Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeKOROL: Learning Visualizable Object Feature with Koopman Operator Rollout for Manipulation
Learning dexterous manipulation skills presents significant challenges due to complex nonlinear dynamics that underlie the interactions between objects and multi-fingered hands. Koopman operators have emerged as a robust method for modeling such nonlinear dynamics within a linear framework. However, current methods rely on runtime access to ground-truth (GT) object states, making them unsuitable for vision-based practical applications. Unlike image-to-action policies that implicitly learn visual features for control, we use a dynamics model, specifically the Koopman operator, to learn visually interpretable object features critical for robotic manipulation within a scene. We construct a Koopman operator using object features predicted by a feature extractor and utilize it to auto-regressively advance system states. We train the feature extractor to embed scene information into object features, thereby enabling the accurate propagation of robot trajectories. We evaluate our approach on simulated and real-world robot tasks, with results showing that it outperformed the model-based imitation learning NDP by 1.08times and the image-to-action Diffusion Policy by 1.16times. The results suggest that our method maintains task success rates with learned features and extends applicability to real-world manipulation without GT object states.
DexMimicGen: Automated Data Generation for Bimanual Dexterous Manipulation via Imitation Learning
Imitation learning from human demonstrations is an effective means to teach robots manipulation skills. But data acquisition is a major bottleneck in applying this paradigm more broadly, due to the amount of cost and human effort involved. There has been significant interest in imitation learning for bimanual dexterous robots, like humanoids. Unfortunately, data collection is even more challenging here due to the challenges of simultaneously controlling multiple arms and multi-fingered hands. Automated data generation in simulation is a compelling, scalable alternative to fuel this need for data. To this end, we introduce DexMimicGen, a large-scale automated data generation system that synthesizes trajectories from a handful of human demonstrations for humanoid robots with dexterous hands. We present a collection of simulation environments in the setting of bimanual dexterous manipulation, spanning a range of manipulation behaviors and different requirements for coordination among the two arms. We generate 21K demos across these tasks from just 60 source human demos and study the effect of several data generation and policy learning decisions on agent performance. Finally, we present a real-to-sim-to-real pipeline and deploy it on a real-world humanoid can sorting task. Videos and more are at https://dexmimicgen.github.io/
A Grasp Pose is All You Need: Learning Multi-fingered Grasping with Deep Reinforcement Learning from Vision and Touch
Multi-fingered robotic hands have potential to enable robots to perform sophisticated manipulation tasks. However, teaching a robot to grasp objects with an anthropomorphic hand is an arduous problem due to the high dimensionality of state and action spaces. Deep Reinforcement Learning (DRL) offers techniques to design control policies for this kind of problems without explicit environment or hand modeling. However, state-of-the-art model-free algorithms have proven inefficient for learning such policies. The main problem is that the exploration of the environment is unfeasible for such high-dimensional problems, thus hampering the initial phases of policy optimization. One possibility to address this is to rely on off-line task demonstrations, but, oftentimes, this is too demanding in terms of time and computational resources. To address these problems, we propose the A Grasp Pose is All You Need (G-PAYN) method for the anthropomorphic hand of the iCub humanoid. We develop an approach to automatically collect task demonstrations to initialize the training of the policy. The proposed grasping pipeline starts from a grasp pose generated by an external algorithm, used to initiate the movement. Then a control policy (previously trained with the proposed G-PAYN) is used to reach and grab the object. We deployed the iCub into the MuJoCo simulator and use it to test our approach with objects from the YCB-Video dataset. Results show that G-PAYN outperforms current DRL techniques in the considered setting in terms of success rate and execution time with respect to the baselines. The code to reproduce the experiments is released together with the paper with an open source license.
RESPRECT: Speeding-up Multi-fingered Grasping with Residual Reinforcement Learning
Deep Reinforcement Learning (DRL) has proven effective in learning control policies using robotic grippers, but much less practical for solving the problem of grasping with dexterous hands -- especially on real robotic platforms -- due to the high dimensionality of the problem. In this work, we focus on the multi-fingered grasping task with the anthropomorphic hand of the iCub humanoid. We propose the RESidual learning with PREtrained CriTics (RESPRECT) method that, starting from a policy pre-trained on a large set of objects, can learn a residual policy to grasp a novel object in a fraction (sim 5 times faster) of the timesteps required to train a policy from scratch, without requiring any task demonstration. To our knowledge, this is the first Residual Reinforcement Learning (RRL) approach that learns a residual policy on top of another policy pre-trained with DRL. We exploit some components of the pre-trained policy during residual learning that further speed-up the training. We benchmark our results in the iCub simulated environment, and we show that RESPRECT can be effectively used to learn a multi-fingered grasping policy on the real iCub robot. The code to reproduce the experiments is released together with the paper with an open source license.
ContactDexNet: Multi-fingered Robotic Hand Grasping in Cluttered Environments through Hand-object Contact Semantic Mapping
The deep learning models has significantly advanced dexterous manipulation techniques for multi-fingered hand grasping. However, the contact information-guided grasping in cluttered environments remains largely underexplored. To address this gap, we have developed a method for generating multi-fingered hand grasp samples in cluttered settings through contact semantic map. We introduce a contact semantic conditional variational autoencoder network (CoSe-CVAE) for creating comprehensive contact semantic map from object point cloud. We utilize grasp detection method to estimate hand grasp poses from the contact semantic map. Finally, an unified grasp evaluation model PointNetGPD++ is designed to assess grasp quality and collision probability, substantially improving the reliability of identifying optimal grasps in cluttered scenarios. Our grasp generation method has demonstrated remarkable success, outperforming state-of-the-art methods by at least 4.65% with 81.0% average grasping success rate in real-world single-object environment and 75.3% grasping success rate in cluttered scenes. We also proposed the multi-modal multi-fingered grasping dataset generation method. Our multi-fingered hand grasping dataset outperforms previous datasets in scene diversity, modality diversity. The dataset, code and supplementary materials can be found at https://sites.google.com/view/contact-dexnet.
Neural feels with neural fields: Visuo-tactile perception for in-hand manipulation
To achieve human-level dexterity, robots must infer spatial awareness from multimodal sensing to reason over contact interactions. During in-hand manipulation of novel objects, such spatial awareness involves estimating the object's pose and shape. The status quo for in-hand perception primarily employs vision, and restricts to tracking a priori known objects. Moreover, visual occlusion of objects in-hand is imminent during manipulation, preventing current systems to push beyond tasks without occlusion. We combine vision and touch sensing on a multi-fingered hand to estimate an object's pose and shape during in-hand manipulation. Our method, NeuralFeels, encodes object geometry by learning a neural field online and jointly tracks it by optimizing a pose graph problem. We study multimodal in-hand perception in simulation and the real-world, interacting with different objects via a proprioception-driven policy. Our experiments show final reconstruction F-scores of 81% and average pose drifts of 4.7,mm, further reduced to 2.3,mm with known CAD models. Additionally, we observe that under heavy visual occlusion we can achieve up to 94% improvements in tracking compared to vision-only methods. Our results demonstrate that touch, at the very least, refines and, at the very best, disambiguates visual estimates during in-hand manipulation. We release our evaluation dataset of 70 experiments, FeelSight, as a step towards benchmarking in this domain. Our neural representation driven by multimodal sensing can serve as a perception backbone towards advancing robot dexterity. Videos can be found on our project website https://suddhu.github.io/neural-feels/
DexArt: Benchmarking Generalizable Dexterous Manipulation with Articulated Objects
To enable general-purpose robots, we will require the robot to operate daily articulated objects as humans do. Current robot manipulation has heavily relied on using a parallel gripper, which restricts the robot to a limited set of objects. On the other hand, operating with a multi-finger robot hand will allow better approximation to human behavior and enable the robot to operate on diverse articulated objects. To this end, we propose a new benchmark called DexArt, which involves Dexterous manipulation with Articulated objects in a physical simulator. In our benchmark, we define multiple complex manipulation tasks, and the robot hand will need to manipulate diverse articulated objects within each task. Our main focus is to evaluate the generalizability of the learned policy on unseen articulated objects. This is very challenging given the high degrees of freedom of both hands and objects. We use Reinforcement Learning with 3D representation learning to achieve generalization. Through extensive studies, we provide new insights into how 3D representation learning affects decision making in RL with 3D point cloud inputs. More details can be found at https://www.chenbao.tech/dexart/.
Cross-Embodiment Dexterous Grasping with Reinforcement Learning
Dexterous hands exhibit significant potential for complex real-world grasping tasks. While recent studies have primarily focused on learning policies for specific robotic hands, the development of a universal policy that controls diverse dexterous hands remains largely unexplored. In this work, we study the learning of cross-embodiment dexterous grasping policies using reinforcement learning (RL). Inspired by the capability of human hands to control various dexterous hands through teleoperation, we propose a universal action space based on the human hand's eigengrasps. The policy outputs eigengrasp actions that are then converted into specific joint actions for each robot hand through a retargeting mapping. We simplify the robot hand's proprioception to include only the positions of fingertips and the palm, offering a unified observation space across different robot hands. Our approach demonstrates an 80% success rate in grasping objects from the YCB dataset across four distinct embodiments using a single vision-based policy. Additionally, our policy exhibits zero-shot generalization to two previously unseen embodiments and significant improvement in efficient finetuning. For further details and videos, visit our project page https://sites.google.com/view/crossdex.
Multi-GraspLLM: A Multimodal LLM for Multi-Hand Semantic Guided Grasp Generation
Multi-hand semantic grasp generation aims to generate feasible and semantically appropriate grasp poses for different robotic hands based on natural language instructions. Although the task is highly valuable, due to the lack of multi-hand grasp datasets with fine-grained contact description between robotic hands and objects, it is still a long-standing difficult task. In this paper, we present Multi-GraspSet, the first large-scale multi-hand grasp dataset with automatically contact annotations. Based on Multi-GraspSet, we propose Multi-GraspLLM, a unified language-guided grasp generation framework. It leverages large language models (LLM) to handle variable-length sequences, generating grasp poses for diverse robotic hands in a single unified architecture. Multi-GraspLLM first aligns the encoded point cloud features and text features into a unified semantic space. It then generates grasp bin tokens which are subsequently converted into grasp pose for each robotic hand via hand-aware linear mapping. The experimental results demonstrate that our approach significantly outperforms existing methods on Multi-GraspSet. More information can be found on our project page https://multi-graspllm.github.io.
GraspXL: Generating Grasping Motions for Diverse Objects at Scale
Human hands possess the dexterity to interact with diverse objects such as grasping specific parts of the objects and/or approaching them from desired directions. More importantly, humans can grasp objects of any shape without object-specific skills. Recent works synthesize grasping motions following single objectives such as a desired approach heading direction or a grasping area. Moreover, they usually rely on expensive 3D hand-object data during training and inference, which limits their capability to synthesize grasping motions for unseen objects at scale. In this paper, we unify the generation of hand-object grasping motions across multiple motion objectives, diverse object shapes and dexterous hand morphologies in a policy learning framework GraspXL. The objectives are composed of the graspable area, heading direction during approach, wrist rotation, and hand position. Without requiring any 3D hand-object interaction data, our policy trained with 58 objects can robustly synthesize diverse grasping motions for more than 500k unseen objects with a success rate of 82.2%. At the same time, the policy adheres to objectives, which enables the generation of diverse grasps per object. Moreover, we show that our framework can be deployed to different dexterous hands and work with reconstructed or generated objects. We quantitatively and qualitatively evaluate our method to show the efficacy of our approach. Our model, code, and the large-scale generated motions are available at https://eth-ait.github.io/graspxl/.
MyoDex: A Generalizable Prior for Dexterous Manipulation
Human dexterity is a hallmark of motor control. Our hands can rapidly synthesize new behaviors despite the complexity (multi-articular and multi-joints, with 23 joints controlled by more than 40 muscles) of musculoskeletal sensory-motor circuits. In this work, we take inspiration from how human dexterity builds on a diversity of prior experiences, instead of being acquired through a single task. Motivated by this observation, we set out to develop agents that can build upon their previous experience to quickly acquire new (previously unattainable) behaviors. Specifically, our approach leverages multi-task learning to implicitly capture task-agnostic behavioral priors (MyoDex) for human-like dexterity, using a physiologically realistic human hand model - MyoHand. We demonstrate MyoDex's effectiveness in few-shot generalization as well as positive transfer to a large repertoire of unseen dexterous manipulation tasks. Agents leveraging MyoDex can solve approximately 3x more tasks, and 4x faster in comparison to a distillation baseline. While prior work has synthesized single musculoskeletal control behaviors, MyoDex is the first generalizable manipulation prior that catalyzes the learning of dexterous physiological control across a large variety of contact-rich behaviors. We also demonstrate the effectiveness of our paradigms beyond musculoskeletal control towards the acquisition of dexterity in 24 DoF Adroit Hand. Website: https://sites.google.com/view/myodex
Decoupled Iterative Refinement Framework for Interacting Hands Reconstruction from a Single RGB Image
Reconstructing interacting hands from a single RGB image is a very challenging task. On the one hand, severe mutual occlusion and similar local appearance between two hands confuse the extraction of visual features, resulting in the misalignment of estimated hand meshes and the image. On the other hand, there are complex spatial relationship between interacting hands, which significantly increases the solution space of hand poses and increases the difficulty of network learning. In this paper, we propose a decoupled iterative refinement framework to achieve pixel-alignment hand reconstruction while efficiently modeling the spatial relationship between hands. Specifically, we define two feature spaces with different characteristics, namely 2D visual feature space and 3D joint feature space. First, we obtain joint-wise features from the visual feature map and utilize a graph convolution network and a transformer to perform intra- and inter-hand information interaction in the 3D joint feature space, respectively. Then, we project the joint features with global information back into the 2D visual feature space in an obfuscation-free manner and utilize the 2D convolution for pixel-wise enhancement. By performing multiple alternate enhancements in the two feature spaces, our method can achieve an accurate and robust reconstruction of interacting hands. Our method outperforms all existing two-hand reconstruction methods by a large margin on the InterHand2.6M dataset.
Digitizing Touch with an Artificial Multimodal Fingertip
Touch is a crucial sensing modality that provides rich information about object properties and interactions with the physical environment. Humans and robots both benefit from using touch to perceive and interact with the surrounding environment (Johansson and Flanagan, 2009; Li et al., 2020; Calandra et al., 2017). However, no existing systems provide rich, multi-modal digital touch-sensing capabilities through a hemispherical compliant embodiment. Here, we describe several conceptual and technological innovations to improve the digitization of touch. These advances are embodied in an artificial finger-shaped sensor with advanced sensing capabilities. Significantly, this fingertip contains high-resolution sensors (~8.3 million taxels) that respond to omnidirectional touch, capture multi-modal signals, and use on-device artificial intelligence to process the data in real time. Evaluations show that the artificial fingertip can resolve spatial features as small as 7 um, sense normal and shear forces with a resolution of 1.01 mN and 1.27 mN, respectively, perceive vibrations up to 10 kHz, sense heat, and even sense odor. Furthermore, it embeds an on-device AI neural network accelerator that acts as a peripheral nervous system on a robot and mimics the reflex arc found in humans. These results demonstrate the possibility of digitizing touch with superhuman performance. The implications are profound, and we anticipate potential applications in robotics (industrial, medical, agricultural, and consumer-level), virtual reality and telepresence, prosthetics, and e-commerce. Toward digitizing touch at scale, we open-source a modular platform to facilitate future research on the nature of touch.
