Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFLAME: Free-form Language-based Motion Synthesis & Editing
Text-based motion generation models are drawing a surge of interest for their potential for automating the motion-making process in the game, animation, or robot industries. In this paper, we propose a diffusion-based motion synthesis and editing model named FLAME. Inspired by the recent successes in diffusion models, we integrate diffusion-based generative models into the motion domain. FLAME can generate high-fidelity motions well aligned with the given text. Also, it can edit the parts of the motion, both frame-wise and joint-wise, without any fine-tuning. FLAME involves a new transformer-based architecture we devise to better handle motion data, which is found to be crucial to manage variable-length motions and well attend to free-form text. In experiments, we show that FLAME achieves state-of-the-art generation performances on three text-motion datasets: HumanML3D, BABEL, and KIT. We also demonstrate that editing capability of FLAME can be extended to other tasks such as motion prediction or motion in-betweening, which have been previously covered by dedicated models.
MMM: Generative Masked Motion Model
Recent advances in text-to-motion generation using diffusion and autoregressive models have shown promising results. However, these models often suffer from a trade-off between real-time performance, high fidelity, and motion editability. To address this gap, we introduce MMM, a novel yet simple motion generation paradigm based on Masked Motion Model. MMM consists of two key components: (1) a motion tokenizer that transforms 3D human motion into a sequence of discrete tokens in latent space, and (2) a conditional masked motion transformer that learns to predict randomly masked motion tokens, conditioned on the pre-computed text tokens. By attending to motion and text tokens in all directions, MMM explicitly captures inherent dependency among motion tokens and semantic mapping between motion and text tokens. During inference, this allows parallel and iterative decoding of multiple motion tokens that are highly consistent with fine-grained text descriptions, therefore simultaneously achieving high-fidelity and high-speed motion generation. In addition, MMM has innate motion editability. By simply placing mask tokens in the place that needs editing, MMM automatically fills the gaps while guaranteeing smooth transitions between editing and non-editing parts. Extensive experiments on the HumanML3D and KIT-ML datasets demonstrate that MMM surpasses current leading methods in generating high-quality motion (evidenced by superior FID scores of 0.08 and 0.429), while offering advanced editing features such as body-part modification, motion in-betweening, and the synthesis of long motion sequences. In addition, MMM is two orders of magnitude faster on a single mid-range GPU than editable motion diffusion models. Our project page is available at https://exitudio.github.io/MMM-page.
MoLA: Motion Generation and Editing with Latent Diffusion Enhanced by Adversarial Training
In motion generation, controllability as well as generation quality and speed is becoming more and more important. There are various motion editing tasks, such as in-betweening, upper body editing, and path-following, but existing methods perform motion editing with a data-space diffusion model, which is slow in inference compared to a latent diffusion model. In this paper, we propose MoLA, which provides fast and high-quality motion generation and also can deal with multiple editing tasks in a single framework. For high-quality and fast generation, we employ a variational autoencoder and latent diffusion model, and improve the performance with adversarial training. In addition, we apply a training-free guided generation framework to achieve various editing tasks with motion control inputs. We quantitatively show the effectiveness of adversarial learning in text-to-motion generation, and demonstrate the applicability of our editing framework to multiple editing tasks in the motion domain.
Single Motion Diffusion
Synthesizing realistic animations of humans, animals, and even imaginary creatures, has long been a goal for artists and computer graphics professionals. Compared to the imaging domain, which is rich with large available datasets, the number of data instances for the motion domain is limited, particularly for the animation of animals and exotic creatures (e.g., dragons), which have unique skeletons and motion patterns. In this work, we present a Single Motion Diffusion Model, dubbed SinMDM, a model designed to learn the internal motifs of a single motion sequence with arbitrary topology and synthesize motions of arbitrary length that are faithful to them. We harness the power of diffusion models and present a denoising network explicitly designed for the task of learning from a single input motion. SinMDM is designed to be a lightweight architecture, which avoids overfitting by using a shallow network with local attention layers that narrow the receptive field and encourage motion diversity. SinMDM can be applied in various contexts, including spatial and temporal in-betweening, motion expansion, style transfer, and crowd animation. Our results show that SinMDM outperforms existing methods both in quality and time-space efficiency. Moreover, while current approaches require additional training for different applications, our work facilitates these applications at inference time. Our code and trained models are available at https://sinmdm.github.io/SinMDM-page.
