Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMuGa-VTON: Multi-Garment Virtual Try-On via Diffusion Transformers with Prompt Customization
Virtual try-on seeks to generate photorealistic images of individuals in desired garments, a task that must simultaneously preserve personal identity and garment fidelity for practical use in fashion retail and personalization. However, existing methods typically handle upper and lower garments separately, rely on heavy preprocessing, and often fail to preserve person-specific cues such as tattoos, accessories, and body shape-resulting in limited realism and flexibility. To this end, we introduce MuGa-VTON, a unified multi-garment diffusion framework that jointly models upper and lower garments together with person identity in a shared latent space. Specifically, we proposed three key modules: the Garment Representation Module (GRM) for capturing both garment semantics, the Person Representation Module (PRM) for encoding identity and pose cues, and the A-DiT fusion module, which integrates garment, person, and text-prompt features through a diffusion transformer. This architecture supports prompt-based customization, allowing fine-grained garment modifications with minimal user input. Extensive experiments on the VITON-HD and DressCode benchmarks demonstrate that MuGa-VTON outperforms existing methods in both qualitative and quantitative evaluations, producing high-fidelity, identity-preserving results suitable for real-world virtual try-on applications.
Enhancing Person-to-Person Virtual Try-On with Multi-Garment Virtual Try-Off
Computer vision is transforming fashion through Virtual Try-On (VTON) and Virtual Try-Off (VTOFF). VTON generates images of a person in a specified garment using a target photo and a standardized garment image, while a more challenging variant, Person-to-Person Virtual Try-On (p2p-VTON), uses a photo of another person wearing the garment. VTOFF, on the other hand, extracts standardized garment images from clothed individuals. We introduce TryOffDiff, a diffusion-based VTOFF model. Built on a latent diffusion framework with SigLIP image conditioning, it effectively captures garment properties like texture, shape, and patterns. TryOffDiff achieves state-of-the-art results on VITON-HD and strong performance on DressCode dataset, covering upper-body, lower-body, and dresses. Enhanced with class-specific embeddings, it pioneers multi-garment VTOFF, the first of its kind. When paired with VTON models, it improves p2p-VTON by minimizing unwanted attribute transfer, such as skin color. Code is available at: https://rizavelioglu.github.io/tryoffdiff/
Inverse Virtual Try-On: Generating Multi-Category Product-Style Images from Clothed Individuals
While virtual try-on (VTON) systems aim to render a garment onto a target person image, this paper tackles the novel task of virtual try-off (VTOFF), which addresses the inverse problem: generating standardized product images of garments from real-world photos of clothed individuals. Unlike VTON, which must resolve diverse pose and style variations, VTOFF benefits from a consistent and well-defined output format -- typically a flat, lay-down-style representation of the garment -- making it a promising tool for data generation and dataset enhancement. However, existing VTOFF approaches face two major limitations: (i) difficulty in disentangling garment features from occlusions and complex poses, often leading to visual artifacts, and (ii) restricted applicability to single-category garments (e.g., upper-body clothes only), limiting generalization. To address these challenges, we present Text-Enhanced MUlti-category Virtual Try-Off (TEMU-VTOFF), a novel architecture featuring a dual DiT-based backbone with a modified multimodal attention mechanism for robust garment feature extraction. Our architecture is designed to receive garment information from multiple modalities like images, text, and masks to work in a multi-category setting. Finally, we propose an additional alignment module to further refine the generated visual details. Experiments on VITON-HD and Dress Code datasets show that TEMU-VTOFF sets a new state-of-the-art on the VTOFF task, significantly improving both visual quality and fidelity to the target garments.
GaussianVTON: 3D Human Virtual Try-ON via Multi-Stage Gaussian Splatting Editing with Image Prompting
The increasing prominence of e-commerce has underscored the importance of Virtual Try-On (VTON). However, previous studies predominantly focus on the 2D realm and rely heavily on extensive data for training. Research on 3D VTON primarily centers on garment-body shape compatibility, a topic extensively covered in 2D VTON. Thanks to advances in 3D scene editing, a 2D diffusion model has now been adapted for 3D editing via multi-viewpoint editing. In this work, we propose GaussianVTON, an innovative 3D VTON pipeline integrating Gaussian Splatting (GS) editing with 2D VTON. To facilitate a seamless transition from 2D to 3D VTON, we propose, for the first time, the use of only images as editing prompts for 3D editing. To further address issues, e.g., face blurring, garment inaccuracy, and degraded viewpoint quality during editing, we devise a three-stage refinement strategy to gradually mitigate potential issues. Furthermore, we introduce a new editing strategy termed Edit Recall Reconstruction (ERR) to tackle the limitations of previous editing strategies in leading to complex geometric changes. Our comprehensive experiments demonstrate the superiority of GaussianVTON, offering a novel perspective on 3D VTON while also establishing a novel starting point for image-prompting 3D scene editing.
VTON 360: High-Fidelity Virtual Try-On from Any Viewing Direction
Virtual Try-On (VTON) is a transformative technology in e-commerce and fashion design, enabling realistic digital visualization of clothing on individuals. In this work, we propose VTON 360, a novel 3D VTON method that addresses the open challenge of achieving high-fidelity VTON that supports any-view rendering. Specifically, we leverage the equivalence between a 3D model and its rendered multi-view 2D images, and reformulate 3D VTON as an extension of 2D VTON that ensures 3D consistent results across multiple views. To achieve this, we extend 2D VTON models to include multi-view garments and clothing-agnostic human body images as input, and propose several novel techniques to enhance them, including: i) a pseudo-3D pose representation using normal maps derived from the SMPL-X 3D human model, ii) a multi-view spatial attention mechanism that models the correlations between features from different viewing angles, and iii) a multi-view CLIP embedding that enhances the garment CLIP features used in 2D VTON with camera information. Extensive experiments on large-scale real datasets and clothing images from e-commerce platforms demonstrate the effectiveness of our approach. Project page: https://scnuhealthy.github.io/VTON360.
Controllable Human Image Generation with Personalized Multi-Garments
We present BootComp, a novel framework based on text-to-image diffusion models for controllable human image generation with multiple reference garments. Here, the main bottleneck is data acquisition for training: collecting a large-scale dataset of high-quality reference garment images per human subject is quite challenging, i.e., ideally, one needs to manually gather every single garment photograph worn by each human. To address this, we propose a data generation pipeline to construct a large synthetic dataset, consisting of human and multiple-garment pairs, by introducing a model to extract any reference garment images from each human image. To ensure data quality, we also propose a filtering strategy to remove undesirable generated data based on measuring perceptual similarities between the garment presented in human image and extracted garment. Finally, by utilizing the constructed synthetic dataset, we train a diffusion model having two parallel denoising paths that use multiple garment images as conditions to generate human images while preserving their fine-grained details. We further show the wide-applicability of our framework by adapting it to different types of reference-based generation in the fashion domain, including virtual try-on, and controllable human image generation with other conditions, e.g., pose, face, etc.
DH-VTON: Deep Text-Driven Virtual Try-On via Hybrid Attention Learning
Virtual Try-ON (VTON) aims to synthesis specific person images dressed in given garments, which recently receives numerous attention in online shopping scenarios. Currently, the core challenges of the VTON task mainly lie in the fine-grained semantic extraction (i.e.,deep semantics) of the given reference garments during depth estimation and effective texture preservation when the garments are synthesized and warped onto human body. To cope with these issues, we propose DH-VTON, a deep text-driven virtual try-on model featuring a special hybrid attention learning strategy and deep garment semantic preservation module. By standing on the shoulder of a well-built pre-trained paint-by-example (abbr. PBE) approach, we present our DH-VTON pipeline in this work. Specifically, to extract the deep semantics of the garments, we first introduce InternViT-6B as fine-grained feature learner, which can be trained to align with the large-scale intrinsic knowledge with deep text semantics (e.g.,"neckline" or "girdle") to make up for the deficiency of the commonly adopted CLIP encoder. Based on this, to enhance the customized dressing abilities, we further introduce Garment-Feature ControlNet Plus (abbr. GFC+) module and propose to leverage a fresh hybrid attention strategy for training, which can adaptively integrate fine-grained characteristics of the garments into the different layers of the VTON model, so as to achieve multi-scale features preservation effects. Extensive experiments on several representative datasets demonstrate that our method outperforms previous diffusion-based and GAN-based approaches, showing competitive performance in preserving garment details and generating authentic human images.
FW-VTON: Flattening-and-Warping for Person-to-Person Virtual Try-on
Traditional virtual try-on methods primarily focus on the garment-to-person try-on task, which requires flat garment representations. In contrast, this paper introduces a novel approach to the person-to-person try-on task. Unlike the garment-to-person try-on task, the person-to-person task only involves two input images: one depicting the target person and the other showing the garment worn by a different individual. The goal is to generate a realistic combination of the target person with the desired garment. To this end, we propose Flattening-and-Warping Virtual Try-On (FW-VTON), a method that operates in three stages: (1) extracting the flattened garment image from the source image; (2) warping the garment to align with the target pose; and (3) integrating the warped garment seamlessly onto the target person. To overcome the challenges posed by the lack of high-quality datasets for this task, we introduce a new dataset specifically designed for person-to-person try-on scenarios. Experimental evaluations demonstrate that FW-VTON achieves state-of-the-art performance, with superior results in both qualitative and quantitative assessments, and also excels in garment extraction subtasks.
MV-VTON: Multi-View Virtual Try-On with Diffusion Models
The goal of image-based virtual try-on is to generate an image of the target person naturally wearing the given clothing. However, existing methods solely focus on the frontal try-on using the frontal clothing. When the views of the clothing and person are significantly inconsistent, particularly when the person's view is non-frontal, the results are unsatisfactory. To address this challenge, we introduce Multi-View Virtual Try-ON (MV-VTON), which aims to reconstruct the dressing results from multiple views using the given clothes. Given that single-view clothes provide insufficient information for MV-VTON, we instead employ two images, i.e., the frontal and back views of the clothing, to encompass the complete view as much as possible. Moreover, we adopt diffusion models that have demonstrated superior abilities to perform our MV-VTON. In particular, we propose a view-adaptive selection method where hard-selection and soft-selection are applied to the global and local clothing feature extraction, respectively. This ensures that the clothing features are roughly fit to the person's view. Subsequently, we suggest joint attention blocks to align and fuse clothing features with person features. Additionally, we collect a MV-VTON dataset MVG, in which each person has multiple photos with diverse views and poses. Experiments show that the proposed method not only achieves state-of-the-art results on MV-VTON task using our MVG dataset, but also has superiority on frontal-view virtual try-on task using VITON-HD and DressCode datasets.
Wear-Any-Way: Manipulable Virtual Try-on via Sparse Correspondence Alignment
This paper introduces a novel framework for virtual try-on, termed Wear-Any-Way. Different from previous methods, Wear-Any-Way is a customizable solution. Besides generating high-fidelity results, our method supports users to precisely manipulate the wearing style. To achieve this goal, we first construct a strong pipeline for standard virtual try-on, supporting single/multiple garment try-on and model-to-model settings in complicated scenarios. To make it manipulable, we propose sparse correspondence alignment which involves point-based control to guide the generation for specific locations. With this design, Wear-Any-Way gets state-of-the-art performance for the standard setting and provides a novel interaction form for customizing the wearing style. For instance, it supports users to drag the sleeve to make it rolled up, drag the coat to make it open, and utilize clicks to control the style of tuck, etc. Wear-Any-Way enables more liberated and flexible expressions of the attires, holding profound implications in the fashion industry.
Mobile Fitting Room: On-device Virtual Try-on via Diffusion Models
The growing digital landscape of fashion e-commerce calls for interactive and user-friendly interfaces for virtually trying on clothes. Traditional try-on methods grapple with challenges in adapting to diverse backgrounds, poses, and subjects. While newer methods, utilizing the recent advances of diffusion models, have achieved higher-quality image generation, the human-centered dimensions of mobile interface delivery and privacy concerns remain largely unexplored. We present Mobile Fitting Room, the first on-device diffusion-based virtual try-on system. To address multiple inter-related technical challenges such as high-quality garment placement and model compression for mobile devices, we present a novel technical pipeline and an interface design that enables privacy preservation and user customization. A usage scenario highlights how our tool can provide a seamless, interactive virtual try-on experience for customers and provide a valuable service for fashion e-commerce businesses.
Better Fit: Accommodate Variations in Clothing Types for Virtual Try-on
Image-based virtual try-on aims to transfer target in-shop clothing to a dressed model image, the objectives of which are totally taking off original clothing while preserving the contents outside of the try-on area, naturally wearing target clothing and correctly inpainting the gap between target clothing and original clothing. Tremendous efforts have been made to facilitate this popular research area, but cannot keep the type of target clothing with the try-on area affected by original clothing. In this paper, we focus on the unpaired virtual try-on situation where target clothing and original clothing on the model are different, i.e., the practical scenario. To break the correlation between the try-on area and the original clothing and make the model learn the correct information to inpaint, we propose an adaptive mask training paradigm that dynamically adjusts training masks. It not only improves the alignment and fit of clothing but also significantly enhances the fidelity of virtual try-on experience. Furthermore, we for the first time propose two metrics for unpaired try-on evaluation, the Semantic-Densepose-Ratio (SDR) and Skeleton-LPIPS (S-LPIPS), to evaluate the correctness of clothing type and the accuracy of clothing texture. For unpaired try-on validation, we construct a comprehensive cross-try-on benchmark (Cross-27) with distinctive clothing items and model physiques, covering a broad try-on scenarios. Experiments demonstrate the effectiveness of the proposed methods, contributing to the advancement of virtual try-on technology and offering new insights and tools for future research in the field. The code, model and benchmark will be publicly released.