GRIP: Generating Interaction Poses Using Latent Consistency and Spatial Cues
Hands are dexterous and highly versatile manipulators that are central to how humans interact with objects and their environment. Consequently, modeling realistic hand-object interactions, including the subtle motion of individual fingers, is critical for applications in computer graphics, computer vision, and mixed reality. Prior work on capturing and modeling humans interacting with objects in 3D focuses on the body and object motion, often ignoring hand pose. In contrast, we introduce GRIP, a learning-based method that takes, as input, the 3D motion of the body and the object, and synthesizes realistic motion for both hands before, during, and after object interaction. As a preliminary step before synthesizing the hand motion, we first use a network, ANet, to denoise the arm motion. Then, we leverage the spatio-temporal relationship between the body and the object to extract two types of novel temporal interaction cues, and use them in a two-stage inference pipeline to generate the hand motion. In the first stage, we introduce a new approach to enforce motion temporal consistency in the latent space (LTC), and generate consistent interaction motions. In the second stage, GRIP generates refined hand poses to avoid hand-object penetrations. Given sequences of noisy body and object motion, GRIP upgrades them to include hand-object interaction. Quantitative experiments and perceptual studies demonstrate that GRIP outperforms baseline methods and generalizes to unseen objects and motions from different motion-capture datasets.
Embodied Hands: Modeling and Capturing Hands and Bodies Together
Humans move their hands and bodies together to communicate and solve tasks. Capturing and replicating such coordinated activity is critical for virtual characters that behave realistically. Surprisingly, most methods treat the 3D modeling and tracking of bodies and hands separately. Here we formulate a model of hands and bodies interacting together and fit it to full-body 4D sequences. When scanning or capturing the full body in 3D, hands are small and often partially occluded, making their shape and pose hard to recover. To cope with low-resolution, occlusion, and noise, we develop a new model called MANO (hand Model with Articulated and Non-rigid defOrmations). MANO is learned from around 1000 high-resolution 3D scans of hands of 31 subjects in a wide variety of hand poses. The model is realistic, low-dimensional, captures non-rigid shape changes with pose, is compatible with standard graphics packages, and can fit any human hand. MANO provides a compact mapping from hand poses to pose blend shape corrections and a linear manifold of pose synergies. We attach MANO to a standard parameterized 3D body shape model (SMPL), resulting in a fully articulated body and hand model (SMPL+H). We illustrate SMPL+H by fitting complex, natural, activities of subjects captured with a 4D scanner. The fitting is fully automatic and results in full body models that move naturally with detailed hand motions and a realism not seen before in full body performance capture. The models and data are freely available for research purposes in our website (http://mano.is.tue.mpg.de).
GigaHands: A Massive Annotated Dataset of Bimanual Hand Activities
Understanding bimanual human hand activities is a critical problem in AI and robotics. We cannot build large models of bimanual activities because existing datasets lack the scale, coverage of diverse hand activities, and detailed annotations. We introduce GigaHands, a massive annotated dataset capturing 34 hours of bimanual hand activities from 56 subjects and 417 objects, totaling 14k motion clips derived from 183 million frames paired with 84k text annotations. Our markerless capture setup and data acquisition protocol enable fully automatic 3D hand and object estimation while minimizing the effort required for text annotation. The scale and diversity of GigaHands enable broad applications, including text-driven action synthesis, hand motion captioning, and dynamic radiance field reconstruction. Our website are avaliable at https://ivl.cs.brown.edu/research/gigahands.html .
UGG: Unified Generative Grasping
Dexterous grasping aims to produce diverse grasping postures with a high grasping success rate. Regression-based methods that directly predict grasping parameters given the object may achieve a high success rate but often lack diversity. Generation-based methods that generate grasping postures conditioned on the object can often produce diverse grasping, but they are insufficient for high grasping success due to lack of discriminative information. To mitigate, we introduce a unified diffusion-based dexterous grasp generation model, dubbed the name UGG, which operates within the object point cloud and hand parameter spaces. Our all-transformer architecture unifies the information from the object, the hand, and the contacts, introducing a novel representation of contact points for improved contact modeling. The flexibility and quality of our model enable the integration of a lightweight discriminator, benefiting from simulated discriminative data, which pushes for a high success rate while preserving high diversity. Beyond grasp generation, our model can also generate objects based on hand information, offering valuable insights into object design and studying how the generative model perceives objects. Our model achieves state-of-the-art dexterous grasping on the large-scale DexGraspNet dataset while facilitating human-centric object design, marking a significant advancement in dexterous grasping research. Our project page is https://jiaxin-lu.github.io/ugg/ .
Synchronize Dual Hands for Physics-Based Dexterous Guitar Playing
We present a novel approach to synthesize dexterous motions for physically simulated hands in tasks that require coordination between the control of two hands with high temporal precision. Instead of directly learning a joint policy to control two hands, our approach performs bimanual control through cooperative learning where each hand is treated as an individual agent. The individual policies for each hand are first trained separately, and then synchronized through latent space manipulation in a centralized environment to serve as a joint policy for two-hand control. By doing so, we avoid directly performing policy learning in the joint state-action space of two hands with higher dimensions, greatly improving the overall training efficiency. We demonstrate the effectiveness of our proposed approach in the challenging guitar-playing task. The virtual guitarist trained by our approach can synthesize motions from unstructured reference data of general guitar-playing practice motions, and accurately play diverse rhythms with complex chord pressing and string picking patterns based on the input guitar tabs that do not exist in the references. Along with this paper, we provide the motion capture data that we collected as the reference for policy training. Code is available at: https://pei-xu.github.io/guitar.
Spectral Graphormer: Spectral Graph-based Transformer for Egocentric Two-Hand Reconstruction using Multi-View Color Images
We propose a novel transformer-based framework that reconstructs two high fidelity hands from multi-view RGB images. Unlike existing hand pose estimation methods, where one typically trains a deep network to regress hand model parameters from single RGB image, we consider a more challenging problem setting where we directly regress the absolute root poses of two-hands with extended forearm at high resolution from egocentric view. As existing datasets are either infeasible for egocentric viewpoints or lack background variations, we create a large-scale synthetic dataset with diverse scenarios and collect a real dataset from multi-calibrated camera setup to verify our proposed multi-view image feature fusion strategy. To make the reconstruction physically plausible, we propose two strategies: (i) a coarse-to-fine spectral graph convolution decoder to smoothen the meshes during upsampling and (ii) an optimisation-based refinement stage at inference to prevent self-penetrations. Through extensive quantitative and qualitative evaluations, we show that our framework is able to produce realistic two-hand reconstructions and demonstrate the generalisation of synthetic-trained models to real data, as well as real-time AR/VR applications.
Object-Centric Dexterous Manipulation from Human Motion Data
Manipulating objects to achieve desired goal states is a basic but important skill for dexterous manipulation. Human hand motions demonstrate proficient manipulation capability, providing valuable data for training robots with multi-finger hands. Despite this potential, substantial challenges arise due to the embodiment gap between human and robot hands. In this work, we introduce a hierarchical policy learning framework that uses human hand motion data for training object-centric dexterous robot manipulation. At the core of our method is a high-level trajectory generative model, learned with a large-scale human hand motion capture dataset, to synthesize human-like wrist motions conditioned on the desired object goal states. Guided by the generated wrist motions, deep reinforcement learning is further used to train a low-level finger controller that is grounded in the robot's embodiment to physically interact with the object to achieve the goal. Through extensive evaluation across 10 household objects, our approach not only demonstrates superior performance but also showcases generalization capability to novel object geometries and goal states. Furthermore, we transfer the learned policies from simulation to a real-world bimanual dexterous robot system, further demonstrating its applicability in real-world scenarios. Project website: https://cypypccpy.github.io/obj-dex.github.io/.
Vision-Based Hand Gesture Customization from a Single Demonstration
Hand gesture recognition is becoming a more prevalent mode of human-computer interaction, especially as cameras proliferate across everyday devices. Despite continued progress in this field, gesture customization is often underexplored. Customization is crucial since it enables users to define and demonstrate gestures that are more natural, memorable, and accessible. However, customization requires efficient usage of user-provided data. We introduce a method that enables users to easily design bespoke gestures with a monocular camera from one demonstration. We employ transformers and meta-learning techniques to address few-shot learning challenges. Unlike prior work, our method supports any combination of one-handed, two-handed, static, and dynamic gestures, including different viewpoints. We evaluated our customization method through a user study with 20 gestures collected from 21 participants, achieving up to 97% average recognition accuracy from one demonstration. Our work provides a viable path for vision-based gesture customization, laying the foundation for future advancements in this domain.
D(R,O) Grasp: A Unified Representation of Robot and Object Interaction for Cross-Embodiment Dexterous Grasping
Dexterous grasping is a fundamental yet challenging skill in robotic manipulation, requiring precise interaction between robotic hands and objects. In this paper, we present D(R,O) Grasp, a novel framework that models the interaction between the robotic hand in its grasping pose and the object, enabling broad generalization across various robot hands and object geometries. Our model takes the robot hand's description and object point cloud as inputs and efficiently predicts kinematically valid and stable grasps, demonstrating strong adaptability to diverse robot embodiments and object geometries. Extensive experiments conducted in both simulated and real-world environments validate the effectiveness of our approach, with significant improvements in success rate, grasp diversity, and inference speed across multiple robotic hands. Our method achieves an average success rate of 87.53% in simulation in less than one second, tested across three different dexterous robotic hands. In real-world experiments using the LeapHand, the method also demonstrates an average success rate of 89%. D(R,O) Grasp provides a robust solution for dexterous grasping in complex and varied environments. The code, appendix, and videos are available on our project website at https://nus-lins-lab.github.io/drograspweb/.
HaGRIDv2: 1M Images for Static and Dynamic Hand Gesture Recognition
This paper proposes the second version of the widespread Hand Gesture Recognition dataset HaGRID -- HaGRIDv2. We cover 15 new gestures with conversation and control functions, including two-handed ones. Building on the foundational concepts proposed by HaGRID's authors, we implemented the dynamic gesture recognition algorithm and further enhanced it by adding three new groups of manipulation gestures. The ``no gesture" class was diversified by adding samples of natural hand movements, which allowed us to minimize false positives by 6 times. Combining extra samples with HaGRID, the received version outperforms the original in pre-training models for gesture-related tasks. Besides, we achieved the best generalization ability among gesture and hand detection datasets. In addition, the second version enhances the quality of the gestures generated by the diffusion model. HaGRIDv2, pre-trained models, and a dynamic gesture recognition algorithm are publicly available.
Hand Keypoint Detection in Single Images using Multiview Bootstrapping
We present an approach that uses a multi-camera system to train fine-grained detectors for keypoints that are prone to occlusion, such as the joints of a hand. We call this procedure multiview bootstrapping: first, an initial keypoint detector is used to produce noisy labels in multiple views of the hand. The noisy detections are then triangulated in 3D using multiview geometry or marked as outliers. Finally, the reprojected triangulations are used as new labeled training data to improve the detector. We repeat this process, generating more labeled data in each iteration. We derive a result analytically relating the minimum number of views to achieve target true and false positive rates for a given detector. The method is used to train a hand keypoint detector for single images. The resulting keypoint detector runs in realtime on RGB images and has accuracy comparable to methods that use depth sensors. The single view detector, triangulated over multiple views, enables 3D markerless hand motion capture with complex object interactions.
DDGC: Generative Deep Dexterous Grasping in Clutter
Recent advances in multi-fingered robotic grasping have enabled fast 6-Degrees-Of-Freedom (DOF) single object grasping. Multi-finger grasping in cluttered scenes, on the other hand, remains mostly unexplored due to the added difficulty of reasoning over obstacles which greatly increases the computational time to generate high-quality collision-free grasps. In this work we address such limitations by introducing DDGC, a fast generative multi-finger grasp sampling method that can generate high quality grasps in cluttered scenes from a single RGB-D image. DDGC is built as a network that encodes scene information to produce coarse-to-fine collision-free grasp poses and configurations. We experimentally benchmark DDGC against the simulated-annealing planner in GraspIt! on 1200 simulated cluttered scenes and 7 real world scenes. The results show that DDGC outperforms the baseline on synthesizing high-quality grasps and removing clutter while being 5 times faster. This, in turn, opens up the door for using multi-finger grasps in practical applications which has so far been limited due to the excessive computation time needed by other methods.
HaMuCo: Hand Pose Estimation via Multiview Collaborative Self-Supervised Learning
Recent advancements in 3D hand pose estimation have shown promising results, but its effectiveness has primarily relied on the availability of large-scale annotated datasets, the creation of which is a laborious and costly process. To alleviate the label-hungry limitation, we propose a self-supervised learning framework, HaMuCo, that learns a single-view hand pose estimator from multi-view pseudo 2D labels. However, one of the main challenges of self-supervised learning is the presence of noisy labels and the ``groupthink'' effect from multiple views. To overcome these issues, we introduce a cross-view interaction network that distills the single-view estimator by utilizing the cross-view correlated features and enforcing multi-view consistency to achieve collaborative learning. Both the single-view estimator and the cross-view interaction network are trained jointly in an end-to-end manner. Extensive experiments show that our method can achieve state-of-the-art performance on multi-view self-supervised hand pose estimation. Furthermore, the proposed cross-view interaction network can also be applied to hand pose estimation from multi-view input and outperforms previous methods under the same settings.
DG16M: A Large-Scale Dataset for Dual-Arm Grasping with Force-Optimized Grasps
Dual-arm robotic grasping is crucial for handling large objects that require stable and coordinated manipulation. While single-arm grasping has been extensively studied, datasets tailored for dual-arm settings remain scarce. We introduce a large-scale dataset of 16 million dual-arm grasps, evaluated under improved force-closure constraints. Additionally, we develop a benchmark dataset containing 300 objects with approximately 30,000 grasps, evaluated in a physics simulation environment, providing a better grasp quality assessment for dual-arm grasp synthesis methods. Finally, we demonstrate the effectiveness of our dataset by training a Dual-Arm Grasp Classifier network that outperforms the state-of-the-art methods by 15\%, achieving higher grasp success rates and improved generalization across objects.
WiLoR: End-to-end 3D Hand Localization and Reconstruction in-the-wild
In recent years, 3D hand pose estimation methods have garnered significant attention due to their extensive applications in human-computer interaction, virtual reality, and robotics. In contrast, there has been a notable gap in hand detection pipelines, posing significant challenges in constructing effective real-world multi-hand reconstruction systems. In this work, we present a data-driven pipeline for efficient multi-hand reconstruction in the wild. The proposed pipeline is composed of two components: a real-time fully convolutional hand localization and a high-fidelity transformer-based 3D hand reconstruction model. To tackle the limitations of previous methods and build a robust and stable detection network, we introduce a large-scale dataset with over than 2M in-the-wild hand images with diverse lighting, illumination, and occlusion conditions. Our approach outperforms previous methods in both efficiency and accuracy on popular 2D and 3D benchmarks. Finally, we showcase the effectiveness of our pipeline to achieve smooth 3D hand tracking from monocular videos, without utilizing any temporal components. Code, models, and dataset are available https://rolpotamias.github.io/WiLoR.