AniClipart: Clipart Animation with Text-to-Video Priors
Clipart, a pre-made graphic art form, offers a convenient and efficient way of illustrating visual content. Traditional workflows to convert static clipart images into motion sequences are laborious and time-consuming, involving numerous intricate steps like rigging, key animation and in-betweening. Recent advancements in text-to-video generation hold great potential in resolving this problem. Nevertheless, direct application of text-to-video generation models often struggles to retain the visual identity of clipart images or generate cartoon-style motions, resulting in unsatisfactory animation outcomes. In this paper, we introduce AniClipart, a system that transforms static clipart images into high-quality motion sequences guided by text-to-video priors. To generate cartoon-style and smooth motion, we first define B\'{e}zier curves over keypoints of the clipart image as a form of motion regularization. We then align the motion trajectories of the keypoints with the provided text prompt by optimizing the Video Score Distillation Sampling (VSDS) loss, which encodes adequate knowledge of natural motion within a pretrained text-to-video diffusion model. With a differentiable As-Rigid-As-Possible shape deformation algorithm, our method can be end-to-end optimized while maintaining deformation rigidity. Experimental results show that the proposed AniClipart consistently outperforms existing image-to-video generation models, in terms of text-video alignment, visual identity preservation, and motion consistency. Furthermore, we showcase the versatility of AniClipart by adapting it to generate a broader array of animation formats, such as layered animation, which allows topological changes.
Customizing Motion in Text-to-Video Diffusion Models
We introduce an approach for augmenting text-to-video generation models with customized motions, extending their capabilities beyond the motions depicted in the original training data. By leveraging a few video samples demonstrating specific movements as input, our method learns and generalizes the input motion patterns for diverse, text-specified scenarios. Our contributions are threefold. First, to achieve our results, we finetune an existing text-to-video model to learn a novel mapping between the depicted motion in the input examples to a new unique token. To avoid overfitting to the new custom motion, we introduce an approach for regularization over videos. Second, by leveraging the motion priors in a pretrained model, our method can produce novel videos featuring multiple people doing the custom motion, and can invoke the motion in combination with other motions. Furthermore, our approach extends to the multimodal customization of motion and appearance of individualized subjects, enabling the generation of videos featuring unique characters and distinct motions. Third, to validate our method, we introduce an approach for quantitatively evaluating the learned custom motion and perform a systematic ablation study. We show that our method significantly outperforms prior appearance-based customization approaches when extended to the motion customization task.
Mesh motion in fluid-structure interaction with deep operator networks
A mesh motion model based on deep operator networks is presented. The model is trained on and evaluated against a biharmonic mesh motion model on a fluid-structure interaction benchmark problem and further evaluated in a setting where biharmonic mesh motion fails. The performance of the proposed mesh motion model is comparable to the biharmonic mesh motion on the test problems.