From Keypoints to Realism: A Realistic and Accurate Virtual Try-on Network from 2D Images
The aim of image-based virtual try-on is to generate realistic images of individuals wearing target garments, ensuring that the pose, body shape and characteristics of the target garment are accurately preserved. Existing methods often fail to reproduce the fine details of target garments effectively and lack generalizability to new scenarios. In the proposed method, the person's initial garment is completely removed. Subsequently, a precise warping is performed using the predicted keypoints to fully align the target garment with the body structure and pose of the individual. Based on the warped garment, a body segmentation map is more accurately predicted. Then, using an alignment-aware segment normalization, the misaligned areas between the warped garment and the predicted garment region in the segmentation map are removed. Finally, the generator produces the final image with high visual quality, reconstructing the precise characteristics of the target garment, including its overall shape and texture. This approach emphasizes preserving garment characteristics and improving adaptability to various poses, providing better generalization for diverse applications.
AnyFit: Controllable Virtual Try-on for Any Combination of Attire Across Any Scenario
While image-based virtual try-on has made significant strides, emerging approaches still fall short of delivering high-fidelity and robust fitting images across various scenarios, as their models suffer from issues of ill-fitted garment styles and quality degrading during the training process, not to mention the lack of support for various combinations of attire. Therefore, we first propose a lightweight, scalable, operator known as Hydra Block for attire combinations. This is achieved through a parallel attention mechanism that facilitates the feature injection of multiple garments from conditionally encoded branches into the main network. Secondly, to significantly enhance the model's robustness and expressiveness in real-world scenarios, we evolve its potential across diverse settings by synthesizing the residuals of multiple models, as well as implementing a mask region boost strategy to overcome the instability caused by information leakage in existing models. Equipped with the above design, AnyFit surpasses all baselines on high-resolution benchmarks and real-world data by a large gap, excelling in producing well-fitting garments replete with photorealistic and rich details. Furthermore, AnyFit's impressive performance on high-fidelity virtual try-ons in any scenario from any image, paves a new path for future research within the fashion community.
Dynamic Try-On: Taming Video Virtual Try-on with Dynamic Attention Mechanism
Video try-on stands as a promising area for its tremendous real-world potential. Previous research on video try-on has primarily focused on transferring product clothing images to videos with simple human poses, while performing poorly with complex movements. To better preserve clothing details, those approaches are armed with an additional garment encoder, resulting in higher computational resource consumption. The primary challenges in this domain are twofold: (1) leveraging the garment encoder's capabilities in video try-on while lowering computational requirements; (2) ensuring temporal consistency in the synthesis of human body parts, especially during rapid movements. To tackle these issues, we propose a novel video try-on framework based on Diffusion Transformer(DiT), named Dynamic Try-On. To reduce computational overhead, we adopt a straightforward approach by utilizing the DiT backbone itself as the garment encoder and employing a dynamic feature fusion module to store and integrate garment features. To ensure temporal consistency of human body parts, we introduce a limb-aware dynamic attention module that enforces the DiT backbone to focus on the regions of human limbs during the denoising process. Extensive experiments demonstrate the superiority of Dynamic Try-On in generating stable and smooth try-on results, even for videos featuring complicated human postures.
Try-On-Adapter: A Simple and Flexible Try-On Paradigm
Image-based virtual try-on, widely used in online shopping, aims to generate images of a naturally dressed person conditioned on certain garments, providing significant research and commercial potential. A key challenge of try-on is to generate realistic images of the model wearing the garments while preserving the details of the garments. Previous methods focus on masking certain parts of the original model's standing image, and then inpainting on masked areas to generate realistic images of the model wearing corresponding reference garments, which treat the try-on task as an inpainting task. However, such implements require the user to provide a complete, high-quality standing image, which is user-unfriendly in practical applications. In this paper, we propose Try-On-Adapter (TOA), an outpainting paradigm that differs from the existing inpainting paradigm. Our TOA can preserve the given face and garment, naturally imagine the rest parts of the image, and provide flexible control ability with various conditions, e.g., garment properties and human pose. In the experiments, TOA shows excellent performance on the virtual try-on task even given relatively low-quality face and garment images in qualitative comparisons. Additionally, TOA achieves the state-of-the-art performance of FID scores 5.56 and 7.23 for paired and unpaired on the VITON-HD dataset in quantitative comparisons.
Fashion-VDM: Video Diffusion Model for Virtual Try-On
We present Fashion-VDM, a video diffusion model (VDM) for generating virtual try-on videos. Given an input garment image and person video, our method aims to generate a high-quality try-on video of the person wearing the given garment, while preserving the person's identity and motion. Image-based virtual try-on has shown impressive results; however, existing video virtual try-on (VVT) methods are still lacking garment details and temporal consistency. To address these issues, we propose a diffusion-based architecture for video virtual try-on, split classifier-free guidance for increased control over the conditioning inputs, and a progressive temporal training strategy for single-pass 64-frame, 512px video generation. We also demonstrate the effectiveness of joint image-video training for video try-on, especially when video data is limited. Our qualitative and quantitative experiments show that our approach sets the new state-of-the-art for video virtual try-on. For additional results, visit our project page: https://johannakarras.github.io/Fashion-VDM.
WildVidFit: Video Virtual Try-On in the Wild via Image-Based Controlled Diffusion Models
Video virtual try-on aims to generate realistic sequences that maintain garment identity and adapt to a person's pose and body shape in source videos. Traditional image-based methods, relying on warping and blending, struggle with complex human movements and occlusions, limiting their effectiveness in video try-on applications. Moreover, video-based models require extensive, high-quality data and substantial computational resources. To tackle these issues, we reconceptualize video try-on as a process of generating videos conditioned on garment descriptions and human motion. Our solution, WildVidFit, employs image-based controlled diffusion models for a streamlined, one-stage approach. This model, conditioned on specific garments and individuals, is trained on still images rather than videos. It leverages diffusion guidance from pre-trained models including a video masked autoencoder for segment smoothness improvement and a self-supervised model for feature alignment of adjacent frame in the latent space. This integration markedly boosts the model's ability to maintain temporal coherence, enabling more effective video try-on within an image-based framework. Our experiments on the VITON-HD and DressCode datasets, along with tests on the VVT and TikTok datasets, demonstrate WildVidFit's capability to generate fluid and coherent videos. The project page website is at wildvidfit-project.github.io.
3DV-TON: Textured 3D-Guided Consistent Video Try-on via Diffusion Models
Video try-on replaces clothing in videos with target garments. Existing methods struggle to generate high-quality and temporally consistent results when handling complex clothing patterns and diverse body poses. We present 3DV-TON, a novel diffusion-based framework for generating high-fidelity and temporally consistent video try-on results. Our approach employs generated animatable textured 3D meshes as explicit frame-level guidance, alleviating the issue of models over-focusing on appearance fidelity at the expanse of motion coherence. This is achieved by enabling direct reference to consistent garment texture movements throughout video sequences. The proposed method features an adaptive pipeline for generating dynamic 3D guidance: (1) selecting a keyframe for initial 2D image try-on, followed by (2) reconstructing and animating a textured 3D mesh synchronized with original video poses. We further introduce a robust rectangular masking strategy that successfully mitigates artifact propagation caused by leaking clothing information during dynamic human and garment movements. To advance video try-on research, we introduce HR-VVT, a high-resolution benchmark dataset containing 130 videos with diverse clothing types and scenarios. Quantitative and qualitative results demonstrate our superior performance over existing methods. The project page is at this link https://2y7c3.github.io/3DV-TON/
Taming the Power of Diffusion Models for High-Quality Virtual Try-On with Appearance Flow
Virtual try-on is a critical image synthesis task that aims to transfer clothes from one image to another while preserving the details of both humans and clothes. While many existing methods rely on Generative Adversarial Networks (GANs) to achieve this, flaws can still occur, particularly at high resolutions. Recently, the diffusion model has emerged as a promising alternative for generating high-quality images in various applications. However, simply using clothes as a condition for guiding the diffusion model to inpaint is insufficient to maintain the details of the clothes. To overcome this challenge, we propose an exemplar-based inpainting approach that leverages a warping module to guide the diffusion model's generation effectively. The warping module performs initial processing on the clothes, which helps to preserve the local details of the clothes. We then combine the warped clothes with clothes-agnostic person image and add noise as the input of diffusion model. Additionally, the warped clothes is used as local conditions for each denoising process to ensure that the resulting output retains as much detail as possible. Our approach, namely Diffusion-based Conditional Inpainting for Virtual Try-ON (DCI-VTON), effectively utilizes the power of the diffusion model, and the incorporation of the warping module helps to produce high-quality and realistic virtual try-on results. Experimental results on VITON-HD demonstrate the effectiveness and superiority of our method.
Any2AnyTryon: Leveraging Adaptive Position Embeddings for Versatile Virtual Clothing Tasks
Image-based virtual try-on (VTON) aims to generate a virtual try-on result by transferring an input garment onto a target person's image. However, the scarcity of paired garment-model data makes it challenging for existing methods to achieve high generalization and quality in VTON. Also, it limits the ability to generate mask-free try-ons. To tackle the data scarcity problem, approaches such as Stable Garment and MMTryon use a synthetic data strategy, effectively increasing the amount of paired data on the model side. However, existing methods are typically limited to performing specific try-on tasks and lack user-friendliness. To enhance the generalization and controllability of VTON generation, we propose Any2AnyTryon, which can generate try-on results based on different textual instructions and model garment images to meet various needs, eliminating the reliance on masks, poses, or other conditions. Specifically, we first construct the virtual try-on dataset LAION-Garment, the largest known open-source garment try-on dataset. Then, we introduce adaptive position embedding, which enables the model to generate satisfactory outfitted model images or garment images based on input images of different sizes and categories, significantly enhancing the generalization and controllability of VTON generation. In our experiments, we demonstrate the effectiveness of our Any2AnyTryon and compare it with existing methods. The results show that Any2AnyTryon enables flexible, controllable, and high-quality image-based virtual try-on generation.https://logn-2024.github.io/Any2anyTryonProjectPage/
High-Resolution Virtual Try-On with Misalignment and Occlusion-Handled Conditions
Image-based virtual try-on aims to synthesize an image of a person wearing a given clothing item. To solve the task, the existing methods warp the clothing item to fit the person's body and generate the segmentation map of the person wearing the item before fusing the item with the person. However, when the warping and the segmentation generation stages operate individually without information exchange, the misalignment between the warped clothes and the segmentation map occurs, which leads to the artifacts in the final image. The information disconnection also causes excessive warping near the clothing regions occluded by the body parts, so-called pixel-squeezing artifacts. To settle the issues, we propose a novel try-on condition generator as a unified module of the two stages (i.e., warping and segmentation generation stages). A newly proposed feature fusion block in the condition generator implements the information exchange, and the condition generator does not create any misalignment or pixel-squeezing artifacts. We also introduce discriminator rejection that filters out the incorrect segmentation map predictions and assures the performance of virtual try-on frameworks. Experiments on a high-resolution dataset demonstrate that our model successfully handles the misalignment and occlusion, and significantly outperforms the baselines. Code is available at https://github.com/sangyun884/HR-VITON.
Dress Code: High-Resolution Multi-Category Virtual Try-On
Image-based virtual try-on strives to transfer the appearance of a clothing item onto the image of a target person. Prior work focuses mainly on upper-body clothes (e.g. t-shirts, shirts, and tops) and neglects full-body or lower-body items. This shortcoming arises from a main factor: current publicly available datasets for image-based virtual try-on do not account for this variety, thus limiting progress in the field. To address this deficiency, we introduce Dress Code, which contains images of multi-category clothes. Dress Code is more than 3x larger than publicly available datasets for image-based virtual try-on and features high-resolution paired images (1024x768) with front-view, full-body reference models. To generate HD try-on images with high visual quality and rich in details, we propose to learn fine-grained discriminating features. Specifically, we leverage a semantic-aware discriminator that makes predictions at pixel-level instead of image- or patch-level. Extensive experimental evaluation demonstrates that the proposed approach surpasses the baselines and state-of-the-art competitors in terms of visual quality and quantitative results. The Dress Code dataset is publicly available at https://github.com/aimagelab/dress-code.
PFDM: Parser-Free Virtual Try-on via Diffusion Model
Virtual try-on can significantly improve the garment shopping experiences in both online and in-store scenarios, attracting broad interest in computer vision. However, to achieve high-fidelity try-on performance, most state-of-the-art methods still rely on accurate segmentation masks, which are often produced by near-perfect parsers or manual labeling. To overcome the bottleneck, we propose a parser-free virtual try-on method based on the diffusion model (PFDM). Given two images, PFDM can "wear" garments on the target person seamlessly by implicitly warping without any other information. To learn the model effectively, we synthesize many pseudo-images and construct sample pairs by wearing various garments on persons. Supervised by the large-scale expanded dataset, we fuse the person and garment features using a proposed Garment Fusion Attention (GFA) mechanism. Experiments demonstrate that our proposed PFDM can successfully handle complex cases, synthesize high-fidelity images, and outperform both state-of-the-art parser-free and parser-based models.