BimArt: A Unified Approach for the Synthesis of 3D Bimanual Interaction with Articulated Objects
We present BimArt, a novel generative approach for synthesizing 3D bimanual hand interactions with articulated objects. Unlike prior works, we do not rely on a reference grasp, a coarse hand trajectory, or separate modes for grasping and articulating. To achieve this, we first generate distance-based contact maps conditioned on the object trajectory with an articulation-aware feature representation, revealing rich bimanual patterns for manipulation. The learned contact prior is then used to guide our hand motion generator, producing diverse and realistic bimanual motions for object movement and articulation. Our work offers key insights into feature representation and contact prior for articulated objects, demonstrating their effectiveness in taming the complex, high-dimensional space of bimanual hand-object interactions. Through comprehensive quantitative experiments, we demonstrate a clear step towards simplified and high-quality hand-object animations that excel over the state-of-the-art in motion quality and diversity.
ManipTrans: Efficient Dexterous Bimanual Manipulation Transfer via Residual Learning
Human hands play a central role in interacting, motivating increasing research in dexterous robotic manipulation. Data-driven embodied AI algorithms demand precise, large-scale, human-like manipulation sequences, which are challenging to obtain with conventional reinforcement learning or real-world teleoperation. To address this, we introduce ManipTrans, a novel two-stage method for efficiently transferring human bimanual skills to dexterous robotic hands in simulation. ManipTrans first pre-trains a generalist trajectory imitator to mimic hand motion, then fine-tunes a specific residual module under interaction constraints, enabling efficient learning and accurate execution of complex bimanual tasks. Experiments show that ManipTrans surpasses state-of-the-art methods in success rate, fidelity, and efficiency. Leveraging ManipTrans, we transfer multiple hand-object datasets to robotic hands, creating DexManipNet, a large-scale dataset featuring previously unexplored tasks like pen capping and bottle unscrewing. DexManipNet comprises 3.3K episodes of robotic manipulation and is easily extensible, facilitating further policy training for dexterous hands and enabling real-world deployments.
ArtiGrasp: Physically Plausible Synthesis of Bi-Manual Dexterous Grasping and Articulation
We present ArtiGrasp, a novel method to synthesize bi-manual hand-object interactions that include grasping and articulation. This task is challenging due to the diversity of the global wrist motions and the precise finger control that are necessary to articulate objects. ArtiGrasp leverages reinforcement learning and physics simulations to train a policy that controls the global and local hand pose. Our framework unifies grasping and articulation within a single policy guided by a single hand pose reference. Moreover, to facilitate the training of the precise finger control required for articulation, we present a learning curriculum with increasing difficulty. It starts with single-hand manipulation of stationary objects and continues with multi-agent training including both hands and non-stationary objects. To evaluate our method, we introduce Dynamic Object Grasping and Articulation, a task that involves bringing an object into a target articulated pose. This task requires grasping, relocation, and articulation. We show our method's efficacy towards this task. We further demonstrate that our method can generate motions with noisy hand-object pose estimates from an off-the-shelf image-based regressor.
ACE: A Cross-Platform Visual-Exoskeletons System for Low-Cost Dexterous Teleoperation
Learning from demonstrations has shown to be an effective approach to robotic manipulation, especially with the recently collected large-scale robot data with teleoperation systems. Building an efficient teleoperation system across diverse robot platforms has become more crucial than ever. However, there is a notable lack of cost-effective and user-friendly teleoperation systems for different end-effectors, e.g., anthropomorphic robot hands and grippers, that can operate across multiple platforms. To address this issue, we develop ACE, a cross-platform visual-exoskeleton system for low-cost dexterous teleoperation. Our system utilizes a hand-facing camera to capture 3D hand poses and an exoskeleton mounted on a portable base, enabling accurate real-time capture of both finger and wrist poses. Compared to previous systems, which often require hardware customization according to different robots, our single system can generalize to humanoid hands, arm-hands, arm-gripper, and quadruped-gripper systems with high-precision teleoperation. This enables imitation learning for complex manipulation tasks on diverse platforms.
General In-Hand Object Rotation with Vision and Touch
We introduce RotateIt, a system that enables fingertip-based object rotation along multiple axes by leveraging multimodal sensory inputs. Our system is trained in simulation, where it has access to ground-truth object shapes and physical properties. Then we distill it to operate on realistic yet noisy simulated visuotactile and proprioceptive sensory inputs. These multimodal inputs are fused via a visuotactile transformer, enabling online inference of object shapes and physical properties during deployment. We show significant performance improvements over prior methods and the importance of visual and tactile sensing.
Combining Vision and EMG-Based Hand Tracking for Extended Reality Musical Instruments
Hand tracking is a critical component of natural user interactions in extended reality (XR) environments, including extended reality musical instruments (XRMIs). However, self-occlusion remains a significant challenge for vision-based hand tracking systems, leading to inaccurate results and degraded user experiences. In this paper, we propose a multimodal hand tracking system that combines vision-based hand tracking with surface electromyography (sEMG) data for finger joint angle estimation. We validate the effectiveness of our system through a series of hand pose tasks designed to cover a wide range of gestures, including those prone to self-occlusion. By comparing the performance of our multimodal system to a baseline vision-based tracking method, we demonstrate that our multimodal approach significantly improves tracking accuracy for several finger joints prone to self-occlusion. These findings suggest that our system has the potential to enhance XR experiences by providing more accurate and robust hand tracking, even in the presence of self-occlusion.
EchoWrist: Continuous Hand Pose Tracking and Hand-Object Interaction Recognition Using Low-Power Active Acoustic Sensing On a Wristband
Our hands serve as a fundamental means of interaction with the world around us. Therefore, understanding hand poses and interaction context is critical for human-computer interaction. We present EchoWrist, a low-power wristband that continuously estimates 3D hand pose and recognizes hand-object interactions using active acoustic sensing. EchoWrist is equipped with two speakers emitting inaudible sound waves toward the hand. These sound waves interact with the hand and its surroundings through reflections and diffractions, carrying rich information about the hand's shape and the objects it interacts with. The information captured by the two microphones goes through a deep learning inference system that recovers hand poses and identifies various everyday hand activities. Results from the two 12-participant user studies show that EchoWrist is effective and efficient at tracking 3D hand poses and recognizing hand-object interactions. Operating at 57.9mW, EchoWrist is able to continuously reconstruct 20 3D hand joints with MJEDE of 4.81mm and recognize 12 naturalistic hand-object interactions with 97.6% accuracy.
BOTH2Hands: Inferring 3D Hands from Both Text Prompts and Body Dynamics
The recently emerging text-to-motion advances have spired numerous attempts for convenient and interactive human motion generation. Yet, existing methods are largely limited to generating body motions only without considering the rich two-hand motions, let alone handling various conditions like body dynamics or texts. To break the data bottleneck, we propose BOTH57M, a novel multi-modal dataset for two-hand motion generation. Our dataset includes accurate motion tracking for the human body and hands and provides pair-wised finger-level hand annotations and body descriptions. We further provide a strong baseline method, BOTH2Hands, for the novel task: generating vivid two-hand motions from both implicit body dynamics and explicit text prompts. We first warm up two parallel body-to-hand and text-to-hand diffusion models and then utilize the cross-attention transformer for motion blending. Extensive experiments and cross-validations demonstrate the effectiveness of our approach and dataset for generating convincing two-hand motions from the hybrid body-and-textual conditions. Our dataset and code will be disseminated to the community for future research.
LEAP Hand: Low-Cost, Efficient, and Anthropomorphic Hand for Robot Learning
Dexterous manipulation has been a long-standing challenge in robotics. While machine learning techniques have shown some promise, results have largely been currently limited to simulation. This can be mostly attributed to the lack of suitable hardware. In this paper, we present LEAP Hand, a low-cost dexterous and anthropomorphic hand for machine learning research. In contrast to previous hands, LEAP Hand has a novel kinematic structure that allows maximal dexterity regardless of finger pose. LEAP Hand is low-cost and can be assembled in 4 hours at a cost of 2000 USD from readily available parts. It is capable of consistently exerting large torques over long durations of time. We show that LEAP Hand can be used to perform several manipulation tasks in the real world -- from visual teleoperation to learning from passive video data and sim2real. LEAP Hand significantly outperforms its closest competitor Allegro Hand in all our experiments while being 1/8th of the cost. We release detailed assembly instructions, the Sim2Real pipeline and a development platform with useful APIs on our website at https://leap-hand.github.io/
FunGrasp: Functional Grasping for Diverse Dexterous Hands
Functional grasping is essential for humans to perform specific tasks, such as grasping scissors by the finger holes to cut materials or by the blade to safely hand them over. Enabling dexterous robot hands with functional grasping capabilities is crucial for their deployment to accomplish diverse real-world tasks. Recent research in dexterous grasping, however, often focuses on power grasps while overlooking task- and object-specific functional grasping poses. In this paper, we introduce FunGrasp, a system that enables functional dexterous grasping across various robot hands and performs one-shot transfer to unseen objects. Given a single RGBD image of functional human grasping, our system estimates the hand pose and transfers it to different robotic hands via a human-to-robot (H2R) grasp retargeting module. Guided by the retargeted grasping poses, a policy is trained through reinforcement learning in simulation for dynamic grasping control. To achieve robust sim-to-real transfer, we employ several techniques including privileged learning, system identification, domain randomization, and gravity compensation. In our experiments, we demonstrate that our system enables diverse functional grasping of unseen objects using single RGBD images, and can be successfully deployed across various dexterous robot hands. The significance of the components is validated through comprehensive ablation studies. Project page: https://hly-123.github.io/FunGrasp/ .
ACR: Attention Collaboration-based Regressor for Arbitrary Two-Hand Reconstruction
Reconstructing two hands from monocular RGB images is challenging due to frequent occlusion and mutual confusion. Existing methods mainly learn an entangled representation to encode two interacting hands, which are incredibly fragile to impaired interaction, such as truncated hands, separate hands, or external occlusion. This paper presents ACR (Attention Collaboration-based Regressor), which makes the first attempt to reconstruct hands in arbitrary scenarios. To achieve this, ACR explicitly mitigates interdependencies between hands and between parts by leveraging center and part-based attention for feature extraction. However, reducing interdependence helps release the input constraint while weakening the mutual reasoning about reconstructing the interacting hands. Thus, based on center attention, ACR also learns cross-hand prior that handle the interacting hands better. We evaluate our method on various types of hand reconstruction datasets. Our method significantly outperforms the best interacting-hand approaches on the InterHand2.6M dataset while yielding comparable performance with the state-of-the-art single-hand methods on the FreiHand dataset. More qualitative results on in-the-wild and hand-object interaction datasets and web images/videos further demonstrate the effectiveness of our approach for arbitrary hand reconstruction. Our code is available at https://github.com/ZhengdiYu/Arbitrary-Hands-3D-Reconstruction.
You Only Teach Once: Learn One-Shot Bimanual Robotic Manipulation from Video Demonstrations
Bimanual robotic manipulation is a long-standing challenge of embodied intelligence due to its characteristics of dual-arm spatial-temporal coordination and high-dimensional action spaces. Previous studies rely on pre-defined action taxonomies or direct teleoperation to alleviate or circumvent these issues, often making them lack simplicity, versatility and scalability. Differently, we believe that the most effective and efficient way for teaching bimanual manipulation is learning from human demonstrated videos, where rich features such as spatial-temporal positions, dynamic postures, interaction states and dexterous transitions are available almost for free. In this work, we propose the YOTO (You Only Teach Once), which can extract and then inject patterns of bimanual actions from as few as a single binocular observation of hand movements, and teach dual robot arms various complex tasks. Furthermore, based on keyframes-based motion trajectories, we devise a subtle solution for rapidly generating training demonstrations with diverse variations of manipulated objects and their locations. These data can then be used to learn a customized bimanual diffusion policy (BiDP) across diverse scenes. In experiments, YOTO achieves impressive performance in mimicking 5 intricate long-horizon bimanual tasks, possesses strong generalization under different visual and spatial conditions, and outperforms existing visuomotor imitation learning methods in accuracy and efficiency. Our project link is https://hnuzhy.github.io/projects/YOTO.
OHTA: One-shot Hand Avatar via Data-driven Implicit Priors
In this paper, we delve into the creation of one-shot hand avatars, attaining high-fidelity and drivable hand representations swiftly from a single image. With the burgeoning domains of the digital human, the need for quick and personalized hand avatar creation has become increasingly critical. Existing techniques typically require extensive input data and may prove cumbersome or even impractical in certain scenarios. To enhance accessibility, we present a novel method OHTA (One-shot Hand avaTAr) that enables the creation of detailed hand avatars from merely one image. OHTA tackles the inherent difficulties of this data-limited problem by learning and utilizing data-driven hand priors. Specifically, we design a hand prior model initially employed for 1) learning various hand priors with available data and subsequently for 2) the inversion and fitting of the target identity with prior knowledge. OHTA demonstrates the capability to create high-fidelity hand avatars with consistent animatable quality, solely relying on a single image. Furthermore, we illustrate the versatility of OHTA through diverse applications, encompassing text-to-avatar conversion, hand editing, and identity latent space manipulation.
GrainGrasp: Dexterous Grasp Generation with Fine-grained Contact Guidance
One goal of dexterous robotic grasping is to allow robots to handle objects with the same level of flexibility and adaptability as humans. However, it remains a challenging task to generate an optimal grasping strategy for dexterous hands, especially when it comes to delicate manipulation and accurate adjustment the desired grasping poses for objects of varying shapes and sizes. In this paper, we propose a novel dexterous grasp generation scheme called GrainGrasp that provides fine-grained contact guidance for each fingertip. In particular, we employ a generative model to predict separate contact maps for each fingertip on the object point cloud, effectively capturing the specifics of finger-object interactions. In addition, we develop a new dexterous grasping optimization algorithm that solely relies on the point cloud as input, eliminating the necessity for complete mesh information of the object. By leveraging the contact maps of different fingertips, the proposed optimization algorithm can generate precise and determinable strategies for human-like object grasping. Experimental results confirm the efficiency of the proposed scheme.
JGHand: Joint-Driven Animatable Hand Avater via 3D Gaussian Splatting
Since hands are the primary interface in daily interactions, modeling high-quality digital human hands and rendering realistic images is a critical research problem. Furthermore, considering the requirements of interactive and rendering applications, it is essential to achieve real-time rendering and driveability of the digital model without compromising rendering quality. Thus, we propose Jointly 3D Gaussian Hand (JGHand), a novel joint-driven 3D Gaussian Splatting (3DGS)-based hand representation that renders high-fidelity hand images in real-time for various poses and characters. Distinct from existing articulated neural rendering techniques, we introduce a differentiable process for spatial transformations based on 3D key points. This process supports deformations from the canonical template to a mesh with arbitrary bone lengths and poses. Additionally, we propose a real-time shadow simulation method based on per-pixel depth to simulate self-occlusion shadows caused by finger movements. Finally, we embed the hand prior and propose an animatable 3DGS representation of the hand driven solely by 3D key points. We validate the effectiveness of each component of our approach through comprehensive ablation studies. Experimental results on public datasets demonstrate that JGHand achieves real-time rendering speeds with enhanced quality, surpassing state-of-the-art methods.