3DTrajMaster: Mastering 3D Trajectory for Multi-Entity Motion in Video Generation
This paper aims to manipulate multi-entity 3D motions in video generation. Previous methods on controllable video generation primarily leverage 2D control signals to manipulate object motions and have achieved remarkable synthesis results. However, 2D control signals are inherently limited in expressing the 3D nature of object motions. To overcome this problem, we introduce 3DTrajMaster, a robust controller that regulates multi-entity dynamics in 3D space, given user-desired 6DoF pose (location and rotation) sequences of entities. At the core of our approach is a plug-and-play 3D-motion grounded object injector that fuses multiple input entities with their respective 3D trajectories through a gated self-attention mechanism. In addition, we exploit an injector architecture to preserve the video diffusion prior, which is crucial for generalization ability. To mitigate video quality degradation, we introduce a domain adaptor during training and employ an annealed sampling strategy during inference. To address the lack of suitable training data, we construct a 360-Motion Dataset, which first correlates collected 3D human and animal assets with GPT-generated trajectory and then captures their motion with 12 evenly-surround cameras on diverse 3D UE platforms. Extensive experiments show that 3DTrajMaster sets a new state-of-the-art in both accuracy and generalization for controlling multi-entity 3D motions. Project page: http://fuxiao0719.github.io/projects/3dtrajmaster
FlowMo: Variance-Based Flow Guidance for Coherent Motion in Video Generation
Text-to-video diffusion models are notoriously limited in their ability to model temporal aspects such as motion, physics, and dynamic interactions. Existing approaches address this limitation by retraining the model or introducing external conditioning signals to enforce temporal consistency. In this work, we explore whether a meaningful temporal representation can be extracted directly from the predictions of a pre-trained model without any additional training or auxiliary inputs. We introduce FlowMo, a novel training-free guidance method that enhances motion coherence using only the model's own predictions in each diffusion step. FlowMo first derives an appearance-debiased temporal representation by measuring the distance between latents corresponding to consecutive frames. This highlights the implicit temporal structure predicted by the model. It then estimates motion coherence by measuring the patch-wise variance across the temporal dimension and guides the model to reduce this variance dynamically during sampling. Extensive experiments across multiple text-to-video models demonstrate that FlowMo significantly improves motion coherence without sacrificing visual quality or prompt alignment, offering an effective plug-and-play solution for enhancing the temporal fidelity of pre-trained video diffusion models.
Estimating Body and Hand Motion in an Ego-sensed World
We present EgoAllo, a system for human motion estimation from a head-mounted device. Using only egocentric SLAM poses and images, EgoAllo guides sampling from a conditional diffusion model to estimate 3D body pose, height, and hand parameters that capture the wearer's actions in the allocentric coordinate frame of the scene. To achieve this, our key insight is in representation: we propose spatial and temporal invariance criteria for improving model performance, from which we derive a head motion conditioning parameterization that improves estimation by up to 18%. We also show how the bodies estimated by our system can improve the hands: the resulting kinematic and temporal constraints result in over 40% lower hand estimation errors compared to noisy monocular estimates. Project page: https://egoallo.github.io/
Learning heterogeneous delays in a layer of spiking neurons for fast motion detection
The precise timing of spikes emitted by neurons plays a crucial role in shaping the response of efferent biological neurons. This temporal dimension of neural activity holds significant importance in understanding information processing in neurobiology, especially for the performance of neuromorphic hardware, such as event-based cameras. Nonetheless, many artificial neural models disregard this critical temporal dimension of neural activity. In this study, we present a model designed to efficiently detect temporal spiking motifs using a layer of spiking neurons equipped with heterogeneous synaptic delays. Our model capitalizes on the diverse synaptic delays present on the dendritic tree, enabling specific arrangements of temporally precise synaptic inputs to synchronize upon reaching the basal dendritic tree. We formalize this process as a time-invariant logistic regression, which can be trained using labeled data. To demonstrate its practical efficacy, we apply the model to naturalistic videos transformed into event streams, simulating the output of the biological retina or event-based cameras. To evaluate the robustness of the model in detecting visual motion, we conduct experiments by selectively pruning weights and demonstrate that the model remains efficient even under significantly reduced workloads. In conclusion, by providing a comprehensive, event-driven computational building block, the incorporation of heterogeneous delays has the potential to greatly improve the performance of future spiking neural network algorithms, particularly in the context of neuromorphic chips.
Nymeria: A Massive Collection of Multimodal Egocentric Daily Motion in the Wild
We introduce Nymeria - a large-scale, diverse, richly annotated human motion dataset collected in the wild with multiple multimodal egocentric devices. The dataset comes with a) full-body ground-truth motion; b) multiple multimodal egocentric data from Project Aria devices with videos, eye tracking, IMUs and etc; and c) a third-person perspective by an additional observer. All devices are precisely synchronized and localized in on metric 3D world. We derive hierarchical protocol to add in-context language descriptions of human motion, from fine-grain motion narration, to simplified atomic action and high-level activity summarization. To the best of our knowledge, Nymeria dataset is the world's largest collection of human motion in the wild; first of its kind to provide synchronized and localized multi-device multimodal egocentric data; and the world's largest motion-language dataset. It provides 300 hours of daily activities from 264 participants across 50 locations, total travelling distance over 399Km. The language descriptions contain 301.5K sentences in 8.64M words from a vocabulary size of 6545. To demonstrate the potential of the dataset, we evaluate several SOTA algorithms for egocentric body tracking, motion synthesis, and action recognition. Data and code are open-sourced for research (c.f. https://www.projectaria.com/datasets/nymeria).