ViViD: Video Virtual Try-on using Diffusion Models
Video virtual try-on aims to transfer a clothing item onto the video of a target person. Directly applying the technique of image-based try-on to the video domain in a frame-wise manner will cause temporal-inconsistent outcomes while previous video-based try-on solutions can only generate low visual quality and blurring results. In this work, we present ViViD, a novel framework employing powerful diffusion models to tackle the task of video virtual try-on. Specifically, we design the Garment Encoder to extract fine-grained clothing semantic features, guiding the model to capture garment details and inject them into the target video through the proposed attention feature fusion mechanism. To ensure spatial-temporal consistency, we introduce a lightweight Pose Encoder to encode pose signals, enabling the model to learn the interactions between clothing and human posture and insert hierarchical Temporal Modules into the text-to-image stable diffusion model for more coherent and lifelike video synthesis. Furthermore, we collect a new dataset, which is the largest, with the most diverse types of garments and the highest resolution for the task of video virtual try-on to date. Extensive experiments demonstrate that our approach is able to yield satisfactory video try-on results. The dataset, codes, and weights will be publicly available. Project page: https://becauseimbatman0.github.io/ViViD.
High-Fidelity Virtual Try-on with Large-Scale Unpaired Learning
Virtual try-on (VTON) transfers a target clothing image to a reference person, where clothing fidelity is a key requirement for downstream e-commerce applications. However, existing VTON methods still fall short in high-fidelity try-on due to the conflict between the high diversity of dressing styles (\eg clothes occluded by pants or distorted by posture) and the limited paired data for training. In this work, we propose a novel framework Boosted Virtual Try-on (BVTON) to leverage the large-scale unpaired learning for high-fidelity try-on. Our key insight is that pseudo try-on pairs can be reliably constructed from vastly available fashion images. Specifically, 1) we first propose a compositional canonicalizing flow that maps on-model clothes into pseudo in-shop clothes, dubbed canonical proxy. Each clothing part (sleeves, torso) is reversely deformed into an in-shop-like shape to compositionally construct the canonical proxy. 2) Next, we design a layered mask generation module that generates accurate semantic layout by training on canonical proxy. We replace the in-shop clothes used in conventional pipelines with the derived canonical proxy to boost the training process. 3) Finally, we propose an unpaired try-on synthesizer by constructing pseudo training pairs with randomly misaligned on-model clothes, where intricate skin texture and clothes boundaries can be generated. Extensive experiments on high-resolution (1024times768) datasets demonstrate the superiority of our approach over state-of-the-art methods both qualitatively and quantitatively. Notably, BVTON shows great generalizability and scalability to various dressing styles and data sources.
OOTDiffusion: Outfitting Fusion based Latent Diffusion for Controllable Virtual Try-on
Image-based virtual try-on (VTON), which aims to generate an outfitted image of a target human wearing an in-shop garment, is a challenging image-synthesis task calling for not only high fidelity of the outfitted human but also full preservation of garment details. To tackle this issue, we propose Outfitting over Try-on Diffusion (OOTDiffusion), leveraging the power of pretrained latent diffusion models and designing a novel network architecture for realistic and controllable virtual try-on. Without an explicit warping process, we propose an outfitting UNet to learn the garment detail features, and merge them with the target human body via our proposed outfitting fusion in the denoising process of diffusion models. In order to further enhance the controllability of our outfitting UNet, we introduce outfitting dropout to the training process, which enables us to adjust the strength of garment features through classifier-free guidance. Our comprehensive experiments on the VITON-HD and Dress Code datasets demonstrate that OOTDiffusion efficiently generates high-quality outfitted images for arbitrary human and garment images, which outperforms other VTON methods in both fidelity and controllability, indicating an impressive breakthrough in virtual try-on. Our source code is available at https://github.com/levihsu/OOTDiffusion.
Fashion-RAG: Multimodal Fashion Image Editing via Retrieval-Augmented Generation
In recent years, the fashion industry has increasingly adopted AI technologies to enhance customer experience, driven by the proliferation of e-commerce platforms and virtual applications. Among the various tasks, virtual try-on and multimodal fashion image editing -- which utilizes diverse input modalities such as text, garment sketches, and body poses -- have become a key area of research. Diffusion models have emerged as a leading approach for such generative tasks, offering superior image quality and diversity. However, most existing virtual try-on methods rely on having a specific garment input, which is often impractical in real-world scenarios where users may only provide textual specifications. To address this limitation, in this work we introduce Fashion Retrieval-Augmented Generation (Fashion-RAG), a novel method that enables the customization of fashion items based on user preferences provided in textual form. Our approach retrieves multiple garments that match the input specifications and generates a personalized image by incorporating attributes from the retrieved items. To achieve this, we employ textual inversion techniques, where retrieved garment images are projected into the textual embedding space of the Stable Diffusion text encoder, allowing seamless integration of retrieved elements into the generative process. Experimental results on the Dress Code dataset demonstrate that Fashion-RAG outperforms existing methods both qualitatively and quantitatively, effectively capturing fine-grained visual details from retrieved garments. To the best of our knowledge, this is the first work to introduce a retrieval-augmented generation approach specifically tailored for multimodal fashion image editing.
MagicTryOn: Harnessing Diffusion Transformer for Garment-Preserving Video Virtual Try-on
Video Virtual Try-On (VVT) aims to simulate the natural appearance of garments across consecutive video frames, capturing their dynamic variations and interactions with human body motion. However, current VVT methods still face challenges in terms of spatiotemporal consistency and garment content preservation. First, they use diffusion models based on the U-Net, which are limited in their expressive capability and struggle to reconstruct complex details. Second, they adopt a separative modeling approach for spatial and temporal attention, which hinders the effective capture of structural relationships and dynamic consistency across frames. Third, their expression of garment details remains insufficient, affecting the realism and stability of the overall synthesized results, especially during human motion. To address the above challenges, we propose MagicTryOn, a video virtual try-on framework built upon the large-scale video diffusion Transformer. We replace the U-Net architecture with a diffusion Transformer and combine full self-attention to jointly model the spatiotemporal consistency of videos. We design a coarse-to-fine garment preservation strategy. The coarse strategy integrates garment tokens during the embedding stage, while the fine strategy incorporates multiple garment-based conditions, such as semantics, textures, and contour lines during the denoising stage. Moreover, we introduce a mask-aware loss to further optimize garment region fidelity. Extensive experiments on both image and video try-on datasets demonstrate that our method outperforms existing SOTA methods in comprehensive evaluations and generalizes to in-the-wild scenarios.
Voost: A Unified and Scalable Diffusion Transformer for Bidirectional Virtual Try-On and Try-Off
Virtual try-on aims to synthesize a realistic image of a person wearing a target garment, but accurately modeling garment-body correspondence remains a persistent challenge, especially under pose and appearance variation. In this paper, we propose Voost - a unified and scalable framework that jointly learns virtual try-on and try-off with a single diffusion transformer. By modeling both tasks jointly, Voost enables each garment-person pair to supervise both directions and supports flexible conditioning over generation direction and garment category, enhancing garment-body relational reasoning without task-specific networks, auxiliary losses, or additional labels. In addition, we introduce two inference-time techniques: attention temperature scaling for robustness to resolution or mask variation, and self-corrective sampling that leverages bidirectional consistency between tasks. Extensive experiments demonstrate that Voost achieves state-of-the-art results on both try-on and try-off benchmarks, consistently outperforming strong baselines in alignment accuracy, visual fidelity, and generalization.
TryOffAnyone: Tiled Cloth Generation from a Dressed Person
The fashion industry is increasingly leveraging computer vision and deep learning technologies to enhance online shopping experiences and operational efficiencies. In this paper, we address the challenge of generating high-fidelity tiled garment images essential for personalized recommendations, outfit composition, and virtual try-on systems from photos of garments worn by models. Inspired by the success of Latent Diffusion Models (LDMs) in image-to-image translation, we propose a novel approach utilizing a fine-tuned StableDiffusion model. Our method features a streamlined single-stage network design, which integrates garmentspecific masks to isolate and process target clothing items effectively. By simplifying the network architecture through selective training of transformer blocks and removing unnecessary crossattention layers, we significantly reduce computational complexity while achieving state-of-the-art performance on benchmark datasets like VITON-HD. Experimental results demonstrate the effectiveness of our approach in producing high-quality tiled garment images for both full-body and half-body inputs. Code and model are available at: https://github.com/ixarchakos/try-off-anyone
Texture-Preserving Diffusion Models for High-Fidelity Virtual Try-On
Image-based virtual try-on is an increasingly important task for online shopping. It aims to synthesize images of a specific person wearing a specified garment. Diffusion model-based approaches have recently become popular, as they are excellent at image synthesis tasks. However, these approaches usually employ additional image encoders and rely on the cross-attention mechanism for texture transfer from the garment to the person image, which affects the try-on's efficiency and fidelity. To address these issues, we propose an Texture-Preserving Diffusion (TPD) model for virtual try-on, which enhances the fidelity of the results and introduces no additional image encoders. Accordingly, we make contributions from two aspects. First, we propose to concatenate the masked person and reference garment images along the spatial dimension and utilize the resulting image as the input for the diffusion model's denoising UNet. This enables the original self-attention layers contained in the diffusion model to achieve efficient and accurate texture transfer. Second, we propose a novel diffusion-based method that predicts a precise inpainting mask based on the person and reference garment images, further enhancing the reliability of the try-on results. In addition, we integrate mask prediction and image synthesis into a single compact model. The experimental results show that our approach can be applied to various try-on tasks, e.g., garment-to-person and person-to-person try-ons, and significantly outperforms state-of-the-art methods on popular VITON, VITON-HD databases.
VTON-IT: Virtual Try-On using Image Translation
Virtual Try-On (trying clothes virtually) is a promising application of the Generative Adversarial Network (GAN). However, it is an arduous task to transfer the desired clothing item onto the corresponding regions of a human body because of varying body size, pose, and occlusions like hair and overlapped clothes. In this paper, we try to produce photo-realistic translated images through semantic segmentation and a generative adversarial architecture-based image translation network. We present a novel image-based Virtual Try-On application VTON-IT that takes an RGB image, segments desired body part, and overlays target cloth over the segmented body region. Most state-of-the-art GAN-based Virtual Try-On applications produce unaligned pixelated synthesis images on real-life test images. However, our approach generates high-resolution natural images with detailed textures on such variant images.
Self-Supervised Vision Transformer for Enhanced Virtual Clothes Try-On
Virtual clothes try-on has emerged as a vital feature in online shopping, offering consumers a critical tool to visualize how clothing fits. In our research, we introduce an innovative approach for virtual clothes try-on, utilizing a self-supervised Vision Transformer (ViT) coupled with a diffusion model. Our method emphasizes detail enhancement by contrasting local clothing image embeddings, generated by ViT, with their global counterparts. Techniques such as conditional guidance and focus on key regions have been integrated into our approach. These combined strategies empower the diffusion model to reproduce clothing details with increased clarity and realism. The experimental results showcase substantial advancements in the realism and precision of details in virtual try-on experiences, significantly surpassing the capabilities of existing technologies.
TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models
This paper introduces Virtual Try-Off (VTOFF), a novel task focused on generating standardized garment images from single photos of clothed individuals. Unlike traditional Virtual Try-On (VTON), which digitally dresses models, VTOFF aims to extract a canonical garment image, posing unique challenges in capturing garment shape, texture, and intricate patterns. This well-defined target makes VTOFF particularly effective for evaluating reconstruction fidelity in generative models. We present TryOffDiff, a model that adapts Stable Diffusion with SigLIP-based visual conditioning to ensure high fidelity and detail retention. Experiments on a modified VITON-HD dataset show that our approach outperforms baseline methods based on pose transfer and virtual try-on with fewer pre- and post-processing steps. Our analysis reveals that traditional image generation metrics inadequately assess reconstruction quality, prompting us to rely on DISTS for more accurate evaluation. Our results highlight the potential of VTOFF to enhance product imagery in e-commerce applications, advance generative model evaluation, and inspire future work on high-fidelity reconstruction. Demo, code, and models are available at: https://rizavelioglu.github.io/tryoffdiff/
GraVITON: Graph based garment warping with attention guided inversion for Virtual-tryon
Virtual try-on, a rapidly evolving field in computer vision, is transforming e-commerce by improving customer experiences through precise garment warping and seamless integration onto the human body. While existing methods such as TPS and flow address the garment warping but overlook the finer contextual details. In this paper, we introduce a novel graph based warping technique which emphasizes the value of context in garment flow. Our graph based warping module generates warped garment as well as a coarse person image, which is utilised by a simple refinement network to give a coarse virtual tryon image. The proposed work exploits latent diffusion model to generate the final tryon, treating garment transfer as an inpainting task. The diffusion model is conditioned with decoupled cross attention based inversion of visual and textual information. We introduce an occlusion aware warping constraint that generates dense warped garment, without any holes and occlusion. Our method, validated on VITON-HD and Dresscode datasets, showcases substantial state-of-the-art qualitative and quantitative results showing considerable improvement in garment warping, texture preservation, and overall realism.
