture for speech-text modeling, we comprehensively evaluate different speech tokenization methods on speech recognition (ASR), speech synthesis (TTS). Our results demonstrate the effectiveness of dMel in achieving high performance on both tasks within a unified framework, paving the way for efficient and effective joint modeling of speech and text. 6 authors · Jul 22, 2024
1 Identifying Speakers in Dialogue Transcripts: A Text-based Approach Using Pretrained Language Models We introduce an approach to identifying speaker names in dialogue transcripts, a crucial task for enhancing content accessibility and searchability in digital media archives. Despite the advancements in speech recognition, the task of text-based speaker identification (SpeakerID) has received limited attention, lacking large-scale, diverse datasets for effective model training. Addressing these gaps, we present a novel, large-scale dataset derived from the MediaSum corpus, encompassing transcripts from a wide range of media sources. We propose novel transformer-based models tailored for SpeakerID, leveraging contextual cues within dialogues to accurately attribute speaker names. Through extensive experiments, our best model achieves a great precision of 80.3\%, setting a new benchmark for SpeakerID. The data and code are publicly available here: https://github.com/adobe-research/speaker-identification 9 authors · Jul 16, 2024
- Audio Retrieval with Natural Language Queries: A Benchmark Study The objectives of this work are cross-modal text-audio and audio-text retrieval, in which the goal is to retrieve the audio content from a pool of candidates that best matches a given written description and vice versa. Text-audio retrieval enables users to search large databases through an intuitive interface: they simply issue free-form natural language descriptions of the sound they would like to hear. To study the tasks of text-audio and audio-text retrieval, which have received limited attention in the existing literature, we introduce three challenging new benchmarks. We first construct text-audio and audio-text retrieval benchmarks from the AudioCaps and Clotho audio captioning datasets. Additionally, we introduce the SoundDescs benchmark, which consists of paired audio and natural language descriptions for a diverse collection of sounds that are complementary to those found in AudioCaps and Clotho. We employ these three benchmarks to establish baselines for cross-modal text-audio and audio-text retrieval, where we demonstrate the benefits of pre-training on diverse audio tasks. We hope that our benchmarks will inspire further research into audio retrieval with free-form text queries. Code, audio features for all datasets used, and the SoundDescs dataset are publicly available at https://github.com/akoepke/audio-retrieval-benchmark. 5 authors · Dec 17, 2021
6 wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data. 4 authors · Jun 19, 2020 1
- The Interspeech 2024 Challenge on Speech Processing Using Discrete Units Representing speech and audio signals in discrete units has become a compelling alternative to traditional high-dimensional feature vectors. Numerous studies have highlighted the efficacy of discrete units in various applications such as speech compression and restoration, speech recognition, and speech generation. To foster exploration in this domain, we introduce the Interspeech 2024 Challenge, which focuses on new speech processing benchmarks using discrete units. It encompasses three pivotal tasks, namely multilingual automatic speech recognition, text-to-speech, and singing voice synthesis, and aims to assess the potential applicability of discrete units in these tasks. This paper outlines the challenge designs and baseline descriptions. We also collate baseline and selected submission systems, along with preliminary findings, offering valuable contributions to future research in this evolving field. 10 authors · Jun 11, 2024
- SLUE: New Benchmark Tasks for Spoken Language Understanding Evaluation on Natural Speech Progress in speech processing has been facilitated by shared datasets and benchmarks. Historically these have focused on automatic speech recognition (ASR), speaker identification, or other lower-level tasks. Interest has been growing in higher-level spoken language understanding tasks, including using end-to-end models, but there are fewer annotated datasets for such tasks. At the same time, recent work shows the possibility of pre-training generic representations and then fine-tuning for several tasks using relatively little labeled data. We propose to create a suite of benchmark tasks for Spoken Language Understanding Evaluation (SLUE) consisting of limited-size labeled training sets and corresponding evaluation sets. This resource would allow the research community to track progress, evaluate pre-trained representations for higher-level tasks, and study open questions such as the utility of pipeline versus end-to-end approaches. We present the first phase of the SLUE benchmark suite, consisting of named entity recognition, sentiment analysis, and ASR on the corresponding datasets. We focus on naturally produced (not read or synthesized) speech, and freely available datasets. We provide new transcriptions and annotations on subsets of the VoxCeleb and VoxPopuli datasets, evaluation metrics and results for baseline models, and an open-source toolkit to reproduce the baselines and evaluate new models. 7 authors · Nov 19, 2021
- Once is Enough: A Light-Weight Cross-Attention for Fast Sentence Pair Modeling Transformer-based models have achieved great success on sentence pair modeling tasks, such as answer selection and natural language inference (NLI). These models generally perform cross-attention over input pairs, leading to prohibitive computational costs. Recent studies propose dual-encoder and late interaction architectures for faster computation. However, the balance between the expressive of cross-attention and computation speedup still needs better coordinated. To this end, this paper introduces a novel paradigm MixEncoder for efficient sentence pair modeling. MixEncoder involves a light-weight cross-attention mechanism. It conducts query encoding only once while modeling the query-candidate interaction in parallel. Extensive experiments conducted on four tasks demonstrate that our MixEncoder can speed up sentence pairing by over 113x while achieving comparable performance as the more expensive cross-attention models. 6 authors · Oct 11, 2022
10 Whisper-AT: Noise-Robust Automatic Speech Recognizers are Also Strong General Audio Event Taggers In this paper, we focus on Whisper, a recent automatic speech recognition model trained with a massive 680k hour labeled speech corpus recorded in diverse conditions. We first show an interesting finding that while Whisper is very robust against real-world background sounds (e.g., music), its audio representation is actually not noise-invariant, but is instead highly correlated to non-speech sounds, indicating that Whisper recognizes speech conditioned on the noise type. With this finding, we build a unified audio tagging and speech recognition model Whisper-AT by freezing the backbone of Whisper, and training a lightweight audio tagging model on top of it. With <1% extra computational cost, Whisper-AT can recognize audio events, in addition to spoken text, in a single forward pass. 4 authors · Jul 6, 2023
1 Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs) by incorporating pre-trained speech models. However, these SLMs often undergo extensive speech instruction-tuning to bridge the gap between speech and text modalities. This requires significant annotation efforts and risks catastrophic forgetting of the original language capabilities. In this work, we present a simple yet effective automatic process for creating speech-text pair data that carefully injects speech paralinguistic understanding abilities into SLMs while preserving the inherent language capabilities of the text-based LLM. Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data, achieving impressive performance on Dynamic-SUPERB and AIR-Bench-Chat benchmarks. Furthermore, our model exhibits the ability to follow complex instructions derived from LLMs, such as specific output formatting and chain-of-thought reasoning. Our approach not only enhances the versatility and effectiveness of SLMs but also reduces reliance on extensive annotated datasets, paving the way for more efficient and capable speech understanding systems. 8 authors · Sep 30, 2024
- VoxCeleb: a large-scale speaker identification dataset Most existing datasets for speaker identification contain samples obtained under quite constrained conditions, and are usually hand-annotated, hence limited in size. The goal of this paper is to generate a large scale text-independent speaker identification dataset collected 'in the wild'. We make two contributions. First, we propose a fully automated pipeline based on computer vision techniques to create the dataset from open-source media. Our pipeline involves obtaining videos from YouTube; performing active speaker verification using a two-stream synchronization Convolutional Neural Network (CNN), and confirming the identity of the speaker using CNN based facial recognition. We use this pipeline to curate VoxCeleb which contains hundreds of thousands of 'real world' utterances for over 1,000 celebrities. Our second contribution is to apply and compare various state of the art speaker identification techniques on our dataset to establish baseline performance. We show that a CNN based architecture obtains the best performance for both identification and verification. 3 authors · Jun 26, 2017
- One-shot Voice Conversion by Separating Speaker and Content Representations with Instance Normalization Recently, voice conversion (VC) without parallel data has been successfully adapted to multi-target scenario in which a single model is trained to convert the input voice to many different speakers. However, such model suffers from the limitation that it can only convert the voice to the speakers in the training data, which narrows down the applicable scenario of VC. In this paper, we proposed a novel one-shot VC approach which is able to perform VC by only an example utterance from source and target speaker respectively, and the source and target speaker do not even need to be seen during training. This is achieved by disentangling speaker and content representations with instance normalization (IN). Objective and subjective evaluation shows that our model is able to generate the voice similar to target speaker. In addition to the performance measurement, we also demonstrate that this model is able to learn meaningful speaker representations without any supervision. 3 authors · Apr 10, 2019
10 Toward Joint Language Modeling for Speech Units and Text Speech and text are two major forms of human language. The research community has been focusing on mapping speech to text or vice versa for many years. However, in the field of language modeling, very little effort has been made to model them jointly. In light of this, we explore joint language modeling for speech units and text. Specifically, we compare different speech tokenizers to transform continuous speech signals into discrete units and use different methods to construct mixed speech-text data. We introduce automatic metrics to evaluate how well the joint LM mixes speech and text. We also fine-tune the LM on downstream spoken language understanding (SLU) tasks with different modalities (speech or text) and test its performance to assess the model's learning of shared representations. Our results show that by mixing speech units and text with our proposed mixing techniques, the joint LM improves over a speech-only baseline on SLU tasks and shows zero-shot cross-modal transferability. 8 authors · Oct 12, 2023 1
7 A Suite for Acoustic Language Model Evaluation Speech language models have recently demonstrated great potential as universal speech processing systems. Such models have the ability to model the rich acoustic information existing in audio signals, beyond spoken content, such as emotion, background noise, etc. Despite this, evaluation benchmarks which evaluate awareness to a wide range of acoustic aspects, are lacking. To help bridge this gap, we introduce SALMon, a novel evaluation suite encompassing background noise, emotion, speaker identity and room impulse response. The proposed benchmarks both evaluate the consistency of the inspected element and how much it matches the spoken text. We follow a modelling based approach, measuring whether a model gives correct samples higher scores than incorrect ones. This approach makes the benchmark fast to compute even for large models. We evaluated several speech language models on SALMon, thus highlighting the strengths and weaknesses of each evaluated method. Code and data are publicly available at https://pages.cs.huji.ac.il/adiyoss-lab/salmon/ . 3 authors · Sep 11, 2024
- Distilling Knowledge for Fast Retrieval-based Chat-bots Response retrieval is a subset of neural ranking in which a model selects a suitable response from a set of candidates given a conversation history. Retrieval-based chat-bots are typically employed in information seeking conversational systems such as customer support agents. In order to make pairwise comparisons between a conversation history and a candidate response, two approaches are common: cross-encoders performing full self-attention over the pair and bi-encoders encoding the pair separately. The former gives better prediction quality but is too slow for practical use. In this paper, we propose a new cross-encoder architecture and transfer knowledge from this model to a bi-encoder model using distillation. This effectively boosts bi-encoder performance at no cost during inference time. We perform a detailed analysis of this approach on three response retrieval datasets. 3 authors · Apr 23, 2020
2 In-Context Learning Boosts Speech Recognition via Human-like Adaptation to Speakers and Language Varieties Human listeners readily adjust to unfamiliar speakers and language varieties through exposure, but do these adaptation benefits extend to state-of-the-art spoken language models? We introduce a scalable framework that allows for in-context learning (ICL) in Phi-4 Multimodal using interleaved task prompts and audio-text pairs, and find that as few as 12 example utterances (~50 seconds) at inference time reduce word error rates by a relative 19.7% (1.2 pp.) on average across diverse English corpora. These improvements are most pronounced in low-resource varieties, when the context and target speaker match, and when more examples are provided--though scaling our procedure yields diminishing marginal returns to context length. Overall, we find that our novel ICL adaptation scheme (1) reveals a similar performance profile to human listeners, and (2) demonstrates consistent improvements to automatic speech recognition (ASR) robustness across diverse speakers and language backgrounds. While adaptation succeeds broadly, significant gaps remain for certain varieties, revealing where current models still fall short of human flexibility. We release our prompts and code on GitHub. 6 authors · May 20 2
- A Deep Dive into the Disparity of Word Error Rates Across Thousands of NPTEL MOOC Videos Automatic speech recognition (ASR) systems are designed to transcribe spoken language into written text and find utility in a variety of applications including voice assistants and transcription services. However, it has been observed that state-of-the-art ASR systems which deliver impressive benchmark results, struggle with speakers of certain regions or demographics due to variation in their speech properties. In this work, we describe the curation of a massive speech dataset of 8740 hours consisting of sim9.8K technical lectures in the English language along with their transcripts delivered by instructors representing various parts of Indian demography. The dataset is sourced from the very popular NPTEL MOOC platform. We use the curated dataset to measure the existing disparity in YouTube Automatic Captions and OpenAI Whisper model performance across the diverse demographic traits of speakers in India. While there exists disparity due to gender, native region, age and speech rate of speakers, disparity based on caste is non-existent. We also observe statistically significant disparity across the disciplines of the lectures. These results indicate the need of more inclusive and robust ASR systems and more representational datasets for disparity evaluation in them. 3 authors · Jul 20, 2023
- Audio-Language Models for Audio-Centric Tasks: A survey Audio-Language Models (ALMs), which are trained on audio-text data, focus on the processing, understanding, and reasoning of sounds. Unlike traditional supervised learning approaches learning from predefined labels, ALMs utilize natural language as a supervision signal, which is more suitable for describing complex real-world audio recordings. ALMs demonstrate strong zero-shot capabilities and can be flexibly adapted to diverse downstream tasks. These strengths not only enhance the accuracy and generalization of audio processing tasks but also promote the development of models that more closely resemble human auditory perception and comprehension. Recent advances in ALMs have positioned them at the forefront of computer audition research, inspiring a surge of efforts to advance ALM technologies. Despite rapid progress in the field of ALMs, there is still a notable lack of systematic surveys that comprehensively organize and analyze developments. In this paper, we present a comprehensive review of ALMs with a focus on general audio tasks, aiming to fill this gap by providing a structured and holistic overview of ALMs. Specifically, we cover: (1) the background of computer audition and audio-language models; (2) the foundational aspects of ALMs, including prevalent network architectures, training objectives, and evaluation methods; (3) foundational pre-training and audio-language pre-training approaches; (4) task-specific fine-tuning, multi-task tuning and agent systems for downstream applications; (5) datasets and benchmarks; and (6) current challenges and future directions. Our review provides a clear technical roadmap for researchers to understand the development and future trends of existing technologies, offering valuable references for implementation in real-world scenarios. 5 authors · Jan 25
- Multiple-Instance, Cascaded Classification for Keyword Spotting in Narrow-Band Audio We propose using cascaded classifiers for a keyword spotting (KWS) task on narrow-band (NB), 8kHz audio acquired in non-IID environments --- a more challenging task than most state-of-the-art KWS systems face. We present a model that incorporates Deep Neural Networks (DNNs), cascading, multiple-feature representations, and multiple-instance learning. The cascaded classifiers handle the task's class imbalance and reduce power consumption on computationally-constrained devices via early termination. The KWS system achieves a false negative rate of 6% at an hourly false positive rate of 0.75 5 authors · Nov 21, 2017
- Looking to Listen at the Cocktail Party: A Speaker-Independent Audio-Visual Model for Speech Separation We present a joint audio-visual model for isolating a single speech signal from a mixture of sounds such as other speakers and background noise. Solving this task using only audio as input is extremely challenging and does not provide an association of the separated speech signals with speakers in the video. In this paper, we present a deep network-based model that incorporates both visual and auditory signals to solve this task. The visual features are used to "focus" the audio on desired speakers in a scene and to improve the speech separation quality. To train our joint audio-visual model, we introduce AVSpeech, a new dataset comprised of thousands of hours of video segments from the Web. We demonstrate the applicability of our method to classic speech separation tasks, as well as real-world scenarios involving heated interviews, noisy bars, and screaming children, only requiring the user to specify the face of the person in the video whose speech they want to isolate. Our method shows clear advantage over state-of-the-art audio-only speech separation in cases of mixed speech. In addition, our model, which is speaker-independent (trained once, applicable to any speaker), produces better results than recent audio-visual speech separation methods that are speaker-dependent (require training a separate model for each speaker of interest). 8 authors · Apr 10, 2018
- Effective Use of Variational Embedding Capacity in Expressive End-to-End Speech Synthesis Recent work has explored sequence-to-sequence latent variable models for expressive speech synthesis (supporting control and transfer of prosody and style), but has not presented a coherent framework for understanding the trade-offs between the competing methods. In this paper, we propose embedding capacity (the amount of information the embedding contains about the data) as a unified method of analyzing the behavior of latent variable models of speech, comparing existing heuristic (non-variational) methods to variational methods that are able to explicitly constrain capacity using an upper bound on representational mutual information. In our proposed model (Capacitron), we show that by adding conditional dependencies to the variational posterior such that it matches the form of the true posterior, the same model can be used for high-precision prosody transfer, text-agnostic style transfer, and generation of natural-sounding prior samples. For multi-speaker models, Capacitron is able to preserve target speaker identity during inter-speaker prosody transfer and when drawing samples from the latent prior. Lastly, we introduce a method for decomposing embedding capacity hierarchically across two sets of latents, allowing a portion of the latent variability to be specified and the remaining variability sampled from a learned prior. Audio examples are available on the web. 7 authors · Jun 8, 2019
54 AudioPaLM: A Large Language Model That Can Speak and Listen We introduce AudioPaLM, a large language model for speech understanding and generation. AudioPaLM fuses text-based and speech-based language models, PaLM-2 [Anil et al., 2023] and AudioLM [Borsos et al., 2022], into a unified multimodal architecture that can process and generate text and speech with applications including speech recognition and speech-to-speech translation. AudioPaLM inherits the capability to preserve paralinguistic information such as speaker identity and intonation from AudioLM and the linguistic knowledge present only in text large language models such as PaLM-2. We demonstrate that initializing AudioPaLM with the weights of a text-only large language model improves speech processing, successfully leveraging the larger quantity of text training data used in pretraining to assist with the speech tasks. The resulting model significantly outperforms existing systems for speech translation tasks and has the ability to perform zero-shot speech-to-text translation for many languages for which input/target language combinations were not seen in training. AudioPaLM also demonstrates features of audio language models, such as transferring a voice across languages based on a short spoken prompt. We release examples of our method at https://google-research.github.io/seanet/audiopalm/examples 30 authors · Jun 22, 2023 6