Sequential Dexterity: Chaining Dexterous Policies for Long-Horizon Manipulation
Many real-world manipulation tasks consist of a series of subtasks that are significantly different from one another. Such long-horizon, complex tasks highlight the potential of dexterous hands, which possess adaptability and versatility, capable of seamlessly transitioning between different modes of functionality without the need for re-grasping or external tools. However, the challenges arise due to the high-dimensional action space of dexterous hand and complex compositional dynamics of the long-horizon tasks. We present Sequential Dexterity, a general system based on reinforcement learning (RL) that chains multiple dexterous policies for achieving long-horizon task goals. The core of the system is a transition feasibility function that progressively finetunes the sub-policies for enhancing chaining success rate, while also enables autonomous policy-switching for recovery from failures and bypassing redundant stages. Despite being trained only in simulation with a few task objects, our system demonstrates generalization capability to novel object shapes and is able to zero-shot transfer to a real-world robot equipped with a dexterous hand. More details and video results could be found at https://sequential-dexterity.github.io
BIGS: Bimanual Category-agnostic Interaction Reconstruction from Monocular Videos via 3D Gaussian Splatting
Reconstructing 3Ds of hand-object interaction (HOI) is a fundamental problem that can find numerous applications. Despite recent advances, there is no comprehensive pipeline yet for bimanual class-agnostic interaction reconstruction from a monocular RGB video, where two hands and an unknown object are interacting with each other. Previous works tackled the limited hand-object interaction case, where object templates are pre-known or only one hand is involved in the interaction. The bimanual interaction reconstruction exhibits severe occlusions introduced by complex interactions between two hands and an object. To solve this, we first introduce BIGS (Bimanual Interaction 3D Gaussian Splatting), a method that reconstructs 3D Gaussians of hands and an unknown object from a monocular video. To robustly obtain object Gaussians avoiding severe occlusions, we leverage prior knowledge of pre-trained diffusion model with score distillation sampling (SDS) loss, to reconstruct unseen object parts. For hand Gaussians, we exploit the 3D priors of hand model (i.e., MANO) and share a single Gaussian for two hands to effectively accumulate hand 3D information, given limited views. To further consider the 3D alignment between hands and objects, we include the interacting-subjects optimization step during Gaussian optimization. Our method achieves the state-of-the-art accuracy on two challenging datasets, in terms of 3D hand pose estimation (MPJPE), 3D object reconstruction (CDh, CDo, F10), and rendering quality (PSNR, SSIM, LPIPS), respectively.
Learning Interaction-aware 3D Gaussian Splatting for One-shot Hand Avatars
In this paper, we propose to create animatable avatars for interacting hands with 3D Gaussian Splatting (GS) and single-image inputs. Existing GS-based methods designed for single subjects often yield unsatisfactory results due to limited input views, various hand poses, and occlusions. To address these challenges, we introduce a novel two-stage interaction-aware GS framework that exploits cross-subject hand priors and refines 3D Gaussians in interacting areas. Particularly, to handle hand variations, we disentangle the 3D presentation of hands into optimization-based identity maps and learning-based latent geometric features and neural texture maps. Learning-based features are captured by trained networks to provide reliable priors for poses, shapes, and textures, while optimization-based identity maps enable efficient one-shot fitting of out-of-distribution hands. Furthermore, we devise an interaction-aware attention module and a self-adaptive Gaussian refinement module. These modules enhance image rendering quality in areas with intra- and inter-hand interactions, overcoming the limitations of existing GS-based methods. Our proposed method is validated via extensive experiments on the large-scale InterHand2.6M dataset, and it significantly improves the state-of-the-art performance in image quality. Project Page: https://github.com/XuanHuang0/GuassianHand.
HandNeRF: Neural Radiance Fields for Animatable Interacting Hands
We propose a novel framework to reconstruct accurate appearance and geometry with neural radiance fields (NeRF) for interacting hands, enabling the rendering of photo-realistic images and videos for gesture animation from arbitrary views. Given multi-view images of a single hand or interacting hands, an off-the-shelf skeleton estimator is first employed to parameterize the hand poses. Then we design a pose-driven deformation field to establish correspondence from those different poses to a shared canonical space, where a pose-disentangled NeRF for one hand is optimized. Such unified modeling efficiently complements the geometry and texture cues in rarely-observed areas for both hands. Meanwhile, we further leverage the pose priors to generate pseudo depth maps as guidance for occlusion-aware density learning. Moreover, a neural feature distillation method is proposed to achieve cross-domain alignment for color optimization. We conduct extensive experiments to verify the merits of our proposed HandNeRF and report a series of state-of-the-art results both qualitatively and quantitatively on the large-scale InterHand2.6M dataset.
Binding Touch to Everything: Learning Unified Multimodal Tactile Representations
The ability to associate touch with other modalities has huge implications for humans and computational systems. However, multimodal learning with touch remains challenging due to the expensive data collection process and non-standardized sensor outputs. We introduce UniTouch, a unified tactile model for vision-based touch sensors connected to multiple modalities, including vision, language, and sound. We achieve this by aligning our UniTouch embeddings to pretrained image embeddings already associated with a variety of other modalities. We further propose learnable sensor-specific tokens, allowing the model to learn from a set of heterogeneous tactile sensors, all at the same time. UniTouch is capable of conducting various touch sensing tasks in the zero-shot setting, from robot grasping prediction to touch image question answering. To the best of our knowledge, UniTouch is the first to demonstrate such capabilities. Project page: https://cfeng16.github.io/UniTouch/
DexTOG: Learning Task-Oriented Dexterous Grasp with Language
This study introduces a novel language-guided diffusion-based learning framework, DexTOG, aimed at advancing the field of task-oriented grasping (TOG) with dexterous hands. Unlike existing methods that mainly focus on 2-finger grippers, this research addresses the complexities of dexterous manipulation, where the system must identify non-unique optimal grasp poses under specific task constraints, cater to multiple valid grasps, and search in a high degree-of-freedom configuration space in grasp planning. The proposed DexTOG includes a diffusion-based grasp pose generation model, DexDiffu, and a data engine to support the DexDiffu. By leveraging DexTOG, we also proposed a new dataset, DexTOG-80K, which was developed using a shadow robot hand to perform various tasks on 80 objects from 5 categories, showcasing the dexterity and multi-tasking capabilities of the robotic hand. This research not only presents a significant leap in dexterous TOG but also provides a comprehensive dataset and simulation validation, setting a new benchmark in robotic manipulation research.
HOMIE: Humanoid Loco-Manipulation with Isomorphic Exoskeleton Cockpit
Generalizable humanoid loco-manipulation poses significant challenges, requiring coordinated whole-body control and precise, contact-rich object manipulation. To address this, this paper introduces HOMIE, a semi-autonomous teleoperation system that combines a reinforcement learning policy for body control mapped to a pedal, an isomorphic exoskeleton arm for arm control, and motion-sensing gloves for hand control, forming a unified cockpit to freely operate humanoids and establish a data flywheel. The policy incorporates novel designs, including an upper-body pose curriculum, a height-tracking reward, and symmetry utilization. These features enable the system to perform walking and squatting to specific heights while seamlessly adapting to arbitrary upper-body poses. The exoskeleton, by eliminating the reliance on inverse dynamics, delivers faster and more precise arm control. The gloves utilize Hall sensors instead of servos, allowing even compact devices to achieve 15 or more degrees of freedom and freely adapt to any model of dexterous hands. Compared to previous teleoperation systems, HOMIE stands out for its exceptional efficiency, completing tasks in half the time; its expanded working range, allowing users to freely reach high and low areas as well as interact with any objects; and its affordability, with a price of just $500. The system is fully open-source, demos and code can be found in our https://homietele.github.io/.
NL2Contact: Natural Language Guided 3D Hand-Object Contact Modeling with Diffusion Model
Modeling the physical contacts between the hand and object is standard for refining inaccurate hand poses and generating novel human grasp in 3D hand-object reconstruction. However, existing methods rely on geometric constraints that cannot be specified or controlled. This paper introduces a novel task of controllable 3D hand-object contact modeling with natural language descriptions. Challenges include i) the complexity of cross-modal modeling from language to contact, and ii) a lack of descriptive text for contact patterns. To address these issues, we propose NL2Contact, a model that generates controllable contacts by leveraging staged diffusion models. Given a language description of the hand and contact, NL2Contact generates realistic and faithful 3D hand-object contacts. To train the model, we build ContactDescribe, the first dataset with hand-centered contact descriptions. It contains multi-level and diverse descriptions generated by large language models based on carefully designed prompts (e.g., grasp action, grasp type, contact location, free finger status). We show applications of our model to grasp pose optimization and novel human grasp generation, both based on a textual contact description.
Re-HOLD: Video Hand Object Interaction Reenactment via adaptive Layout-instructed Diffusion Model
Current digital human studies focusing on lip-syncing and body movement are no longer sufficient to meet the growing industrial demand, while human video generation techniques that support interacting with real-world environments (e.g., objects) have not been well investigated. Despite human hand synthesis already being an intricate problem, generating objects in contact with hands and their interactions presents an even more challenging task, especially when the objects exhibit obvious variations in size and shape. To tackle these issues, we present a novel video Reenactment framework focusing on Human-Object Interaction (HOI) via an adaptive Layout-instructed Diffusion model (Re-HOLD). Our key insight is to employ specialized layout representation for hands and objects, respectively. Such representations enable effective disentanglement of hand modeling and object adaptation to diverse motion sequences. To further improve the generation quality of HOI, we design an interactive textural enhancement module for both hands and objects by introducing two independent memory banks. We also propose a layout adjustment strategy for the cross-object reenactment scenario to adaptively adjust unreasonable layouts caused by diverse object sizes during inference. Comprehensive qualitative and quantitative evaluations demonstrate that our proposed framework significantly outperforms existing methods. Project page: https://fyycs.github.io/Re-HOLD.
FoundHand: Large-Scale Domain-Specific Learning for Controllable Hand Image Generation
Despite remarkable progress in image generation models, generating realistic hands remains a persistent challenge due to their complex articulation, varying viewpoints, and frequent occlusions. We present FoundHand, a large-scale domain-specific diffusion model for synthesizing single and dual hand images. To train our model, we introduce FoundHand-10M, a large-scale hand dataset with 2D keypoints and segmentation mask annotations. Our insight is to use 2D hand keypoints as a universal representation that encodes both hand articulation and camera viewpoint. FoundHand learns from image pairs to capture physically plausible hand articulations, natively enables precise control through 2D keypoints, and supports appearance control. Our model exhibits core capabilities that include the ability to repose hands, transfer hand appearance, and even synthesize novel views. This leads to zero-shot capabilities for fixing malformed hands in previously generated images, or synthesizing hand video sequences. We present extensive experiments and evaluations that demonstrate state-of-the-art performance of our method.
URHand: Universal Relightable Hands
Existing photorealistic relightable hand models require extensive identity-specific observations in different views, poses, and illuminations, and face challenges in generalizing to natural illuminations and novel identities. To bridge this gap, we present URHand, the first universal relightable hand model that generalizes across viewpoints, poses, illuminations, and identities. Our model allows few-shot personalization using images captured with a mobile phone, and is ready to be photorealistically rendered under novel illuminations. To simplify the personalization process while retaining photorealism, we build a powerful universal relightable prior based on neural relighting from multi-view images of hands captured in a light stage with hundreds of identities. The key challenge is scaling the cross-identity training while maintaining personalized fidelity and sharp details without compromising generalization under natural illuminations. To this end, we propose a spatially varying linear lighting model as the neural renderer that takes physics-inspired shading as input feature. By removing non-linear activations and bias, our specifically designed lighting model explicitly keeps the linearity of light transport. This enables single-stage training from light-stage data while generalizing to real-time rendering under arbitrary continuous illuminations across diverse identities. In addition, we introduce the joint learning of a physically based model and our neural relighting model, which further improves fidelity and generalization. Extensive experiments show that our approach achieves superior performance over existing methods in terms of both quality and generalizability. We also demonstrate quick personalization of URHand from a short phone scan of an unseen identity.
CHORD: Category-level Hand-held Object Reconstruction via Shape Deformation
In daily life, humans utilize hands to manipulate objects. Modeling the shape of objects that are manipulated by the hand is essential for AI to comprehend daily tasks and to learn manipulation skills. However, previous approaches have encountered difficulties in reconstructing the precise shapes of hand-held objects, primarily owing to a deficiency in prior shape knowledge and inadequate data for training. As illustrated, given a particular type of tool, such as a mug, despite its infinite variations in shape and appearance, humans have a limited number of 'effective' modes and poses for its manipulation. This can be attributed to the fact that humans have mastered the shape prior of the 'mug' category, and can quickly establish the corresponding relations between different mug instances and the prior, such as where the rim and handle are located. In light of this, we propose a new method, CHORD, for Category-level Hand-held Object Reconstruction via shape Deformation. CHORD deforms a categorical shape prior for reconstructing the intra-class objects. To ensure accurate reconstruction, we empower CHORD with three types of awareness: appearance, shape, and interacting pose. In addition, we have constructed a new dataset, COMIC, of category-level hand-object interaction. COMIC contains a rich array of object instances, materials, hand interactions, and viewing directions. Extensive evaluation shows that CHORD outperforms state-of-the-art approaches in both quantitative and qualitative measures. Code, model, and datasets are available at https://kailinli.github.io/CHORD.
CPF: Learning a Contact Potential Field to Model the Hand-Object Interaction
Modeling the hand-object (HO) interaction not only requires estimation of the HO pose, but also pays attention to the contact due to their interaction. Significant progress has been made in estimating hand and object separately with deep learning methods, simultaneous HO pose estimation and contact modeling has not yet been fully explored. In this paper, we present an explicit contact representation namely Contact Potential Field (CPF), and a learning-fitting hybrid framework namely MIHO to Modeling the Interaction of Hand and Object. In CPF, we treat each contacting HO vertex pair as a spring-mass system. Hence the whole system forms a potential field with minimal elastic energy at the grasp position. Extensive experiments on the two commonly used benchmarks have demonstrated that our method can achieve state-of-the-art in several reconstruction metrics, and allow us to produce more physically plausible HO pose even when the ground-truth exhibits severe interpenetration or disjointedness. Our code is available at https://github.com/lixiny/CPF.