Self-Supervised Learning of Motion Concepts by Optimizing Counterfactuals
Estimating motion in videos is an essential computer vision problem with many downstream applications, including controllable video generation and robotics. Current solutions are primarily trained using synthetic data or require tuning of situation-specific heuristics, which inherently limits these models' capabilities in real-world contexts. Despite recent developments in large-scale self-supervised learning from videos, leveraging such representations for motion estimation remains relatively underexplored. In this work, we develop Opt-CWM, a self-supervised technique for flow and occlusion estimation from a pre-trained next-frame prediction model. Opt-CWM works by learning to optimize counterfactual probes that extract motion information from a base video model, avoiding the need for fixed heuristics while training on unrestricted video inputs. We achieve state-of-the-art performance for motion estimation on real-world videos while requiring no labeled data.
World-Grounded Human Motion Recovery via Gravity-View Coordinates
We present a novel method for recovering world-grounded human motion from monocular video. The main challenge lies in the ambiguity of defining the world coordinate system, which varies between sequences. Previous approaches attempt to alleviate this issue by predicting relative motion in an autoregressive manner, but are prone to accumulating errors. Instead, we propose estimating human poses in a novel Gravity-View (GV) coordinate system, which is defined by the world gravity and the camera view direction. The proposed GV system is naturally gravity-aligned and uniquely defined for each video frame, largely reducing the ambiguity of learning image-pose mapping. The estimated poses can be transformed back to the world coordinate system using camera rotations, forming a global motion sequence. Additionally, the per-frame estimation avoids error accumulation in the autoregressive methods. Experiments on in-the-wild benchmarks demonstrate that our method recovers more realistic motion in both the camera space and world-grounded settings, outperforming state-of-the-art methods in both accuracy and speed. The code is available at https://zju3dv.github.io/gvhmr/.
TapMo: Shape-aware Motion Generation of Skeleton-free Characters
Previous motion generation methods are limited to the pre-rigged 3D human model, hindering their applications in the animation of various non-rigged characters. In this work, we present TapMo, a Text-driven Animation Pipeline for synthesizing Motion in a broad spectrum of skeleton-free 3D characters. The pivotal innovation in TapMo is its use of shape deformation-aware features as a condition to guide the diffusion model, thereby enabling the generation of mesh-specific motions for various characters. Specifically, TapMo comprises two main components - Mesh Handle Predictor and Shape-aware Diffusion Module. Mesh Handle Predictor predicts the skinning weights and clusters mesh vertices into adaptive handles for deformation control, which eliminates the need for traditional skeletal rigging. Shape-aware Motion Diffusion synthesizes motion with mesh-specific adaptations. This module employs text-guided motions and mesh features extracted during the first stage, preserving the geometric integrity of the animations by accounting for the character's shape and deformation. Trained in a weakly-supervised manner, TapMo can accommodate a multitude of non-human meshes, both with and without associated text motions. We demonstrate the effectiveness and generalizability of TapMo through rigorous qualitative and quantitative experiments. Our results reveal that TapMo consistently outperforms existing auto-animation methods, delivering superior-quality animations for both seen or unseen heterogeneous 3D characters.