- Automatic channel selection and spatial feature integration for multi-channel speech recognition across various array topologies Automatic Speech Recognition (ASR) has shown remarkable progress, yet it still faces challenges in real-world distant scenarios across various array topologies each with multiple recording devices. The focal point of the CHiME-7 Distant ASR task is to devise a unified system capable of generalizing various array topologies that have multiple recording devices and offering reliable recognition performance in real-world environments. Addressing this task, we introduce an ASR system that demonstrates exceptional performance across various array topologies. First of all, we propose two attention-based automatic channel selection modules to select the most advantageous subset of multi-channel signals from multiple recording devices for each utterance. Furthermore, we introduce inter-channel spatial features to augment the effectiveness of multi-frame cross-channel attention, aiding it in improving the capability of spatial information awareness. Finally, we propose a multi-layer convolution fusion module drawing inspiration from the U-Net architecture to integrate the multi-channel output into a single-channel output. Experimental results on the CHiME-7 corpus with oracle segmentation demonstrate that the improvements introduced in our proposed ASR system lead to a relative reduction of 40.1% in the Macro Diarization Attributed Word Error Rates (DA-WER) when compared to the baseline ASR system on the Eval sets. 6 authors · Dec 15, 2023
- LoCoNet: Long-Short Context Network for Active Speaker Detection Active Speaker Detection (ASD) aims to identify who is speaking in each frame of a video. ASD reasons from audio and visual information from two contexts: long-term intra-speaker context and short-term inter-speaker context. Long-term intra-speaker context models the temporal dependencies of the same speaker, while short-term inter-speaker context models the interactions of speakers in the same scene. These two contexts are complementary to each other and can help infer the active speaker. Motivated by these observations, we propose LoCoNet, a simple yet effective Long-Short Context Network that models the long-term intra-speaker context and short-term inter-speaker context. We use self-attention to model long-term intra-speaker context due to its effectiveness in modeling long-range dependencies, and convolutional blocks that capture local patterns to model short-term inter-speaker context. Extensive experiments show that LoCoNet achieves state-of-the-art performance on multiple datasets, achieving an mAP of 95.2%(+1.1%) on AVA-ActiveSpeaker, 68.1%(+22%) on Columbia dataset, 97.2%(+2.8%) on Talkies dataset and 59.7%(+8.0%) on Ego4D dataset. Moreover, in challenging cases where multiple speakers are present, or face of active speaker is much smaller than other faces in the same scene, LoCoNet outperforms previous state-of-the-art methods by 3.4% on the AVA-ActiveSpeaker dataset. The code will be released at https://github.com/SJTUwxz/LoCoNet_ASD. 4 authors · Jan 19, 2023
- From Simulated Mixtures to Simulated Conversations as Training Data for End-to-End Neural Diarization End-to-end neural diarization (EEND) is nowadays one of the most prominent research topics in speaker diarization. EEND presents an attractive alternative to standard cascaded diarization systems since a single system is trained at once to deal with the whole diarization problem. Several EEND variants and approaches are being proposed, however, all these models require large amounts of annotated data for training but available annotated data are scarce. Thus, EEND works have used mostly simulated mixtures for training. However, simulated mixtures do not resemble real conversations in many aspects. In this work we present an alternative method for creating synthetic conversations that resemble real ones by using statistics about distributions of pauses and overlaps estimated on genuine conversations. Furthermore, we analyze the effect of the source of the statistics, different augmentations and amounts of data. We demonstrate that our approach performs substantially better than the original one, while reducing the dependence on the fine-tuning stage. Experiments are carried out on 2-speaker telephone conversations of Callhome and DIHARD 3. Together with this publication, we release our implementations of EEND and the method for creating simulated conversations. 4 authors · Apr 2, 2022
- SpellMapper: A non-autoregressive neural spellchecker for ASR customization with candidate retrieval based on n-gram mappings Contextual spelling correction models are an alternative to shallow fusion to improve automatic speech recognition (ASR) quality given user vocabulary. To deal with large user vocabularies, most of these models include candidate retrieval mechanisms, usually based on minimum edit distance between fragments of ASR hypothesis and user phrases. However, the edit-distance approach is slow, non-trainable, and may have low recall as it relies only on common letters. We propose: 1) a novel algorithm for candidate retrieval, based on misspelled n-gram mappings, which gives up to 90% recall with just the top 10 candidates on Spoken Wikipedia; 2) a non-autoregressive neural model based on BERT architecture, where the initial transcript and ten candidates are combined into one input. The experiments on Spoken Wikipedia show 21.4% word error rate improvement compared to a baseline ASR system. 3 authors · Jun 4, 2023
- Few-Shot Spoken Language Understanding via Joint Speech-Text Models Recent work on speech representation models jointly pre-trained with text has demonstrated the potential of improving speech representations by encoding speech and text in a shared space. In this paper, we leverage such shared representations to address the persistent challenge of limited data availability in spoken language understanding tasks. By employing a pre-trained speech-text model, we find that models fine-tuned on text can be effectively transferred to speech testing data. With as little as 1 hour of labeled speech data, our proposed approach achieves comparable performance on spoken language understanding tasks (specifically, sentiment analysis and named entity recognition) when compared to previous methods using speech-only pre-trained models fine-tuned on 10 times more data. Beyond the proof-of-concept study, we also analyze the latent representations. We find that the bottom layers of speech-text models are largely task-agnostic and align speech and text representations into a shared space, while the top layers are more task-specific. 4 authors · Oct 9, 2023
14 Beyond the Turn-Based Game: Enabling Real-Time Conversations with Duplex Models As large language models (LLMs) increasingly permeate daily lives, there is a growing demand for real-time interactions that mirror human conversations. Traditional turn-based chat systems driven by LLMs prevent users from verbally interacting with the system while it is generating responses. To overcome these limitations, we adapt existing LLMs to duplex models so that these LLMs can listen for users while generating output and dynamically adjust themselves to provide users with instant feedback. % such as in response to interruptions. Specifically, we divide the queries and responses of conversations into several time slices and then adopt a time-division-multiplexing (TDM) encoding-decoding strategy to pseudo-simultaneously process these slices. Furthermore, to make LLMs proficient enough to handle real-time conversations, we build a fine-tuning dataset consisting of alternating time slices of queries and responses as well as covering typical feedback types in instantaneous interactions. Our experiments show that although the queries and responses of conversations are segmented into incomplete slices for processing, LLMs can preserve their original performance on standard benchmarks with a few fine-tuning steps on our dataset. Automatic and human evaluation indicate that duplex models make user-AI interactions more natural and human-like, and greatly improve user satisfaction compared to vanilla LLMs. Our duplex model and dataset will be released. 9 authors · Jun 21, 2024 2
- WaveNet: A Generative Model for Raw Audio This paper introduces WaveNet, a deep neural network for generating raw audio waveforms. The model is fully probabilistic and autoregressive, with the predictive distribution for each audio sample conditioned on all previous ones; nonetheless we show that it can be efficiently trained on data with tens of thousands of samples per second of audio. When applied to text-to-speech, it yields state-of-the-art performance, with human listeners rating it as significantly more natural sounding than the best parametric and concatenative systems for both English and Mandarin. A single WaveNet can capture the characteristics of many different speakers with equal fidelity, and can switch between them by conditioning on the speaker identity. When trained to model music, we find that it generates novel and often highly realistic musical fragments. We also show that it can be employed as a discriminative model, returning promising results for phoneme recognition. 9 authors · Sep 12, 2016
1 You Need to Pay Better Attention We introduce three new attention mechanisms that outperform standard multi-head attention in terms of efficiency and learning capabilities, thereby improving the performance and broader deployability of Transformer models. Our first contribution is Optimised Attention, which performs similarly to standard attention, but has 3/4 as many parameters and one matrix multiplication fewer per head. Next, we introduce Efficient Attention, which performs on par with standard attention with only 1/2 as many parameters as many parameters and two matrix multiplications fewer per head and is up to twice as fast as standard attention. Lastly, we introduce Super Attention, which surpasses standard attention by a significant margin in both vision and natural language processing tasks while having fewer parameters and matrix multiplications. In addition to providing rigorous mathematical comparisons, we evaluate the presented attention mechanisms on MNIST, CIFAR100, IMDB Movie Reviews, and Amazon Reviews datasets. 2 authors · Mar 3, 2024
- DiPCo -- Dinner Party Corpus We present a speech data corpus that simulates a "dinner party" scenario taking place in an everyday home environment. The corpus was created by recording multiple groups of four Amazon employee volunteers having a natural conversation in English around a dining table. The participants were recorded by a single-channel close-talk microphone and by five far-field 7-microphone array devices positioned at different locations in the recording room. The dataset contains the audio recordings and human labeled transcripts of a total of 10 sessions with a duration between 15 and 45 minutes. The corpus was created to advance in the field of noise robust and distant speech processing and is intended to serve as a public research and benchmarking data set. 10 authors · Sep 30, 2019
6 Fast Transformer Decoding: One Write-Head is All You Need Multi-head attention layers, as used in the Transformer neural sequence model, are a powerful alternative to RNNs for moving information across and between sequences. While training these layers is generally fast and simple, due to parallelizability across the length of the sequence, incremental inference (where such paralleization is impossible) is often slow, due to the memory-bandwidth cost of repeatedly loading the large "keys" and "values" tensors. We propose a variant called multi-query attention, where the keys and values are shared across all of the different attention "heads", greatly reducing the size of these tensors and hence the memory bandwidth requirements of incremental decoding. We verify experimentally that the resulting models can indeed be much faster to decode, and incur only minor quality degradation from the baseline. 1 authors · Nov 5, 2019
7 Multimodal Data and Resource Efficient Device-Directed Speech Detection with Large Foundation Models Interactions with virtual assistants typically start with a trigger phrase followed by a command. In this work, we explore the possibility of making these interactions more natural by eliminating the need for a trigger phrase. Our goal is to determine whether a user addressed the virtual assistant based on signals obtained from the streaming audio recorded by the device microphone. We address this task by combining 1-best hypotheses and decoder signals from an automatic speech recognition system with acoustic representations from an audio encoder as input features to a large language model (LLM). In particular, we are interested in data and resource efficient systems that require only a small amount of training data and can operate in scenarios with only a single frozen LLM available on a device. For this reason, our model is trained on 80k or less examples of multimodal data using a combination of low-rank adaptation and prefix tuning. We compare the proposed system to unimodal baselines and show that the multimodal approach achieves lower equal-error-rates (EERs), while using only a fraction of the training data. We also show that low-dimensional specialized audio representations lead to lower EERs than high-dimensional general audio representations. 7 authors · Dec 6, 2023
4 SoloSpeech: Enhancing Intelligibility and Quality in Target Speech Extraction through a Cascaded Generative Pipeline Target Speech Extraction (TSE) aims to isolate a target speaker's voice from a mixture of multiple speakers by leveraging speaker-specific cues, typically provided as auxiliary audio (a.k.a. cue audio). Although recent advancements in TSE have primarily employed discriminative models that offer high perceptual quality, these models often introduce unwanted artifacts, reduce naturalness, and are sensitive to discrepancies between training and testing environments. On the other hand, generative models for TSE lag in perceptual quality and intelligibility. To address these challenges, we present SoloSpeech, a novel cascaded generative pipeline that integrates compression, extraction, reconstruction, and correction processes. SoloSpeech features a speaker-embedding-free target extractor that utilizes conditional information from the cue audio's latent space, aligning it with the mixture audio's latent space to prevent mismatches. Evaluated on the widely-used Libri2Mix dataset, SoloSpeech achieves the new state-of-the-art intelligibility and quality in target speech extraction and speech separation tasks while demonstrating exceptional generalization on out-of-domain data and real-world scenarios. 10 authors · May 25 2
- Attention is All You Need? Good Embeddings with Statistics are enough:Large Scale Audio Understanding without Transformers/ Convolutions/ BERTs/ Mixers/ Attention/ RNNs or .... This paper presents a way of doing large scale audio understanding without traditional state of the art neural architectures. Ever since the introduction of deep learning for understanding audio signals in the past decade, convolutional architectures have been able to achieve state of the art results surpassing traditional hand-crafted features. In the recent past, there has been a similar shift away from traditional convolutional and recurrent neural networks towards purely end-to-end Transformer architectures. We, in this work, explore an approach, based on Bag-of-Words model. Our approach does not have any convolutions, recurrence, attention, transformers or other approaches such as BERT. We utilize micro and macro level clustered vanilla embeddings, and use a MLP head for classification. We only use feed-forward encoder-decoder models to get the bottlenecks of spectral envelops, spectral patches and slices as well as multi-resolution spectra. A classification head (a feed-forward layer), similar to the approach in SimCLR is trained on a learned representation. Using simple codes learned on latent representations, we show how we surpass traditional convolutional neural network architectures, and come strikingly close to outperforming powerful Transformer architectures. This work hopefully would pave way for exciting advancements in the field of representation learning without massive, end-to-end neural architectures. 1 authors · Oct 7, 2021
- Contextual Biasing of Named-Entities with Large Language Models This paper studies contextual biasing with Large Language Models (LLMs), where during second-pass rescoring additional contextual information is provided to a LLM to boost Automatic Speech Recognition (ASR) performance. We propose to leverage prompts for a LLM without fine tuning during rescoring which incorporate a biasing list and few-shot examples to serve as additional information when calculating the score for the hypothesis. In addition to few-shot prompt learning, we propose multi-task training of the LLM to predict both the entity class and the next token. To improve the efficiency for contextual biasing and to avoid exceeding LLMs' maximum sequence lengths, we propose dynamic prompting, where we select the most likely class using the class tag prediction, and only use entities in this class as contexts for next token prediction. Word Error Rate (WER) evaluation is performed on i) an internal calling, messaging, and dictation dataset, and ii) the SLUE-Voxpopuli dataset. Results indicate that biasing lists and few-shot examples can achieve 17.8% and 9.6% relative improvement compared to first pass ASR, and that multi-task training and dynamic prompting can achieve 20.0% and 11.3% relative WER improvement, respectively. 7 authors · Sep 1, 2023
- VoxLingua107: a Dataset for Spoken Language Recognition This paper investigates the use of automatically collected web audio data for the task of spoken language recognition. We generate semi-random search phrases from language-specific Wikipedia data that are then used to retrieve videos from YouTube for 107 languages. Speech activity detection and speaker diarization are used to extract segments from the videos that contain speech. Post-filtering is used to remove segments from the database that are likely not in the given language, increasing the proportion of correctly labeled segments to 98%, based on crowd-sourced verification. The size of the resulting training set (VoxLingua107) is 6628 hours (62 hours per language on the average) and it is accompanied by an evaluation set of 1609 verified utterances. We use the data to build language recognition models for several spoken language identification tasks. Experiments show that using the automatically retrieved training data gives competitive results to using hand-labeled proprietary datasets. The dataset is publicly available. 2 authors · Nov 25, 2020
3 Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation Contrastive learning has shown remarkable success in the field of multimodal representation learning. In this paper, we propose a pipeline of contrastive language-audio pretraining to develop an audio representation by combining audio data with natural language descriptions. To accomplish this target, we first release LAION-Audio-630K, a large collection of 633,526 audio-text pairs from different data sources. Second, we construct a contrastive language-audio pretraining model by considering different audio encoders and text encoders. We incorporate the feature fusion mechanism and keyword-to-caption augmentation into the model design to further enable the model to process audio inputs of variable lengths and enhance the performance. Third, we perform comprehensive experiments to evaluate our model across three tasks: text-to-audio retrieval, zero-shot audio classification, and supervised audio classification. The results demonstrate that our model achieves superior performance in text-to-audio retrieval task. In audio classification tasks, the model achieves state-of-the-art performance in the zero-shot setting and is able to obtain performance comparable to models' results in the non-zero-shot setting. LAION-Audio-630K and the proposed model are both available to the public. 6 authors · Nov 12, 2022
- UniSpeech-SAT: Universal Speech Representation Learning with Speaker Aware Pre-Training Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks. 11 authors · Oct 12, 2021
- Late fusion ensembles for speech recognition on diverse input audio representations We explore diverse representations of speech audio, and their effect on a performance of late fusion ensemble of E-Branchformer models, applied to Automatic Speech Recognition (ASR) task. Although it is generally known that ensemble methods often improve the performance of the system even for speech recognition, it is very interesting to explore how ensembles of complex state-of-the-art models, such as medium-sized and large E-Branchformers, cope in this setting when their base models are trained on diverse representations of the input speech audio. The results are evaluated on four widely-used benchmark datasets: Librispeech, Aishell, Gigaspeech, TEDLIUMv2 and show that improvements of 1% - 14% can still be achieved over the state-of-the-art models trained using comparable techniques on these datasets. A noteworthy observation is that such ensemble offers improvements even with the use of language models, although the gap is closing. 2 authors · Dec 1, 2024
- Speech Summarization using Restricted Self-Attention Speech summarization is typically performed by using a cascade of speech recognition and text summarization models. End-to-end modeling of speech summarization models is challenging due to memory and compute constraints arising from long input audio sequences. Recent work in document summarization has inspired methods to reduce the complexity of self-attentions, which enables transformer models to handle long sequences. In this work, we introduce a single model optimized end-to-end for speech summarization. We apply the restricted self-attention technique from text-based models to speech models to address the memory and compute constraints. We demonstrate that the proposed model learns to directly summarize speech for the How-2 corpus of instructional videos. The proposed end-to-end model outperforms the previously proposed cascaded model by 3 points absolute on ROUGE. Further, we consider the spoken language understanding task of predicting concepts from speech inputs and show that the proposed end-to-end model outperforms the cascade model by 4 points absolute F-1. 4 authors · Oct 12, 2021
2 End-to-End Text-Dependent Speaker Verification In this paper we present a data-driven, integrated approach to speaker verification, which maps a test utterance and a few reference utterances directly to a single score for verification and jointly optimizes the system's components using the same evaluation protocol and metric as at test time. Such an approach will result in simple and efficient systems, requiring little domain-specific knowledge and making few model assumptions. We implement the idea by formulating the problem as a single neural network architecture, including the estimation of a speaker model on only a few utterances, and evaluate it on our internal "Ok Google" benchmark for text-dependent speaker verification. The proposed approach appears to be very effective for big data applications like ours that require highly accurate, easy-to-maintain systems with a small footprint. 4 authors · Sep 27, 2015