TryOnDiffusion: A Tale of Two UNets
Given two images depicting a person and a garment worn by another person, our goal is to generate a visualization of how the garment might look on the input person. A key challenge is to synthesize a photorealistic detail-preserving visualization of the garment, while warping the garment to accommodate a significant body pose and shape change across the subjects. Previous methods either focus on garment detail preservation without effective pose and shape variation, or allow try-on with the desired shape and pose but lack garment details. In this paper, we propose a diffusion-based architecture that unifies two UNets (referred to as Parallel-UNet), which allows us to preserve garment details and warp the garment for significant pose and body change in a single network. The key ideas behind Parallel-UNet include: 1) garment is warped implicitly via a cross attention mechanism, 2) garment warp and person blend happen as part of a unified process as opposed to a sequence of two separate tasks. Experimental results indicate that TryOnDiffusion achieves state-of-the-art performance both qualitatively and quantitatively.
Masked Extended Attention for Zero-Shot Virtual Try-On In The Wild
Virtual Try-On (VTON) is a highly active line of research, with increasing demand. It aims to replace a piece of garment in an image with one from another, while preserving person and garment characteristics as well as image fidelity. Current literature takes a supervised approach for the task, impairing generalization and imposing heavy computation. In this paper, we present a novel zero-shot training-free method for inpainting a clothing garment by reference. Our approach employs the prior of a diffusion model with no additional training, fully leveraging its native generalization capabilities. The method employs extended attention to transfer image information from reference to target images, overcoming two significant challenges. We first initially warp the reference garment over the target human using deep features, alleviating "texture sticking". We then leverage the extended attention mechanism with careful masking, eliminating leakage of reference background and unwanted influence. Through a user study, qualitative, and quantitative comparison to state-of-the-art approaches, we demonstrate superior image quality and garment preservation compared unseen clothing pieces or human figures.
VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization
The task of image-based virtual try-on aims to transfer a target clothing item onto the corresponding region of a person, which is commonly tackled by fitting the item to the desired body part and fusing the warped item with the person. While an increasing number of studies have been conducted, the resolution of synthesized images is still limited to low (e.g., 256x192), which acts as the critical limitation against satisfying online consumers. We argue that the limitation stems from several challenges: as the resolution increases, the artifacts in the misaligned areas between the warped clothes and the desired clothing regions become noticeable in the final results; the architectures used in existing methods have low performance in generating high-quality body parts and maintaining the texture sharpness of the clothes. To address the challenges, we propose a novel virtual try-on method called VITON-HD that successfully synthesizes 1024x768 virtual try-on images. Specifically, we first prepare the segmentation map to guide our virtual try-on synthesis, and then roughly fit the target clothing item to a given person's body. Next, we propose ALIgnment-Aware Segment (ALIAS) normalization and ALIAS generator to handle the misaligned areas and preserve the details of 1024x768 inputs. Through rigorous comparison with existing methods, we demonstrate that VITON-HD highly surpasses the baselines in terms of synthesized image quality both qualitatively and quantitatively. Code is available at https://github.com/shadow2496/VITON-HD.
Improving Diffusion Models for Virtual Try-on
This paper considers image-based virtual try-on, which renders an image of a person wearing a curated garment, given a pair of images depicting the person and the garment, respectively. Previous works adapt existing exemplar-based inpainting diffusion models for virtual try-on to improve the naturalness of the generated visuals compared to other methods (e.g., GAN-based), but they fail to preserve the identity of the garments. To overcome this limitation, we propose a novel diffusion model that improves garment fidelity and generates authentic virtual try-on images. Our method, coined IDM-VTON, uses two different modules to encode the semantics of garment image; given the base UNet of the diffusion model, 1) the high-level semantics extracted from a visual encoder are fused to the cross-attention layer, and then 2) the low-level features extracted from parallel UNet are fused to the self-attention layer. In addition, we provide detailed textual prompts for both garment and person images to enhance the authenticity of the generated visuals. Finally, we present a customization method using a pair of person-garment images, which significantly improves fidelity and authenticity. Our experimental results show that our method outperforms previous approaches (both diffusion-based and GAN-based) in preserving garment details and generating authentic virtual try-on images, both qualitatively and quantitatively. Furthermore, the proposed customization method demonstrates its effectiveness in a real-world scenario.
FitDiT: Advancing the Authentic Garment Details for High-fidelity Virtual Try-on
Although image-based virtual try-on has made considerable progress, emerging approaches still encounter challenges in producing high-fidelity and robust fitting images across diverse scenarios. These methods often struggle with issues such as texture-aware maintenance and size-aware fitting, which hinder their overall effectiveness. To address these limitations, we propose a novel garment perception enhancement technique, termed FitDiT, designed for high-fidelity virtual try-on using Diffusion Transformers (DiT) allocating more parameters and attention to high-resolution features. First, to further improve texture-aware maintenance, we introduce a garment texture extractor that incorporates garment priors evolution to fine-tune garment feature, facilitating to better capture rich details such as stripes, patterns, and text. Additionally, we introduce frequency-domain learning by customizing a frequency distance loss to enhance high-frequency garment details. To tackle the size-aware fitting issue, we employ a dilated-relaxed mask strategy that adapts to the correct length of garments, preventing the generation of garments that fill the entire mask area during cross-category try-on. Equipped with the above design, FitDiT surpasses all baselines in both qualitative and quantitative evaluations. It excels in producing well-fitting garments with photorealistic and intricate details, while also achieving competitive inference times of 4.57 seconds for a single 1024x768 image after DiT structure slimming, outperforming existing methods.
Tunnel Try-on: Excavating Spatial-temporal Tunnels for High-quality Virtual Try-on in Videos
Video try-on is a challenging task and has not been well tackled in previous works. The main obstacle lies in preserving the details of the clothing and modeling the coherent motions simultaneously. Faced with those difficulties, we address video try-on by proposing a diffusion-based framework named "Tunnel Try-on." The core idea is excavating a "focus tunnel" in the input video that gives close-up shots around the clothing regions. We zoom in on the region in the tunnel to better preserve the fine details of the clothing. To generate coherent motions, we first leverage the Kalman filter to construct smooth crops in the focus tunnel and inject the position embedding of the tunnel into attention layers to improve the continuity of the generated videos. In addition, we develop an environment encoder to extract the context information outside the tunnels as supplementary cues. Equipped with these techniques, Tunnel Try-on keeps the fine details of the clothing and synthesizes stable and smooth videos. Demonstrating significant advancements, Tunnel Try-on could be regarded as the first attempt toward the commercial-level application of virtual try-on in videos.
Time-Efficient and Identity-Consistent Virtual Try-On Using A Variant of Altered Diffusion Models
This study discusses the critical issues of Virtual Try-On in contemporary e-commerce and the prospective metaverse, emphasizing the challenges of preserving intricate texture details and distinctive features of the target person and the clothes in various scenarios, such as clothing texture and identity characteristics like tattoos or accessories. In addition to the fidelity of the synthesized images, the efficiency of the synthesis process presents a significant hurdle. Various existing approaches are explored, highlighting the limitations and unresolved aspects, e.g., identity information omission, uncontrollable artifacts, and low synthesis speed. It then proposes a novel diffusion-based solution that addresses garment texture preservation and user identity retention during virtual try-on. The proposed network comprises two primary modules - a warping module aligning clothing with individual features and a try-on module refining the attire and generating missing parts integrated with a mask-aware post-processing technique ensuring the integrity of the individual's identity. It demonstrates impressive results, surpassing the state-of-the-art in speed by nearly 20 times during inference, with superior fidelity in qualitative assessments. Quantitative evaluations confirm comparable performance with the recent SOTA method on the VITON-HD and Dresscode datasets.
ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on
Virtual try-on has garnered interest as a neural rendering benchmark task to evaluate complex object transfer and scene composition. Recent works in virtual clothing try-on feature a plethora of possible architectural and data representation choices. However, they present little clarity on quantifying the isolated visual effect of each choice, nor do they specify the hyperparameter details that are key to experimental reproduction. Our work, ShineOn, approaches the try-on task from a bottom-up approach and aims to shine light on the visual and quantitative effects of each experiment. We build a series of scientific experiments to isolate effective design choices in video synthesis for virtual clothing try-on. Specifically, we investigate the effect of different pose annotations, self-attention layer placement, and activation functions on the quantitative and qualitative performance of video virtual try-on. We find that DensePose annotations not only enhance face details but also decrease memory usage and training time. Next, we find that attention layers improve face and neck quality. Finally, we show that GELU and ReLU activation functions are the most effective in our experiments despite the appeal of newer activations such as Swish and Sine. We will release a well-organized code base, hyperparameters, and model checkpoints to support the reproducibility of our results. We expect our extensive experiments and code to greatly inform future design choices in video virtual try-on. Our code may be accessed at https://github.com/andrewjong/ShineOn-Virtual-Tryon.
DI-Net : Decomposed Implicit Garment Transfer Network for Digital Clothed 3D Human
3D virtual try-on enjoys many potential applications and hence has attracted wide attention. However, it remains a challenging task that has not been adequately solved. Existing 2D virtual try-on methods cannot be directly extended to 3D since they lack the ability to perceive the depth of each pixel. Besides, 3D virtual try-on approaches are mostly built on the fixed topological structure and with heavy computation. To deal with these problems, we propose a Decomposed Implicit garment transfer network (DI-Net), which can effortlessly reconstruct a 3D human mesh with the newly try-on result and preserve the texture from an arbitrary perspective. Specifically, DI-Net consists of two modules: 1) A complementary warping module that warps the reference image to have the same pose as the source image through dense correspondence learning and sparse flow learning; 2) A geometry-aware decomposed transfer module that decomposes the garment transfer into image layout based transfer and texture based transfer, achieving surface and texture reconstruction by constructing pixel-aligned implicit functions. Experimental results show the effectiveness and superiority of our method in the 3D virtual try-on task, which can yield more high-quality results over other existing methods.
CAT-DM: Controllable Accelerated Virtual Try-on with Diffusion Model
Image-based virtual try-on enables users to virtually try on different garments by altering original clothes in their photographs. Generative Adversarial Networks (GANs) dominate the research field in image-based virtual try-on, but have not resolved problems such as unnatural deformation of garments and the blurry generation quality. Recently, diffusion models have emerged with surprising performance across various image generation tasks. While the generative quality of diffusion models is impressive, achieving controllability poses a significant challenge when applying it to virtual try-on tasks and multiple denoising iterations limit its potential for real-time applications. In this paper, we propose Controllable Accelerated virtual Try-on with Diffusion Model called CAT-DM. To enhance the controllability, a basic diffusion-based virtual try-on network is designed, which utilizes ControlNet to introduce additional control conditions and improves the feature extraction of garment images. In terms of acceleration, CAT-DM initiates a reverse denoising process with an implicit distribution generated by a pre-trained GAN-based model. Compared with previous try-on methods based on diffusion models, CAT-DM not only retains the pattern and texture details of the in-shop garment but also reduces the sampling steps without compromising generation quality. Extensive experiments demonstrate the superiority of CAT-DM against both GAN-based and diffusion-based methods in producing more realistic images and accurately reproducing garment patterns. Our code and models will be publicly released.
Learning Implicit Features with Flow Infused Attention for Realistic Virtual Try-On
Image-based virtual try-on is challenging since the generated image should fit the garment to model images in various poses and keep the characteristics and details of the garment simultaneously. A popular research stream warps the garment image firstly to reduce the burden of the generation stage, which relies highly on the performance of the warping module. Other methods without explicit warping often lack sufficient guidance to fit the garment to the model images. In this paper, we propose FIA-VTON, which leverages the implicit warp feature by adopting a Flow Infused Attention module on virtual try-on. The dense warp flow map is projected as indirect guidance attention to enhance the feature map warping in the generation process implicitly, which is less sensitive to the warping estimation accuracy than an explicit warp of the garment image. To further enhance implicit warp guidance, we incorporate high-level spatial attention to complement the dense warp. Experimental results on the VTON-HD and DressCode dataset significantly outperform state-of-the-art methods, demonstrating that FIA-VTON is effective and robust for virtual try-on.
TryOn-Adapter: Efficient Fine-Grained Clothing Identity Adaptation for High-Fidelity Virtual Try-On
Virtual try-on focuses on adjusting the given clothes to fit a specific person seamlessly while avoiding any distortion of the patterns and textures of the garment. However, the clothing identity uncontrollability and training inefficiency of existing diffusion-based methods, which struggle to maintain the identity even with full parameter training, are significant limitations that hinder the widespread applications. In this work, we propose an effective and efficient framework, termed TryOn-Adapter. Specifically, we first decouple clothing identity into fine-grained factors: style for color and category information, texture for high-frequency details, and structure for smooth spatial adaptive transformation. Our approach utilizes a pre-trained exemplar-based diffusion model as the fundamental network, whose parameters are frozen except for the attention layers. We then customize three lightweight modules (Style Preserving, Texture Highlighting, and Structure Adapting) incorporated with fine-tuning techniques to enable precise and efficient identity control. Meanwhile, we introduce the training-free T-RePaint strategy to further enhance clothing identity preservation while maintaining the realistic try-on effect during the inference. Our experiments demonstrate that our approach achieves state-of-the-art performance on two widely-used benchmarks. Additionally, compared with recent full-tuning diffusion-based methods, we only use about half of their tunable parameters during training. The code will be made publicly available at https://github.com/jiazheng-xing/TryOn-Adapter.