Neural Graphics Primitives-based Deformable Image Registration for On-the-fly Motion Extraction
Intra-fraction motion in radiotherapy is commonly modeled using deformable image registration (DIR). However, existing methods often struggle to balance speed and accuracy, limiting their applicability in clinical scenarios. This study introduces a novel approach that harnesses Neural Graphics Primitives (NGP) to optimize the displacement vector field (DVF). Our method leverages learned primitives, processed as splats, and interpolates within space using a shallow neural network. Uniquely, it enables self-supervised optimization at an ultra-fast speed, negating the need for pre-training on extensive datasets and allowing seamless adaptation to new cases. We validated this approach on the 4D-CT lung dataset DIR-lab, achieving a target registration error (TRE) of 1.15\pm1.15 mm within a remarkable time of 1.77 seconds. Notably, our method also addresses the sliding boundary problem, a common challenge in conventional DIR methods.
SpatialTracker: Tracking Any 2D Pixels in 3D Space
Recovering dense and long-range pixel motion in videos is a challenging problem. Part of the difficulty arises from the 3D-to-2D projection process, leading to occlusions and discontinuities in the 2D motion domain. While 2D motion can be intricate, we posit that the underlying 3D motion can often be simple and low-dimensional. In this work, we propose to estimate point trajectories in 3D space to mitigate the issues caused by image projection. Our method, named SpatialTracker, lifts 2D pixels to 3D using monocular depth estimators, represents the 3D content of each frame efficiently using a triplane representation, and performs iterative updates using a transformer to estimate 3D trajectories. Tracking in 3D allows us to leverage as-rigid-as-possible (ARAP) constraints while simultaneously learning a rigidity embedding that clusters pixels into different rigid parts. Extensive evaluation shows that our approach achieves state-of-the-art tracking performance both qualitatively and quantitatively, particularly in challenging scenarios such as out-of-plane rotation.
Replace Anyone in Videos
The field of controllable human-centric video generation has witnessed remarkable progress, particularly with the advent of diffusion models. However, achieving precise and localized control over human motion in videos, such as replacing or inserting individuals while preserving desired motion patterns, still remains a formidable challenge. In this work, we present the ReplaceAnyone framework, which focuses on localized human replacement and insertion featuring intricate backgrounds. Specifically, we formulate this task as an image-conditioned video inpainting paradigm with pose guidance, utilizing a unified end-to-end video diffusion architecture that facilitates image-conditioned video inpainting within masked regions. To prevent shape leakage and enable granular local control, we introduce diverse mask forms involving both regular and irregular shapes. Furthermore, we implement an enriched visual guidance mechanism to enhance appearance alignment, a hybrid inpainting encoder to further preserve the detailed background information in the masked video, and a two-phase optimization methodology to simplify the training difficulty. ReplaceAnyone enables seamless replacement or insertion of characters while maintaining the desired pose motion and reference appearance within a single framework. Extensive experimental results demonstrate the effectiveness of our method in generating realistic and coherent video content. The proposed ReplaceAnyone can be seamlessly applied not only to traditional 3D-UNet base models but also to DiT-based video models such as Wan2.1. The code will be available at https://github.com/ali-vilab/UniAnimate-DiT.
RoHM: Robust Human Motion Reconstruction via Diffusion
We propose RoHM, an approach for robust 3D human motion reconstruction from monocular RGB(-D) videos in the presence of noise and occlusions. Most previous approaches either train neural networks to directly regress motion in 3D or learn data-driven motion priors and combine them with optimization at test time. The former do not recover globally coherent motion and fail under occlusions; the latter are time-consuming, prone to local minima, and require manual tuning. To overcome these shortcomings, we exploit the iterative, denoising nature of diffusion models. RoHM is a novel diffusion-based motion model that, conditioned on noisy and occluded input data, reconstructs complete, plausible motions in consistent global coordinates. Given the complexity of the problem -- requiring one to address different tasks (denoising and infilling) in different solution spaces (local and global motion) -- we decompose it into two sub-tasks and learn two models, one for global trajectory and one for local motion. To capture the correlations between the two, we then introduce a novel conditioning module, combining it with an iterative inference scheme. We apply RoHM to a variety of tasks -- from motion reconstruction and denoising to spatial and temporal infilling. Extensive experiments on three popular datasets show that our method outperforms state-of-the-art approaches qualitatively and quantitatively, while being faster at test time. The code will be available at https://sanweiliti.github.io/ROHM/ROHM.html.