- DeFTAN-II: Efficient Multichannel Speech Enhancement with Subgroup Processing In this work, we present DeFTAN-II, an efficient multichannel speech enhancement model based on transformer architecture and subgroup processing. Despite the success of transformers in speech enhancement, they face challenges in capturing local relations, reducing the high computational complexity, and lowering memory usage. To address these limitations, we introduce subgroup processing in our model, combining subgroups of locally emphasized features with other subgroups containing original features. The subgroup processing is implemented in several blocks of the proposed network. In the proposed split dense blocks extracting spatial features, a pair of subgroups is sequentially concatenated and processed by convolution layers to effectively reduce the computational complexity and memory usage. For the F- and T-transformers extracting temporal and spectral relations, we introduce cross-attention between subgroups to identify relationships between locally emphasized and non-emphasized features. The dual-path feedforward network then aggregates attended features in terms of the gating of local features processed by dilated convolutions. Through extensive comparisons with state-of-the-art multichannel speech enhancement models, we demonstrate that DeFTAN-II with subgroup processing outperforms existing methods at significantly lower computational complexity. Moreover, we evaluate the model's generalization capability on real-world data without fine-tuning, which further demonstrates its effectiveness in practical scenarios. 2 authors · Aug 30, 2023
- Visual Features for Context-Aware Speech Recognition Automatic transcriptions of consumer-generated multi-media content such as "Youtube" videos still exhibit high word error rates. Such data typically occupies a very broad domain, has been recorded in challenging conditions, with cheap hardware and a focus on the visual modality, and may have been post-processed or edited. In this paper, we extend our earlier work on adapting the acoustic model of a DNN-based speech recognition system to an RNN language model and show how both can be adapted to the objects and scenes that can be automatically detected in the video. We are working on a corpus of "how-to" videos from the web, and the idea is that an object that can be seen ("car"), or a scene that is being detected ("kitchen") can be used to condition both models on the "context" of the recording, thereby reducing perplexity and improving transcription. We achieve good improvements in both cases and compare and analyze the respective reductions in word error rate. We expect that our results can be used for any type of speech processing in which "context" information is available, for example in robotics, man-machine interaction, or when indexing large audio-visual archives, and should ultimately help to bring together the "video-to-text" and "speech-to-text" communities. 4 authors · Dec 1, 2017
- MMAR: A Challenging Benchmark for Deep Reasoning in Speech, Audio, Music, and Their Mix We introduce MMAR, a new benchmark designed to evaluate the deep reasoning capabilities of Audio-Language Models (ALMs) across massive multi-disciplinary tasks. MMAR comprises 1,000 meticulously curated audio-question-answer triplets, collected from real-world internet videos and refined through iterative error corrections and quality checks to ensure high quality. Unlike existing benchmarks that are limited to specific domains of sound, music, or speech, MMAR extends them to a broad spectrum of real-world audio scenarios, including mixed-modality combinations of sound, music, and speech. Each question in MMAR is hierarchically categorized across four reasoning layers: Signal, Perception, Semantic, and Cultural, with additional sub-categories within each layer to reflect task diversity and complexity. To further foster research in this area, we annotate every question with a Chain-of-Thought (CoT) rationale to promote future advancements in audio reasoning. Each item in the benchmark demands multi-step deep reasoning beyond surface-level understanding. Moreover, a part of the questions requires graduate-level perceptual and domain-specific knowledge, elevating the benchmark's difficulty and depth. We evaluate MMAR using a broad set of models, including Large Audio-Language Models (LALMs), Large Audio Reasoning Models (LARMs), Omni Language Models (OLMs), Large Language Models (LLMs), and Large Reasoning Models (LRMs), with audio caption inputs. The performance of these models on MMAR highlights the benchmark's challenging nature, and our analysis further reveals critical limitations of understanding and reasoning capabilities among current models. We hope MMAR will serve as a catalyst for future advances in this important but little-explored area. 34 authors · May 19
- End-to-End Speaker Diarization for an Unknown Number of Speakers with Encoder-Decoder Based Attractors End-to-end speaker diarization for an unknown number of speakers is addressed in this paper. Recently proposed end-to-end speaker diarization outperformed conventional clustering-based speaker diarization, but it has one drawback: it is less flexible in terms of the number of speakers. This paper proposes a method for encoder-decoder based attractor calculation (EDA), which first generates a flexible number of attractors from a speech embedding sequence. Then, the generated multiple attractors are multiplied by the speech embedding sequence to produce the same number of speaker activities. The speech embedding sequence is extracted using the conventional self-attentive end-to-end neural speaker diarization (SA-EEND) network. In a two-speaker condition, our method achieved a 2.69 % diarization error rate (DER) on simulated mixtures and a 8.07 % DER on the two-speaker subset of CALLHOME, while vanilla SA-EEND attained 4.56 % and 9.54 %, respectively. In unknown numbers of speakers conditions, our method attained a 15.29 % DER on CALLHOME, while the x-vector-based clustering method achieved a 19.43 % DER. 5 authors · May 20, 2020
1 Expressing Visual Relationships via Language Describing images with text is a fundamental problem in vision-language research. Current studies in this domain mostly focus on single image captioning. However, in various real applications (e.g., image editing, difference interpretation, and retrieval), generating relational captions for two images, can also be very useful. This important problem has not been explored mostly due to lack of datasets and effective models. To push forward the research in this direction, we first introduce a new language-guided image editing dataset that contains a large number of real image pairs with corresponding editing instructions. We then propose a new relational speaker model based on an encoder-decoder architecture with static relational attention and sequential multi-head attention. We also extend the model with dynamic relational attention, which calculates visual alignment while decoding. Our models are evaluated on our newly collected and two public datasets consisting of image pairs annotated with relationship sentences. Experimental results, based on both automatic and human evaluation, demonstrate that our model outperforms all baselines and existing methods on all the datasets. 5 authors · Jun 18, 2019
1 Fortify the Shortest Stave in Attention: Enhancing Context Awareness of Large Language Models for Effective Tool Use In this paper, we demonstrate that an inherent waveform pattern in the attention allocation of large language models (LLMs) significantly affects their performance in tasks demanding a high degree of context awareness, such as utilizing LLMs for tool-use. Specifically, the crucial information in the context will be potentially overlooked by model when it is positioned in the trough zone of the attention waveform, leading to decreased performance. To address this issue, we propose a novel inference method named Attention Buckets. It allows LLMs to process their input through multiple parallel processes. Each process utilizes a distinct base angle for the rotary position embedding, thereby creating a unique attention waveform. By compensating an attention trough of a particular process with an attention peak of another process, our approach enhances LLM's awareness to various contextual positions, thus mitigating the risk of overlooking crucial information. In the largest tool-use benchmark, our method elevates a 7B model to achieve state-of-the-art performance, comparable to that of GPT-4. On other benchmarks and some RAG tasks, which also demand a thorough understanding of contextual content, Attention Buckets also exhibited notable enhancements in performance. 8 authors · Dec 7, 2023
- Training Keyword Spotters with Limited and Synthesized Speech Data With the rise of low power speech-enabled devices, there is a growing demand to quickly produce models for recognizing arbitrary sets of keywords. As with many machine learning tasks, one of the most challenging parts in the model creation process is obtaining a sufficient amount of training data. In this paper, we explore the effectiveness of synthesized speech data in training small, spoken term detection models of around 400k parameters. Instead of training such models directly on the audio or low level features such as MFCCs, we use a pre-trained speech embedding model trained to extract useful features for keyword spotting models. Using this speech embedding, we show that a model which detects 10 keywords when trained on only synthetic speech is equivalent to a model trained on over 500 real examples. We also show that a model without our speech embeddings would need to be trained on over 4000 real examples to reach the same accuracy. 4 authors · Jan 31, 2020
1 A Unified View of Long-Sequence Models towards Modeling Million-Scale Dependencies Ever since their conception, Transformers have taken over traditional sequence models in many tasks, such as NLP, image classification, and video/audio processing, for their fast training and superior performance. Much of the merit is attributable to positional encoding and multi-head attention. However, Transformers fall short in learning long-range dependencies mainly due to the quadratic complexity scaled with context length, in terms of both time and space. Consequently, over the past five years, a myriad of methods has been proposed to make Transformers more efficient. In this work, we first take a step back, study and compare existing solutions to long-sequence modeling in terms of their pure mathematical formulation. Specifically, we summarize them using a unified template, given their shared nature of token mixing. Through benchmarks, we then demonstrate that long context length does yield better performance, albeit application-dependent, and traditional Transformer models fall short in taking advantage of long-range dependencies. Next, inspired by emerging sparse models of huge capacity, we propose a machine learning system for handling million-scale dependencies. As a proof of concept, we evaluate the performance of one essential component of this system, namely, the distributed multi-head attention. We show that our algorithm can scale up attention computation by almost 40times using four GeForce RTX 4090 GPUs, compared to vanilla multi-head attention mechanism. We believe this study is an instrumental step towards modeling million-scale dependencies. 2 authors · Feb 13, 2023
1 LongHeads: Multi-Head Attention is Secretly a Long Context Processor Large language models (LLMs) have achieved impressive performance in numerous domains but often struggle to process lengthy inputs effectively and efficiently due to limited length generalization and attention's quadratic computational demands. Many sought to mitigate this by restricting the attention window within the pre-trained length. However, these methods introduce new issues such as ignoring the middle context and requiring additional training. To address these problems, we propose LongHeads, a training-free framework that enhances LLM's long context ability by unlocking multi-head attention's untapped potential. Instead of allowing each head to attend to the full sentence, which struggles with generalizing to longer sequences due to out-of-distribution (OOD) issues, we allow each head to process in-distribution length by selecting and attending to important context chunks. To this end, we propose a chunk selection strategy that relies on the inherent correlation between the query and the key representations, efficiently distributing context chunks to different heads. In this way, each head ensures it can effectively process attended tokens within the trained length, while different heads in different layers can collectively process longer contexts. LongHeads works efficiently in linear time, fits seamlessly with many LLMs that use relative positional encoding. Our extensive empirical analyses verify LongHeads's efficacy in extending the usable context window for existing models, showcasing its promise for enhancing long text understanding. 8 authors · Feb 16, 2024 2
- DiscreteSLU: A Large Language Model with Self-Supervised Discrete Speech Units for Spoken Language Understanding The integration of pre-trained text-based large language models (LLM) with speech input has enabled instruction-following capabilities for diverse speech tasks. This integration requires the use of a speech encoder, a speech adapter, and an LLM, trained on diverse tasks. We propose the use of discrete speech units (DSU), rather than continuous-valued speech encoder outputs, that are converted to the LLM token embedding space using the speech adapter. We generate DSU using a self-supervised speech encoder followed by k-means clustering. The proposed model shows robust performance on speech inputs from seen/unseen domains and instruction-following capability in spoken question answering. We also explore various types of DSU extracted from different layers of the self-supervised speech encoder, as well as Mel frequency Cepstral Coefficients (MFCC). Our findings suggest that the ASR task and datasets are not crucial in instruction-tuning for spoken question answering tasks. 6 authors · Jun 13, 2024
- Advancing Multi-talker ASR Performance with Large Language Models Recognizing overlapping speech from multiple speakers in conversational scenarios is one of the most challenging problem for automatic speech recognition (ASR). Serialized output training (SOT) is a classic method to address multi-talker ASR, with the idea of concatenating transcriptions from multiple speakers according to the emission times of their speech for training. However, SOT-style transcriptions, derived from concatenating multiple related utterances in a conversation, depend significantly on modeling long contexts. Therefore, compared to traditional methods that primarily emphasize encoder performance in attention-based encoder-decoder (AED) architectures, a novel approach utilizing large language models (LLMs) that leverages the capabilities of pre-trained decoders may be better suited for such complex and challenging scenarios. In this paper, we propose an LLM-based SOT approach for multi-talker ASR, leveraging pre-trained speech encoder and LLM, fine-tuning them on multi-talker dataset using appropriate strategies. Experimental results demonstrate that our approach surpasses traditional AED-based methods on the simulated dataset LibriMix and achieves state-of-the-art performance on the evaluation set of the real-world dataset AMI, outperforming the AED model trained with 1000 times more supervised data in previous works. 9 authors · Aug 30, 2024
- nnSpeech: Speaker-Guided Conditional Variational Autoencoder for Zero-shot Multi-speaker Text-to-Speech Multi-speaker text-to-speech (TTS) using a few adaption data is a challenge in practical applications. To address that, we propose a zero-shot multi-speaker TTS, named nnSpeech, that could synthesis a new speaker voice without fine-tuning and using only one adaption utterance. Compared with using a speaker representation module to extract the characteristics of new speakers, our method bases on a speaker-guided conditional variational autoencoder and can generate a variable Z, which contains both speaker characteristics and content information. The latent variable Z distribution is approximated by another variable conditioned on reference mel-spectrogram and phoneme. Experiments on the English corpus, Mandarin corpus, and cross-dataset proves that our model could generate natural and similar speech with only one adaption speech. 5 authors · Feb 22, 2022
- Meeting Transcription Using Virtual Microphone Arrays We describe a system that generates speaker-annotated transcripts of meetings by using a virtual microphone array, a set of spatially distributed asynchronous recording devices such as laptops and mobile phones. The system is composed of continuous audio stream alignment, blind beamforming, speech recognition, speaker diarization using prior speaker information, and system combination. When utilizing seven input audio streams, our system achieves a word error rate (WER) of 22.3% and comes within 3% of the close-talking microphone WER on the non-overlapping speech segments. The speaker-attributed WER (SAWER) is 26.7%. The relative gains in SAWER over the single-device system are 14.8%, 20.3%, and 22.4% for three, five, and seven microphones, respectively. The presented system achieves a 13.6% diarization error rate when 10% of the speech duration contains more than one speaker. The contribution of each component to the overall performance is also investigated, and we validate the system with experiments on the NIST RT-07 conference meeting test set. 7 authors · May 3, 2019
- BASS: Block-wise Adaptation for Speech Summarization End-to-end speech summarization has been shown to improve performance over cascade baselines. However, such models are difficult to train on very large inputs (dozens of minutes or hours) owing to compute restrictions and are hence trained with truncated model inputs. Truncation leads to poorer models, and a solution to this problem rests in block-wise modeling, i.e., processing a portion of the input frames at a time. In this paper, we develop a method that allows one to train summarization models on very long sequences in an incremental manner. Speech summarization is realized as a streaming process, where hypothesis summaries are updated every block based on new acoustic information. We devise and test strategies to pass semantic context across the blocks. Experiments on the How2 dataset demonstrate that the proposed block-wise training method improves by 3 points absolute on ROUGE-L over a truncated input baseline. 6 authors · Jul 16, 2023
- Adaptive Large Language Models By Layerwise Attention Shortcuts Transformer architectures are the backbone of the modern AI revolution. However, they are based on simply stacking the same blocks in dozens of layers and processing information sequentially from one block to another. In this paper, we propose to challenge this and introduce adaptive computations for LLM-like setups, which allow the final layer to attend to all of the intermediate layers as it deems fit through the attention mechanism, thereby introducing computational attention shortcuts. These shortcuts can thus make the architecture depth and context adaptive. We showcase four different datasets, namely acoustic tokens, natural language, and symbolic music, and we achieve superior performance for GPT-like architecture. We give evidence via attention maps that the models learn complex dependencies across layers that are adaptive in context and depth depending on the input tokens. 2 authors · Sep 16, 2024
- Contrastive Speaker-Aware Learning for Multi-party Dialogue Generation with LLMs Multi-party dialogue generation presents significant challenges due to the complex interplay of multiple speakers and interwoven conversational threads. Traditional approaches often fall short in capturing these complexities, particularly when relying on manually annotated dialogue relations. This paper introduces Speaker-Attentive LLM (SA-LLM), a novel generative model that leverages pre-trained Large Language Models (LLMs) and a speaker-aware contrastive learning strategy to address these challenges. SA-LLM incorporates a speaker-attributed input encoding and a contrastive learning objective to implicitly learn contextual coherence and speaker roles without explicit relation annotations. Extensive experiments on the Ubuntu IRC and Movie Dialogues datasets demonstrate that SA-LLM significantly outperforms state-of-the-art baselines in automatic and human evaluations, achieving superior performance in fluency, coherence, informativeness, and response diversity. Ablation studies and detailed error analyses further validate the effectiveness of the proposed speaker-attentive training approach, highlighting its robustness across different speaker roles and context lengths. The results underscore the potential of SA-LLM as a powerful and annotation-free solution for high-quality multi-party dialogue generation. 3 authors · Mar 11
1 SUPERB: Speech processing Universal PERformance Benchmark Self-supervised learning (SSL) has proven vital for advancing research in natural language processing (NLP) and computer vision (CV). The paradigm pretrains a shared model on large volumes of unlabeled data and achieves state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the speech processing community lacks a similar setup to systematically explore the paradigm. To bridge this gap, we introduce Speech processing Universal PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the performance of a shared model across a wide range of speech processing tasks with minimal architecture changes and labeled data. Among multiple usages of the shared model, we especially focus on extracting the representation learned from SSL due to its preferable re-usability. We present a simple framework to solve SUPERB tasks by learning task-specialized lightweight prediction heads on top of the frozen shared model. Our results demonstrate that the framework is promising as SSL representations show competitive generalizability and accessibility across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a benchmark toolkit to fuel the research in representation learning and general speech processing. 20 authors · May 3, 2021
2 A Persona-Based Neural Conversation Model We present persona-based models for handling the issue of speaker consistency in neural response generation. A speaker model encodes personas in distributed embeddings that capture individual characteristics such as background information and speaking style. A dyadic speaker-addressee model captures properties of interactions between two interlocutors. Our models yield qualitative performance improvements in both perplexity and BLEU scores over baseline sequence-to-sequence models, with similar gains in speaker consistency as measured by human judges. 6 authors · Mar 19, 2016 2