FICE: Text-Conditioned Fashion Image Editing With Guided GAN Inversion
Fashion-image editing represents a challenging computer vision task, where the goal is to incorporate selected apparel into a given input image. Most existing techniques, known as Virtual Try-On methods, deal with this task by first selecting an example image of the desired apparel and then transferring the clothing onto the target person. Conversely, in this paper, we consider editing fashion images with text descriptions. Such an approach has several advantages over example-based virtual try-on techniques, e.g.: (i) it does not require an image of the target fashion item, and (ii) it allows the expression of a wide variety of visual concepts through the use of natural language. Existing image-editing methods that work with language inputs are heavily constrained by their requirement for training sets with rich attribute annotations or they are only able to handle simple text descriptions. We address these constraints by proposing a novel text-conditioned editing model, called FICE (Fashion Image CLIP Editing), capable of handling a wide variety of diverse text descriptions to guide the editing procedure. Specifically with FICE, we augment the common GAN inversion process by including semantic, pose-related, and image-level constraints when generating images. We leverage the capabilities of the CLIP model to enforce the semantics, due to its impressive image-text association capabilities. We furthermore propose a latent-code regularization technique that provides the means to better control the fidelity of the synthesized images. We validate FICE through rigorous experiments on a combination of VITON images and Fashion-Gen text descriptions and in comparison with several state-of-the-art text-conditioned image editing approaches. Experimental results demonstrate FICE generates highly realistic fashion images and leads to stronger editing performance than existing competing approaches.
OutfitAnyone: Ultra-high Quality Virtual Try-On for Any Clothing and Any Person
Virtual Try-On (VTON) has become a transformative technology, empowering users to experiment with fashion without ever having to physically try on clothing. However, existing methods often struggle with generating high-fidelity and detail-consistent results. While diffusion models, such as Stable Diffusion series, have shown their capability in creating high-quality and photorealistic images, they encounter formidable challenges in conditional generation scenarios like VTON. Specifically, these models struggle to maintain a balance between control and consistency when generating images for virtual clothing trials. OutfitAnyone addresses these limitations by leveraging a two-stream conditional diffusion model, enabling it to adeptly handle garment deformation for more lifelike results. It distinguishes itself with scalability-modulating factors such as pose, body shape and broad applicability, extending from anime to in-the-wild images. OutfitAnyone's performance in diverse scenarios underscores its utility and readiness for real-world deployment. For more details and animated results, please see https://humanaigc.github.io/outfit-anyone/.
IPVTON: Image-based 3D Virtual Try-on with Image Prompt Adapter
Given a pair of images depicting a person and a garment separately, image-based 3D virtual try-on methods aim to reconstruct a 3D human model that realistically portrays the person wearing the desired garment. In this paper, we present IPVTON, a novel image-based 3D virtual try-on framework. IPVTON employs score distillation sampling with image prompts to optimize a hybrid 3D human representation, integrating target garment features into diffusion priors through an image prompt adapter. To avoid interference with non-target areas, we leverage mask-guided image prompt embeddings to focus the image features on the try-on regions. Moreover, we impose geometric constraints on the 3D model with a pseudo silhouette generated by ControlNet, ensuring that the clothed 3D human model retains the shape of the source identity while accurately wearing the target garments. Extensive qualitative and quantitative experiments demonstrate that IPVTON outperforms previous methods in image-based 3D virtual try-on tasks, excelling in both geometry and texture.
Towards Photo-Realistic Virtual Try-On by Adaptively GeneratingleftrightarrowPreserving Image Content
Image visual try-on aims at transferring a target clothing image onto a reference person, and has become a hot topic in recent years. Prior arts usually focus on preserving the character of a clothing image (e.g. texture, logo, embroidery) when warping it to arbitrary human pose. However, it remains a big challenge to generate photo-realistic try-on images when large occlusions and human poses are presented in the reference person. To address this issue, we propose a novel visual try-on network, namely Adaptive Content Generating and Preserving Network (ACGPN). In particular, ACGPN first predicts semantic layout of the reference image that will be changed after try-on (e.g. long sleeve shirtrightarrowarm, armrightarrowjacket), and then determines whether its image content needs to be generated or preserved according to the predicted semantic layout, leading to photo-realistic try-on and rich clothing details. ACGPN generally involves three major modules. First, a semantic layout generation module utilizes semantic segmentation of the reference image to progressively predict the desired semantic layout after try-on. Second, a clothes warping module warps clothing images according to the generated semantic layout, where a second-order difference constraint is introduced to stabilize the warping process during training. Third, an inpainting module for content fusion integrates all information (e.g. reference image, semantic layout, warped clothes) to adaptively produce each semantic part of human body. In comparison to the state-of-the-art methods, ACGPN can generate photo-realistic images with much better perceptual quality and richer fine-details.
OmniTry: Virtual Try-On Anything without Masks
Virtual Try-ON (VTON) is a practical and widely-applied task, for which most of existing works focus on clothes. This paper presents OmniTry, a unified framework that extends VTON beyond garment to encompass any wearable objects, e.g., jewelries and accessories, with mask-free setting for more practical application. When extending to various types of objects, data curation is challenging for obtaining paired images, i.e., the object image and the corresponding try-on result. To tackle this problem, we propose a two-staged pipeline: For the first stage, we leverage large-scale unpaired images, i.e., portraits with any wearable items, to train the model for mask-free localization. Specifically, we repurpose the inpainting model to automatically draw objects in suitable positions given an empty mask. For the second stage, the model is further fine-tuned with paired images to transfer the consistency of object appearance. We observed that the model after the first stage shows quick convergence even with few paired samples. OmniTry is evaluated on a comprehensive benchmark consisting of 12 common classes of wearable objects, with both in-shop and in-the-wild images. Experimental results suggest that OmniTry shows better performance on both object localization and ID-preservation compared with existing methods. The code, model weights, and evaluation benchmark of OmniTry will be made publicly available at https://omnitry.github.io/.
Multimodal Garment Designer: Human-Centric Latent Diffusion Models for Fashion Image Editing
Fashion illustration is used by designers to communicate their vision and to bring the design idea from conceptualization to realization, showing how clothes interact with the human body. In this context, computer vision can thus be used to improve the fashion design process. Differently from previous works that mainly focused on the virtual try-on of garments, we propose the task of multimodal-conditioned fashion image editing, guiding the generation of human-centric fashion images by following multimodal prompts, such as text, human body poses, and garment sketches. We tackle this problem by proposing a new architecture based on latent diffusion models, an approach that has not been used before in the fashion domain. Given the lack of existing datasets suitable for the task, we also extend two existing fashion datasets, namely Dress Code and VITON-HD, with multimodal annotations collected in a semi-automatic manner. Experimental results on these new datasets demonstrate the effectiveness of our proposal, both in terms of realism and coherence with the given multimodal inputs. Source code and collected multimodal annotations are publicly available at: https://github.com/aimagelab/multimodal-garment-designer.
VITON-GAN: Virtual Try-on Image Generator Trained with Adversarial Loss
Generating a virtual try-on image from in-shop clothing images and a model person's snapshot is a challenging task because the human body and clothes have high flexibility in their shapes. In this paper, we develop a Virtual Try-on Generative Adversarial Network (VITON-GAN), that generates virtual try-on images using images of in-shop clothing and a model person. This method enhances the quality of the generated image when occlusion is present in a model person's image (e.g., arms crossed in front of the clothes) by adding an adversarial mechanism in the training pipeline.
Multi-Garment Customized Model Generation
This paper introduces Multi-Garment Customized Model Generation, a unified framework based on Latent Diffusion Models (LDMs) aimed at addressing the unexplored task of synthesizing images with free combinations of multiple pieces of clothing. The method focuses on generating customized models wearing various targeted outfits according to different text prompts. The primary challenge lies in maintaining the natural appearance of the dressed model while preserving the complex textures of each piece of clothing, ensuring that the information from different garments does not interfere with each other. To tackle these challenges, we first developed a garment encoder, which is a trainable UNet copy with shared weights, capable of extracting detailed features of garments in parallel. Secondly, our framework supports the conditional generation of multiple garments through decoupled multi-garment feature fusion, allowing multiple clothing features to be injected into the backbone network, significantly alleviating conflicts between garment information. Additionally, the proposed garment encoder is a plug-and-play module that can be combined with other extension modules such as IP-Adapter and ControlNet, enhancing the diversity and controllability of the generated models. Extensive experiments demonstrate the superiority of our approach over existing alternatives, opening up new avenues for the task of generating images with multiple-piece clothing combinations
Cloth2Tex: A Customized Cloth Texture Generation Pipeline for 3D Virtual Try-On
Fabricating and designing 3D garments has become extremely demanding with the increasing need for synthesizing realistic dressed persons for a variety of applications, e.g. 3D virtual try-on, digitalization of 2D clothes into 3D apparel, and cloth animation. It thus necessitates a simple and straightforward pipeline to obtain high-quality texture from simple input, such as 2D reference images. Since traditional warping-based texture generation methods require a significant number of control points to be manually selected for each type of garment, which can be a time-consuming and tedious process. We propose a novel method, called Cloth2Tex, which eliminates the human burden in this process. Cloth2Tex is a self-supervised method that generates texture maps with reasonable layout and structural consistency. Another key feature of Cloth2Tex is that it can be used to support high-fidelity texture inpainting. This is done by combining Cloth2Tex with a prevailing latent diffusion model. We evaluate our approach both qualitatively and quantitatively and demonstrate that Cloth2Tex can generate high-quality texture maps and achieve the best visual effects in comparison to other methods. Project page: tomguluson92.github.io/projects/cloth2tex/
CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models
Virtual try-on methods based on diffusion models achieve realistic try-on effects but often replicate the backbone network as a ReferenceNet or use additional image encoders to process condition inputs, leading to high training and inference costs. In this work, we rethink the necessity of ReferenceNet and image encoders and innovate the interaction between garment and person by proposing CatVTON, a simple and efficient virtual try-on diffusion model. CatVTON facilitates the seamless transfer of in-shop or worn garments of any category to target persons by simply concatenating them in spatial dimensions as inputs. The efficiency of our model is demonstrated in three aspects: (1) Lightweight network: Only the original diffusion modules are used, without additional network modules. The text encoder and cross-attentions for text injection in the backbone are removed, reducing the parameters by 167.02M. (2) Parameter-efficient training: We identified the try-on relevant modules through experiments and achieved high-quality try-on effects by training only 49.57M parameters, approximately 5.51 percent of the backbone network's parameters. (3) Simplified inference: CatVTON eliminates all unnecessary conditions and preprocessing steps, including pose estimation, human parsing, and text input, requiring only a garment reference, target person image, and mask for the virtual try-on process. Extensive experiments demonstrate that CatVTON achieves superior qualitative and quantitative results with fewer prerequisites and trainable parameters than baseline methods. Furthermore, CatVTON shows good generalization in in-the-wild scenarios despite using open-source datasets with only 73K samples.
LaDI-VTON: Latent Diffusion Textual-Inversion Enhanced Virtual Try-On
The rapidly evolving fields of e-commerce and metaverse continue to seek innovative approaches to enhance the consumer experience. At the same time, recent advancements in the development of diffusion models have enabled generative networks to create remarkably realistic images. In this context, image-based virtual try-on, which consists in generating a novel image of a target model wearing a given in-shop garment, has yet to capitalize on the potential of these powerful generative solutions. This work introduces LaDI-VTON, the first Latent Diffusion textual Inversion-enhanced model for the Virtual Try-ON task. The proposed architecture relies on a latent diffusion model extended with a novel additional autoencoder module that exploits learnable skip connections to enhance the generation process preserving the model's characteristics. To effectively maintain the texture and details of the in-shop garment, we propose a textual inversion component that can map the visual features of the garment to the CLIP token embedding space and thus generate a set of pseudo-word token embeddings capable of conditioning the generation process. Experimental results on Dress Code and VITON-HD datasets demonstrate that our approach outperforms the competitors by a consistent margin, achieving a significant milestone for the task. Source code and trained models are publicly available at: https://github.com/miccunifi/ladi-vton.
PEMF-VVTO: Point-Enhanced Video Virtual Try-on via Mask-free Paradigm
Video Virtual Try-on aims to fluently transfer the garment image to a semantically aligned try-on area in the source person video. Previous methods leveraged the inpainting mask to remove the original garment in the source video, thus achieving accurate garment transfer on simple model videos. However, when these methods are applied to realistic video data with more complex scene changes and posture movements, the overly large and incoherent agnostic masks will destroy the essential spatial-temporal information of the original video, thereby inhibiting the fidelity and coherence of the try-on video. To alleviate this problem, we propose a novel point-enhanced mask-free video virtual try-on framework (PEMF-VVTO). Specifically, we first leverage the pre-trained mask-based try-on model to construct large-scale paired training data (pseudo-person samples). Training on these mask-free data enables our model to perceive the original spatial-temporal information while realizing accurate garment transfer. Then, based on the pre-acquired sparse frame-cloth and frame-frame point alignments, we design the point-enhanced spatial attention (PSA) and point-enhanced temporal attention (PTA) to further improve the try-on accuracy and video coherence of the mask-free model. Concretely, PSA explicitly guides the garment transfer to desirable locations through the sparse semantic alignments of video frames and cloth. PTA exploits the temporal attention on sparse point correspondences to enhance the smoothness of generated videos. Extensive qualitative and quantitative experiments clearly illustrate that our PEMF-VVTO can generate more natural and coherent try-on videos than existing state-of-the-art methods.