HaWoR: World-Space Hand Motion Reconstruction from Egocentric Videos
Despite the advent in 3D hand pose estimation, current methods predominantly focus on single-image 3D hand reconstruction in the camera frame, overlooking the world-space motion of the hands. Such limitation prohibits their direct use in egocentric video settings, where hands and camera are continuously in motion. In this work, we propose HaWoR, a high-fidelity method for hand motion reconstruction in world coordinates from egocentric videos. We propose to decouple the task by reconstructing the hand motion in the camera space and estimating the camera trajectory in the world coordinate system. To achieve precise camera trajectory estimation, we propose an adaptive egocentric SLAM framework that addresses the shortcomings of traditional SLAM methods, providing robust performance under challenging camera dynamics. To ensure robust hand motion trajectories, even when the hands move out of view frustum, we devise a novel motion infiller network that effectively completes the missing frames of the sequence. Through extensive quantitative and qualitative evaluations, we demonstrate that HaWoR achieves state-of-the-art performance on both hand motion reconstruction and world-frame camera trajectory estimation under different egocentric benchmark datasets. Code and models are available on https://hawor-project.github.io/ .
JoyVASA: Portrait and Animal Image Animation with Diffusion-Based Audio-Driven Facial Dynamics and Head Motion Generation
Audio-driven portrait animation has made significant advances with diffusion-based models, improving video quality and lipsync accuracy. However, the increasing complexity of these models has led to inefficiencies in training and inference, as well as constraints on video length and inter-frame continuity. In this paper, we propose JoyVASA, a diffusion-based method for generating facial dynamics and head motion in audio-driven facial animation. Specifically, in the first stage, we introduce a decoupled facial representation framework that separates dynamic facial expressions from static 3D facial representations. This decoupling allows the system to generate longer videos by combining any static 3D facial representation with dynamic motion sequences. Then, in the second stage, a diffusion transformer is trained to generate motion sequences directly from audio cues, independent of character identity. Finally, a generator trained in the first stage uses the 3D facial representation and the generated motion sequences as inputs to render high-quality animations. With the decoupled facial representation and the identity-independent motion generation process, JoyVASA extends beyond human portraits to animate animal faces seamlessly. The model is trained on a hybrid dataset of private Chinese and public English data, enabling multilingual support. Experimental results validate the effectiveness of our approach. Future work will focus on improving real-time performance and refining expression control, further expanding the applications in portrait animation. The code is available at: https://github.com/jdh-algo/JoyVASA.
RSTAR: Rotational Streak Artifact Reduction in 4D CBCT using Separable and Circular Convolutions
Four-dimensional cone-beam computed tomography (4D CBCT) provides respiration-resolved images and can be used for image-guided radiation therapy. However, the ability to reveal respiratory motion comes at the cost of image artifacts. As raw projection data are sorted into multiple respiratory phases, the cone-beam projections become much sparser and the reconstructed 4D CBCT images will be covered by severe streak artifacts. Although several deep learning-based methods have been proposed to address this issue, most algorithms employ 2D network models as backbones, neglecting the intrinsic structural priors within 4D CBCT images. In this paper, we first explore the origin and appearance of streak artifacts in 4D CBCT images. We find that streak artifacts exhibit a unique rotational motion along with the patient's respiration, distinguishable from diaphragm-driven respiratory motion in the spatiotemporal domain. Therefore, we propose a novel 4D neural network model, RSTAR4D-Net, designed to address Rotational STreak Artifact Reduction by integrating the spatial and temporal information within 4D CBCT images. Specifically, we overcome the computational and training difficulties of a 4D neural network. The specially designed model adopts an efficient implementation of 4D convolutions to reduce computational costs and thus can process the whole 4D image in one pass. Additionally, a Tetris training strategy pertinent to the separable 4D convolutions is proposed to effectively train the model using limited 4D training samples. Extensive experiments substantiate the effectiveness of our proposed method, and the RSTAR4D-Net shows superior performance compared to other methods. The source code and dynamic demos are available at https://github.com/ivy9092111111/RSTAR.