- CNN-based MultiChannel End-to-End Speech Recognition for everyday home environments Casual conversations involving multiple speakers and noises from surrounding devices are common in everyday environments, which degrades the performances of automatic speech recognition systems. These challenging characteristics of environments are the target of the CHiME-5 challenge. By employing a convolutional neural network (CNN)-based multichannel end-to-end speech recognition system, this study attempts to overcome the presents difficulties in everyday environments. The system comprises of an attention-based encoder-decoder neural network that directly generates a text as an output from a sound input. The multichannel CNN encoder, which uses residual connections and batch renormalization, is trained with augmented data, including white noise injection. The experimental results show that the word error rate is reduced by 8.5% and 0.6% absolute from a single channel end-to-end and the best baseline (LF-MMI TDNN) on the CHiME-5 corpus, respectively. 5 authors · Nov 6, 2018
- Speaker Diarization using Deep Recurrent Convolutional Neural Networks for Speaker Embeddings In this paper we propose a new method of speaker diarization that employs a deep learning architecture to learn speaker embeddings. In contrast to the traditional approaches that build their speaker embeddings using manually hand-crafted spectral features, we propose to train for this purpose a recurrent convolutional neural network applied directly on magnitude spectrograms. To compare our approach with the state of the art, we collect and release for the public an additional dataset of over 6 hours of fully annotated broadcast material. The results of our evaluation on the new dataset and three other benchmark datasets show that our proposed method significantly outperforms the competitors and reduces diarization error rate by a large margin of over 30% with respect to the baseline. 3 authors · Aug 9, 2017
- ZMM-TTS: Zero-shot Multilingual and Multispeaker Speech Synthesis Conditioned on Self-supervised Discrete Speech Representations Neural text-to-speech (TTS) has achieved human-like synthetic speech for single-speaker, single-language synthesis. Multilingual TTS systems are limited to resource-rich languages due to the lack of large paired text and studio-quality audio data. In most cases, TTS systems are built using a single speaker's voice. However, there is growing interest in developing systems that can synthesize voices for new speakers using only a few seconds of their speech. This paper presents ZMM-TTS, a multilingual and multispeaker framework utilizing quantized latent speech representations from a large-scale, pre-trained, self-supervised model. Our paper is the first to incorporate the representations from text-based and speech-based self-supervised learning models into multilingual speech synthesis tasks. We conducted comprehensive subjective and objective evaluations through a series of experiments. Our model has been proven effective in terms of speech naturalness and similarity for both seen and unseen speakers in six high-resource languages. We also tested the efficiency of our method on two hypothetical low-resource languages. The results are promising, indicating that our proposed approach can synthesize audio that is intelligible and has a high degree of similarity to the target speaker's voice, even without any training data for the new, unseen language. 8 authors · Dec 21, 2023
1 Speechformer: Reducing Information Loss in Direct Speech Translation Transformer-based models have gained increasing popularity achieving state-of-the-art performance in many research fields including speech translation. However, Transformer's quadratic complexity with respect to the input sequence length prevents its adoption as is with audio signals, which are typically represented by long sequences. Current solutions resort to an initial sub-optimal compression based on a fixed sampling of raw audio features. Therefore, potentially useful linguistic information is not accessible to higher-level layers in the architecture. To solve this issue, we propose Speechformer, an architecture that, thanks to reduced memory usage in the attention layers, avoids the initial lossy compression and aggregates information only at a higher level according to more informed linguistic criteria. Experiments on three language pairs (en->de/es/nl) show the efficacy of our solution, with gains of up to 0.8 BLEU on the standard MuST-C corpus and of up to 4.0 BLEU in a low resource scenario. 4 authors · Sep 9, 2021
- ECAPA2: A Hybrid Neural Network Architecture and Training Strategy for Robust Speaker Embeddings In this paper, we present ECAPA2, a novel hybrid neural network architecture and training strategy to produce robust speaker embeddings. Most speaker verification models are based on either the 1D- or 2D-convolutional operation, often manifested as Time Delay Neural Networks or ResNets, respectively. Hybrid models are relatively unexplored without an intuitive explanation what constitutes best practices in regard to its architectural choices. We motivate the proposed ECAPA2 model in this paper with an analysis of current speaker verification architectures. In addition, we propose a training strategy which makes the speaker embeddings more robust against overlapping speech and short utterance lengths. The presented ECAPA2 architecture and training strategy attains state-of-the-art performance on the VoxCeleb1 test sets with significantly less parameters than current models. Finally, we make a pre-trained model publicly available to promote research on downstream tasks. 2 authors · Jan 16, 2024
- DiCoW: Diarization-Conditioned Whisper for Target Speaker Automatic Speech Recognition Speaker-attributed automatic speech recognition (ASR) in multi-speaker environments remains a significant challenge, particularly when systems conditioned on speaker embeddings fail to generalize to unseen speakers. In this work, we propose Diarization-Conditioned Whisper (DiCoW), a novel approach to target-speaker ASR that leverages speaker diarization outputs as conditioning information. DiCoW extends the pre-trained Whisper model by integrating diarization labels directly, eliminating reliance on speaker embeddings and reducing the need for extensive speaker-specific training data. Our method introduces frame-level diarization-dependent transformations (FDDT) and query-key biasing (QKb) techniques to refine the model's focus on target speakers while effectively handling overlapping speech. By leveraging diarization outputs as conditioning signals, DiCoW simplifies the workflow for multi-speaker ASR, improves generalization to unseen speakers and enables more reliable transcription in real-world multi-speaker recordings. Additionally, we explore the integration of a connectionist temporal classification (CTC) head to Whisper and demonstrate its ability to improve transcription efficiency through hybrid decoding. Notably, we show that our approach is not limited to Whisper; it also provides similar benefits when applied to the Branchformer model. We validate DiCoW on real-world datasets, including AMI and NOTSOFAR-1 from CHiME-8 challenge, as well as synthetic benchmarks such as Libri2Mix and LibriCSS, enabling direct comparisons with previous methods. Results demonstrate that DiCoW enhances the model's target-speaker ASR capabilities while maintaining Whisper's accuracy and robustness on single-speaker data. 10 authors · Dec 30, 2024
- Neural Voice Cloning with a Few Samples Voice cloning is a highly desired feature for personalized speech interfaces. Neural network based speech synthesis has been shown to generate high quality speech for a large number of speakers. In this paper, we introduce a neural voice cloning system that takes a few audio samples as input. We study two approaches: speaker adaptation and speaker encoding. Speaker adaptation is based on fine-tuning a multi-speaker generative model with a few cloning samples. Speaker encoding is based on training a separate model to directly infer a new speaker embedding from cloning audios and to be used with a multi-speaker generative model. In terms of naturalness of the speech and its similarity to original speaker, both approaches can achieve good performance, even with very few cloning audios. While speaker adaptation can achieve better naturalness and similarity, the cloning time or required memory for the speaker encoding approach is significantly less, making it favorable for low-resource deployment. 5 authors · Feb 14, 2018
2 Building a great multi-lingual teacher with sparsely-gated mixture of experts for speech recognition The sparsely-gated Mixture of Experts (MoE) can magnify a network capacity with a little computational complexity. In this work, we investigate how multi-lingual Automatic Speech Recognition (ASR) networks can be scaled up with a simple routing algorithm in order to achieve better accuracy. More specifically, we apply the sparsely-gated MoE technique to two types of networks: Sequence-to-Sequence Transformer (S2S-T) and Transformer Transducer (T-T). We demonstrate through a set of ASR experiments on multiple language data that the MoE networks can reduce the relative word error rates by 16.3% and 4.6% with the S2S-T and T-T, respectively. Moreover, we thoroughly investigate the effect of the MoE on the T-T architecture in various conditions: streaming mode, non-streaming mode, the use of language ID and the label decoder with the MoE. 8 authors · Dec 10, 2021
- Effectiveness of Mining Audio and Text Pairs from Public Data for Improving ASR Systems for Low-Resource Languages End-to-end (E2E) models have become the default choice for state-of-the-art speech recognition systems. Such models are trained on large amounts of labelled data, which are often not available for low-resource languages. Techniques such as self-supervised learning and transfer learning hold promise, but have not yet been effective in training accurate models. On the other hand, collecting labelled datasets on a diverse set of domains and speakers is very expensive. In this work, we demonstrate an inexpensive and effective alternative to these approaches by ``mining'' text and audio pairs for Indian languages from public sources, specifically from the public archives of All India Radio. As a key component, we adapt the Needleman-Wunsch algorithm to align sentences with corresponding audio segments given a long audio and a PDF of its transcript, while being robust to errors due to OCR, extraneous text, and non-transcribed speech. We thus create Shrutilipi, a dataset which contains over 6,400 hours of labelled audio across 12 Indian languages totalling to 4.95M sentences. On average, Shrutilipi results in a 2.3x increase over publicly available labelled data. We establish the quality of Shrutilipi with 21 human evaluators across the 12 languages. We also establish the diversity of Shrutilipi in terms of represented regions, speakers, and mentioned named entities. Significantly, we show that adding Shrutilipi to the training set of Wav2Vec models leads to an average decrease in WER of 5.8\% for 7 languages on the IndicSUPERB benchmark. For Hindi, which has the most benchmarks (7), the average WER falls from 18.8% to 13.5%. This improvement extends to efficient models: We show a 2.3% drop in WER for a Conformer model (10x smaller than Wav2Vec). Finally, we demonstrate the diversity of Shrutilipi by showing that the model trained with it is more robust to noisy input. 7 authors · Aug 26, 2022
4 VITS2: Improving Quality and Efficiency of Single-Stage Text-to-Speech with Adversarial Learning and Architecture Design Single-stage text-to-speech models have been actively studied recently, and their results have outperformed two-stage pipeline systems. Although the previous single-stage model has made great progress, there is room for improvement in terms of its intermittent unnaturalness, computational efficiency, and strong dependence on phoneme conversion. In this work, we introduce VITS2, a single-stage text-to-speech model that efficiently synthesizes a more natural speech by improving several aspects of the previous work. We propose improved structures and training mechanisms and present that the proposed methods are effective in improving naturalness, similarity of speech characteristics in a multi-speaker model, and efficiency of training and inference. Furthermore, we demonstrate that the strong dependence on phoneme conversion in previous works can be significantly reduced with our method, which allows a fully end-to-end single-stage approach. 6 authors · Jul 31, 2023
- Efficient Fine-tuning of Audio Spectrogram Transformers via Soft Mixture of Adapters Mixture of Experts (MoE) architectures have recently started burgeoning due to their ability to scale model's capacity while maintaining the computational cost affordable. Furthermore, they can be applied to both Transformers and State Space Models, the current state-of-the-art models in numerous fields. While MoE has been mostly investigated for the pre-training stage, its use in parameter-efficient transfer learning settings is under-explored. To narrow this gap, this paper attempts to demystify the use of MoE for parameter-efficient fine-tuning of Audio Spectrogram Transformers to audio and speech downstream tasks. Specifically, we propose Soft Mixture of Adapters (Soft-MoA). It exploits adapters as the experts and, leveraging the recent Soft MoE method, it relies on a soft assignment between the input tokens and experts to keep the computational time limited. Extensive experiments across 4 benchmarks demonstrate that Soft-MoA outperforms the single adapter method and performs on par with the dense MoA counterpart. We finally present ablation studies on key elements of Soft-MoA, showing for example that Soft-MoA achieves better scaling with more experts, as well as ensuring that all experts contribute to the computation of the output tokens, thus dispensing with the expert imbalance issue. 3 authors · Feb 1, 2024
- Libri-Light: A Benchmark for ASR with Limited or No Supervision We introduce a new collection of spoken English audio suitable for training speech recognition systems under limited or no supervision. It is derived from open-source audio books from the LibriVox project. It contains over 60K hours of audio, which is, to our knowledge, the largest freely-available corpus of speech. The audio has been segmented using voice activity detection and is tagged with SNR, speaker ID and genre descriptions. Additionally, we provide baseline systems and evaluation metrics working under three settings: (1) the zero resource/unsupervised setting (ABX), (2) the semi-supervised setting (PER, CER) and (3) the distant supervision setting (WER). Settings (2) and (3) use limited textual resources (10 minutes to 10 hours) aligned with the speech. Setting (3) uses large amounts of unaligned text. They are evaluated on the standard LibriSpeech dev and test sets for comparison with the supervised state-of-the-art. 15 authors · Dec 17, 2019
9 Friends-MMC: A Dataset for Multi-modal Multi-party Conversation Understanding Multi-modal multi-party conversation (MMC) is a less studied yet important topic of research due to that it well fits real-world scenarios and thus potentially has more widely-used applications. Compared with the traditional multi-modal conversations, MMC requires stronger character-centered understanding abilities as there are many interlocutors appearing in both the visual and textual context. To facilitate the study of this problem, we present Friends-MMC in this paper, an MMC dataset that contains 24,000+ unique utterances paired with video context. To explore the character-centered understanding of the dialogue, we also annotate the speaker of each utterance, the names and bounding bboxes of faces that appear in the video. Based on this Friends-MMC dataset, we further study two fundamental MMC tasks: conversation speaker identification and conversation response prediction, both of which have the multi-party nature with the video or image as visual context. For conversation speaker identification, we demonstrate the inefficiencies of existing methods such as pre-trained models, and propose a simple yet effective baseline method that leverages an optimization solver to utilize the context of two modalities to achieve better performance. For conversation response prediction, we fine-tune generative dialogue models on Friend-MMC, and analyze the benefits of speaker information. The code and dataset is publicly available at https://github.com/yellow-binary-tree/Friends-MMC and thus we call for more attention on modeling speaker information when understanding conversations. 6 authors · Dec 23, 2024 2
- Wav2CLIP: Learning Robust Audio Representations From CLIP We propose Wav2CLIP, a robust audio representation learning method by distilling from Contrastive Language-Image Pre-training (CLIP). We systematically evaluate Wav2CLIP on a variety of audio tasks including classification, retrieval, and generation, and show that Wav2CLIP can outperform several publicly available pre-trained audio representation algorithms. Wav2CLIP projects audio into a shared embedding space with images and text, which enables multimodal applications such as zero-shot classification, and cross-modal retrieval. Furthermore, Wav2CLIP needs just ~10% of the data to achieve competitive performance on downstream tasks compared with fully supervised models, and is more efficient to pre-train than competing methods as it does not require learning a visual model in concert with an auditory model. Finally, we demonstrate image generation from Wav2CLIP as qualitative assessment of the shared embedding space. Our code and model weights are open sourced and made available for further applications. 4 authors · Oct 21, 2021
1 Task-Agnostic Structured Pruning of Speech Representation Models Self-supervised pre-trained models such as Wav2vec2, Hubert, and WavLM have been shown to significantly improve many speech tasks. However, their large memory and strong computational requirements hinder their industrial applicability. Structured pruning is a hardware-friendly model compression technique but usually results in a larger loss of accuracy. In this paper, we propose a fine-grained attention head pruning method to compensate for the performance degradation. In addition, we also introduce the straight through estimator into the L0 regularization to further accelerate the pruned model. Experiments on the SUPERB benchmark show that our model can achieve comparable performance to the dense model in multiple tasks and outperforms the Wav2vec 2.0 base model on average, with 72% fewer parameters and 2 times faster inference speed. 5 authors · Jun 2, 2023
1 SONAR: Sentence-Level Multimodal and Language-Agnostic Representations We introduce SONAR, a new multilingual and multimodal fixed-size sentence embedding space. Our single text encoder, covering 200 languages, substantially outperforms existing sentence embeddings such as LASER3 and LabSE on the xsim and xsim++ multilingual similarity search tasks. Speech segments can be embedded in the same SONAR embedding space using language-specific speech encoders trained in a teacher-student setting on speech transcription data. Our encoders outperform existing speech encoders on similarity search tasks. We also provide a text decoder for 200 languages, which allows us to perform text-to-text and speech-to-text machine translation, including for zero-shot language and modality combinations. Our text-to-text results are competitive compared to the state-of-the-art NLLB~1B model, despite the fixed-size bottleneck representation. Our zero-shot speech-to-text translation results compare favorably with strong supervised baselines such as Whisper. 3 authors · Aug 22, 2023
- Representation, Exploration and Recommendation of Music Playlists Playlists have become a significant part of our listening experience because of the digital cloud-based services such as Spotify, Pandora, Apple Music. Owing to the meteoric rise in the usage of playlists, recommending playlists is crucial to music services today. Although there has been a lot of work done in playlist prediction, the area of playlist representation hasn't received that level of attention. Over the last few years, sequence-to-sequence models, especially in the field of natural language processing, have shown the effectiveness of learned embeddings in capturing the semantic characteristics of sequences. We can apply similar concepts to music to learn fixed length representations for playlists and use those representations for downstream tasks such as playlist discovery, browsing, and recommendation. In this work, we formulate the problem of learning a fixed-length playlist representation in an unsupervised manner, using Sequence-to-sequence (Seq2seq) models, interpreting playlists as sentences and songs as words. We compare our model with two other encoding architectures for baseline comparison. We evaluate our work using the suite of tasks commonly used for assessing sentence embeddings, along with a few additional tasks pertaining to music, and a recommendation task to study the traits captured by the playlist embeddings and their effectiveness for the purpose of music recommendation. 3 authors · Jul 1, 2019
2 A Mixture of h-1 Heads is Better than h Heads Multi-head attentive neural architectures have achieved state-of-the-art results on a variety of natural language processing tasks. Evidence has shown that they are overparameterized; attention heads can be pruned without significant performance loss. In this work, we instead "reallocate" them -- the model learns to activate different heads on different inputs. Drawing connections between multi-head attention and mixture of experts, we propose the mixture of attentive experts model (MAE). MAE is trained using a block coordinate descent algorithm that alternates between updating (1) the responsibilities of the experts and (2) their parameters. Experiments on machine translation and language modeling show that MAE outperforms strong baselines on both tasks. Particularly, on the WMT14 English to German translation dataset, MAE improves over "transformer-base" by 0.8 BLEU, with a comparable number of parameters. Our analysis shows that our model learns to specialize different experts to different inputs. 4 authors · May 13, 2020
- Layer-wise Analysis of a Self-supervised Speech Representation Model Recently proposed self-supervised learning approaches have been successful for pre-training speech representation models. The utility of these learned representations has been observed empirically, but not much has been studied about the type or extent of information encoded in the pre-trained representations themselves. Developing such insights can help understand the capabilities and limits of these models and enable the research community to more efficiently develop their usage for downstream applications. In this work, we begin to fill this gap by examining one recent and successful pre-trained model (wav2vec 2.0), via its intermediate representation vectors, using a suite of analysis tools. We use the metrics of canonical correlation, mutual information, and performance on simple downstream tasks with non-parametric probes, in order to (i) query for acoustic and linguistic information content, (ii) characterize the evolution of information across model layers, and (iii) understand how fine-tuning the model for automatic speech recognition (ASR) affects these observations. Our findings motivate modifying the fine-tuning protocol for ASR, which produces improved word error rates in a low-resource setting. 3 authors · Jul 9, 2021