Decaf: Monocular Deformation Capture for Face and Hand Interactions
Existing methods for 3D tracking from monocular RGB videos predominantly consider articulated and rigid objects. Modelling dense non-rigid object deformations in this setting remained largely unaddressed so far, although such effects can improve the realism of the downstream applications such as AR/VR and avatar communications. This is due to the severe ill-posedness of the monocular view setting and the associated challenges. While it is possible to naively track multiple non-rigid objects independently using 3D templates or parametric 3D models, such an approach would suffer from multiple artefacts in the resulting 3D estimates such as depth ambiguity, unnatural intra-object collisions and missing or implausible deformations. Hence, this paper introduces the first method that addresses the fundamental challenges depicted above and that allows tracking human hands interacting with human faces in 3D from single monocular RGB videos. We model hands as articulated objects inducing non-rigid face deformations during an active interaction. Our method relies on a new hand-face motion and interaction capture dataset with realistic face deformations acquired with a markerless multi-view camera system. As a pivotal step in its creation, we process the reconstructed raw 3D shapes with position-based dynamics and an approach for non-uniform stiffness estimation of the head tissues, which results in plausible annotations of the surface deformations, hand-face contact regions and head-hand positions. At the core of our neural approach are a variational auto-encoder supplying the hand-face depth prior and modules that guide the 3D tracking by estimating the contacts and the deformations. Our final 3D hand and face reconstructions are realistic and more plausible compared to several baselines applicable in our setting, both quantitatively and qualitatively. https://vcai.mpi-inf.mpg.de/projects/Decaf
HOT3D: Hand and Object Tracking in 3D from Egocentric Multi-View Videos
We introduce HOT3D, a publicly available dataset for egocentric hand and object tracking in 3D. The dataset offers over 833 minutes (more than 3.7M images) of multi-view RGB/monochrome image streams showing 19 subjects interacting with 33 diverse rigid objects, multi-modal signals such as eye gaze or scene point clouds, as well as comprehensive ground-truth annotations including 3D poses of objects, hands, and cameras, and 3D models of hands and objects. In addition to simple pick-up/observe/put-down actions, HOT3D contains scenarios resembling typical actions in a kitchen, office, and living room environment. The dataset is recorded by two head-mounted devices from Meta: Project Aria, a research prototype of light-weight AR/AI glasses, and Quest 3, a production VR headset sold in millions of units. Ground-truth poses were obtained by a professional motion-capture system using small optical markers attached to hands and objects. Hand annotations are provided in the UmeTrack and MANO formats and objects are represented by 3D meshes with PBR materials obtained by an in-house scanner. In our experiments, we demonstrate the effectiveness of multi-view egocentric data for three popular tasks: 3D hand tracking, 6DoF object pose estimation, and 3D lifting of unknown in-hand objects. The evaluated multi-view methods, whose benchmarking is uniquely enabled by HOT3D, significantly outperform their single-view counterparts.
DexGrasp Anything: Towards Universal Robotic Dexterous Grasping with Physics Awareness
A dexterous hand capable of grasping any object is essential for the development of general-purpose embodied intelligent robots. However, due to the high degree of freedom in dexterous hands and the vast diversity of objects, generating high-quality, usable grasping poses in a robust manner is a significant challenge. In this paper, we introduce DexGrasp Anything, a method that effectively integrates physical constraints into both the training and sampling phases of a diffusion-based generative model, achieving state-of-the-art performance across nearly all open datasets. Additionally, we present a new dexterous grasping dataset containing over 3.4 million diverse grasping poses for more than 15k different objects, demonstrating its potential to advance universal dexterous grasping. The code of our method and our dataset will be publicly released soon.
Learning Dexterous In-Hand Manipulation
We use reinforcement learning (RL) to learn dexterous in-hand manipulation policies which can perform vision-based object reorientation on a physical Shadow Dexterous Hand. The training is performed in a simulated environment in which we randomize many of the physical properties of the system like friction coefficients and an object's appearance. Our policies transfer to the physical robot despite being trained entirely in simulation. Our method does not rely on any human demonstrations, but many behaviors found in human manipulation emerge naturally, including finger gaiting, multi-finger coordination, and the controlled use of gravity. Our results were obtained using the same distributed RL system that was used to train OpenAI Five. We also include a video of our results: https://youtu.be/jwSbzNHGflM
HumanoidGen: Data Generation for Bimanual Dexterous Manipulation via LLM Reasoning
For robotic manipulation, existing robotics datasets and simulation benchmarks predominantly cater to robot-arm platforms. However, for humanoid robots equipped with dual arms and dexterous hands, simulation tasks and high-quality demonstrations are notably lacking. Bimanual dexterous manipulation is inherently more complex, as it requires coordinated arm movements and hand operations, making autonomous data collection challenging. This paper presents HumanoidGen, an automated task creation and demonstration collection framework that leverages atomic dexterous operations and LLM reasoning to generate relational constraints. Specifically, we provide spatial annotations for both assets and dexterous hands based on the atomic operations, and perform an LLM planner to generate a chain of actionable spatial constraints for arm movements based on object affordances and scenes. To further improve planning ability, we employ a variant of Monte Carlo tree search to enhance LLM reasoning for long-horizon tasks and insufficient annotation. In experiments, we create a novel benchmark with augmented scenarios to evaluate the quality of the collected data. The results show that the performance of the 2D and 3D diffusion policies can scale with the generated dataset. Project page is https://openhumanoidgen.github.io.
3DTouch: Towards a Wearable 3D Input Device for 3D Applications
Three-dimensional (3D) applications have come to every corner of life. We present 3DTouch, a novel 3D wearable input device worn on the fingertip for interacting with 3D applications. 3DTouch is self-contained, and designed to universally work on various 3D platforms. The device employs touch input for the benefits of passive haptic feedback, and movement stability. Moreover, with touch interaction, 3DTouch is conceptually less fatiguing to use over many hours than 3D spatial input devices such as Kinect. Our approach relies on relative positioning technique using an optical laser sensor and a 9-DOF inertial measurement unit. We implemented a set of 3D interaction techniques including selection, translation, and rotation using 3DTouch. An evaluation also demonstrates the device's tracking accuracy of 1.10 mm and 2.33 degrees for subtle touch interaction in 3D space. With 3DTouch project, we would like to provide an input device that reduces the gap between 3D applications and users.
Dexterous Teleoperation of 20-DoF ByteDexter Hand via Human Motion Retargeting
Replicating human--level dexterity remains a fundamental robotics challenge, requiring integrated solutions from mechatronic design to the control of high degree--of--freedom (DoF) robotic hands. While imitation learning shows promise in transferring human dexterity to robots, the efficacy of trained policies relies on the quality of human demonstration data. We bridge this gap with a hand--arm teleoperation system featuring: (1) a 20--DoF linkage--driven anthropomorphic robotic hand for biomimetic dexterity, and (2) an optimization--based motion retargeting for real--time, high--fidelity reproduction of intricate human hand motions and seamless hand--arm coordination. We validate the system via extensive empirical evaluations, including dexterous in-hand manipulation tasks and a long--horizon task requiring the organization of a cluttered makeup table randomly populated with nine objects. Experimental results demonstrate its intuitive teleoperation interface with real--time control and the ability to generate high--quality demonstration data. Please refer to the accompanying video for further details.
DexCap: Scalable and Portable Mocap Data Collection System for Dexterous Manipulation
Imitation learning from human hand motion data presents a promising avenue for imbuing robots with human-like dexterity in real-world manipulation tasks. Despite this potential, substantial challenges persist, particularly with the portability of existing hand motion capture (mocap) systems and the difficulty of translating mocap data into effective control policies. To tackle these issues, we introduce DexCap, a portable hand motion capture system, alongside DexIL, a novel imitation algorithm for training dexterous robot skills directly from human hand mocap data. DexCap offers precise, occlusion-resistant tracking of wrist and finger motions based on SLAM and electromagnetic field together with 3D observations of the environment. Utilizing this rich dataset, DexIL employs inverse kinematics and point cloud-based imitation learning to replicate human actions with robot hands. Beyond learning from human motion, DexCap also offers an optional human-in-the-loop correction mechanism to refine and further improve robot performance. Through extensive evaluation across six dexterous manipulation tasks, our approach not only demonstrates superior performance but also showcases the system's capability to effectively learn from in-the-wild mocap data, paving the way for future data collection methods for dexterous manipulation. More details can be found at https://dex-cap.github.io
Getting the Ball Rolling: Learning a Dexterous Policy for a Biomimetic Tendon-Driven Hand with Rolling Contact Joints
Biomimetic, dexterous robotic hands have the potential to replicate much of the tasks that a human can do, and to achieve status as a general manipulation platform. Recent advances in reinforcement learning (RL) frameworks have achieved remarkable performance in quadrupedal locomotion and dexterous manipulation tasks. Combined with GPU-based highly parallelized simulations capable of simulating thousands of robots in parallel, RL-based controllers have become more scalable and approachable. However, in order to bring RL-trained policies to the real world, we require training frameworks that output policies that can work with physical actuators and sensors as well as a hardware platform that can be manufactured with accessible materials yet is robust enough to run interactive policies. This work introduces the biomimetic tendon-driven Faive Hand and its system architecture, which uses tendon-driven rolling contact joints to achieve a 3D printable, robust high-DoF hand design. We model each element of the hand and integrate it into a GPU simulation environment to train a policy with RL, and achieve zero-shot transfer of a dexterous in-hand sphere rotation skill to the physical robot hand.
DART: Articulated Hand Model with Diverse Accessories and Rich Textures
Hand, the bearer of human productivity and intelligence, is receiving much attention due to the recent fever of digital twins. Among different hand morphable models, MANO has been widely used in vision and graphics community. However, MANO disregards textures and accessories, which largely limits its power to synthesize photorealistic hand data. In this paper, we extend MANO with Diverse Accessories and Rich Textures, namely DART. DART is composed of 50 daily 3D accessories which varies in appearance and shape, and 325 hand-crafted 2D texture maps covers different kinds of blemishes or make-ups. Unity GUI is also provided to generate synthetic hand data with user-defined settings, e.g., pose, camera, background, lighting, textures, and accessories. Finally, we release DARTset, which contains large-scale (800K), high-fidelity synthetic hand images, paired with perfect-aligned 3D labels. Experiments demonstrate its superiority in diversity. As a complement to existing hand datasets, DARTset boosts the generalization in both hand pose estimation and mesh recovery tasks. Raw ingredients (textures, accessories), Unity GUI, source code and DARTset are publicly available at dart2022.github.io
InterHandGen: Two-Hand Interaction Generation via Cascaded Reverse Diffusion
We present InterHandGen, a novel framework that learns the generative prior of two-hand interaction. Sampling from our model yields plausible and diverse two-hand shapes in close interaction with or without an object. Our prior can be incorporated into any optimization or learning methods to reduce ambiguity in an ill-posed setup. Our key observation is that directly modeling the joint distribution of multiple instances imposes high learning complexity due to its combinatorial nature. Thus, we propose to decompose the modeling of joint distribution into the modeling of factored unconditional and conditional single instance distribution. In particular, we introduce a diffusion model that learns the single-hand distribution unconditional and conditional to another hand via conditioning dropout. For sampling, we combine anti-penetration and classifier-free guidance to enable plausible generation. Furthermore, we establish the rigorous evaluation protocol of two-hand synthesis, where our method significantly outperforms baseline generative models in terms of plausibility and diversity. We also demonstrate that our diffusion prior can boost the performance of two-hand reconstruction from monocular in-the-wild images, achieving new state-of-the-art accuracy.
DexH2R: Task-oriented Dexterous Manipulation from Human to Robots
Dexterous manipulation is a critical aspect of human capability, enabling interaction with a wide variety of objects. Recent advancements in learning from human demonstrations and teleoperation have enabled progress for robots in such ability. However, these approaches either require complex data collection such as costly human effort for eye-robot contact, or suffer from poor generalization when faced with novel scenarios. To solve both challenges, we propose a framework, DexH2R, that combines human hand motion retargeting with a task-oriented residual action policy, improving task performance by bridging the embodiment gap between human and robotic dexterous hands. Specifically, DexH2R learns the residual policy directly from retargeted primitive actions and task-oriented rewards, eliminating the need for labor-intensive teleoperation systems. Moreover, we incorporate test-time guidance for novel scenarios by taking in desired trajectories of human hands and objects, allowing the dexterous hand to acquire new skills with high generalizability. Extensive experiments in both simulation and real-world environments demonstrate the effectiveness of our work, outperforming prior state-of-the-arts by 40% across various settings.
RenderIH: A Large-scale Synthetic Dataset for 3D Interacting Hand Pose Estimation
The current interacting hand (IH) datasets are relatively simplistic in terms of background and texture, with hand joints being annotated by a machine annotator, which may result in inaccuracies, and the diversity of pose distribution is limited. However, the variability of background, pose distribution, and texture can greatly influence the generalization ability. Therefore, we present a large-scale synthetic dataset RenderIH for interacting hands with accurate and diverse pose annotations. The dataset contains 1M photo-realistic images with varied backgrounds, perspectives, and hand textures. To generate natural and diverse interacting poses, we propose a new pose optimization algorithm. Additionally, for better pose estimation accuracy, we introduce a transformer-based pose estimation network, TransHand, to leverage the correlation between interacting hands and verify the effectiveness of RenderIH in improving results. Our dataset is model-agnostic and can improve more accuracy of any hand pose estimation method in comparison to other real or synthetic datasets. Experiments have shown that pretraining on our synthetic data can significantly decrease the error from 6.76mm to 5.79mm, and our Transhand surpasses contemporary methods. Our dataset and code are available at https://github.com/adwardlee/RenderIH.
ContactGen: Generative Contact Modeling for Grasp Generation
This paper presents a novel object-centric contact representation ContactGen for hand-object interaction. The ContactGen comprises three components: a contact map indicates the contact location, a part map represents the contact hand part, and a direction map tells the contact direction within each part. Given an input object, we propose a conditional generative model to predict ContactGen and adopt model-based optimization to predict diverse and geometrically feasible grasps. Experimental results demonstrate our method can generate high-fidelity and diverse human grasps for various objects. Project page: https://stevenlsw.github.io/contactgen/
ParaHome: Parameterizing Everyday Home Activities Towards 3D Generative Modeling of Human-Object Interactions
To enable machines to learn how humans interact with the physical world in our daily activities, it is crucial to provide rich data that encompasses the 3D motion of humans as well as the motion of objects in a learnable 3D representation. Ideally, this data should be collected in a natural setup, capturing the authentic dynamic 3D signals during human-object interactions. To address this challenge, we introduce the ParaHome system, designed to capture and parameterize dynamic 3D movements of humans and objects within a common home environment. Our system consists of a multi-view setup with 70 synchronized RGB cameras, as well as wearable motion capture devices equipped with an IMU-based body suit and hand motion capture gloves. By leveraging the ParaHome system, we collect a novel large-scale dataset of human-object interaction. Notably, our dataset offers key advancement over existing datasets in three main aspects: (1) capturing 3D body and dexterous hand manipulation motion alongside 3D object movement within a contextual home environment during natural activities; (2) encompassing human interaction with multiple objects in various episodic scenarios with corresponding descriptions in texts; (3) including articulated objects with multiple parts expressed with parameterized articulations. Building upon our dataset, we introduce new research tasks aimed at building a generative model for learning and synthesizing human-object interactions in a real-world room setting.
HaGRID - HAnd Gesture Recognition Image Dataset
In this paper, we introduce an enormous dataset HaGRID (HAnd Gesture Recognition Image Dataset) for hand gesture recognition (HGR) systems. This dataset contains 552,992 samples divided into 18 classes of gestures. The annotations consist of bounding boxes of hands with gesture labels and markups of leading hands. The proposed dataset allows for building HGR systems, which can be used in video conferencing services, home automation systems, the automotive sector, services for people with speech and hearing impairments, etc. We are especially focused on interaction with devices to manage them. That is why all 18 chosen gestures are functional, familiar to the majority of people, and may be an incentive to take some action. In addition, we used crowdsourcing platforms to collect the dataset and took into account various parameters to ensure data diversity. We describe the challenges of using existing HGR datasets for our task and provide a detailed overview of them. Furthermore, the baselines for the hand detection and gesture classification tasks are proposed.