Detailed Garment Recovery from a Single-View Image
Most recent garment capturing techniques rely on acquiring multiple views of clothing, which may not always be readily available, especially in the case of pre-existing photographs from the web. As an alternative, we pro- pose a method that is able to compute a rich and realistic 3D model of a human body and its outfits from a single photograph with little human in- teraction. Our algorithm is not only able to capture the global shape and geometry of the clothing, it can also extract small but important details of cloth, such as occluded wrinkles and folds. Unlike previous methods using full 3D information (i.e. depth, multi-view images, or sampled 3D geom- etry), our approach achieves detailed garment recovery from a single-view image by using statistical, geometric, and physical priors and a combina- tion of parameter estimation, semantic parsing, shape recovery, and physics- based cloth simulation. We demonstrate the effectiveness of our algorithm by re-purposing the reconstructed garments for virtual try-on and garment transfer applications, as well as cloth animation for digital characters.
IMAGDressing-v1: Customizable Virtual Dressing
Latest advances have achieved realistic virtual try-on (VTON) through localized garment inpainting using latent diffusion models, significantly enhancing consumers' online shopping experience. However, existing VTON technologies neglect the need for merchants to showcase garments comprehensively, including flexible control over garments, optional faces, poses, and scenes. To address this issue, we define a virtual dressing (VD) task focused on generating freely editable human images with fixed garments and optional conditions. Meanwhile, we design a comprehensive affinity metric index (CAMI) to evaluate the consistency between generated images and reference garments. Then, we propose IMAGDressing-v1, which incorporates a garment UNet that captures semantic features from CLIP and texture features from VAE. We present a hybrid attention module, including a frozen self-attention and a trainable cross-attention, to integrate garment features from the garment UNet into a frozen denoising UNet, ensuring users can control different scenes through text. IMAGDressing-v1 can be combined with other extension plugins, such as ControlNet and IP-Adapter, to enhance the diversity and controllability of generated images. Furthermore, to address the lack of data, we release the interactive garment pairing (IGPair) dataset, containing over 300,000 pairs of clothing and dressed images, and establish a standard pipeline for data assembly. Extensive experiments demonstrate that our IMAGDressing-v1 achieves state-of-the-art human image synthesis performance under various controlled conditions. The code and model will be available at https://github.com/muzishen/IMAGDressing.
PromptDresser: Improving the Quality and Controllability of Virtual Try-On via Generative Textual Prompt and Prompt-aware Mask
Recent virtual try-on approaches have advanced by fine-tuning the pre-trained text-to-image diffusion models to leverage their powerful generative ability. However, the use of text prompts in virtual try-on is still underexplored. This paper tackles a text-editable virtual try-on task that changes the clothing item based on the provided clothing image while editing the wearing style (e.g., tucking style, fit) according to the text descriptions. In the text-editable virtual try-on, three key aspects exist: (i) designing rich text descriptions for paired person-clothing data to train the model, (ii) addressing the conflicts where textual information of the existing person's clothing interferes the generation of the new clothing, and (iii) adaptively adjust the inpainting mask aligned with the text descriptions, ensuring proper editing areas while preserving the original person's appearance irrelevant to the new clothing. To address these aspects, we propose PromptDresser, a text-editable virtual try-on model that leverages large multimodal model (LMM) assistance to enable high-quality and versatile manipulation based on generative text prompts. Our approach utilizes LMMs via in-context learning to generate detailed text descriptions for person and clothing images independently, including pose details and editing attributes using minimal human cost. Moreover, to ensure the editing areas, we adjust the inpainting mask depending on the text prompts adaptively. We found that our approach, utilizing detailed text prompts, not only enhances text editability but also effectively conveys clothing details that are difficult to capture through images alone, thereby enhancing image quality. Our code is available at https://github.com/rlawjdghek/PromptDresser.
DreamVVT: Mastering Realistic Video Virtual Try-On in the Wild via a Stage-Wise Diffusion Transformer Framework
Video virtual try-on (VVT) technology has garnered considerable academic interest owing to its promising applications in e-commerce advertising and entertainment. However, most existing end-to-end methods rely heavily on scarce paired garment-centric datasets and fail to effectively leverage priors of advanced visual models and test-time inputs, making it challenging to accurately preserve fine-grained garment details and maintain temporal consistency in unconstrained scenarios. To address these challenges, we propose DreamVVT, a carefully designed two-stage framework built upon Diffusion Transformers (DiTs), which is inherently capable of leveraging diverse unpaired human-centric data to enhance adaptability in real-world scenarios. To further leverage prior knowledge from pretrained models and test-time inputs, in the first stage, we sample representative frames from the input video and utilize a multi-frame try-on model integrated with a vision-language model (VLM), to synthesize high-fidelity and semantically consistent keyframe try-on images. These images serve as complementary appearance guidance for subsequent video generation. In the second stage, skeleton maps together with fine-grained motion and appearance descriptions are extracted from the input content, and these along with the keyframe try-on images are then fed into a pretrained video generation model enhanced with LoRA adapters. This ensures long-term temporal coherence for unseen regions and enables highly plausible dynamic motions. Extensive quantitative and qualitative experiments demonstrate that DreamVVT surpasses existing methods in preserving detailed garment content and temporal stability in real-world scenarios. Our project page https://virtu-lab.github.io/
CatV2TON: Taming Diffusion Transformers for Vision-Based Virtual Try-On with Temporal Concatenation
Virtual try-on (VTON) technology has gained attention due to its potential to transform online retail by enabling realistic clothing visualization of images and videos. However, most existing methods struggle to achieve high-quality results across image and video try-on tasks, especially in long video scenarios. In this work, we introduce CatV2TON, a simple and effective vision-based virtual try-on (V2TON) method that supports both image and video try-on tasks with a single diffusion transformer model. By temporally concatenating garment and person inputs and training on a mix of image and video datasets, CatV2TON achieves robust try-on performance across static and dynamic settings. For efficient long-video generation, we propose an overlapping clip-based inference strategy that uses sequential frame guidance and Adaptive Clip Normalization (AdaCN) to maintain temporal consistency with reduced resource demands. We also present ViViD-S, a refined video try-on dataset, achieved by filtering back-facing frames and applying 3D mask smoothing for enhanced temporal consistency. Comprehensive experiments demonstrate that CatV2TON outperforms existing methods in both image and video try-on tasks, offering a versatile and reliable solution for realistic virtual try-ons across diverse scenarios.
PICTURE: PhotorealistIC virtual Try-on from UnconstRained dEsigns
In this paper, we propose a novel virtual try-on from unconstrained designs (ucVTON) task to enable photorealistic synthesis of personalized composite clothing on input human images. Unlike prior arts constrained by specific input types, our method allows flexible specification of style (text or image) and texture (full garment, cropped sections, or texture patches) conditions. To address the entanglement challenge when using full garment images as conditions, we develop a two-stage pipeline with explicit disentanglement of style and texture. In the first stage, we generate a human parsing map reflecting the desired style conditioned on the input. In the second stage, we composite textures onto the parsing map areas based on the texture input. To represent complex and non-stationary textures that have never been achieved in previous fashion editing works, we first propose extracting hierarchical and balanced CLIP features and applying position encoding in VTON. Experiments demonstrate superior synthesis quality and personalization enabled by our method. The flexible control over style and texture mixing brings virtual try-on to a new level of user experience for online shopping and fashion design.
FashionSD-X: Multimodal Fashion Garment Synthesis using Latent Diffusion
The rapid evolution of the fashion industry increasingly intersects with technological advancements, particularly through the integration of generative AI. This study introduces a novel generative pipeline designed to transform the fashion design process by employing latent diffusion models. Utilizing ControlNet and LoRA fine-tuning, our approach generates high-quality images from multimodal inputs such as text and sketches. We leverage and enhance state-of-the-art virtual try-on datasets, including Multimodal Dress Code and VITON-HD, by integrating sketch data. Our evaluation, utilizing metrics like FID, CLIP Score, and KID, demonstrates that our model significantly outperforms traditional stable diffusion models. The results not only highlight the effectiveness of our model in generating fashion-appropriate outputs but also underscore the potential of diffusion models in revolutionizing fashion design workflows. This research paves the way for more interactive, personalized, and technologically enriched methodologies in fashion design and representation, bridging the gap between creative vision and practical application.
DexGarmentLab: Dexterous Garment Manipulation Environment with Generalizable Policy
Garment manipulation is a critical challenge due to the diversity in garment categories, geometries, and deformations. Despite this, humans can effortlessly handle garments, thanks to the dexterity of our hands. However, existing research in the field has struggled to replicate this level of dexterity, primarily hindered by the lack of realistic simulations of dexterous garment manipulation. Therefore, we propose DexGarmentLab, the first environment specifically designed for dexterous (especially bimanual) garment manipulation, which features large-scale high-quality 3D assets for 15 task scenarios, and refines simulation techniques tailored for garment modeling to reduce the sim-to-real gap. Previous data collection typically relies on teleoperation or training expert reinforcement learning (RL) policies, which are labor-intensive and inefficient. In this paper, we leverage garment structural correspondence to automatically generate a dataset with diverse trajectories using only a single expert demonstration, significantly reducing manual intervention. However, even extensive demonstrations cannot cover the infinite states of garments, which necessitates the exploration of new algorithms. To improve generalization across diverse garment shapes and deformations, we propose a Hierarchical gArment-manipuLation pOlicy (HALO). It first identifies transferable affordance points to accurately locate the manipulation area, then generates generalizable trajectories to complete the task. Through extensive experiments and detailed analysis of our method and baseline, we demonstrate that HALO consistently outperforms existing methods, successfully generalizing to previously unseen instances even with significant variations in shape and deformation where others fail. Our project page is available at: https://wayrise.github.io/DexGarmentLab/.
StableGarment: Garment-Centric Generation via Stable Diffusion
In this paper, we introduce StableGarment, a unified framework to tackle garment-centric(GC) generation tasks, including GC text-to-image, controllable GC text-to-image, stylized GC text-to-image, and robust virtual try-on. The main challenge lies in retaining the intricate textures of the garment while maintaining the flexibility of pre-trained Stable Diffusion. Our solution involves the development of a garment encoder, a trainable copy of the denoising UNet equipped with additive self-attention (ASA) layers. These ASA layers are specifically devised to transfer detailed garment textures, also facilitating the integration of stylized base models for the creation of stylized images. Furthermore, the incorporation of a dedicated try-on ControlNet enables StableGarment to execute virtual try-on tasks with precision. We also build a novel data engine that produces high-quality synthesized data to preserve the model's ability to follow prompts. Extensive experiments demonstrate that our approach delivers state-of-the-art (SOTA) results among existing virtual try-on methods and exhibits high flexibility with broad potential applications in various garment-centric image generation.
GarmentCodeData: A Dataset of 3D Made-to-Measure Garments With Sewing Patterns
Recent research interest in the learning-based processing of garments, from virtual fitting to generation and reconstruction, stumbles on a scarcity of high-quality public data in the domain. We contribute to resolving this need by presenting the first large-scale synthetic dataset of 3D made-to-measure garments with sewing patterns, as well as its generation pipeline. GarmentCodeData contains 115,000 data points that cover a variety of designs in many common garment categories: tops, shirts, dresses, jumpsuits, skirts, pants, etc., fitted to a variety of body shapes sampled from a custom statistical body model based on CAESAR, as well as a standard reference body shape, applying three different textile materials. To enable the creation of datasets of such complexity, we introduce a set of algorithms for automatically taking tailor's measures on sampled body shapes, sampling strategies for sewing pattern design, and propose an automatic, open-source 3D garment draping pipeline based on a fast XPBD simulator, while contributing several solutions for collision resolution and drape correctness to enable scalability. Project Page: https://igl.ethz.ch/projects/GarmentCodeData/
Bootstrapping Complete The Look at Pinterest
Putting together an ideal outfit is a process that involves creativity and style intuition. This makes it a particularly difficult task to automate. Existing styling products generally involve human specialists and a highly curated set of fashion items. In this paper, we will describe how we bootstrapped the Complete The Look (CTL) system at Pinterest. This is a technology that aims to learn the subjective task of "style compatibility" in order to recommend complementary items that complete an outfit. In particular, we want to show recommendations from other categories that are compatible with an item of interest. For example, what are some heels that go well with this cocktail dress? We will introduce our outfit dataset of over 1 million outfits and 4 million objects, a subset of which we will make available to the research community, and describe the pipeline used to obtain and refresh this dataset. Furthermore, we will describe how we evaluate this subjective task and compare model performance across multiple training methods. Lastly, we will share our lessons going from experimentation to working prototype, and how to mitigate failure modes in the production environment. Our work represents one of the first examples of an industrial-scale solution for compatibility-based fashion recommendation.
MF-VITON: High-Fidelity Mask-Free Virtual Try-On with Minimal Input
Recent advancements in Virtual Try-On (VITON) have significantly improved image realism and garment detail preservation, driven by powerful text-to-image (T2I) diffusion models. However, existing methods often rely on user-provided masks, introducing complexity and performance degradation due to imperfect inputs, as shown in Fig.1(a). To address this, we propose a Mask-Free VITON (MF-VITON) framework that achieves realistic VITON using only a single person image and a target garment, eliminating the requirement for auxiliary masks. Our approach introduces a novel two-stage pipeline: (1) We leverage existing Mask-based VITON models to synthesize a high-quality dataset. This dataset contains diverse, realistic pairs of person images and corresponding garments, augmented with varied backgrounds to mimic real-world scenarios. (2) The pre-trained Mask-based model is fine-tuned on the generated dataset, enabling garment transfer without mask dependencies. This stage simplifies the input requirements while preserving garment texture and shape fidelity. Our framework achieves state-of-the-art (SOTA) performance regarding garment transfer accuracy and visual realism. Notably, the proposed Mask-Free model significantly outperforms existing Mask-based approaches, setting a new benchmark and demonstrating a substantial lead over previous approaches. For more details, visit our project page: https://zhenchenwan.github.io/MF-VITON/.