- NOTSOFAR-1 Challenge: New Datasets, Baseline, and Tasks for Distant Meeting Transcription We introduce the first Natural Office Talkers in Settings of Far-field Audio Recordings (``NOTSOFAR-1'') Challenge alongside datasets and baseline system. The challenge focuses on distant speaker diarization and automatic speech recognition (DASR) in far-field meeting scenarios, with single-channel and known-geometry multi-channel tracks, and serves as a launch platform for two new datasets: First, a benchmarking dataset of 315 meetings, averaging 6 minutes each, capturing a broad spectrum of real-world acoustic conditions and conversational dynamics. It is recorded across 30 conference rooms, featuring 4-8 attendees and a total of 35 unique speakers. Second, a 1000-hour simulated training dataset, synthesized with enhanced authenticity for real-world generalization, incorporating 15,000 real acoustic transfer functions. The tasks focus on single-device DASR, where multi-channel devices always share the same known geometry. This is aligned with common setups in actual conference rooms, and avoids technical complexities associated with multi-device tasks. It also allows for the development of geometry-specific solutions. The NOTSOFAR-1 Challenge aims to advance research in the field of distant conversational speech recognition, providing key resources to unlock the potential of data-driven methods, which we believe are currently constrained by the absence of comprehensive high-quality training and benchmarking datasets. 19 authors · Jan 16, 2024
1 WavCaps: A ChatGPT-Assisted Weakly-Labelled Audio Captioning Dataset for Audio-Language Multimodal Research The advancement of audio-language (AL) multimodal learning tasks has been significant in recent years. However, researchers face challenges due to the costly and time-consuming collection process of existing audio-language datasets, which are limited in size. To address this data scarcity issue, we introduce WavCaps, the first large-scale weakly-labelled audio captioning dataset, comprising approximately 400k audio clips with paired captions. We sourced audio clips and their raw descriptions from web sources and a sound event detection dataset. However, the online-harvested raw descriptions are highly noisy and unsuitable for direct use in tasks such as automated audio captioning. To overcome this issue, we propose a three-stage processing pipeline for filtering noisy data and generating high-quality captions, where ChatGPT, a large language model, is leveraged to filter and transform raw descriptions automatically. We conduct a comprehensive analysis of the characteristics of WavCaps dataset and evaluate it on multiple downstream audio-language multimodal learning tasks. The systems trained on WavCaps outperform previous state-of-the-art (SOTA) models by a significant margin. Our aspiration is for the WavCaps dataset we have proposed to facilitate research in audio-language multimodal learning and demonstrate the potential of utilizing ChatGPT to enhance academic research. Our dataset and codes are available at https://github.com/XinhaoMei/WavCaps. 9 authors · Mar 30, 2023
1 Pit One Against Many: Leveraging Attention-head Embeddings for Parameter-efficient Multi-head Attention Scaling pre-trained language models has resulted in large performance gains in various natural language processing tasks but comes with a large cost in memory requirements. Inspired by the position embeddings in transformers, we aim to simplify and reduce the memory footprint of the multi-head attention (MHA) mechanism. We propose an alternative module that uses only a single shared projection matrix and multiple head embeddings (MHE), i.e. one per head. We empirically demonstrate that our MHE attention is substantially more memory efficient compared to alternative attention mechanisms while achieving high predictive performance retention ratio to vanilla MHA on several downstream tasks. MHE attention only requires a negligible fraction of additional parameters (3nd, where n is the number of attention heads and d the size of the head embeddings) compared to a single-head attention, while MHA requires (3n^2-3n)d^2-3nd additional parameters. 2 authors · Oct 11, 2023
1 Low-Rank Bottleneck in Multi-head Attention Models Attention based Transformer architecture has enabled significant advances in the field of natural language processing. In addition to new pre-training techniques, recent improvements crucially rely on working with a relatively larger embedding dimension for tokens. Unfortunately, this leads to models that are prohibitively large to be employed in the downstream tasks. In this paper we identify one of the important factors contributing to the large embedding size requirement. In particular, our analysis highlights that the scaling between the number of heads and the size of each head in the current architecture gives rise to a low-rank bottleneck in attention heads, causing this limitation. We further validate this in our experiments. As a solution we propose to set the head size of an attention unit to input sequence length, and independent of the number of heads, resulting in multi-head attention layers with provably more expressive power. We empirically show that this allows us to train models with a relatively smaller embedding dimension and with better performance scaling. 5 authors · Feb 17, 2020
1 ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction Neural information retrieval (IR) has greatly advanced search and other knowledge-intensive language tasks. While many neural IR methods encode queries and documents into single-vector representations, late interaction models produce multi-vector representations at the granularity of each token and decompose relevance modeling into scalable token-level computations. This decomposition has been shown to make late interaction more effective, but it inflates the space footprint of these models by an order of magnitude. In this work, we introduce ColBERTv2, a retriever that couples an aggressive residual compression mechanism with a denoised supervision strategy to simultaneously improve the quality and space footprint of late interaction. We evaluate ColBERTv2 across a wide range of benchmarks, establishing state-of-the-art quality within and outside the training domain while reducing the space footprint of late interaction models by 6--10times. 5 authors · Dec 2, 2021
7 Facing the Music: Tackling Singing Voice Separation in Cinematic Audio Source Separation Cinematic audio source separation (CASS) is a fairly new subtask of audio source separation. A typical setup of CASS is a three-stem problem, with the aim of separating the mixture into the dialogue stem (DX), music stem (MX), and effects stem (FX). In practice, however, several edge cases exist as some sound sources do not fit neatly in either of these three stems, necessitating the use of additional auxiliary stems in production. One very common edge case is the singing voice in film audio, which may belong in either the DX or MX, depending heavily on the cinematic context. In this work, we demonstrate a very straightforward extension of the dedicated-decoder Bandit and query-based single-decoder Banquet models to a four-stem problem, treating non-musical dialogue, instrumental music, singing voice, and effects as separate stems. Interestingly, the query-based Banquet model outperformed the dedicated-decoder Bandit model. We hypothesized that this is due to a better feature alignment at the bottleneck as enforced by the band-agnostic FiLM layer. Dataset and model implementation will be made available at https://github.com/kwatcharasupat/source-separation-landing. 3 authors · Aug 7, 2024 2
- Distilling the Knowledge in a Neural Network A very simple way to improve the performance of almost any machine learning algorithm is to train many different models on the same data and then to average their predictions. Unfortunately, making predictions using a whole ensemble of models is cumbersome and may be too computationally expensive to allow deployment to a large number of users, especially if the individual models are large neural nets. Caruana and his collaborators have shown that it is possible to compress the knowledge in an ensemble into a single model which is much easier to deploy and we develop this approach further using a different compression technique. We achieve some surprising results on MNIST and we show that we can significantly improve the acoustic model of a heavily used commercial system by distilling the knowledge in an ensemble of models into a single model. We also introduce a new type of ensemble composed of one or more full models and many specialist models which learn to distinguish fine-grained classes that the full models confuse. Unlike a mixture of experts, these specialist models can be trained rapidly and in parallel. 3 authors · Mar 9, 2015
1 DiffV2S: Diffusion-based Video-to-Speech Synthesis with Vision-guided Speaker Embedding Recent research has demonstrated impressive results in video-to-speech synthesis which involves reconstructing speech solely from visual input. However, previous works have struggled to accurately synthesize speech due to a lack of sufficient guidance for the model to infer the correct content with the appropriate sound. To resolve the issue, they have adopted an extra speaker embedding as a speaking style guidance from a reference auditory information. Nevertheless, it is not always possible to obtain the audio information from the corresponding video input, especially during the inference time. In this paper, we present a novel vision-guided speaker embedding extractor using a self-supervised pre-trained model and prompt tuning technique. In doing so, the rich speaker embedding information can be produced solely from input visual information, and the extra audio information is not necessary during the inference time. Using the extracted vision-guided speaker embedding representations, we further develop a diffusion-based video-to-speech synthesis model, so called DiffV2S, conditioned on those speaker embeddings and the visual representation extracted from the input video. The proposed DiffV2S not only maintains phoneme details contained in the input video frames, but also creates a highly intelligible mel-spectrogram in which the speaker identities of the multiple speakers are all preserved. Our experimental results show that DiffV2S achieves the state-of-the-art performance compared to the previous video-to-speech synthesis technique. 3 authors · Aug 15, 2023
- Scaling strategies for on-device low-complexity source separation with Conv-Tasnet Recently, several very effective neural approaches for single-channel speech separation have been presented in the literature. However, due to the size and complexity of these models, their use on low-resource devices, e.g. for hearing aids, and earphones, is still a challenge and established solutions are not available yet. Although approaches based on either pruning or compressing neural models have been proposed, the design of a model architecture suitable for a certain application domain often requires heuristic procedures not easily portable to different low-resource platforms. Given the modular nature of the well-known Conv-Tasnet speech separation architecture, in this paper we consider three parameters that directly control the overall size of the model, namely: the number of residual blocks, the number of repetitions of the separation blocks and the number of channels in the depth-wise convolutions, and experimentally evaluate how they affect the speech separation performance. In particular, experiments carried out on the Libri2Mix show that the number of dilated 1D-Conv blocks is the most critical parameter and that the usage of extra-dilation in the residual blocks allows reducing the performance drop. 4 authors · Mar 6, 2023
- Interpreting and Explaining Deep Neural Networks for Classification of Audio Signals Interpretability of deep neural networks is a recently emerging area of machine learning research targeting a better understanding of how models perform feature selection and derive their classification decisions. This paper explores the interpretability of neural networks in the audio domain by using the previously proposed technique of layer-wise relevance propagation (LRP). We present a novel audio dataset of English spoken digits which we use for classification tasks on spoken digits and speaker's gender. We use LRP to identify relevant features for two neural network architectures that process either waveform or spectrogram representations of the data. Based on the relevance scores obtained from LRP, hypotheses about the neural networks' feature selection are derived and subsequently tested through systematic manipulations of the input data. The results confirm that the networks are highly reliant on features marked as relevant by LRP. 5 authors · Jul 9, 2018
- CLaM-TTS: Improving Neural Codec Language Model for Zero-Shot Text-to-Speech With the emergence of neural audio codecs, which encode multiple streams of discrete tokens from audio, large language models have recently gained attention as a promising approach for zero-shot Text-to-Speech (TTS) synthesis. Despite the ongoing rush towards scaling paradigms, audio tokenization ironically amplifies the scalability challenge, stemming from its long sequence length and the complexity of modelling the multiple sequences. To mitigate these issues, we present CLaM-TTS that employs a probabilistic residual vector quantization to (1) achieve superior compression in the token length, and (2) allow a language model to generate multiple tokens at once, thereby eliminating the need for cascaded modeling to handle the number of token streams. Our experimental results demonstrate that CLaM-TTS is better than or comparable to state-of-the-art neural codec-based TTS models regarding naturalness, intelligibility, speaker similarity, and inference speed. In addition, we examine the impact of the pretraining extent of the language models and their text tokenization strategies on performances. 4 authors · Apr 3, 2024
- Mamba in Speech: Towards an Alternative to Self-Attention Transformer and its derivatives have achieved success in diverse tasks across computer vision, natural language processing, and speech processing. To reduce the complexity of computations within the multi-head self-attention mechanism in Transformer, Selective State Space Models (i.e., Mamba) were proposed as an alternative. Mamba exhibited its effectiveness in natural language processing and computer vision tasks, but its superiority has rarely been investigated in speech signal processing. This paper explores solutions for applying Mamba to speech processing using two typical speech processing tasks: speech recognition, which requires semantic and sequential information, and speech enhancement, which focuses primarily on sequential patterns. The experimental results exhibit the superiority of bidirectional Mamba (BiMamba) for speech processing to vanilla Mamba. Moreover, experiments demonstrate the effectiveness of BiMamba as an alternative to the self-attention module in Transformer and its derivates, particularly for the semantic-aware task. The crucial technologies for transferring Mamba to speech are then summarized in ablation studies and the discussion section to offer insights for future research. 9 authors · May 21, 2024
1 Deep Speech 2: End-to-End Speech Recognition in English and Mandarin We show that an end-to-end deep learning approach can be used to recognize either English or Mandarin Chinese speech--two vastly different languages. Because it replaces entire pipelines of hand-engineered components with neural networks, end-to-end learning allows us to handle a diverse variety of speech including noisy environments, accents and different languages. Key to our approach is our application of HPC techniques, resulting in a 7x speedup over our previous system. Because of this efficiency, experiments that previously took weeks now run in days. This enables us to iterate more quickly to identify superior architectures and algorithms. As a result, in several cases, our system is competitive with the transcription of human workers when benchmarked on standard datasets. Finally, using a technique called Batch Dispatch with GPUs in the data center, we show that our system can be inexpensively deployed in an online setting, delivering low latency when serving users at scale. 34 authors · Dec 8, 2015
- Weighted Grouped Query Attention in Transformers The attention mechanism forms the foundational blocks for transformer language models. Recent approaches show that scaling the model achieves human-level performance. However, with increasing demands for scaling and constraints on hardware memory, the inference costs of these models remain high. To reduce the inference time, Multi-Query Attention (MQA) and Grouped-Query Attention (GQA) were proposed in (Shazeer, 2019) and (Ainslieet al., 2023) respectively. In this paper, we propose a variation of Grouped-Query Attention, termed Weighted Grouped-Query Attention (WGQA). We introduced new learnable parameters for each key and value head in the T5 decoder attention blocks, enabling the model to take a weighted average during finetuning. Our model achieves an average of 0.53% improvement over GQA, and the performance converges to traditional Multi-head attention (MHA) with no additional overhead during inference. We evaluated the introduction of these parameters and subsequent finetuning informs the model about the grouping mechanism during training, thereby enhancing performance. Additionally, we demonstrate the scaling laws in our analysis by comparing the results between T5-small and T5-base architecture. 2 authors · Jul 15, 2024 2
- MossFormer2: Combining Transformer and RNN-Free Recurrent Network for Enhanced Time-Domain Monaural Speech Separation Our previously proposed MossFormer has achieved promising performance in monaural speech separation. However, it predominantly adopts a self-attention-based MossFormer module, which tends to emphasize longer-range, coarser-scale dependencies, with a deficiency in effectively modelling finer-scale recurrent patterns. In this paper, we introduce a novel hybrid model that provides the capabilities to model both long-range, coarse-scale dependencies and fine-scale recurrent patterns by integrating a recurrent module into the MossFormer framework. Instead of applying the recurrent neural networks (RNNs) that use traditional recurrent connections, we present a recurrent module based on a feedforward sequential memory network (FSMN), which is considered "RNN-free" recurrent network due to the ability to capture recurrent patterns without using recurrent connections. Our recurrent module mainly comprises an enhanced dilated FSMN block by using gated convolutional units (GCU) and dense connections. In addition, a bottleneck layer and an output layer are also added for controlling information flow. The recurrent module relies on linear projections and convolutions for seamless, parallel processing of the entire sequence. The integrated MossFormer2 hybrid model demonstrates remarkable enhancements over MossFormer and surpasses other state-of-the-art methods in WSJ0-2/3mix, Libri2Mix, and WHAM!/WHAMR! benchmarks. 10 authors · Dec 18, 2023
- Query Resolution for Conversational Search with Limited Supervision In this work we focus on multi-turn passage retrieval as a crucial component of conversational search. One of the key challenges in multi-turn passage retrieval comes from the fact that the current turn query is often underspecified due to zero anaphora, topic change, or topic return. Context from the conversational history can be used to arrive at a better expression of the current turn query, defined as the task of query resolution. In this paper, we model the query resolution task as a binary term classification problem: for each term appearing in the previous turns of the conversation decide whether to add it to the current turn query or not. We propose QuReTeC (Query Resolution by Term Classification), a neural query resolution model based on bidirectional transformers. We propose a distant supervision method to automatically generate training data by using query-passage relevance labels. Such labels are often readily available in a collection either as human annotations or inferred from user interactions. We show that QuReTeC outperforms state-of-the-art models, and furthermore, that our distant supervision method can be used to substantially reduce the amount of human-curated data required to train QuReTeC. We incorporate QuReTeC in a multi-turn, multi-stage passage retrieval architecture and demonstrate its effectiveness on the TREC CAsT dataset. 5 authors · May 24, 2020
12 Natural language guidance of high-fidelity text-to-speech with synthetic annotations Text-to-speech models trained on large-scale datasets have demonstrated impressive in-context learning capabilities and naturalness. However, control of speaker identity and style in these models typically requires conditioning on reference speech recordings, limiting creative applications. Alternatively, natural language prompting of speaker identity and style has demonstrated promising results and provides an intuitive method of control. However, reliance on human-labeled descriptions prevents scaling to large datasets. Our work bridges the gap between these two approaches. We propose a scalable method for labeling various aspects of speaker identity, style, and recording conditions. We then apply this method to a 45k hour dataset, which we use to train a speech language model. Furthermore, we propose simple methods for increasing audio fidelity, significantly outperforming recent work despite relying entirely on found data. Our results demonstrate high-fidelity speech generation in a diverse range of accents, prosodic styles, channel conditions, and acoustic conditions, all accomplished with a single model and intuitive natural language conditioning. Audio samples can be heard at https://text-description-to-speech.com/. 2 authors · Feb 2, 2024 1
- AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head Large language models (LLMs) have exhibited remarkable capabilities across a variety of domains and tasks, challenging our understanding of learning and cognition. Despite the recent success, current LLMs are not capable of processing complex audio information or conducting spoken conversations (like Siri or Alexa). In this work, we propose a multi-modal AI system named AudioGPT, which complements LLMs (i.e., ChatGPT) with 1) foundation models to process complex audio information and solve numerous understanding and generation tasks; and 2) the input/output interface (ASR, TTS) to support spoken dialogue. With an increasing demand to evaluate multi-modal LLMs of human intention understanding and cooperation with foundation models, we outline the principles and processes and test AudioGPT in terms of consistency, capability, and robustness. Experimental results demonstrate the capabilities of AudioGPT in solving AI tasks with speech, music, sound, and talking head understanding and generation in multi-round dialogues, which empower humans to create rich and diverse audio content with unprecedented ease. Our system is publicly available at https://github.com/AIGC-Audio/AudioGPT. 13 authors · Apr 25, 2023