Learning Dense Hand Contact Estimation from Imbalanced Data
Hands are essential to human interaction, and understanding contact between hands and the world can promote comprehensive understanding of their function. Recently, there have been growing number of hand interaction datasets that cover interaction with object, other hand, scene, and body. Despite the significance of the task and increasing high-quality data, how to effectively learn dense hand contact estimation remains largely underexplored. There are two major challenges for learning dense hand contact estimation. First, there exists class imbalance issue from hand contact datasets where majority of samples are not in contact. Second, hand contact datasets contain spatial imbalance issue with most of hand contact exhibited in finger tips, resulting in challenges for generalization towards contacts in other hand regions. To tackle these issues, we present a framework that learns dense HAnd COntact estimation (HACO) from imbalanced data. To resolve the class imbalance issue, we introduce balanced contact sampling, which builds and samples from multiple sampling groups that fairly represent diverse contact statistics for both contact and non-contact samples. Moreover, to address the spatial imbalance issue, we propose vertex-level class-balanced (VCB) loss, which incorporates spatially varying contact distribution by separately reweighting loss contribution of each vertex based on its contact frequency across dataset. As a result, we effectively learn to predict dense hand contact estimation with large-scale hand contact data without suffering from class and spatial imbalance issue. The codes will be released.
Introducing HOT3D: An Egocentric Dataset for 3D Hand and Object Tracking
We introduce HOT3D, a publicly available dataset for egocentric hand and object tracking in 3D. The dataset offers over 833 minutes (more than 3.7M images) of multi-view RGB/monochrome image streams showing 19 subjects interacting with 33 diverse rigid objects, multi-modal signals such as eye gaze or scene point clouds, as well as comprehensive ground truth annotations including 3D poses of objects, hands, and cameras, and 3D models of hands and objects. In addition to simple pick-up/observe/put-down actions, HOT3D contains scenarios resembling typical actions in a kitchen, office, and living room environment. The dataset is recorded by two head-mounted devices from Meta: Project Aria, a research prototype of light-weight AR/AI glasses, and Quest 3, a production VR headset sold in millions of units. Ground-truth poses were obtained by a professional motion-capture system using small optical markers attached to hands and objects. Hand annotations are provided in the UmeTrack and MANO formats and objects are represented by 3D meshes with PBR materials obtained by an in-house scanner. We aim to accelerate research on egocentric hand-object interaction by making the HOT3D dataset publicly available and by co-organizing public challenges on the dataset at ECCV 2024. The dataset can be downloaded from the project website: https://facebookresearch.github.io/hot3d/.
LiveHand: Real-time and Photorealistic Neural Hand Rendering
The human hand is the main medium through which we interact with our surroundings, making its digitization an important problem. While there are several works modeling the geometry of hands, little attention has been paid to capturing photo-realistic appearance. Moreover, for applications in extended reality and gaming, real-time rendering is critical. We present the first neural-implicit approach to photo-realistically render hands in real-time. This is a challenging problem as hands are textured and undergo strong articulations with pose-dependent effects. However, we show that this aim is achievable through our carefully designed method. This includes training on a low-resolution rendering of a neural radiance field, together with a 3D-consistent super-resolution module and mesh-guided sampling and space canonicalization. We demonstrate a novel application of perceptual loss on the image space, which is critical for learning details accurately. We also show a live demo where we photo-realistically render the human hand in real-time for the first time, while also modeling pose- and view-dependent appearance effects. We ablate all our design choices and show that they optimize for rendering speed and quality. Video results and our code can be accessed from https://vcai.mpi-inf.mpg.de/projects/LiveHand/
TalkinNeRF: Animatable Neural Fields for Full-Body Talking Humans
We introduce a novel framework that learns a dynamic neural radiance field (NeRF) for full-body talking humans from monocular videos. Prior work represents only the body pose or the face. However, humans communicate with their full body, combining body pose, hand gestures, as well as facial expressions. In this work, we propose TalkinNeRF, a unified NeRF-based network that represents the holistic 4D human motion. Given a monocular video of a subject, we learn corresponding modules for the body, face, and hands, that are combined together to generate the final result. To capture complex finger articulation, we learn an additional deformation field for the hands. Our multi-identity representation enables simultaneous training for multiple subjects, as well as robust animation under completely unseen poses. It can also generalize to novel identities, given only a short video as input. We demonstrate state-of-the-art performance for animating full-body talking humans, with fine-grained hand articulation and facial expressions.
Learning Diverse Bimanual Dexterous Manipulation Skills from Human Demonstrations
Bimanual dexterous manipulation is a critical yet underexplored area in robotics. Its high-dimensional action space and inherent task complexity present significant challenges for policy learning, and the limited task diversity in existing benchmarks hinders general-purpose skill development. Existing approaches largely depend on reinforcement learning, often constrained by intricately designed reward functions tailored to a narrow set of tasks. In this work, we present a novel approach for efficiently learning diverse bimanual dexterous skills from abundant human demonstrations. Specifically, we introduce BiDexHD, a framework that unifies task construction from existing bimanual datasets and employs teacher-student policy learning to address all tasks. The teacher learns state-based policies using a general two-stage reward function across tasks with shared behaviors, while the student distills the learned multi-task policies into a vision-based policy. With BiDexHD, scalable learning of numerous bimanual dexterous skills from auto-constructed tasks becomes feasible, offering promising advances toward universal bimanual dexterous manipulation. Our empirical evaluation on the TACO dataset, spanning 141 tasks across six categories, demonstrates a task fulfillment rate of 74.59% on trained tasks and 51.07% on unseen tasks, showcasing the effectiveness and competitive zero-shot generalization capabilities of BiDexHD. For videos and more information, visit our project page https://sites.google.com/view/bidexhd.
HAND Me the Data: Fast Robot Adaptation via Hand Path Retrieval
We hand the community HAND, a simple and time-efficient method for teaching robots new manipulation tasks through human hand demonstrations. Instead of relying on task-specific robot demonstrations collected via teleoperation, HAND uses easy-to-provide hand demonstrations to retrieve relevant behaviors from task-agnostic robot play data. Using a visual tracking pipeline, HAND extracts the motion of the human hand from the hand demonstration and retrieves robot sub-trajectories in two stages: first filtering by visual similarity, then retrieving trajectories with similar behaviors to the hand. Fine-tuning a policy on the retrieved data enables real-time learning of tasks in under four minutes, without requiring calibrated cameras or detailed hand pose estimation. Experiments also show that HAND outperforms retrieval baselines by over 2x in average task success rates on real robots. Videos can be found at our project website: https://liralab.usc.edu/handretrieval/.
Recognition of 26 Degrees of Freedom of Hands Using Model-based approach and Depth-Color Images
In this study, we present an model-based approach to recognize full 26 degrees of freedom of a human hand. Input data include RGB-D images acquired from a Kinect camera and a 3D model of the hand constructed from its anatomy and graphical matrices. A cost function is then defined so that its minimum value is achieved when the model and observation images are matched. To solve the optimization problem in 26 dimensional space, the particle swarm optimization algorimth with improvements are used. In addition, parallel computation in graphical processing units (GPU) is utilized to handle computationally expensive tasks. Simulation and experimental results show that the system can recognize 26 degrees of freedom of hands with the processing time of 0.8 seconds per frame. The algorithm is robust to noise and the hardware requirement is simple with a single camera.
Benchmarks and Challenges in Pose Estimation for Egocentric Hand Interactions with Objects
We interact with the world with our hands and see it through our own (egocentric) perspective. A holistic 3Dunderstanding of such interactions from egocentric views is important for tasks in robotics, AR/VR, action recognition and motion generation. Accurately reconstructing such interactions in 3D is challenging due to heavy occlusion, viewpoint bias, camera distortion, and motion blur from the head movement. To this end, we designed the HANDS23 challenge based on the AssemblyHands and ARCTIC datasets with carefully designed training and testing splits. Based on the results of the top submitted methods and more recent baselines on the leaderboards, we perform a thorough analysis on 3D hand(-object) reconstruction tasks. Our analysis demonstrates the effectiveness of addressing distortion specific to egocentric cameras, adopting high-capacity transformers to learn complex hand-object interactions, and fusing predictions from different views. Our study further reveals challenging scenarios intractable with state-of-the-art methods, such as fast hand motion, object reconstruction from narrow egocentric views, and close contact between two hands and objects. Our efforts will enrich the community's knowledge foundation and facilitate future hand studies on egocentric hand-object interactions.
XHand: Real-time Expressive Hand Avatar
Hand avatars play a pivotal role in a wide array of digital interfaces, enhancing user immersion and facilitating natural interaction within virtual environments. While previous studies have focused on photo-realistic hand rendering, little attention has been paid to reconstruct the hand geometry with fine details, which is essential to rendering quality. In the realms of extended reality and gaming, on-the-fly rendering becomes imperative. To this end, we introduce an expressive hand avatar, named XHand, that is designed to comprehensively generate hand shape, appearance, and deformations in real-time. To obtain fine-grained hand meshes, we make use of three feature embedding modules to predict hand deformation displacements, albedo, and linear blending skinning weights, respectively. To achieve photo-realistic hand rendering on fine-grained meshes, our method employs a mesh-based neural renderer by leveraging mesh topological consistency and latent codes from embedding modules. During training, a part-aware Laplace smoothing strategy is proposed by incorporating the distinct levels of regularization to effectively maintain the necessary details and eliminate the undesired artifacts. The experimental evaluations on InterHand2.6M and DeepHandMesh datasets demonstrate the efficacy of XHand, which is able to recover high-fidelity geometry and texture for hand animations across diverse poses in real-time. To reproduce our results, we will make the full implementation publicly available at https://github.com/agnJason/XHand.
CoDA: Coordinated Diffusion Noise Optimization for Whole-Body Manipulation of Articulated Objects
Synthesizing whole-body manipulation of articulated objects, including body motion, hand motion, and object motion, is a critical yet challenging task with broad applications in virtual humans and robotics. The core challenges are twofold. First, achieving realistic whole-body motion requires tight coordination between the hands and the rest of the body, as their movements are interdependent during manipulation. Second, articulated object manipulation typically involves high degrees of freedom and demands higher precision, often requiring the fingers to be placed at specific regions to actuate movable parts. To address these challenges, we propose a novel coordinated diffusion noise optimization framework. Specifically, we perform noise-space optimization over three specialized diffusion models for the body, left hand, and right hand, each trained on its own motion dataset to improve generalization. Coordination naturally emerges through gradient flow along the human kinematic chain, allowing the global body posture to adapt in response to hand motion objectives with high fidelity. To further enhance precision in hand-object interaction, we adopt a unified representation based on basis point sets (BPS), where end-effector positions are encoded as distances to the same BPS used for object geometry. This unified representation captures fine-grained spatial relationships between the hand and articulated object parts, and the resulting trajectories serve as targets to guide the optimization of diffusion noise, producing highly accurate interaction motion. We conduct extensive experiments demonstrating that our method outperforms existing approaches in motion quality and physical plausibility, and enables various capabilities such as object pose control, simultaneous walking and manipulation, and whole-body generation from hand-only data.
DexUMI: Using Human Hand as the Universal Manipulation Interface for Dexterous Manipulation
We present DexUMI - a data collection and policy learning framework that uses the human hand as the natural interface to transfer dexterous manipulation skills to various robot hands. DexUMI includes hardware and software adaptations to minimize the embodiment gap between the human hand and various robot hands. The hardware adaptation bridges the kinematics gap using a wearable hand exoskeleton. It allows direct haptic feedback in manipulation data collection and adapts human motion to feasible robot hand motion. The software adaptation bridges the visual gap by replacing the human hand in video data with high-fidelity robot hand inpainting. We demonstrate DexUMI's capabilities through comprehensive real-world experiments on two different dexterous robot hand hardware platforms, achieving an average task success rate of 86%.
RP1M: A Large-Scale Motion Dataset for Piano Playing with Bi-Manual Dexterous Robot Hands
It has been a long-standing research goal to endow robot hands with human-level dexterity. Bi-manual robot piano playing constitutes a task that combines challenges from dynamic tasks, such as generating fast while precise motions, with slower but contact-rich manipulation problems. Although reinforcement learning based approaches have shown promising results in single-task performance, these methods struggle in a multi-song setting. Our work aims to close this gap and, thereby, enable imitation learning approaches for robot piano playing at scale. To this end, we introduce the Robot Piano 1 Million (RP1M) dataset, containing bi-manual robot piano playing motion data of more than one million trajectories. We formulate finger placements as an optimal transport problem, thus, enabling automatic annotation of vast amounts of unlabeled songs. Benchmarking existing imitation learning approaches shows that such approaches reach state-of-the-art robot piano playing performance by leveraging RP1M.
RapidPoseTriangulation: Multi-view Multi-person Whole-body Human Pose Triangulation in a Millisecond
The integration of multi-view imaging and pose estimation represents a significant advance in computer vision applications, offering new possibilities for understanding human movement and interactions. This work presents a new algorithm that improves multi-view multi-person pose estimation, focusing on fast triangulation speeds and good generalization capabilities. The approach extends to whole-body pose estimation, capturing details from facial expressions to finger movements across multiple individuals and viewpoints. Adaptability to different settings is demonstrated through strong performance across unseen datasets and configurations. To support further progress in this field, all of this work is publicly accessible.
Multi-HMR: Multi-Person Whole-Body Human Mesh Recovery in a Single Shot
We present Multi-HMR, a strong sigle-shot model for multi-person 3D human mesh recovery from a single RGB image. Predictions encompass the whole body, i.e., including hands and facial expressions, using the SMPL-X parametric model and 3D location in the camera coordinate system. Our model detects people by predicting coarse 2D heatmaps of person locations, using features produced by a standard Vision Transformer (ViT) backbone. It then predicts their whole-body pose, shape and 3D location using a new cross-attention module called the Human Prediction Head (HPH), with one query attending to the entire set of features for each detected person. As direct prediction of fine-grained hands and facial poses in a single shot, i.e., without relying on explicit crops around body parts, is hard to learn from existing data, we introduce CUFFS, the Close-Up Frames of Full-Body Subjects dataset, containing humans close to the camera with diverse hand poses. We show that incorporating it into the training data further enhances predictions, particularly for hands. Multi-HMR also optionally accounts for camera intrinsics, if available, by encoding camera ray directions for each image token. This simple design achieves strong performance on whole-body and body-only benchmarks simultaneously: a ViT-S backbone on 448{times}448 images already yields a fast and competitive model, while larger models and higher resolutions obtain state-of-the-art results.
RelightableHands: Efficient Neural Relighting of Articulated Hand Models
We present the first neural relighting approach for rendering high-fidelity personalized hands that can be animated in real-time under novel illumination. Our approach adopts a teacher-student framework, where the teacher learns appearance under a single point light from images captured in a light-stage, allowing us to synthesize hands in arbitrary illuminations but with heavy compute. Using images rendered by the teacher model as training data, an efficient student model directly predicts appearance under natural illuminations in real-time. To achieve generalization, we condition the student model with physics-inspired illumination features such as visibility, diffuse shading, and specular reflections computed on a coarse proxy geometry, maintaining a small computational overhead. Our key insight is that these features have strong correlation with subsequent global light transport effects, which proves sufficient as conditioning data for the neural relighting network. Moreover, in contrast to bottleneck illumination conditioning, these features are spatially aligned based on underlying geometry, leading to better generalization to unseen illuminations and poses. In our experiments, we demonstrate the efficacy of our illumination feature representations, outperforming baseline approaches. We also show that our approach can photorealistically relight two interacting hands at real-time speeds. https://sh8.io/#/relightable_hands
OakInk: A Large-scale Knowledge Repository for Understanding Hand-Object Interaction
Learning how humans manipulate objects requires machines to acquire knowledge from two perspectives: one for understanding object affordances and the other for learning human's interactions based on the affordances. Even though these two knowledge bases are crucial, we find that current databases lack a comprehensive awareness of them. In this work, we propose a multi-modal and rich-annotated knowledge repository, OakInk, for visual and cognitive understanding of hand-object interactions. We start to collect 1,800 common household objects and annotate their affordances to construct the first knowledge base: Oak. Given the affordance, we record rich human interactions with 100 selected objects in Oak. Finally, we transfer the interactions on the 100 recorded objects to their virtual counterparts through a novel method: Tink. The recorded and transferred hand-object interactions constitute the second knowledge base: Ink. As a result, OakInk contains 50,000 distinct affordance-aware and intent-oriented hand-object interactions. We benchmark OakInk on pose estimation and grasp generation tasks. Moreover, we propose two practical applications of OakInk: intent-based interaction generation and handover generation. Our datasets and source code are publicly available at https://github.com/lixiny/OakInk.