FLDM-VTON: Faithful Latent Diffusion Model for Virtual Try-on
Despite their impressive generative performance, latent diffusion model-based virtual try-on (VTON) methods lack faithfulness to crucial details of the clothes, such as style, pattern, and text. To alleviate these issues caused by the diffusion stochastic nature and latent supervision, we propose a novel Faithful Latent Diffusion Model for VTON, termed FLDM-VTON. FLDM-VTON improves the conventional latent diffusion process in three major aspects. First, we propose incorporating warped clothes as both the starting point and local condition, supplying the model with faithful clothes priors. Second, we introduce a novel clothes flattening network to constrain generated try-on images, providing clothes-consistent faithful supervision. Third, we devise a clothes-posterior sampling for faithful inference, further enhancing the model performance over conventional clothes-agnostic Gaussian sampling. Extensive experimental results on the benchmark VITON-HD and Dress Code datasets demonstrate that our FLDM-VTON outperforms state-of-the-art baselines and is able to generate photo-realistic try-on images with faithful clothing details.
Hierarchical Cross-Attention Network for Virtual Try-On
In this paper, we present an innovative solution for the challenges of the virtual try-on task: our novel Hierarchical Cross-Attention Network (HCANet). HCANet is crafted with two primary stages: geometric matching and try-on, each playing a crucial role in delivering realistic virtual try-on outcomes. A key feature of HCANet is the incorporation of a novel Hierarchical Cross-Attention (HCA) block into both stages, enabling the effective capture of long-range correlations between individual and clothing modalities. The HCA block enhances the depth and robustness of the network. By adopting a hierarchical approach, it facilitates a nuanced representation of the interaction between the person and clothing, capturing intricate details essential for an authentic virtual try-on experience. Our experiments establish the prowess of HCANet. The results showcase its performance across both quantitative metrics and subjective evaluations of visual realism. HCANet stands out as a state-of-the-art solution, demonstrating its capability to generate virtual try-on results that excel in accuracy and realism. This marks a significant step in advancing virtual try-on technologies.
Multimodal-Conditioned Latent Diffusion Models for Fashion Image Editing
Fashion illustration is a crucial medium for designers to convey their creative vision and transform design concepts into tangible representations that showcase the interplay between clothing and the human body. In the context of fashion design, computer vision techniques have the potential to enhance and streamline the design process. Departing from prior research primarily focused on virtual try-on, this paper tackles the task of multimodal-conditioned fashion image editing. Our approach aims to generate human-centric fashion images guided by multimodal prompts, including text, human body poses, garment sketches, and fabric textures. To address this problem, we propose extending latent diffusion models to incorporate these multiple modalities and modifying the structure of the denoising network, taking multimodal prompts as input. To condition the proposed architecture on fabric textures, we employ textual inversion techniques and let diverse cross-attention layers of the denoising network attend to textual and texture information, thus incorporating different granularity conditioning details. Given the lack of datasets for the task, we extend two existing fashion datasets, Dress Code and VITON-HD, with multimodal annotations. Experimental evaluations demonstrate the effectiveness of our proposed approach in terms of realism and coherence concerning the provided multimodal inputs.
Product-Level Try-on: Characteristics-preserving Try-on with Realistic Clothes Shading and Wrinkles
Image-based virtual try-on systems,which fit new garments onto human portraits,are gaining research attention.An ideal pipeline should preserve the static features of clothes(like textures and logos)while also generating dynamic elements(e.g.shadows,folds)that adapt to the model's pose and environment.Previous works fail specifically in generating dynamic features,as they preserve the warped in-shop clothes trivially with predicted an alpha mask by composition.To break the dilemma of over-preserving and textures losses,we propose a novel diffusion-based Product-level virtual try-on pipeline,\ie PLTON, which can preserve the fine details of logos and embroideries while producing realistic clothes shading and wrinkles.The main insights are in three folds:1)Adaptive Dynamic Rendering:We take a pre-trained diffusion model as a generative prior and tame it with image features,training a dynamic extractor from scratch to generate dynamic tokens that preserve high-fidelity semantic information. Due to the strong generative power of the diffusion prior,we can generate realistic clothes shadows and wrinkles.2)Static Characteristics Transformation: High-frequency Map(HF-Map)is our fundamental insight for static representation.PLTON first warps in-shop clothes to the target model pose by a traditional warping network,and uses a high-pass filter to extract an HF-Map for preserving static cloth features.The HF-Map is used to generate modulation maps through our static extractor,which are injected into a fixed U-net to synthesize the final result.To enhance retention,a Two-stage Blended Denoising method is proposed to guide the diffusion process for correct spatial layout and color.PLTON is finetuned only with our collected small-size try-on dataset.Extensive quantitative and qualitative experiments on 1024 768 datasets demonstrate the superiority of our framework in mimicking real clothes dynamics.
LayGA: Layered Gaussian Avatars for Animatable Clothing Transfer
Animatable clothing transfer, aiming at dressing and animating garments across characters, is a challenging problem. Most human avatar works entangle the representations of the human body and clothing together, which leads to difficulties for virtual try-on across identities. What's worse, the entangled representations usually fail to exactly track the sliding motion of garments. To overcome these limitations, we present Layered Gaussian Avatars (LayGA), a new representation that formulates body and clothing as two separate layers for photorealistic animatable clothing transfer from multi-view videos. Our representation is built upon the Gaussian map-based avatar for its excellent representation power of garment details. However, the Gaussian map produces unstructured 3D Gaussians distributed around the actual surface. The absence of a smooth explicit surface raises challenges in accurate garment tracking and collision handling between body and garments. Therefore, we propose two-stage training involving single-layer reconstruction and multi-layer fitting. In the single-layer reconstruction stage, we propose a series of geometric constraints to reconstruct smooth surfaces and simultaneously obtain the segmentation between body and clothing. Next, in the multi-layer fitting stage, we train two separate models to represent body and clothing and utilize the reconstructed clothing geometries as 3D supervision for more accurate garment tracking. Furthermore, we propose geometry and rendering layers for both high-quality geometric reconstruction and high-fidelity rendering. Overall, the proposed LayGA realizes photorealistic animations and virtual try-on, and outperforms other baseline methods. Our project page is https://jsnln.github.io/layga/index.html.
VITON-DiT: Learning In-the-Wild Video Try-On from Human Dance Videos via Diffusion Transformers
Video try-on stands as a promising area for its tremendous real-world potential. Prior works are limited to transferring product clothing images onto person videos with simple poses and backgrounds, while underperforming on casually captured videos. Recently, Sora revealed the scalability of Diffusion Transformer (DiT) in generating lifelike videos featuring real-world scenarios. Inspired by this, we explore and propose the first DiT-based video try-on framework for practical in-the-wild applications, named VITON-DiT. Specifically, VITON-DiT consists of a garment extractor, a Spatial-Temporal denoising DiT, and an identity preservation ControlNet. To faithfully recover the clothing details, the extracted garment features are fused with the self-attention outputs of the denoising DiT and the ControlNet. We also introduce novel random selection strategies during training and an Interpolated Auto-Regressive (IAR) technique at inference to facilitate long video generation. Unlike existing attempts that require the laborious and restrictive construction of a paired training dataset, severely limiting their scalability, VITON-DiT alleviates this by relying solely on unpaired human dance videos and a carefully designed multi-stage training strategy. Furthermore, we curate a challenging benchmark dataset to evaluate the performance of casual video try-on. Extensive experiments demonstrate the superiority of VITON-DiT in generating spatio-temporal consistent try-on results for in-the-wild videos with complicated human poses.
One Policy to Dress Them All: Learning to Dress People with Diverse Poses and Garments
Robot-assisted dressing could benefit the lives of many people such as older adults and individuals with disabilities. Despite such potential, robot-assisted dressing remains a challenging task for robotics as it involves complex manipulation of deformable cloth in 3D space. Many prior works aim to solve the robot-assisted dressing task, but they make certain assumptions such as a fixed garment and a fixed arm pose that limit their ability to generalize. In this work, we develop a robot-assisted dressing system that is able to dress different garments on people with diverse poses from partial point cloud observations, based on a learned policy. We show that with proper design of the policy architecture and Q function, reinforcement learning (RL) can be used to learn effective policies with partial point cloud observations that work well for dressing diverse garments. We further leverage policy distillation to combine multiple policies trained on different ranges of human arm poses into a single policy that works over a wide range of different arm poses. We conduct comprehensive real-world evaluations of our system with 510 dressing trials in a human study with 17 participants with different arm poses and dressed garments. Our system is able to dress 86% of the length of the participants' arms on average. Videos can be found on our project webpage: https://sites.google.com/view/one-policy-dress.
StableVITON: Learning Semantic Correspondence with Latent Diffusion Model for Virtual Try-On
Given a clothing image and a person image, an image-based virtual try-on aims to generate a customized image that appears natural and accurately reflects the characteristics of the clothing image. In this work, we aim to expand the applicability of the pre-trained diffusion model so that it can be utilized independently for the virtual try-on task.The main challenge is to preserve the clothing details while effectively utilizing the robust generative capability of the pre-trained model. In order to tackle these issues, we propose StableVITON, learning the semantic correspondence between the clothing and the human body within the latent space of the pre-trained diffusion model in an end-to-end manner. Our proposed zero cross-attention blocks not only preserve the clothing details by learning the semantic correspondence but also generate high-fidelity images by utilizing the inherent knowledge of the pre-trained model in the warping process. Through our proposed novel attention total variation loss and applying augmentation, we achieve the sharp attention map, resulting in a more precise representation of clothing details. StableVITON outperforms the baselines in qualitative and quantitative evaluation, showing promising quality in arbitrary person images. Our code is available at https://github.com/rlawjdghek/StableVITON.
MC-VTON: Minimal Control Virtual Try-On Diffusion Transformer
Virtual try-on methods based on diffusion models achieve realistic try-on effects. They use an extra reference network or an additional image encoder to process multiple conditional image inputs, which adds complexity pre-processing and additional computational costs. Besides, they require more than 25 inference steps, bringing longer inference time. In this work, with the development of diffusion transformer (DiT), we rethink the necessity of additional reference network or image encoder and introduce MC-VTON, which leverages DiT's intrinsic backbone to seamlessly integrate minimal conditional try-on inputs. Compared to existing methods, the superiority of MC-VTON is demonstrated in four aspects: (1) Superior detail fidelity. Our DiT-based MC-VTON exhibits superior fidelity in preserving fine-grained details. (2) Simplified network and inputs. We remove any extra reference network or image encoder. We also remove unnecessary conditions like the long prompt, pose estimation, human parsing, and depth map. We require only the masked person image and the garment image. (3) Parameter-efficient training. To process the try-on task, we fine-tune the FLUX.1-dev with only 39.7M additional parameters (0.33% of the backbone parameters). (4) Less inference steps. We apply distillation diffusion on MC-VTON and only need 8 steps to generate a realistic try-on image, with only 86.8M additional parameters (0.72% of the backbone parameters). Experiments show that MC-VTON achieves superior qualitative and quantitative results with fewer condition inputs, trainable parameters, and inference steps than baseline methods.
DM-VTON: Distilled Mobile Real-time Virtual Try-On
The fashion e-commerce industry has witnessed significant growth in recent years, prompting exploring image-based virtual try-on techniques to incorporate Augmented Reality (AR) experiences into online shopping platforms. However, existing research has primarily overlooked a crucial aspect - the runtime of the underlying machine-learning model. While existing methods prioritize enhancing output quality, they often disregard the execution time, which restricts their applications on a limited range of devices. To address this gap, we propose Distilled Mobile Real-time Virtual Try-On (DM-VTON), a novel virtual try-on framework designed to achieve simplicity and efficiency. Our approach is based on a knowledge distillation scheme that leverages a strong Teacher network as supervision to guide a Student network without relying on human parsing. Notably, we introduce an efficient Mobile Generative Module within the Student network, significantly reducing the runtime while ensuring high-quality output. Additionally, we propose Virtual Try-on-guided Pose for Data Synthesis to address the limited pose variation observed in training images. Experimental results show that the proposed method can achieve 40 frames per second on a single Nvidia Tesla T4 GPU and only take up 37 MB of memory while producing almost the same output quality as other state-of-the-art methods. DM-VTON stands poised to facilitate the advancement of real-time AR applications, in addition to the generation of lifelike attired human figures tailored for diverse specialized training tasks. https://sites.google.com/view/ltnghia/research/DMVTON
Fine-Grained Controllable Apparel Showcase Image Generation via Garment-Centric Outpainting
In this paper, we propose a novel garment-centric outpainting (GCO) framework based on the latent diffusion model (LDM) for fine-grained controllable apparel showcase image generation. The proposed framework aims at customizing a fashion model wearing a given garment via text prompts and facial images. Different from existing methods, our framework takes a garment image segmented from a dressed mannequin or a person as the input, eliminating the need for learning cloth deformation and ensuring faithful preservation of garment details. The proposed framework consists of two stages. In the first stage, we introduce a garment-adaptive pose prediction model that generates diverse poses given the garment. Then, in the next stage, we generate apparel showcase images, conditioned on the garment and the predicted poses, along with specified text prompts and facial images. Notably, a multi-scale appearance customization module (MS-ACM) is designed to allow both overall and fine-grained text-based control over the generated model's appearance. Moreover, we leverage a lightweight feature fusion operation without introducing any extra encoders or modules to integrate multiple conditions, which is more efficient. Extensive experiments validate the superior performance of our framework compared to state-of-the-art methods.