- SLM: Bridge the thin gap between speech and text foundation models We present a joint Speech and Language Model (SLM), a multitask, multilingual, and dual-modal model that takes advantage of pretrained foundational speech and language models. SLM freezes the pretrained foundation models to maximally preserves their capabilities, and only trains a simple adapter with just 1\% (156M) of the foundation models' parameters. This adaptation not only leads SLM to achieve strong performance on conventional tasks such as speech recognition (ASR) and speech translation (AST), but also introduces the novel capability of zero-shot instruction-following for more diverse tasks: given a speech input and a text instruction, SLM is able to perform unseen generation tasks including contextual biasing ASR using real-time context, dialog generation, speech continuation, and question answering, etc. Our approach demonstrates that the representational gap between pretrained speech and language models might be narrower than one would expect, and can be bridged by a simple adaptation mechanism. As a result, SLM is not only efficient to train, but also inherits strong capabilities already acquired in foundation models of different modalities. 18 authors · Sep 29, 2023
1 Text is All You Need: Personalizing ASR Models using Controllable Speech Synthesis Adapting generic speech recognition models to specific individuals is a challenging problem due to the scarcity of personalized data. Recent works have proposed boosting the amount of training data using personalized text-to-speech synthesis. Here, we ask two fundamental questions about this strategy: when is synthetic data effective for personalization, and why is it effective in those cases? To address the first question, we adapt a state-of-the-art automatic speech recognition (ASR) model to target speakers from four benchmark datasets representative of different speaker types. We show that ASR personalization with synthetic data is effective in all cases, but particularly when (i) the target speaker is underrepresented in the global data, and (ii) the capacity of the global model is limited. To address the second question of why personalized synthetic data is effective, we use controllable speech synthesis to generate speech with varied styles and content. Surprisingly, we find that the text content of the synthetic data, rather than style, is important for speaker adaptation. These results lead us to propose a data selection strategy for ASR personalization based on speech content. 5 authors · Mar 26, 2023
1 Diagonal State Spaces are as Effective as Structured State Spaces Modeling long range dependencies in sequential data is a fundamental step towards attaining human-level performance in many modalities such as text, vision, audio and video. While attention-based models are a popular and effective choice in modeling short-range interactions, their performance on tasks requiring long range reasoning has been largely inadequate. In an exciting result, Gu et al. (ICLR 2022) proposed the Structured State Space (S4) architecture delivering large gains over state-of-the-art models on several long-range tasks across various modalities. The core proposition of S4 is the parameterization of state matrices via a diagonal plus low rank structure, allowing efficient computation. In this work, we show that one can match the performance of S4 even without the low rank correction and thus assuming the state matrices to be diagonal. Our Diagonal State Space (DSS) model matches the performance of S4 on Long Range Arena tasks, speech classification on Speech Commands dataset, while being conceptually simpler and straightforward to implement. 3 authors · Mar 27, 2022
- Wespeaker: A Research and Production oriented Speaker Embedding Learning Toolkit Speaker modeling is essential for many related tasks, such as speaker recognition and speaker diarization. The dominant modeling approach is fixed-dimensional vector representation, i.e., speaker embedding. This paper introduces a research and production oriented speaker embedding learning toolkit, Wespeaker. Wespeaker contains the implementation of scalable data management, state-of-the-art speaker embedding models, loss functions, and scoring back-ends, with highly competitive results achieved by structured recipes which were adopted in the winning systems in several speaker verification challenges. The application to other downstream tasks such as speaker diarization is also exhibited in the related recipe. Moreover, CPU- and GPU-compatible deployment codes are integrated for production-oriented development. The toolkit is publicly available at https://github.com/wenet-e2e/wespeaker. 8 authors · Oct 30, 2022
13 BAM! Just Like That: Simple and Efficient Parameter Upcycling for Mixture of Experts The Mixture of Experts (MoE) framework has become a popular architecture for large language models due to its superior performance over dense models. However, training MoEs from scratch in a large-scale regime is prohibitively expensive. Existing methods mitigate this by pre-training multiple dense expert models independently and using them to initialize an MoE. This is done by using experts' feed-forward network (FFN) to initialize the MoE's experts while merging other parameters. However, this method limits the reuse of dense model parameters to only the FFN layers, thereby constraining the advantages when "upcycling" these models into MoEs. We propose BAM (Branch-Attend-Mix), a simple yet effective method that addresses this shortcoming. BAM makes full use of specialized dense models by not only using their FFN to initialize the MoE layers but also leveraging experts' attention parameters fully by initializing them into a soft-variant of Mixture of Attention (MoA) layers. We explore two methods for upcycling attention parameters: 1) initializing separate attention experts from dense models including all attention parameters for the best model performance; and 2) sharing key and value parameters across all experts to facilitate for better inference efficiency. To further improve efficiency, we adopt a parallel attention transformer architecture to MoEs, which allows the attention experts and FFN experts to be computed concurrently. Our experiments on seed models ranging from 590 million to 2 billion parameters demonstrate that BAM surpasses baselines in both perplexity and downstream task performance, within the same computational and data constraints. 11 authors · Aug 15, 2024 3
- Input Combination Strategies for Multi-Source Transformer Decoder In multi-source sequence-to-sequence tasks, the attention mechanism can be modeled in several ways. This topic has been thoroughly studied on recurrent architectures. In this paper, we extend the previous work to the encoder-decoder attention in the Transformer architecture. We propose four different input combination strategies for the encoder-decoder attention: serial, parallel, flat, and hierarchical. We evaluate our methods on tasks of multimodal translation and translation with multiple source languages. The experiments show that the models are able to use multiple sources and improve over single source baselines. 3 authors · Nov 12, 2018
- Attention-based Contextual Language Model Adaptation for Speech Recognition Language modeling (LM) for automatic speech recognition (ASR) does not usually incorporate utterance level contextual information. For some domains like voice assistants, however, additional context, such as the time at which an utterance was spoken, provides a rich input signal. We introduce an attention mechanism for training neural speech recognition language models on both text and non-linguistic contextual data. When applied to a large de-identified dataset of utterances collected by a popular voice assistant platform, our method reduces perplexity by 7.0% relative over a standard LM that does not incorporate contextual information. When evaluated on utterances extracted from the long tail of the dataset, our method improves perplexity by 9.0% relative over a standard LM and by over 2.8% relative when compared to a state-of-the-art model for contextual LM. 6 authors · Jun 2, 2021
21 Transformers Can Represent n-gram Language Models Plenty of existing work has analyzed the abilities of the transformer architecture by describing its representational capacity with formal models of computation. However, the focus so far has been on analyzing the architecture in terms of language acceptance. We contend that this is an ill-suited problem in the study of language models (LMs), which are definitionally probability distributions over strings. In this paper, we focus on the relationship between transformer LMs and n-gram LMs, a simple and historically relevant class of language models. We show that transformer LMs using the hard or sparse attention mechanisms can exactly represent any n-gram LM, giving us a concrete lower bound on their probabilistic representational capacity. This provides a first step towards understanding the mechanisms that transformer LMs can use to represent probability distributions over strings. 2 authors · Apr 23, 2024 1
- Leveraging Large Language Models for Exploiting ASR Uncertainty While large language models excel in a variety of natural language processing (NLP) tasks, to perform well on spoken language understanding (SLU) tasks, they must either rely on off-the-shelf automatic speech recognition (ASR) systems for transcription, or be equipped with an in-built speech modality. This work focuses on the former scenario, where LLM's accuracy on SLU tasks is constrained by the accuracy of a fixed ASR system on the spoken input. Specifically, we tackle speech-intent classification task, where a high word-error-rate can limit the LLM's ability to understand the spoken intent. Instead of chasing a high accuracy by designing complex or specialized architectures regardless of deployment costs, we seek to answer how far we can go without substantially changing the underlying ASR and LLM, which can potentially be shared by multiple unrelated tasks. To this end, we propose prompting the LLM with an n-best list of ASR hypotheses instead of only the error-prone 1-best hypothesis. We explore prompt-engineering to explain the concept of n-best lists to the LLM; followed by the finetuning of Low-Rank Adapters on the downstream tasks. Our approach using n-best lists proves to be effective on a device-directed speech detection task as well as on a keyword spotting task, where systems using n-best list prompts outperform those using 1-best ASR hypothesis; thus paving the way for an efficient method to exploit ASR uncertainty via LLMs for speech-based applications. 7 authors · Sep 9, 2023
4 Whisper-GPT: A Hybrid Representation Audio Large Language Model We propose WHISPER-GPT: A generative large language model (LLM) for speech and music that allows us to work with continuous audio representations and discrete tokens simultaneously as part of a single architecture. There has been a huge surge in generative audio, speech, and music models that utilize discrete audio tokens derived from neural compression algorithms, e.g. ENCODEC. However, one of the major drawbacks of this approach is handling the context length. It blows up for high-fidelity generative architecture if one has to account for all the audio contents at various frequencies for the next token prediction. By combining continuous audio representation like the spectrogram and discrete acoustic tokens, we retain the best of both worlds: Have all the information needed from the audio at a specific time instance in a single token, yet allow LLM to predict the future token to allow for sampling and other benefits discrete space provides. We show how our architecture improves the perplexity and negative log-likelihood scores for the next token prediction compared to a token-based LLM for speech and music. 1 authors · Dec 16, 2024 2
- SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding Tasks Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models. 10 authors · Dec 20, 2022
1 Dynamic-SUPERB Phase-2: A Collaboratively Expanding Benchmark for Measuring the Capabilities of Spoken Language Models with 180 Tasks Multimodal foundation models, such as Gemini and ChatGPT, have revolutionized human-machine interactions by seamlessly integrating various forms of data. Developing a universal spoken language model that comprehends a wide range of natural language instructions is critical for bridging communication gaps and facilitating more intuitive interactions. However, the absence of a comprehensive evaluation benchmark poses a significant challenge. We present Dynamic-SUPERB Phase-2, an open and evolving benchmark for the comprehensive evaluation of instruction-based universal speech models. Building upon the first generation, this second version incorporates 125 new tasks contributed collaboratively by the global research community, expanding the benchmark to a total of 180 tasks, making it the largest benchmark for speech and audio evaluation. While the first generation of Dynamic-SUPERB was limited to classification tasks, Dynamic-SUPERB Phase-2 broadens its evaluation capabilities by introducing a wide array of novel and diverse tasks, including regression and sequence generation, across speech, music, and environmental audio. Evaluation results indicate that none of the models performed well universally. SALMONN-13B excelled in English ASR, while WavLLM demonstrated high accuracy in emotion recognition, but current models still require further innovations to handle a broader range of tasks. We will soon open-source all task data and the evaluation pipeline. 78 authors · Nov 8, 2024
- PixIT: Joint Training of Speaker Diarization and Speech Separation from Real-world Multi-speaker Recordings A major drawback of supervised speech separation (SSep) systems is their reliance on synthetic data, leading to poor real-world generalization. Mixture invariant training (MixIT) was proposed as an unsupervised alternative that uses real recordings, yet struggles with overseparation and adapting to long-form audio. We introduce PixIT, a joint approach that combines permutation invariant training (PIT) for speaker diarization (SD) and MixIT for SSep. With a small extra requirement of needing SD labels, it solves the problem of overseparation and allows stitching local separated sources leveraging existing work on clustering-based neural SD. We measure the quality of the separated sources via applying automatic speech recognition (ASR) systems to them. PixIT boosts the performance of various ASR systems across two meeting corpora both in terms of the speaker-attributed and utterance-based word error rates while not requiring any fine-tuning. 5 authors · Mar 4, 2024
- AudioBench: A Universal Benchmark for Audio Large Language Models We introduce AudioBench, a new benchmark designed to evaluate audio large language models (AudioLLMs). AudioBench encompasses 8 distinct tasks and 26 carefully selected or newly curated datasets, focusing on speech understanding, voice interpretation, and audio scene understanding. Despite the rapid advancement of large language models, including multimodal versions, a significant gap exists in comprehensive benchmarks for thoroughly evaluating their capabilities. AudioBench addresses this gap by providing relevant datasets and evaluation metrics. In our study, we evaluated the capabilities of four models across various aspects and found that no single model excels consistently across all tasks. We outline the research outlook for AudioLLMs and anticipate that our open-source code, data, and leaderboard will offer a robust testbed for future model developments. 9 authors · Jun 23, 2024
- Task-oriented Document-Grounded Dialog Systems by HLTPR@RWTH for DSTC9 and DSTC10 This paper summarizes our contributions to the document-grounded dialog tasks at the 9th and 10th Dialog System Technology Challenges (DSTC9 and DSTC10). In both iterations the task consists of three subtasks: first detect whether the current turn is knowledge seeking, second select a relevant knowledge document, and third generate a response grounded on the selected document. For DSTC9 we proposed different approaches to make the selection task more efficient. The best method, Hierarchical Selection, actually improves the results compared to the original baseline and gives a speedup of 24x. In the DSTC10 iteration of the task, the challenge was to adapt systems trained on written dialogs to perform well on noisy automatic speech recognition transcripts. Therefore, we proposed data augmentation techniques to increase the robustness of the models as well as methods to adapt the style of generated responses to fit well into the proceeding dialog. Additionally, we proposed a noisy channel model that allows for increasing the factuality of the generated responses. In addition to summarizing our previous contributions, in this work, we also report on a few small improvements and reconsider the automatic evaluation metrics for the generation task which have shown a low correlation to human judgments. 4 authors · Apr 14, 2023
- How Should We Extract Discrete Audio Tokens from Self-Supervised Models? Discrete audio tokens have recently gained attention for their potential to bridge the gap between audio and language processing. Ideal audio tokens must preserve content, paralinguistic elements, speaker identity, and many other audio details. Current audio tokenization methods fall into two categories: Semantic tokens, acquired through quantization of Self-Supervised Learning (SSL) models, and Neural compression-based tokens (codecs). Although previous studies have benchmarked codec models to identify optimal configurations, the ideal setup for quantizing pretrained SSL models remains unclear. This paper explores the optimal configuration of semantic tokens across discriminative and generative tasks. We propose a scalable solution to train a universal vocoder across multiple SSL layers. Furthermore, an attention mechanism is employed to identify task-specific influential layers, enhancing the adaptability and performance of semantic tokens in diverse audio applications. 7 authors · Jun 15, 2024
- A Comparative Analysis of Bilingual and Trilingual Wav2Vec Models for Automatic Speech Recognition in Multilingual Oral History Archives In this paper, we are comparing monolingual Wav2Vec 2.0 models with various multilingual models to see whether we could improve speech recognition performance on a unique oral history archive containing a lot of mixed-language sentences. Our main goal is to push forward research on this unique dataset, which is an extremely valuable part of our cultural heritage. Our results suggest that monolingual speech recognition models are, in most cases, superior to multilingual models, even when processing the oral history archive full of mixed-language sentences from non-native speakers. We also performed the same experiments on the public CommonVoice dataset to verify our results. We are contributing to the research community by releasing our pre-trained models to the public. 5 authors · Jul 24, 2024
- Masked Mixers for Language Generation and Retrieval Attention mechanisms that confer selective focus on a strict subset of input elements are nearly ubiquitous in language models today. We posit there to be downside to the use of attention: most information present in the input is necessarily lost. In support of this idea we observe poor input representation accuracy in transformers, but find more accurate representation in what we term masked mixers which replace self-attention with masked convolutions. Applied to TinyStories the masked mixer learns causal language tasks more efficiently than early transformer implementations and somewhat less efficiently than optimized, current implementations. The most efficient learning algorithm observed for this dataset is a transformer-masked mixer hybrid, suggesting that these models learn in an orthogonal manner. We hypothesized that the information loss exhibited by transformers would be much more detrimental to retrieval than generation, and to test this we introduce an efficient training approach for retrieval models based on existing generative model embeddings. With this method, embeddings from masked mixers are found to result in far better summary-to-story retrieval compared to embeddings from transformers. 1 authors · Sep 2, 2024
- Using multiple ASR hypotheses to boost i18n NLU performance Current voice assistants typically use the best hypothesis yielded by their Automatic Speech Recognition (ASR) module as input to their Natural Language Understanding (NLU) module, thereby losing helpful information that might be stored in lower-ranked ASR hypotheses. We explore the change in performance of NLU associated tasks when utilizing five-best ASR hypotheses when compared to status quo for two language datasets, German and Portuguese. To harvest information from the ASR five-best, we leverage extractive summarization and joint extractive-abstractive summarization models for Domain Classification (DC) experiments while using a sequence-to-sequence model with a pointer generator network for Intent Classification (IC) and Named Entity Recognition (NER) multi-task experiments. For the DC full test set, we observe significant improvements of up to 7.2% and 15.5% in micro-averaged F1 scores, for German and Portuguese, respectively. In cases where the best ASR hypothesis was not an exact match to the transcribed utterance (mismatched test set), we see improvements of up to 6.7% and 8.8% micro-averaged F1 scores, for German and Portuguese, respectively. For IC and NER multi-task experiments, when evaluating on the mismatched test set, we see improvements across all domains in German and in 17 out of 19 domains in Portuguese (improvements based on change in SeMER scores). Our results suggest that the use of multiple ASR hypotheses, as opposed to one, can lead to significant performance improvements in the DC task for these non-English datasets. In addition, it could lead to significant improvement in the performance of IC and NER tasks in cases where the ASR model makes mistakes. 6 authors · Dec 7, 2020
3 Demonstrate-Search-Predict: Composing retrieval and language models for knowledge-intensive NLP Retrieval-augmented in-context learning has emerged as a powerful approach for addressing knowledge-intensive tasks using frozen language models (LM) and retrieval models (RM). Existing work has combined these in simple "retrieve-then-read" pipelines in which the RM retrieves passages that are inserted into the LM prompt. To begin to fully realize the potential of frozen LMs and RMs, we propose Demonstrate-Search-Predict (DSP), a framework that relies on passing natural language texts in sophisticated pipelines between an LM and an RM. DSP can express high-level programs that bootstrap pipeline-aware demonstrations, search for relevant passages, and generate grounded predictions, systematically breaking down problems into small transformations that the LM and RM can handle more reliably. We have written novel DSP programs for answering questions in open-domain, multi-hop, and conversational settings, establishing in early evaluations new state-of-the-art in-context learning results and delivering 37-120%, 8-39%, and 80-290% relative gains against the vanilla LM (GPT-3.5), a standard retrieve-then-read pipeline, and a contemporaneous self-ask pipeline, respectively. We release DSP at https://github.com/stanfordnlp/dsp 7 authors · Dec 28, 2022