ChildPlay-Hand: A Dataset of Hand Manipulations in the Wild
Hand-Object Interaction (HOI) is gaining significant attention, particularly with the creation of numerous egocentric datasets driven by AR/VR applications. However, third-person view HOI has received less attention, especially in terms of datasets. Most third-person view datasets are curated for action recognition tasks and feature pre-segmented clips of high-level daily activities, leaving a gap for in-the-wild datasets. To address this gap, we propose ChildPlay-Hand, a novel dataset that includes person and object bounding boxes, as well as manipulation actions. ChildPlay-Hand is unique in: (1) providing per-hand annotations; (2) featuring videos in uncontrolled settings with natural interactions, involving both adults and children; (3) including gaze labels from the ChildPlay-Gaze dataset for joint modeling of manipulations and gaze. The manipulation actions cover the main stages of an HOI cycle, such as grasping, holding or operating, and different types of releasing. To illustrate the interest of the dataset, we study two tasks: object in hand detection (OiH), i.e. if a person has an object in their hand, and manipulation stages (ManiS), which is more fine-grained and targets the main stages of manipulation. We benchmark various spatio-temporal and segmentation networks, exploring body vs. hand-region information and comparing pose and RGB modalities. Our findings suggest that ChildPlay-Hand is a challenging new benchmark for modeling HOI in the wild.
DexHandDiff: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation
Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simple manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexHandDiff, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexHandDiff models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, object relocation, and hammer striking demonstrate DexHandDiff's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves an average of 70.7% success rate on goal adaptive dexterous tasks, highlighting its robustness and flexibility in contact-rich manipulation.
AffordPose: A Large-scale Dataset of Hand-Object Interactions with Affordance-driven Hand Pose
How human interact with objects depends on the functional roles of the target objects, which introduces the problem of affordance-aware hand-object interaction. It requires a large number of human demonstrations for the learning and understanding of plausible and appropriate hand-object interactions. In this work, we present AffordPose, a large-scale dataset of hand-object interactions with affordance-driven hand pose. We first annotate the specific part-level affordance labels for each object, e.g. twist, pull, handle-grasp, etc, instead of the general intents such as use or handover, to indicate the purpose and guide the localization of the hand-object interactions. The fine-grained hand-object interactions reveal the influence of hand-centered affordances on the detailed arrangement of the hand poses, yet also exhibit a certain degree of diversity. We collect a total of 26.7K hand-object interactions, each including the 3D object shape, the part-level affordance label, and the manually adjusted hand poses. The comprehensive data analysis shows the common characteristics and diversity of hand-object interactions per affordance via the parameter statistics and contacting computation. We also conduct experiments on the tasks of hand-object affordance understanding and affordance-oriented hand-object interaction generation, to validate the effectiveness of our dataset in learning the fine-grained hand-object interactions. Project page: https://github.com/GentlesJan/AffordPose.
CaRe-Ego: Contact-aware Relationship Modeling for Egocentric Interactive Hand-object Segmentation
Egocentric Interactive hand-object segmentation (EgoIHOS) requires the segmentation of hands and interacting objects in egocentric images, which is crucial for understanding human behavior in assistive systems. Previous methods typically recognize hands and interacting objects as distinct semantic categories based solely on visual features, or simply use hand predictions as auxiliary cues for object segmentation. Despite the promising progress achieved by these methods, they fail to adequately model the interactive relationships between hands and objects while ignoring the coupled physical relationships among object categories, ultimately constraining their segmentation performance. To make up for the shortcomings of existing methods, we propose a novel method called CaRe-Ego that achieves state-of-the-art performance by emphasizing the contact between hands and objects from two aspects. First, we introduce a Hand-guided Object Feature Enhancer (HOFE) to establish the hand-object interactive relationships to extract more contact-relevant and discriminative object features. Second, we design the Contact-centric Object Decoupling Strategy (CODS) to explicitly model and disentangle coupling relationships among object categories, thereby emphasizing contact-aware feature learning. Experiments on various in-domain and out-of-domain test sets show that Care-Ego significantly outperforms existing methods with robust generalization capability. Codes are publicly available at https://github.com/yuggiehk/CaRe-Ego/.
Deformer: Dynamic Fusion Transformer for Robust Hand Pose Estimation
Accurately estimating 3D hand pose is crucial for understanding how humans interact with the world. Despite remarkable progress, existing methods often struggle to generate plausible hand poses when the hand is heavily occluded or blurred. In videos, the movements of the hand allow us to observe various parts of the hand that may be occluded or blurred in a single frame. To adaptively leverage the visual clue before and after the occlusion or blurring for robust hand pose estimation, we propose the Deformer: a framework that implicitly reasons about the relationship between hand parts within the same image (spatial dimension) and different timesteps (temporal dimension). We show that a naive application of the transformer self-attention mechanism is not sufficient because motion blur or occlusions in certain frames can lead to heavily distorted hand features and generate imprecise keys and queries. To address this challenge, we incorporate a Dynamic Fusion Module into Deformer, which predicts the deformation of the hand and warps the hand mesh predictions from nearby frames to explicitly support the current frame estimation. Furthermore, we have observed that errors are unevenly distributed across different hand parts, with vertices around fingertips having disproportionately higher errors than those around the palm. We mitigate this issue by introducing a new loss function called maxMSE that automatically adjusts the weight of every vertex to focus the model on critical hand parts. Extensive experiments show that our method significantly outperforms state-of-the-art methods by 10%, and is more robust to occlusions (over 14%).
Nonrigid Object Contact Estimation With Regional Unwrapping Transformer
Acquiring contact patterns between hands and nonrigid objects is a common concern in the vision and robotics community. However, existing learning-based methods focus more on contact with rigid ones from monocular images. When adopting them for nonrigid contact, a major problem is that the existing contact representation is restricted by the geometry of the object. Consequently, contact neighborhoods are stored in an unordered manner and contact features are difficult to align with image cues. At the core of our approach lies a novel hand-object contact representation called RUPs (Region Unwrapping Profiles), which unwrap the roughly estimated hand-object surfaces as multiple high-resolution 2D regional profiles. The region grouping strategy is consistent with the hand kinematic bone division because they are the primitive initiators for a composite contact pattern. Based on this representation, our Regional Unwrapping Transformer (RUFormer) learns the correlation priors across regions from monocular inputs and predicts corresponding contact and deformed transformations. Our experiments demonstrate that the proposed framework can robustly estimate the deformed degrees and deformed transformations, which makes it suitable for both nonrigid and rigid contact.
2HandedAfforder: Learning Precise Actionable Bimanual Affordances from Human Videos
When interacting with objects, humans effectively reason about which regions of objects are viable for an intended action, i.e., the affordance regions of the object. They can also account for subtle differences in object regions based on the task to be performed and whether one or two hands need to be used. However, current vision-based affordance prediction methods often reduce the problem to naive object part segmentation. In this work, we propose a framework for extracting affordance data from human activity video datasets. Our extracted 2HANDS dataset contains precise object affordance region segmentations and affordance class-labels as narrations of the activity performed. The data also accounts for bimanual actions, i.e., two hands co-ordinating and interacting with one or more objects. We present a VLM-based affordance prediction model, 2HandedAfforder, trained on the dataset and demonstrate superior performance over baselines in affordance region segmentation for various activities. Finally, we show that our predicted affordance regions are actionable, i.e., can be used by an agent performing a task, through demonstration in robotic manipulation scenarios.
Planning-Guided Diffusion Policy Learning for Generalizable Contact-Rich Bimanual Manipulation
Contact-rich bimanual manipulation involves precise coordination of two arms to change object states through strategically selected contacts and motions. Due to the inherent complexity of these tasks, acquiring sufficient demonstration data and training policies that generalize to unseen scenarios remain a largely unresolved challenge. Building on recent advances in planning through contacts, we introduce Generalizable Planning-Guided Diffusion Policy Learning (GLIDE), an approach that effectively learns to solve contact-rich bimanual manipulation tasks by leveraging model-based motion planners to generate demonstration data in high-fidelity physics simulation. Through efficient planning in randomized environments, our approach generates large-scale and high-quality synthetic motion trajectories for tasks involving diverse objects and transformations. We then train a task-conditioned diffusion policy via behavior cloning using these demonstrations. To tackle the sim-to-real gap, we propose a set of essential design options in feature extraction, task representation, action prediction, and data augmentation that enable learning robust prediction of smooth action sequences and generalization to unseen scenarios. Through experiments in both simulation and the real world, we demonstrate that our approach can enable a bimanual robotic system to effectively manipulate objects of diverse geometries, dimensions, and physical properties. Website: https://glide-manip.github.io/
Lessons from Learning to Spin "Pens"
In-hand manipulation of pen-like objects is an important skill in our daily lives, as many tools such as hammers and screwdrivers are similarly shaped. However, current learning-based methods struggle with this task due to a lack of high-quality demonstrations and the significant gap between simulation and the real world. In this work, we push the boundaries of learning-based in-hand manipulation systems by demonstrating the capability to spin pen-like objects. We first use reinforcement learning to train an oracle policy with privileged information and generate a high-fidelity trajectory dataset in simulation. This serves two purposes: 1) pre-training a sensorimotor policy in simulation; 2) conducting open-loop trajectory replay in the real world. We then fine-tune the sensorimotor policy using these real-world trajectories to adapt it to the real world dynamics. With less than 50 trajectories, our policy learns to rotate more than ten pen-like objects with different physical properties for multiple revolutions. We present a comprehensive analysis of our design choices and share the lessons learned during development.
Eliciting Compatible Demonstrations for Multi-Human Imitation Learning
Imitation learning from human-provided demonstrations is a strong approach for learning policies for robot manipulation. While the ideal dataset for imitation learning is homogenous and low-variance -- reflecting a single, optimal method for performing a task -- natural human behavior has a great deal of heterogeneity, with several optimal ways to demonstrate a task. This multimodality is inconsequential to human users, with task variations manifesting as subconscious choices; for example, reaching down, then across to grasp an object, versus reaching across, then down. Yet, this mismatch presents a problem for interactive imitation learning, where sequences of users improve on a policy by iteratively collecting new, possibly conflicting demonstrations. To combat this problem of demonstrator incompatibility, this work designs an approach for 1) measuring the compatibility of a new demonstration given a base policy, and 2) actively eliciting more compatible demonstrations from new users. Across two simulation tasks requiring long-horizon, dexterous manipulation and a real-world "food plating" task with a Franka Emika Panda arm, we show that we can both identify incompatible demonstrations via post-hoc filtering, and apply our compatibility measure to actively elicit compatible demonstrations from new users, leading to improved task success rates across simulated and real environments.
Mobile ALOHA: Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation
Imitation learning from human demonstrations has shown impressive performance in robotics. However, most results focus on table-top manipulation, lacking the mobility and dexterity necessary for generally useful tasks. In this work, we develop a system for imitating mobile manipulation tasks that are bimanual and require whole-body control. We first present Mobile ALOHA, a low-cost and whole-body teleoperation system for data collection. It augments the ALOHA system with a mobile base, and a whole-body teleoperation interface. Using data collected with Mobile ALOHA, we then perform supervised behavior cloning and find that co-training with existing static ALOHA datasets boosts performance on mobile manipulation tasks. With 50 demonstrations for each task, co-training can increase success rates by up to 90%, allowing Mobile ALOHA to autonomously complete complex mobile manipulation tasks such as sauteing and serving a piece of shrimp, opening a two-door wall cabinet to store heavy cooking pots, calling and entering an elevator, and lightly rinsing a used pan using a kitchen faucet. Project website: https://mobile-aloha.github.io
MultiPLY: A Multisensory Object-Centric Embodied Large Language Model in 3D World
Human beings possess the capability to multiply a melange of multisensory cues while actively exploring and interacting with the 3D world. Current multi-modal large language models, however, passively absorb sensory data as inputs, lacking the capacity to actively interact with the objects in the 3D environment and dynamically collect their multisensory information. To usher in the study of this area, we propose MultiPLY, a multisensory embodied large language model that could incorporate multisensory interactive data, including visual, audio, tactile, and thermal information into large language models, thereby establishing the correlation among words, actions, and percepts. To this end, we first collect Multisensory Universe, a large-scale multisensory interaction dataset comprising 500k data by deploying an LLM-powered embodied agent to engage with the 3D environment. To perform instruction tuning with pre-trained LLM on such generated data, we first encode the 3D scene as abstracted object-centric representations and then introduce action tokens denoting that the embodied agent takes certain actions within the environment, as well as state tokens that represent the multisensory state observations of the agent at each time step. In the inference time, MultiPLY could generate action tokens, instructing the agent to take the action in the environment and obtain the next multisensory state observation. The observation is then appended back to the LLM via state tokens to generate subsequent text or action tokens. We demonstrate that MultiPLY outperforms baselines by a large margin through a diverse set of embodied tasks involving object retrieval, tool use, multisensory captioning, and task decomposition.
Left/Right Brain, human motor control and the implications for robotics
Neural Network movement controllers promise a variety of advantages over conventional control methods however they are not widely adopted due to their inability to produce reliably precise movements. This research explores a bilateral neural network architecture as a control system for motor tasks. We aimed to achieve hemispheric specialisation similar to what is observed in humans across different tasks; the dominant system (usually the right hand, left hemisphere) excels at tasks involving coordination and efficiency of movement, and the non-dominant system performs better at tasks requiring positional stability. Specialisation was achieved by training the hemispheres with different loss functions tailored toward the expected behaviour of the respective hemispheres. We compared bilateral models with and without specialised hemispheres, with and without inter-hemispheric connectivity (representing the biological Corpus Callosum), and unilateral models with and without specialisation. The models were trained and tested on two tasks common in the human motor control literature: the random reach task, suited to the dominant system, a model with better coordination, and the hold position task, suited to the non-dominant system, a model with more stable movement. Each system out-performed the non-favoured system in its preferred task. For both tasks, a bilateral model outperforms the 'non-preferred' hand, and is as good or better than the 'preferred' hand. The Corpus Callosum tends to improve performance, but not always for the specialised models.