GarmentDreamer: 3DGS Guided Garment Synthesis with Diverse Geometry and Texture Details
Traditional 3D garment creation is labor-intensive, involving sketching, modeling, UV mapping, and texturing, which are time-consuming and costly. Recent advances in diffusion-based generative models have enabled new possibilities for 3D garment generation from text prompts, images, and videos. However, existing methods either suffer from inconsistencies among multi-view images or require additional processes to separate cloth from the underlying human model. In this paper, we propose GarmentDreamer, a novel method that leverages 3D Gaussian Splatting (GS) as guidance to generate wearable, simulation-ready 3D garment meshes from text prompts. In contrast to using multi-view images directly predicted by generative models as guidance, our 3DGS guidance ensures consistent optimization in both garment deformation and texture synthesis. Our method introduces a novel garment augmentation module, guided by normal and RGBA information, and employs implicit Neural Texture Fields (NeTF) combined with Score Distillation Sampling (SDS) to generate diverse geometric and texture details. We validate the effectiveness of our approach through comprehensive qualitative and quantitative experiments, showcasing the superior performance of GarmentDreamer over state-of-the-art alternatives. Our project page is available at: https://xuan-li.github.io/GarmentDreamerDemo/.
FCBoost-Net: A Generative Network for Synthesizing Multiple Collocated Outfits via Fashion Compatibility Boosting
Outfit generation is a challenging task in the field of fashion technology, in which the aim is to create a collocated set of fashion items that complement a given set of items. Previous studies in this area have been limited to generating a unique set of fashion items based on a given set of items, without providing additional options to users. This lack of a diverse range of choices necessitates the development of a more versatile framework. However, when the task of generating collocated and diversified outfits is approached with multimodal image-to-image translation methods, it poses a challenging problem in terms of non-aligned image translation, which is hard to address with existing methods. In this research, we present FCBoost-Net, a new framework for outfit generation that leverages the power of pre-trained generative models to produce multiple collocated and diversified outfits. Initially, FCBoost-Net randomly synthesizes multiple sets of fashion items, and the compatibility of the synthesized sets is then improved in several rounds using a novel fashion compatibility booster. This approach was inspired by boosting algorithms and allows the performance to be gradually improved in multiple steps. Empirical evidence indicates that the proposed strategy can improve the fashion compatibility of randomly synthesized fashion items as well as maintain their diversity. Extensive experiments confirm the effectiveness of our proposed framework with respect to visual authenticity, diversity, and fashion compatibility.
Free-form Generation Enhances Challenging Clothed Human Modeling
Achieving realistic animated human avatars requires accurate modeling of pose-dependent clothing deformations. Existing learning-based methods heavily rely on the Linear Blend Skinning (LBS) of minimally-clothed human models like SMPL to model deformation. However, these methods struggle to handle loose clothing, such as long dresses, where the canonicalization process becomes ill-defined when the clothing is far from the body, leading to disjointed and fragmented results. To overcome this limitation, we propose a novel hybrid framework to model challenging clothed humans. Our core idea is to use dedicated strategies to model different regions, depending on whether they are close to or distant from the body. Specifically, we segment the human body into three categories: unclothed, deformed, and generated. We simply replicate unclothed regions that require no deformation. For deformed regions close to the body, we leverage LBS to handle the deformation. As for the generated regions, which correspond to loose clothing areas, we introduce a novel free-form, part-aware generator to model them, as they are less affected by movements. This free-form generation paradigm brings enhanced flexibility and expressiveness to our hybrid framework, enabling it to capture the intricate geometric details of challenging loose clothing, such as skirts and dresses. Experimental results on the benchmark dataset featuring loose clothing demonstrate that our method achieves state-of-the-art performance with superior visual fidelity and realism, particularly in the most challenging cases.
Deep Fashion3D: A Dataset and Benchmark for 3D Garment Reconstruction from Single Images
High-fidelity clothing reconstruction is the key to achieving photorealism in a wide range of applications including human digitization, virtual try-on, etc. Recent advances in learning-based approaches have accomplished unprecedented accuracy in recovering unclothed human shape and pose from single images, thanks to the availability of powerful statistical models, e.g. SMPL, learned from a large number of body scans. In contrast, modeling and recovering clothed human and 3D garments remains notoriously difficult, mostly due to the lack of large-scale clothing models available for the research community. We propose to fill this gap by introducing Deep Fashion3D, the largest collection to date of 3D garment models, with the goal of establishing a novel benchmark and dataset for the evaluation of image-based garment reconstruction systems. Deep Fashion3D contains 2078 models reconstructed from real garments, which covers 10 different categories and 563 garment instances. It provides rich annotations including 3D feature lines, 3D body pose and the corresponded multi-view real images. In addition, each garment is randomly posed to enhance the variety of real clothing deformations. To demonstrate the advantage of Deep Fashion3D, we propose a novel baseline approach for single-view garment reconstruction, which leverages the merits of both mesh and implicit representations. A novel adaptable template is proposed to enable the learning of all types of clothing in a single network. Extensive experiments have been conducted on the proposed dataset to verify its significance and usefulness. We will make Deep Fashion3D publicly available upon publication.
AnyDressing: Customizable Multi-Garment Virtual Dressing via Latent Diffusion Models
Recent advances in garment-centric image generation from text and image prompts based on diffusion models are impressive. However, existing methods lack support for various combinations of attire, and struggle to preserve the garment details while maintaining faithfulness to the text prompts, limiting their performance across diverse scenarios. In this paper, we focus on a new task, i.e., Multi-Garment Virtual Dressing, and we propose a novel AnyDressing method for customizing characters conditioned on any combination of garments and any personalized text prompts. AnyDressing comprises two primary networks named GarmentsNet and DressingNet, which are respectively dedicated to extracting detailed clothing features and generating customized images. Specifically, we propose an efficient and scalable module called Garment-Specific Feature Extractor in GarmentsNet to individually encode garment textures in parallel. This design prevents garment confusion while ensuring network efficiency. Meanwhile, we design an adaptive Dressing-Attention mechanism and a novel Instance-Level Garment Localization Learning strategy in DressingNet to accurately inject multi-garment features into their corresponding regions. This approach efficiently integrates multi-garment texture cues into generated images and further enhances text-image consistency. Additionally, we introduce a Garment-Enhanced Texture Learning strategy to improve the fine-grained texture details of garments. Thanks to our well-craft design, AnyDressing can serve as a plug-in module to easily integrate with any community control extensions for diffusion models, improving the diversity and controllability of synthesized images. Extensive experiments show that AnyDressing achieves state-of-the-art results.
AniDress: Animatable Loose-Dressed Avatar from Sparse Views Using Garment Rigging Model
Recent communities have seen significant progress in building photo-realistic animatable avatars from sparse multi-view videos. However, current workflows struggle to render realistic garment dynamics for loose-fitting characters as they predominantly rely on naked body models for human modeling while leaving the garment part un-modeled. This is mainly due to that the deformations yielded by loose garments are highly non-rigid, and capturing such deformations often requires dense views as supervision. In this paper, we introduce AniDress, a novel method for generating animatable human avatars in loose clothes using very sparse multi-view videos (4-8 in our setting). To allow the capturing and appearance learning of loose garments in such a situation, we employ a virtual bone-based garment rigging model obtained from physics-based simulation data. Such a model allows us to capture and render complex garment dynamics through a set of low-dimensional bone transformations. Technically, we develop a novel method for estimating temporal coherent garment dynamics from a sparse multi-view video. To build a realistic rendering for unseen garment status using coarse estimations, a pose-driven deformable neural radiance field conditioned on both body and garment motions is introduced, providing explicit control of both parts. At test time, the new garment poses can be captured from unseen situations, derived from a physics-based or neural network-based simulator to drive unseen garment dynamics. To evaluate our approach, we create a multi-view dataset that captures loose-dressed performers with diverse motions. Experiments show that our method is able to render natural garment dynamics that deviate highly from the body and generalize well to both unseen views and poses, surpassing the performance of existing methods. The code and data will be publicly available.
Registering Explicit to Implicit: Towards High-Fidelity Garment mesh Reconstruction from Single Images
Fueled by the power of deep learning techniques and implicit shape learning, recent advances in single-image human digitalization have reached unprecedented accuracy and could recover fine-grained surface details such as garment wrinkles. However, a common problem for the implicit-based methods is that they cannot produce separated and topology-consistent mesh for each garment piece, which is crucial for the current 3D content creation pipeline. To address this issue, we proposed a novel geometry inference framework ReEF that reconstructs topology-consistent layered garment mesh by registering the explicit garment template to the whole-body implicit fields predicted from single images. Experiments demonstrate that our method notably outperforms its counterparts on single-image layered garment reconstruction and could bring high-quality digital assets for further content creation.
GarmentTracking: Category-Level Garment Pose Tracking
Garments are important to humans. A visual system that can estimate and track the complete garment pose can be useful for many downstream tasks and real-world applications. In this work, we present a complete package to address the category-level garment pose tracking task: (1) A recording system VR-Garment, with which users can manipulate virtual garment models in simulation through a VR interface. (2) A large-scale dataset VR-Folding, with complex garment pose configurations in manipulation like flattening and folding. (3) An end-to-end online tracking framework GarmentTracking, which predicts complete garment pose both in canonical space and task space given a point cloud sequence. Extensive experiments demonstrate that the proposed GarmentTracking achieves great performance even when the garment has large non-rigid deformation. It outperforms the baseline approach on both speed and accuracy. We hope our proposed solution can serve as a platform for future research. Codes and datasets are available in https://garment-tracking.robotflow.ai.
HumanCoser: Layered 3D Human Generation via Semantic-Aware Diffusion Model
This paper aims to generate physically-layered 3D humans from text prompts. Existing methods either generate 3D clothed humans as a whole or support only tight and simple clothing generation, which limits their applications to virtual try-on and part-level editing. To achieve physically-layered 3D human generation with reusable and complex clothing, we propose a novel layer-wise dressed human representation based on a physically-decoupled diffusion model. Specifically, to achieve layer-wise clothing generation, we propose a dual-representation decoupling framework for generating clothing decoupled from the human body, in conjunction with an innovative multi-layer fusion volume rendering method. To match the clothing with different body shapes, we propose an SMPL-driven implicit field deformation network that enables the free transfer and reuse of clothing. Extensive experiments demonstrate that our approach not only achieves state-of-the-art layered 3D human generation with complex clothing but also supports virtual try-on and layered human animation.
TED-VITON: Transformer-Empowered Diffusion Models for Virtual Try-On
Recent advancements in Virtual Try-On (VTO) have demonstrated exceptional efficacy in generating realistic images and preserving garment details, largely attributed to the robust generative capabilities of text-to-image (T2I) diffusion backbones. However, the T2I models that underpin these methods have become outdated, thereby limiting the potential for further improvement in VTO. Additionally, current methods face notable challenges in accurately rendering text on garments without distortion and preserving fine-grained details, such as textures and material fidelity. The emergence of Diffusion Transformer (DiT) based T2I models has showcased impressive performance and offers a promising opportunity for advancing VTO. Directly applying existing VTO techniques to transformer-based T2I models is ineffective due to substantial architectural differences, which hinder their ability to fully leverage the models' advanced capabilities for improved text generation. To address these challenges and unlock the full potential of DiT-based T2I models for VTO, we propose TED-VITON, a novel framework that integrates a Garment Semantic (GS) Adapter for enhancing garment-specific features, a Text Preservation Loss to ensure accurate and distortion-free text rendering, and a constraint mechanism to generate prompts by optimizing Large Language Model (LLM). These innovations enable state-of-the-art (SOTA) performance in visual quality and text fidelity, establishing a new benchmark for VTO task.
ClotheDreamer: Text-Guided Garment Generation with 3D Gaussians
High-fidelity 3D garment synthesis from text is desirable yet challenging for digital avatar creation. Recent diffusion-based approaches via Score Distillation Sampling (SDS) have enabled new possibilities but either intricately couple with human body or struggle to reuse. We introduce ClotheDreamer, a 3D Gaussian-based method for generating wearable, production-ready 3D garment assets from text prompts. We propose a novel representation Disentangled Clothe Gaussian Splatting (DCGS) to enable separate optimization. DCGS represents clothed avatar as one Gaussian model but freezes body Gaussian splats. To enhance quality and completeness, we incorporate bidirectional SDS to supervise clothed avatar and garment RGBD renderings respectively with pose conditions and propose a new pruning strategy for loose clothing. Our approach can also support custom clothing templates as input. Benefiting from our design, the synthetic 3D garment can be easily applied to virtual try-on and support physically accurate animation. Extensive experiments showcase our method's superior and competitive performance. Our project page is at https://ggxxii.github.io/clothedreamer.