1 Low Rank Factorization for Compact Multi-Head Self-Attention Effective representation learning from text has been an active area of research in the fields of NLP and text mining. Attention mechanisms have been at the forefront in order to learn contextual sentence representations. Current state-of-the-art approaches for many NLP tasks use large pre-trained language models such as BERT, XLNet and so on for learning representations. These models are based on the Transformer architecture that involves recurrent blocks of computation consisting of multi-head self-attention and feedforward networks. One of the major bottlenecks largely contributing to the computational complexity of the Transformer models is the self-attention layer, that is both computationally expensive and parameter intensive. In this work, we introduce a novel multi-head self-attention mechanism operating on GRUs that is shown to be computationally cheaper and more parameter efficient than self-attention mechanism proposed in Transformers for text classification tasks. The efficiency of our approach mainly stems from two optimizations; 1) we use low-rank matrix factorization of the affinity matrix to efficiently get multiple attention distributions instead of having separate parameters for each head 2) attention scores are obtained by querying a global context vector instead of densely querying all the words in the sentence. We evaluate the performance of the proposed model on tasks such as sentiment analysis from movie reviews, predicting business ratings from reviews and classifying news articles into topics. We find that the proposed approach matches or outperforms a series of strong baselines and is more parameter efficient than comparable multi-head approaches. We also perform qualitative analyses to verify that the proposed approach is interpretable and captures context-dependent word importance. 3 authors · Nov 26, 2019
- SpeedySpeech: Efficient Neural Speech Synthesis While recent neural sequence-to-sequence models have greatly improved the quality of speech synthesis, there has not been a system capable of fast training, fast inference and high-quality audio synthesis at the same time. We propose a student-teacher network capable of high-quality faster-than-real-time spectrogram synthesis, with low requirements on computational resources and fast training time. We show that self-attention layers are not necessary for generation of high quality audio. We utilize simple convolutional blocks with residual connections in both student and teacher networks and use only a single attention layer in the teacher model. Coupled with a MelGAN vocoder, our model's voice quality was rated significantly higher than Tacotron 2. Our model can be efficiently trained on a single GPU and can run in real time even on a CPU. We provide both our source code and audio samples in our GitHub repository. 2 authors · Aug 9, 2020
- A study of latent monotonic attention variants End-to-end models reach state-of-the-art performance for speech recognition, but global soft attention is not monotonic, which might lead to convergence problems, to instability, to bad generalisation, cannot be used for online streaming, and is also inefficient in calculation. Monotonicity can potentially fix all of this. There are several ad-hoc solutions or heuristics to introduce monotonicity, but a principled introduction is rarely found in literature so far. In this paper, we present a mathematically clean solution to introduce monotonicity, by introducing a new latent variable which represents the audio position or segment boundaries. We compare several monotonic latent models to our global soft attention baseline such as a hard attention model, a local windowed soft attention model, and a segmental soft attention model. We can show that our monotonic models perform as good as the global soft attention model. We perform our experiments on Switchboard 300h. We carefully outline the details of our training and release our code and configs. 3 authors · Mar 30, 2021
13 SoundStorm: Efficient Parallel Audio Generation We present SoundStorm, a model for efficient, non-autoregressive audio generation. SoundStorm receives as input the semantic tokens of AudioLM, and relies on bidirectional attention and confidence-based parallel decoding to generate the tokens of a neural audio codec. Compared to the autoregressive generation approach of AudioLM, our model produces audio of the same quality and with higher consistency in voice and acoustic conditions, while being two orders of magnitude faster. SoundStorm generates 30 seconds of audio in 0.5 seconds on a TPU-v4. We demonstrate the ability of our model to scale audio generation to longer sequences by synthesizing high-quality, natural dialogue segments, given a transcript annotated with speaker turns and a short prompt with the speakers' voices. 6 authors · May 16, 2023 8
- SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model In this paper, we propose SC-GlowTTS: an efficient zero-shot multi-speaker text-to-speech model that improves similarity for speakers unseen during training. We propose a speaker-conditional architecture that explores a flow-based decoder that works in a zero-shot scenario. As text encoders, we explore a dilated residual convolutional-based encoder, gated convolutional-based encoder, and transformer-based encoder. Additionally, we have shown that adjusting a GAN-based vocoder for the spectrograms predicted by the TTS model on the training dataset can significantly improve the similarity and speech quality for new speakers. Our model converges using only 11 speakers, reaching state-of-the-art results for similarity with new speakers, as well as high speech quality. 9 authors · Apr 2, 2021
2 Ltri-LLM: Streaming Long Context Inference for LLMs with Training-Free Dynamic Triangular Attention Pattern The quadratic computational complexity of the attention mechanism in current Large Language Models (LLMs) renders inference with long contexts prohibitively expensive. To address this challenge, various approaches aim to retain critical portions of the context to optimally approximate Full Attention (FA) through Key-Value (KV) compression or Sparse Attention (SA), enabling the processing of virtually unlimited text lengths in a streaming manner. However, these methods struggle to achieve performance levels comparable to FA, particularly in retrieval tasks. In this paper, our analysis of attention head patterns reveals that LLMs' attention distributions show strong local correlations, naturally reflecting a chunking mechanism for input context. We propose Ltri-LLM framework, which divides KVs into spans, stores them in an offline index, and retrieves the relevant KVs into memory for various queries. Experimental results on popular long text benchmarks show that Ltri-LLM can achieve performance close to FA while maintaining efficient, streaming-based inference. 6 authors · Dec 5, 2024
61 Multi-Head Mixture-of-Experts Sparse Mixtures of Experts (SMoE) scales model capacity without significant increases in training and inference costs, but exhibits the following two issues: (1) Low expert activation, where only a small subset of experts are activated for optimization. (2) Lacking fine-grained analytical capabilities for multiple semantic concepts within individual tokens. We propose Multi-Head Mixture-of-Experts (MH-MoE), which employs a multi-head mechanism to split each token into multiple sub-tokens. These sub-tokens are then assigned to and processed by a diverse set of experts in parallel, and seamlessly reintegrated into the original token form. The multi-head mechanism enables the model to collectively attend to information from various representation spaces within different experts, while significantly enhances expert activation, thus deepens context understanding and alleviate overfitting. Moreover, our MH-MoE is straightforward to implement and decouples from other SMoE optimization methods, making it easy to integrate with other SMoE models for enhanced performance. Extensive experimental results across three tasks: English-focused language modeling, Multi-lingual language modeling and Masked multi-modality modeling tasks, demonstrate the effectiveness of MH-MoE. 4 authors · Apr 23, 2024 2
55 Star Attention: Efficient LLM Inference over Long Sequences Inference with Transformer-based Large Language Models (LLMs) on long sequences is both costly and slow due to the quadratic complexity of the self-attention mechanism. We introduce Star Attention, a two-phase block-sparse approximation that improves computational efficiency by sharding attention across multiple hosts while minimizing communication overhead. In the first phase, the context is processed using blockwise-local attention across hosts, in parallel. In the second phase, query and response tokens attend to all prior cached tokens through sequence-global attention. Star Attention integrates seamlessly with most Transformer-based LLMs trained with global attention, reducing memory requirements and inference time by up to 11x while preserving 95-100% of accuracy. 3 authors · Nov 26, 2024 2
- M^3AV: A Multimodal, Multigenre, and Multipurpose Audio-Visual Academic Lecture Dataset Publishing open-source academic video recordings is an emergent and prevalent approach to sharing knowledge online. Such videos carry rich multimodal information including speech, the facial and body movements of the speakers, as well as the texts and pictures in the slides and possibly even the papers. Although multiple academic video datasets have been constructed and released, few of them support both multimodal content recognition and understanding tasks, which is partially due to the lack of high-quality human annotations. In this paper, we propose a novel multimodal, multigenre, and multipurpose audio-visual academic lecture dataset (M^3AV), which has almost 367 hours of videos from five sources covering computer science, mathematics, and medical and biology topics. With high-quality human annotations of the spoken and written words, in particular high-valued name entities, the dataset can be used for multiple audio-visual recognition and understanding tasks. Evaluations performed on contextual speech recognition, speech synthesis, and slide and script generation tasks demonstrate that the diversity of M^3AV makes it a challenging dataset. 9 authors · Mar 21, 2024
2 Streaming Transformer ASR with Blockwise Synchronous Beam Search The Transformer self-attention network has shown promising performance as an alternative to recurrent neural networks in end-to-end (E2E) automatic speech recognition (ASR) systems. However, Transformer has a drawback in that the entire input sequence is required to compute both self-attention and source--target attention. In this paper, we propose a novel blockwise synchronous beam search algorithm based on blockwise processing of encoder to perform streaming E2E Transformer ASR. In the beam search, encoded feature blocks are synchronously aligned using a block boundary detection technique, where a reliability score of each predicted hypothesis is evaluated based on the end-of-sequence and repeated tokens in the hypothesis. Evaluations of the HKUST and AISHELL-1 Mandarin, LibriSpeech English, and CSJ Japanese tasks show that the proposed streaming Transformer algorithm outperforms conventional online approaches, including monotonic chunkwise attention (MoChA), especially when using the knowledge distillation technique. An ablation study indicates that our streaming approach contributes to reducing the response time, and the repetition criterion contributes significantly in certain tasks. Our streaming ASR models achieve comparable or superior performance to batch models and other streaming-based Transformer methods in all tasks considered. 3 authors · Jun 25, 2020
52 MinMo: A Multimodal Large Language Model for Seamless Voice Interaction Recent advancements in large language models (LLMs) and multimodal speech-text models have laid the groundwork for seamless voice interactions, enabling real-time, natural, and human-like conversations. Previous models for voice interactions are categorized as native and aligned. Native models integrate speech and text processing in one framework but struggle with issues like differing sequence lengths and insufficient pre-training. Aligned models maintain text LLM capabilities but are often limited by small datasets and a narrow focus on speech tasks. In this work, we introduce MinMo, a Multimodal Large Language Model with approximately 8B parameters for seamless voice interaction. We address the main limitations of prior aligned multimodal models. We train MinMo through multiple stages of speech-to-text alignment, text-to-speech alignment, speech-to-speech alignment, and duplex interaction alignment, on 1.4 million hours of diverse speech data and a broad range of speech tasks. After the multi-stage training, MinMo achieves state-of-the-art performance across various benchmarks for voice comprehension and generation while maintaining the capabilities of text LLMs, and also facilitates full-duplex conversation, that is, simultaneous two-way communication between the user and the system. Moreover, we propose a novel and simple voice decoder that outperforms prior models in voice generation. The enhanced instruction-following capabilities of MinMo supports controlling speech generation based on user instructions, with various nuances including emotions, dialects, and speaking rates, and mimicking specific voices. For MinMo, the speech-to-text latency is approximately 100ms, full-duplex latency is approximately 600ms in theory and 800ms in practice. The MinMo project web page is https://funaudiollm.github.io/minmo, and the code and models will be released soon. 36 authors · Jan 10 7
- Play It Back: Iterative Attention for Audio Recognition A key function of auditory cognition is the association of characteristic sounds with their corresponding semantics over time. Humans attempting to discriminate between fine-grained audio categories, often replay the same discriminative sounds to increase their prediction confidence. We propose an end-to-end attention-based architecture that through selective repetition attends over the most discriminative sounds across the audio sequence. Our model initially uses the full audio sequence and iteratively refines the temporal segments replayed based on slot attention. At each playback, the selected segments are replayed using a smaller hop length which represents higher resolution features within these segments. We show that our method can consistently achieve state-of-the-art performance across three audio-classification benchmarks: AudioSet, VGG-Sound, and EPIC-KITCHENS-100. 2 authors · Oct 20, 2022
- FLEURS-R: A Restored Multilingual Speech Corpus for Generation Tasks This paper introduces FLEURS-R, a speech restoration applied version of the Few-shot Learning Evaluation of Universal Representations of Speech (FLEURS) corpus. FLEURS-R maintains an N-way parallel speech corpus in 102 languages as FLEURS, with improved audio quality and fidelity by applying the speech restoration model Miipher. The aim of FLEURS-R is to advance speech technology in more languages and catalyze research including text-to-speech (TTS) and other speech generation tasks in low-resource languages. Comprehensive evaluations with the restored speech and TTS baseline models trained from the new corpus show that the new corpus obtained significantly improved speech quality while maintaining the semantic contents of the speech. The corpus is publicly released via Hugging Face. 7 authors · Aug 12, 2024
- Efficient and Economic Large Language Model Inference with Attention Offloading Transformer-based large language models (LLMs) exhibit impressive performance in generative tasks but introduce significant challenges in real-world serving due to inefficient use of the expensive, computation-optimized accelerators. This mismatch arises from the autoregressive nature of LLMs, where the generation phase comprises operators with varying resource demands. Specifically, the attention operator is memory-intensive, exhibiting a memory access pattern that clashes with the strengths of modern accelerators, especially as context length increases. To enhance the efficiency and cost-effectiveness of LLM serving, we introduce the concept of attention offloading. This approach leverages a collection of cheap, memory-optimized devices for the attention operator while still utilizing high-end accelerators for other parts of the model. This heterogeneous setup ensures that each component is tailored to its specific workload, maximizing overall performance and cost efficiency. Our comprehensive analysis and experiments confirm the viability of splitting the attention computation over multiple devices. Also, the communication bandwidth required between heterogeneous devices proves to be manageable with prevalent networking technologies. To further validate our theory, we develop Lamina, an LLM inference system that incorporates attention offloading. Experimental results indicate that Lamina can provide 1.48x-12.1x higher estimated throughput per dollar than homogeneous solutions. 4 authors · May 2, 2024
- VoiceFilter-Lite: Streaming Targeted Voice Separation for On-Device Speech Recognition We introduce VoiceFilter-Lite, a single-channel source separation model that runs on the device to preserve only the speech signals from a target user, as part of a streaming speech recognition system. Delivering such a model presents numerous challenges: It should improve the performance when the input signal consists of overlapped speech, and must not hurt the speech recognition performance under all other acoustic conditions. Besides, this model must be tiny, fast, and perform inference in a streaming fashion, in order to have minimal impact on CPU, memory, battery and latency. We propose novel techniques to meet these multi-faceted requirements, including using a new asymmetric loss, and adopting adaptive runtime suppression strength. We also show that such a model can be quantized as a 8-bit integer model and run in realtime. 11 authors · Sep 9, 2020
- Spoken Question Answering and Speech Continuation Using Spectrogram-Powered LLM We present a novel approach to adapting pre-trained large language models (LLMs) to perform question answering (QA) and speech continuation. By endowing the LLM with a pre-trained speech encoder, our model becomes able to take speech inputs and generate speech outputs. The entire system is trained end-to-end and operates directly on spectrograms, simplifying our architecture. Key to our approach is a training objective that jointly supervises speech recognition, text continuation, and speech synthesis using only paired speech-text pairs, enabling a `cross-modal' chain-of-thought within a single decoding pass. Our method surpasses existing spoken language models in speaker preservation and semantic coherence. Furthermore, the proposed model improves upon direct initialization in retaining the knowledge of the original LLM as demonstrated through spoken QA datasets. Audio samples can be found at https://michelleramanovich.github.io/spectron/spectron 9 authors · May 24, 2023
- Effective Pre-Training of Audio Transformers for Sound Event Detection We propose a pre-training pipeline for audio spectrogram transformers for frame-level sound event detection tasks. On top of common pre-training steps, we add a meticulously designed training routine on AudioSet frame-level annotations. This includes a balanced sampler, aggressive data augmentation, and ensemble knowledge distillation. For five transformers, we obtain a substantial performance improvement over previously available checkpoints both on AudioSet frame-level predictions and on frame-level sound event detection downstream tasks, confirming our pipeline's effectiveness. We publish the resulting checkpoints that researchers can directly fine-tune to build high-performance models for sound event detection tasks. 6 authors · Sep 14, 2024
- InterviewBot: Real-Time End-to-End Dialogue System to Interview Students for College Admission We present the InterviewBot that dynamically integrates conversation history and customized topics into a coherent embedding space to conduct 10 mins hybrid-domain (open and closed) conversations with foreign students applying to U.S. colleges for assessing their academic and cultural readiness. To build a neural-based end-to-end dialogue model, 7,361 audio recordings of human-to-human interviews are automatically transcribed, where 440 are manually corrected for finetuning and evaluation. To overcome the input/output size limit of a transformer-based encoder-decoder model, two new methods are proposed, context attention and topic storing, allowing the model to make relevant and consistent interactions. Our final model is tested both statistically by comparing its responses to the interview data and dynamically by inviting professional interviewers and various students to interact with it in real-time, finding it highly satisfactory in fluency and context awareness. 4 authors · Mar 27, 2023
- Retrieval-Enhanced Few-Shot Prompting for Speech Event Extraction Speech Event Extraction (SpeechEE) is a challenging task that lies at the intersection of Automatic Speech Recognition (ASR) and Natural Language Processing (NLP), requiring the identification of structured event information from spoken language. In this work, we present a modular, pipeline-based SpeechEE framework that integrates high-performance ASR with semantic search-enhanced prompting of Large Language Models (LLMs). Our system first classifies speech segments likely to contain events using a hybrid filtering mechanism including rule-based, BERT-based, and LLM-based models. It then employs few-shot LLM prompting, dynamically enriched via semantic similarity retrieval, to identify event triggers and extract corresponding arguments. We evaluate the pipeline using multiple LLMs (Llama3-8B, GPT-4o-mini, and o1-mini) highlighting significant performance gains with o1-mini, which achieves 63.3% F1 on trigger classification and 27.8% F1 on argument classification, outperforming prior benchmarks. Our results demonstrate that pipeline approaches, when empowered by retrieval-augmented LLMs, can rival or exceed end-to-end systems while maintaining interpretability and modularity. This work provides practical insights into LLM-driven event extraction and opens pathways for future hybrid models combining textual and acoustic features. 1 authors · Apr 30
- Neural Audio Fingerprint for High-specific Audio Retrieval based on Contrastive Learning Most of existing audio fingerprinting systems have limitations to be used for high-specific audio retrieval at scale. In this work, we generate a low-dimensional representation from a short unit segment of audio, and couple this fingerprint with a fast maximum inner-product search. To this end, we present a contrastive learning framework that derives from the segment-level search objective. Each update in training uses a batch consisting of a set of pseudo labels, randomly selected original samples, and their augmented replicas. These replicas can simulate the degrading effects on original audio signals by applying small time offsets and various types of distortions, such as background noise and room/microphone impulse responses. In the segment-level search task, where the conventional audio fingerprinting systems used to fail, our system using 10x smaller storage has shown promising results. Our code and dataset are available at https://mimbres.github.io/neural-audio-fp/. 7 authors · Oct 22, 2020