Extract-and-Adaptation Network for 3D Interacting Hand Mesh Recovery
Understanding how two hands interact with each other is a key component of accurate 3D interacting hand mesh recovery. However, recent Transformer-based methods struggle to learn the interaction between two hands as they directly utilize two hand features as input tokens, which results in distant token problem. The distant token problem represents that input tokens are in heterogeneous spaces, leading Transformer to fail in capturing correlation between input tokens. Previous Transformer-based methods suffer from the problem especially when poses of two hands are very different as they project features from a backbone to separate left and right hand-dedicated features. We present EANet, extract-and-adaptation network, with EABlock, the main component of our network. Rather than directly utilizing two hand features as input tokens, our EABlock utilizes two complementary types of novel tokens, SimToken and JoinToken, as input tokens. Our two novel tokens are from a combination of separated two hand features; hence, it is much more robust to the distant token problem. Using the two type of tokens, our EABlock effectively extracts interaction feature and adapts it to each hand. The proposed EANet achieves the state-of-the-art performance on 3D interacting hands benchmarks. The codes are available at https://github.com/jkpark0825/EANet.
Visual-Tactile Sensing for In-Hand Object Reconstruction
Tactile sensing is one of the modalities humans rely on heavily to perceive the world. Working with vision, this modality refines local geometry structure, measures deformation at the contact area, and indicates the hand-object contact state. With the availability of open-source tactile sensors such as DIGIT, research on visual-tactile learning is becoming more accessible and reproducible. Leveraging this tactile sensor, we propose a novel visual-tactile in-hand object reconstruction framework VTacO, and extend it to VTacOH for hand-object reconstruction. Since our method can support both rigid and deformable object reconstruction, no existing benchmarks are proper for the goal. We propose a simulation environment, VT-Sim, which supports generating hand-object interaction for both rigid and deformable objects. With VT-Sim, we generate a large-scale training dataset and evaluate our method on it. Extensive experiments demonstrate that our proposed method can outperform the previous baseline methods qualitatively and quantitatively. Finally, we directly apply our model trained in simulation to various real-world test cases, which display qualitative results. Codes, models, simulation environment, and datasets are available at https://sites.google.com/view/vtaco/.
ReJSHand: Efficient Real-Time Hand Pose Estimation and Mesh Reconstruction Using Refined Joint and Skeleton Features
Accurate hand pose estimation is vital in robotics, advancing dexterous manipulation in human-computer interaction. Toward this goal, this paper presents ReJSHand (which stands for Refined Joint and Skeleton Features), a cutting-edge network formulated for real-time hand pose estimation and mesh reconstruction. The proposed framework is designed to accurately predict 3D hand gestures under real-time constraints, which is essential for systems that demand agile and responsive hand motion tracking. The network's design prioritizes computational efficiency without compromising accuracy, a prerequisite for instantaneous robotic interactions. Specifically, ReJSHand comprises a 2D keypoint generator, a 3D keypoint generator, an expansion block, and a feature interaction block for meticulously reconstructing 3D hand poses from 2D imagery. In addition, the multi-head self-attention mechanism and a coordinate attention layer enhance feature representation, streamlining the creation of hand mesh vertices through sophisticated feature mapping and linear transformation. Regarding performance, comprehensive evaluations on the FreiHand dataset demonstrate ReJSHand's computational prowess. It achieves a frame rate of 72 frames per second while maintaining a PA-MPJPE (Position-Accurate Mean Per Joint Position Error) of 6.3 mm and a PA-MPVPE (Position-Accurate Mean Per Vertex Position Error) of 6.4 mm. Moreover, our model reaches scores of 0.756 for F@05 and 0.984 for F@15, surpassing modern pipelines and solidifying its position at the forefront of robotic hand pose estimators. To facilitate future studies, we provide our source code at ~https://github.com/daishipeng/ReJSHand.
Reconstructing Hand-Held Objects in 3D
Objects manipulated by the hand (i.e., manipulanda) are particularly challenging to reconstruct from in-the-wild RGB images or videos. Not only does the hand occlude much of the object, but also the object is often only visible in a small number of image pixels. At the same time, two strong anchors emerge in this setting: (1) estimated 3D hands help disambiguate the location and scale of the object, and (2) the set of manipulanda is small relative to all possible objects. With these insights in mind, we present a scalable paradigm for handheld object reconstruction that builds on recent breakthroughs in large language/vision models and 3D object datasets. Our model, MCC-Hand-Object (MCC-HO), jointly reconstructs hand and object geometry given a single RGB image and inferred 3D hand as inputs. Subsequently, we use GPT-4(V) to retrieve a 3D object model that matches the object in the image and rigidly align the model to the network-inferred geometry; we call this alignment Retrieval-Augmented Reconstruction (RAR). Experiments demonstrate that MCC-HO achieves state-of-the-art performance on lab and Internet datasets, and we show how RAR can be used to automatically obtain 3D labels for in-the-wild images of hand-object interactions.
CordViP: Correspondence-based Visuomotor Policy for Dexterous Manipulation in Real-World
Achieving human-level dexterity in robots is a key objective in the field of robotic manipulation. Recent advancements in 3D-based imitation learning have shown promising results, providing an effective pathway to achieve this goal. However, obtaining high-quality 3D representations presents two key problems: (1) the quality of point clouds captured by a single-view camera is significantly affected by factors such as camera resolution, positioning, and occlusions caused by the dexterous hand; (2) the global point clouds lack crucial contact information and spatial correspondences, which are necessary for fine-grained dexterous manipulation tasks. To eliminate these limitations, we propose CordViP, a novel framework that constructs and learns correspondences by leveraging the robust 6D pose estimation of objects and robot proprioception. Specifically, we first introduce the interaction-aware point clouds, which establish correspondences between the object and the hand. These point clouds are then used for our pre-training policy, where we also incorporate object-centric contact maps and hand-arm coordination information, effectively capturing both spatial and temporal dynamics. Our method demonstrates exceptional dexterous manipulation capabilities with an average success rate of 90\% in four real-world tasks, surpassing other baselines by a large margin. Experimental results also highlight the superior generalization and robustness of CordViP to different objects, viewpoints, and scenarios. Code and videos are available on https://aureleopku.github.io/CordViP.
Controllable Visual-Tactile Synthesis
Deep generative models have various content creation applications such as graphic design, e-commerce, and virtual Try-on. However, current works mainly focus on synthesizing realistic visual outputs, often ignoring other sensory modalities, such as touch, which limits physical interaction with users. In this work, we leverage deep generative models to create a multi-sensory experience where users can touch and see the synthesized object when sliding their fingers on a haptic surface. The main challenges lie in the significant scale discrepancy between vision and touch sensing and the lack of explicit mapping from touch sensing data to a haptic rendering device. To bridge this gap, we collect high-resolution tactile data with a GelSight sensor and create a new visuotactile clothing dataset. We then develop a conditional generative model that synthesizes both visual and tactile outputs from a single sketch. We evaluate our method regarding image quality and tactile rendering accuracy. Finally, we introduce a pipeline to render high-quality visual and tactile outputs on an electroadhesion-based haptic device for an immersive experience, allowing for challenging materials and editable sketch inputs.
SocialGesture: Delving into Multi-person Gesture Understanding
Previous research in human gesture recognition has largely overlooked multi-person interactions, which are crucial for understanding the social context of naturally occurring gestures. This limitation in existing datasets presents a significant challenge in aligning human gestures with other modalities like language and speech. To address this issue, we introduce SocialGesture, the first large-scale dataset specifically designed for multi-person gesture analysis. SocialGesture features a diverse range of natural scenarios and supports multiple gesture analysis tasks, including video-based recognition and temporal localization, providing a valuable resource for advancing the study of gesture during complex social interactions. Furthermore, we propose a novel visual question answering (VQA) task to benchmark vision language models'(VLMs) performance on social gesture understanding. Our findings highlight several limitations of current gesture recognition models, offering insights into future directions for improvement in this field. SocialGesture is available at huggingface.co/datasets/IrohXu/SocialGesture.
3D Hand Pose Estimation in Egocentric Images in the Wild
We present WildHands, a method for 3D hand pose estimation in egocentric images in the wild. This is challenging due to (a) lack of 3D hand pose annotations for images in the wild, and (b) a form of perspective distortion-induced shape ambiguity that arises in the analysis of crops around hands. For the former, we use auxiliary supervision on in-the-wild data in the form of segmentation masks & grasp labels in addition to 3D supervision available in lab datasets. For the latter, we provide spatial cues about the location of the hand crop in the camera's field of view. Our approach achieves the best 3D hand pose on the ARCTIC leaderboard and outperforms FrankMocap, a popular and robust approach for estimating hand pose in the wild, by 45.3% when evaluated on 2D hand pose on our EPIC-HandKps dataset.
RobustDexGrasp: Robust Dexterous Grasping of General Objects from Single-view Perception
Robust grasping of various objects from single-view perception is fundamental for dexterous robots. Previous works often rely on fully observable objects, expert demonstrations, or static grasping poses, which restrict their generalization ability and adaptability to external disturbances. In this paper, we present a reinforcement-learning-based framework that enables zero-shot dynamic dexterous grasping of a wide range of unseen objects from single-view perception, while performing adaptive motions to external disturbances. We utilize a hand-centric object representation for shape feature extraction that emphasizes interaction-relevant local shapes, enhancing robustness to shape variance and uncertainty. To enable effective hand adaptation to disturbances with limited observations, we propose a mixed curriculum learning strategy, which first utilizes imitation learning to distill a policy trained with privileged real-time visual-tactile feedback, and gradually transfers to reinforcement learning to learn adaptive motions under disturbances caused by observation noises and dynamic randomization. Our experiments demonstrate strong generalization in grasping unseen objects with random poses, achieving success rates of 97.0% across 247,786 simulated objects and 94.6% across 512 real objects. We also demonstrate the robustness of our method to various disturbances, including unobserved object movement and external forces, through both quantitative and qualitative evaluations. Project Page: https://zdchan.github.io/Robust_DexGrasp/
Self-supervised perception for tactile skin covered dexterous hands
We present Sparsh-skin, a pre-trained encoder for magnetic skin sensors distributed across the fingertips, phalanges, and palm of a dexterous robot hand. Magnetic tactile skins offer a flexible form factor for hand-wide coverage with fast response times, in contrast to vision-based tactile sensors that are restricted to the fingertips and limited by bandwidth. Full hand tactile perception is crucial for robot dexterity. However, a lack of general-purpose models, challenges with interpreting magnetic flux and calibration have limited the adoption of these sensors. Sparsh-skin, given a history of kinematic and tactile sensing across a hand, outputs a latent tactile embedding that can be used in any downstream task. The encoder is self-supervised via self-distillation on a variety of unlabeled hand-object interactions using an Allegro hand sensorized with Xela uSkin. In experiments across several benchmark tasks, from state estimation to policy learning, we find that pretrained Sparsh-skin representations are both sample efficient in learning downstream tasks and improve task performance by over 41% compared to prior work and over 56% compared to end-to-end learning.
Dynamic Hyperbolic Attention Network for Fine Hand-object Reconstruction
Reconstructing both objects and hands in 3D from a single RGB image is complex. Existing methods rely on manually defined hand-object constraints in Euclidean space, leading to suboptimal feature learning. Compared with Euclidean space, hyperbolic space better preserves the geometric properties of meshes thanks to its exponentially-growing space distance, which amplifies the differences between the features based on similarity. In this work, we propose the first precise hand-object reconstruction method in hyperbolic space, namely Dynamic Hyperbolic Attention Network (DHANet), which leverages intrinsic properties of hyperbolic space to learn representative features. Our method that projects mesh and image features into a unified hyperbolic space includes two modules, ie. dynamic hyperbolic graph convolution and image-attention hyperbolic graph convolution. With these two modules, our method learns mesh features with rich geometry-image multi-modal information and models better hand-object interaction. Our method provides a promising alternative for fine hand-object reconstruction in hyperbolic space. Extensive experiments on three public datasets demonstrate that our method outperforms most state-of-the-art methods.
AnyTeleop: A General Vision-Based Dexterous Robot Arm-Hand Teleoperation System
Vision-based teleoperation offers the possibility to endow robots with human-level intelligence to physically interact with the environment, while only requiring low-cost camera sensors. However, current vision-based teleoperation systems are designed and engineered towards a particular robot model and deploy environment, which scales poorly as the pool of the robot models expands and the variety of the operating environment increases. In this paper, we propose AnyTeleop, a unified and general teleoperation system to support multiple different arms, hands, realities, and camera configurations within a single system. Although being designed to provide great flexibility to the choice of simulators and real hardware, our system can still achieve great performance. For real-world experiments, AnyTeleop can outperform a previous system that was designed for a specific robot hardware with a higher success rate, using the same robot. For teleoperation in simulation, AnyTeleop leads to better imitation learning performance, compared with a previous system that is particularly designed for that simulator. Project page: http://anyteleop.com/.
Snap-it, Tap-it, Splat-it: Tactile-Informed 3D Gaussian Splatting for Reconstructing Challenging Surfaces
Touch and vision go hand in hand, mutually enhancing our ability to understand the world. From a research perspective, the problem of mixing touch and vision is underexplored and presents interesting challenges. To this end, we propose Tactile-Informed 3DGS, a novel approach that incorporates touch data (local depth maps) with multi-view vision data to achieve surface reconstruction and novel view synthesis. Our method optimises 3D Gaussian primitives to accurately model the object's geometry at points of contact. By creating a framework that decreases the transmittance at touch locations, we achieve a refined surface reconstruction, ensuring a uniformly smooth depth map. Touch is particularly useful when considering non-Lambertian objects (e.g. shiny or reflective surfaces) since contemporary methods tend to fail to reconstruct with fidelity specular highlights. By combining vision and tactile sensing, we achieve more accurate geometry reconstructions with fewer images than prior methods. We conduct evaluation on objects with glossy and reflective surfaces and demonstrate the effectiveness of our approach, offering significant improvements in reconstruction quality.
Fast and Robust Dynamic Hand Gesture Recognition via Key Frames Extraction and Feature Fusion
Gesture recognition is a hot topic in computer vision and pattern recognition, which plays a vitally important role in natural human-computer interface. Although great progress has been made recently, fast and robust hand gesture recognition remains an open problem, since the existing methods have not well balanced the performance and the efficiency simultaneously. To bridge it, this work combines image entropy and density clustering to exploit the key frames from hand gesture video for further feature extraction, which can improve the efficiency of recognition. Moreover, a feature fusion strategy is also proposed to further improve feature representation, which elevates the performance of recognition. To validate our approach in a "wild" environment, we also introduce two new datasets called HandGesture and Action3D datasets. Experiments consistently demonstrate that our strategy achieves competitive results on Northwestern University, Cambridge, HandGesture and Action3D hand gesture datasets. Our code and datasets will release at https://github.com/Ha0Tang/HandGestureRecognition.
Safe Grasping with a Force Controlled Soft Robotic Hand
Safe yet stable grasping requires a robotic hand to apply sufficient force on the object to immobilize it while keeping it from getting damaged. Soft robotic hands have been proposed for safe grasping due to their passive compliance, but even such a hand can crush objects if the applied force is too high. Thus for safe grasping, regulating the grasping force is of uttermost importance even with soft hands. In this work, we present a force controlled soft hand and use it to achieve safe grasping. To this end, resistive force and bend sensors are integrated in a soft hand, and a data-driven calibration method is proposed to estimate contact interaction forces. Given the force readings, the pneumatic pressures are regulated using a proportional-integral controller to achieve desired force. The controller is experimentally evaluated and benchmarked by grasping easily deformable objects such as plastic and paper cups without neither dropping nor deforming them. Together, the results demonstrate that our force controlled soft hand can grasp deformable objects in a safe yet stable manner.