- DA-MoE: Towards Dynamic Expert Allocation for Mixture-of-Experts Models Transformer-based Mixture-of-Experts (MoE) models have been driving several recent technological advancements in Natural Language Processing (NLP). These MoE models adopt a router mechanism to determine which experts to activate for routing input tokens. However, existing router mechanisms allocate a fixed number of experts to each token, which neglects the varying importance of different input tokens. In this study, we propose a novel dynamic router mechanism that Dynamically Allocates a variable number of experts for Mixture-of-Experts (DA-MoE) models based on an effective token importance measure. First, we show that the Transformer attention mechanism provides a natural and effective way of calculating token importance. Second, we propose a dynamic router mechanism that effectively decides the optimal number of experts (K) and allocates the top-K experts for each input token. Third, comprehensive experiments on several benchmark datasets demonstrate that our DA-MoE approach consistently outperforms the state-of-the-art Transformer based MoE model on the popular GLUE benchmark. 3 authors · Sep 10, 2024
7 Interface Design for Self-Supervised Speech Models Self-supervised speech (SSL) models have recently become widely adopted for many downstream speech processing tasks. The general usage pattern is to employ SSL models as feature extractors, and then train a downstream prediction head to solve a specific task. However, different layers of SSL models have been shown to capture different types of information, and the methods of combining them are not well studied. To this end, we extend the general framework for SSL model utilization by proposing the interface that connects the upstream and downstream. Under this view, the dominant technique of combining features via a layerwise weighted sum can be regarded as a specific interface. We propose several alternative interface designs and demonstrate that the weighted sum interface is suboptimal for many tasks. In particular, we show that a convolutional interface whose depth scales logarithmically with the depth of the upstream model consistently outperforms many other interface designs. 2 authors · Jun 17, 2024 1
- An enhanced Conv-TasNet model for speech separation using a speaker distance-based loss function This work addresses the problem of speech separation in the Spanish Language using pre-trained deep learning models. As with many speech processing tasks, large databases in other languages different from English are scarce. Therefore this work explores different training strategies using the Conv-TasNet model as a benchmark. A scale-invariant signal distortion ratio (SI-SDR) metric value of 9.9 dB was achieved for the best training strategy. Then, experimentally, we identified an inverse relationship between the speakers' similarity and the model's performance, so an improved ConvTasNet architecture was proposed. The enhanced Conv-TasNet model uses pre-trained speech embeddings to add a between-speakers cosine similarity term in the cost function, yielding an SI-SDR of 10.6 dB. Lastly, final experiments regarding real-time deployment show some drawbacks in the speakers' channel synchronization due to the need to process small speech segments where only one of the speakers appears. 2 authors · May 26, 2022
1 PSLM: Parallel Generation of Text and Speech with LLMs for Low-Latency Spoken Dialogue Systems Multimodal language models that process both text and speech have a potential for applications in spoken dialogue systems. However, current models face two major challenges in response generation latency: (1) generating a spoken response requires the prior generation of a written response, and (2) speech sequences are significantly longer than text sequences. This study addresses these issues by extending the input and output sequences of the language model to support the parallel generation of text and speech. Our experiments on spoken question answering tasks demonstrate that our approach improves latency while maintaining the quality of response content. Additionally, we show that latency can be further reduced by generating speech in multiple sequences. Demo samples are available at https://rinnakk.github.io/research/publications/PSLM. 5 authors · Jun 18, 2024
- VoiceTailor: Lightweight Plug-In Adapter for Diffusion-Based Personalized Text-to-Speech We propose VoiceTailor, a parameter-efficient speaker-adaptive text-to-speech (TTS) system, by equipping a pre-trained diffusion-based TTS model with a personalized adapter. VoiceTailor identifies pivotal modules that benefit from the adapter based on a weight change ratio analysis. We utilize Low-Rank Adaptation (LoRA) as a parameter-efficient adaptation method and incorporate the adapter into pivotal modules of the pre-trained diffusion decoder. To achieve powerful adaptation performance with few parameters, we explore various guidance techniques for speaker adaptation and investigate the best strategies to strengthen speaker information. VoiceTailor demonstrates comparable speaker adaptation performance to existing adaptive TTS models by fine-tuning only 0.25\% of the total parameters. VoiceTailor shows strong robustness when adapting to a wide range of real-world speakers, as shown in the demo. 6 authors · Aug 26, 2024
- Fast Streaming Transducer ASR Prototyping via Knowledge Distillation with Whisper The training of automatic speech recognition (ASR) with little to no supervised data remains an open question. In this work, we demonstrate that streaming Transformer-Transducer (TT) models can be trained from scratch in consumer and accessible GPUs in their entirety with pseudo-labeled (PL) speech from foundational speech models (FSM). This allows training a robust ASR model just in one stage and does not require large data and computational budget compared to the two-step scenario with pre-training and fine-tuning. We perform a comprehensive ablation on different aspects of PL-based streaming TT models such as the impact of (1) shallow fusion of n-gram LMs, (2) contextual biasing with named entities, (3) chunk-wise decoding for low-latency streaming applications, and (4) TT overall performance as the function of the FSM size. Our results demonstrate that TT can be trained from scratch without supervised data, even with very noisy PLs. We validate the proposed framework on 6 languages from CommonVoice and propose multiple heuristics to filter out hallucinated PLs. 9 authors · Sep 20, 2024
1 Parameter-Efficient Conformers via Sharing Sparsely-Gated Experts for End-to-End Speech Recognition While transformers and their variant conformers show promising performance in speech recognition, the parameterized property leads to much memory cost during training and inference. Some works use cross-layer weight-sharing to reduce the parameters of the model. However, the inevitable loss of capacity harms the model performance. To address this issue, this paper proposes a parameter-efficient conformer via sharing sparsely-gated experts. Specifically, we use sparsely-gated mixture-of-experts (MoE) to extend the capacity of a conformer block without increasing computation. Then, the parameters of the grouped conformer blocks are shared so that the number of parameters is reduced. Next, to ensure the shared blocks with the flexibility of adapting representations at different levels, we design the MoE routers and normalization individually. Moreover, we use knowledge distillation to further improve the performance. Experimental results show that the proposed model achieves competitive performance with 1/3 of the parameters of the encoder, compared with the full-parameter model. 8 authors · Sep 17, 2022
- A Contrastive Learning Approach to Mitigate Bias in Speech Models Speech models may be affected by performance imbalance in different population subgroups, raising concerns about fair treatment across these groups. Prior attempts to mitigate unfairness either focus on user-defined subgroups, potentially overlooking other affected subgroups, or do not explicitly improve the internal representation at the subgroup level. This paper proposes the first adoption of contrastive learning to mitigate speech model bias in underperforming subgroups. We employ a three-level learning technique that guides the model in focusing on different scopes for the contrastive loss, i.e., task, subgroup, and the errors within subgroups. The experiments on two spoken language understanding datasets and two languages demonstrate that our approach improves internal subgroup representations, thus reducing model bias and enhancing performance. 4 authors · Jun 20, 2024
1 FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech We introduce FLEURS, the Few-shot Learning Evaluation of Universal Representations of Speech benchmark. FLEURS is an n-way parallel speech dataset in 102 languages built on top of the machine translation FLoRes-101 benchmark, with approximately 12 hours of speech supervision per language. FLEURS can be used for a variety of speech tasks, including Automatic Speech Recognition (ASR), Speech Language Identification (Speech LangID), Translation and Retrieval. In this paper, we provide baselines for the tasks based on multilingual pre-trained models like mSLAM. The goal of FLEURS is to enable speech technology in more languages and catalyze research in low-resource speech understanding. 9 authors · May 24, 2022
- Zero-Shot vs. Few-Shot Multi-Speaker TTS Using Pre-trained Czech SpeechT5 Model In this paper, we experimented with the SpeechT5 model pre-trained on large-scale datasets. We pre-trained the foundation model from scratch and fine-tuned it on a large-scale robust multi-speaker text-to-speech (TTS) task. We tested the model capabilities in a zero- and few-shot scenario. Based on two listening tests, we evaluated the synthetic audio quality and the similarity of how synthetic voices resemble real voices. Our results showed that the SpeechT5 model can generate a synthetic voice for any speaker using only one minute of the target speaker's data. We successfully demonstrated the high quality and similarity of our synthetic voices on publicly known Czech politicians and celebrities. 4 authors · Jul 24, 2024
5 GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints Multi-query attention (MQA), which only uses a single key-value head, drastically speeds up decoder inference. However, MQA can lead to quality degradation, and moreover it may not be desirable to train a separate model just for faster inference. We (1) propose a recipe for uptraining existing multi-head language model checkpoints into models with MQA using 5% of original pre-training compute, and (2) introduce grouped-query attention (GQA), a generalization of multi-query attention which uses an intermediate (more than one, less than number of query heads) number of key-value heads. We show that uptrained GQA achieves quality close to multi-head attention with comparable speed to MQA. 6 authors · May 22, 2023
- Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition Describes an audio dataset of spoken words designed to help train and evaluate keyword spotting systems. Discusses why this task is an interesting challenge, and why it requires a specialized dataset that is different from conventional datasets used for automatic speech recognition of full sentences. Suggests a methodology for reproducible and comparable accuracy metrics for this task. Describes how the data was collected and verified, what it contains, previous versions and properties. Concludes by reporting baseline results of models trained on this dataset. 1 authors · Apr 9, 2018
- QuerYD: A video dataset with high-quality text and audio narrations We introduce QuerYD, a new large-scale dataset for retrieval and event localisation in video. A unique feature of our dataset is the availability of two audio tracks for each video: the original audio, and a high-quality spoken description of the visual content. The dataset is based on YouDescribe, a volunteer project that assists visually-impaired people by attaching voiced narrations to existing YouTube videos. This ever-growing collection of videos contains highly detailed, temporally aligned audio and text annotations. The content descriptions are more relevant than dialogue, and more detailed than previous description attempts, which can be observed to contain many superficial or uninformative descriptions. To demonstrate the utility of the QuerYD dataset, we show that it can be used to train and benchmark strong models for retrieval and event localisation. Data, code and models are made publicly available, and we hope that QuerYD inspires further research on video understanding with written and spoken natural language. 5 authors · Nov 22, 2020
1 HuBERTopic: Enhancing Semantic Representation of HuBERT through Self-supervision Utilizing Topic Model Recently, the usefulness of self-supervised representation learning (SSRL) methods has been confirmed in various downstream tasks. Many of these models, as exemplified by HuBERT and WavLM, use pseudo-labels generated from spectral features or the model's own representation features. From previous studies, it is known that the pseudo-labels contain semantic information. However, the masked prediction task, the learning criterion of HuBERT, focuses on local contextual information and may not make effective use of global semantic information such as speaker, theme of speech, and so on. In this paper, we propose a new approach to enrich the semantic representation of HuBERT. We apply topic model to pseudo-labels to generate a topic label for each utterance. An auxiliary topic classification task is added to HuBERT by using topic labels as teachers. This allows additional global semantic information to be incorporated in an unsupervised manner. Experimental results demonstrate that our method achieves comparable or better performance than the baseline in most tasks, including automatic speech recognition and five out of the eight SUPERB tasks. Moreover, we find that topic labels include various information about utterance, such as gender, speaker, and its theme. This highlights the effectiveness of our approach in capturing multifaceted semantic nuances. 5 authors · Oct 5, 2023
1 Dawn of the transformer era in speech emotion recognition: closing the valence gap Recent advances in transformer-based architectures which are pre-trained in self-supervised manner have shown great promise in several machine learning tasks. In the audio domain, such architectures have also been successfully utilised in the field of speech emotion recognition (SER). However, existing works have not evaluated the influence of model size and pre-training data on downstream performance, and have shown limited attention to generalisation, robustness, fairness, and efficiency. The present contribution conducts a thorough analysis of these aspects on several pre-trained variants of wav2vec 2.0 and HuBERT that we fine-tuned on the dimensions arousal, dominance, and valence of MSP-Podcast, while additionally using IEMOCAP and MOSI to test cross-corpus generalisation. To the best of our knowledge, we obtain the top performance for valence prediction without use of explicit linguistic information, with a concordance correlation coefficient (CCC) of .638 on MSP-Podcast. Furthermore, our investigations reveal that transformer-based architectures are more robust to small perturbations compared to a CNN-based baseline and fair with respect to biological sex groups, but not towards individual speakers. Finally, we are the first to show that their extraordinary success on valence is based on implicit linguistic information learnt during fine-tuning of the transformer layers, which explains why they perform on-par with recent multimodal approaches that explicitly utilise textual information. Our findings collectively paint the following picture: transformer-based architectures constitute the new state-of-the-art in SER, but further advances are needed to mitigate remaining robustness and individual speaker issues. To make our findings reproducible, we release the best performing model to the community. 7 authors · Mar 14, 2022
- Guided-TTS 2: A Diffusion Model for High-quality Adaptive Text-to-Speech with Untranscribed Data We propose Guided-TTS 2, a diffusion-based generative model for high-quality adaptive TTS using untranscribed data. Guided-TTS 2 combines a speaker-conditional diffusion model with a speaker-dependent phoneme classifier for adaptive text-to-speech. We train the speaker-conditional diffusion model on large-scale untranscribed datasets for a classifier-free guidance method and further fine-tune the diffusion model on the reference speech of the target speaker for adaptation, which only takes 40 seconds. We demonstrate that Guided-TTS 2 shows comparable performance to high-quality single-speaker TTS baselines in terms of speech quality and speaker similarity with only a ten-second untranscribed data. We further show that Guided-TTS 2 outperforms adaptive TTS baselines on multi-speaker datasets even with a zero-shot adaptation setting. Guided-TTS 2 can adapt to a wide range of voices only using untranscribed speech, which enables adaptive TTS with the voice of non-human characters such as Gollum in "The Lord of the Rings". 3 authors · May 30, 2022
- AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension Recently, instruction-following audio-language models have received broad attention for human-audio interaction. However, the absence of benchmarks capable of evaluating audio-centric interaction capabilities has impeded advancements in this field. Previous models primarily focus on assessing different fundamental tasks, such as Automatic Speech Recognition (ASR), and lack an assessment of the open-ended generative capabilities centered around audio. Thus, it is challenging to track the progression in the Large Audio-Language Models (LALMs) domain and to provide guidance for future improvement. In this paper, we introduce AIR-Bench (Audio InstRuction Benchmark), the first benchmark designed to evaluate the ability of LALMs to understand various types of audio signals (including human speech, natural sounds, and music), and furthermore, to interact with humans in the textual format. AIR-Bench encompasses two dimensions: foundation and chat benchmarks. The former consists of 19 tasks with approximately 19k single-choice questions, intending to inspect the basic single-task ability of LALMs. The latter one contains 2k instances of open-ended question-and-answer data, directly assessing the comprehension of the model on complex audio and its capacity to follow instructions. Both benchmarks require the model to generate hypotheses directly. We design a unified framework that leverages advanced language models, such as GPT-4, to evaluate the scores of generated hypotheses given the meta-information of the audio. Experimental results demonstrate a high level of consistency between GPT-4-based evaluation and human evaluation. By revealing the limitations of existing LALMs through evaluation results, AIR-Bench can provide insights into the direction of future research. 11 authors · Feb 12, 2024
1 Empower Your Model with Longer and Better Context Comprehension Recently, with the emergence of numerous Large Language Models (LLMs), the implementation of AI has entered a new era. Irrespective of these models' own capacity and structure, there is a growing demand for LLMs to possess enhanced comprehension of longer and more complex contexts with relatively smaller sizes. Models often encounter an upper limit when processing sequences of sentences that extend beyond their comprehension capacity and result in off-topic or even chaotic responses. While several recent works attempt to address this issue in various ways, they rarely focus on "why models are unable to compensate or strengthen their capabilities on their own". In this paper, we thoroughly investigate the nature of information transfer within LLMs and propose a novel technique called Attention Transition. This technique empowers models to achieve longer and better context comprehension with minimal additional training or impact on generation fluency. Our experiments are conducted on the challenging XSum dataset using LLaMa-7b model with context token length ranging from 800 to 1900. Results demonstrate that we achieve substantial improvements compared with the original generation results evaluated by GPT4. 5 authors · Jul 25, 2023
- An open-source voice type classifier for child-centered daylong recordings Spontaneous conversations in real-world settings such as those found in child-centered recordings have been shown to be amongst the most challenging audio files to process. Nevertheless, building speech processing models handling such a wide variety of conditions would be particularly useful for language acquisition studies in which researchers are interested in the quantity and quality of the speech that children hear and produce, as well as for early diagnosis and measuring effects of remediation. In this paper, we present our approach to designing an open-source neural network to classify audio segments into vocalizations produced by the child wearing the recording device, vocalizations produced by other children, adult male speech, and adult female speech. To this end, we gathered diverse child-centered corpora which sums up to a total of 260 hours of recordings and covers 10 languages. Our model can be used as input for downstream tasks such as estimating the number of words produced by adult speakers, or the number of linguistic units produced by children. Our architecture combines SincNet filters with a stack of recurrent layers and outperforms by a large margin the state-of-the-art system, the Language ENvironment Analysis (LENA) that has been used in numerous child language studies. 5 authors · May 26, 2020
- Speaker Embeddings With Weakly Supervised Voice Activity Detection For Efficient Speaker Diarization Current speaker diarization systems rely on an external voice activity detection model prior to speaker embedding extraction on the detected speech segments. In this paper, we establish that the attention system of a speaker embedding extractor acts as a weakly supervised internal VAD model and performs equally or better than comparable supervised VAD systems. Subsequently, speaker diarization can be performed efficiently by extracting the VAD logits and corresponding speaker embedding simultaneously, alleviating the need and computational overhead of an external VAD model. We provide an extensive analysis of the behavior of the frame-level attention system in current speaker verification models and propose a novel speaker diarization pipeline using ECAPA2 speaker embeddings for both VAD and embedding extraction. The proposed strategy gains state-of-the-art performance on the AMI, VoxConverse and DIHARD III diarization benchmarks. 2 authors · May 15, 2024