MeViS: A Large-scale Benchmark for Video Segmentation with Motion Expressions
This paper strives for motion expressions guided video segmentation, which focuses on segmenting objects in video content based on a sentence describing the motion of the objects. Existing referring video object datasets typically focus on salient objects and use language expressions that contain excessive static attributes that could potentially enable the target object to be identified in a single frame. These datasets downplay the importance of motion in video content for language-guided video object segmentation. To investigate the feasibility of using motion expressions to ground and segment objects in videos, we propose a large-scale dataset called MeViS, which contains numerous motion expressions to indicate target objects in complex environments. We benchmarked 5 existing referring video object segmentation (RVOS) methods and conducted a comprehensive comparison on the MeViS dataset. The results show that current RVOS methods cannot effectively address motion expression-guided video segmentation. We further analyze the challenges and propose a baseline approach for the proposed MeViS dataset. The goal of our benchmark is to provide a platform that enables the development of effective language-guided video segmentation algorithms that leverage motion expressions as a primary cue for object segmentation in complex video scenes. The proposed MeViS dataset has been released at https://henghuiding.github.io/MeViS.
MagicPose4D: Crafting Articulated Models with Appearance and Motion Control
With the success of 2D and 3D visual generative models, there is growing interest in generating 4D content. Existing methods primarily rely on text prompts to produce 4D content, but they often fall short of accurately defining complex or rare motions. To address this limitation, we propose MagicPose4D, a novel framework for refined control over both appearance and motion in 4D generation. Unlike traditional methods, MagicPose4D accepts monocular videos as motion prompts, enabling precise and customizable motion generation. MagicPose4D comprises two key modules: i) Dual-Phase 4D Reconstruction Module} which operates in two phases. The first phase focuses on capturing the model's shape using accurate 2D supervision and less accurate but geometrically informative 3D pseudo-supervision without imposing skeleton constraints. The second phase refines the model using more accurate pseudo-3D supervision, obtained in the first phase and introduces kinematic chain-based skeleton constraints to ensure physical plausibility. Additionally, we propose a Global-local Chamfer loss that aligns the overall distribution of predicted mesh vertices with the supervision while maintaining part-level alignment without extra annotations. ii) Cross-category Motion Transfer Module} leverages the predictions from the 4D reconstruction module and uses a kinematic-chain-based skeleton to achieve cross-category motion transfer. It ensures smooth transitions between frames through dynamic rigidity, facilitating robust generalization without additional training. Through extensive experiments, we demonstrate that MagicPose4D significantly improves the accuracy and consistency of 4D content generation, outperforming existing methods in various benchmarks.
VMBench: A Benchmark for Perception-Aligned Video Motion Generation
Video generation has advanced rapidly, improving evaluation methods, yet assessing video's motion remains a major challenge. Specifically, there are two key issues: 1) current motion metrics do not fully align with human perceptions; 2) the existing motion prompts are limited. Based on these findings, we introduce VMBench--a comprehensive Video Motion Benchmark that has perception-aligned motion metrics and features the most diverse types of motion. VMBench has several appealing properties: 1) Perception-Driven Motion Evaluation Metrics, we identify five dimensions based on human perception in motion video assessment and develop fine-grained evaluation metrics, providing deeper insights into models' strengths and weaknesses in motion quality. 2) Meta-Guided Motion Prompt Generation, a structured method that extracts meta-information, generates diverse motion prompts with LLMs, and refines them through human-AI validation, resulting in a multi-level prompt library covering six key dynamic scene dimensions. 3) Human-Aligned Validation Mechanism, we provide human preference annotations to validate our benchmarks, with our metrics achieving an average 35.3% improvement in Spearman's correlation over baseline methods. This is the first time that the quality of motion in videos has been evaluated from the perspective of human perception alignment. Additionally, we will soon release VMBench at https://github.com/GD-AIGC/VMBench, setting a new standard for evaluating and advancing motion generation models.
MotionTTT: 2D Test-Time-Training Motion Estimation for 3D Motion Corrected MRI
A major challenge of the long measurement times in magnetic resonance imaging (MRI), an important medical imaging technology, is that patients may move during data acquisition. This leads to severe motion artifacts in the reconstructed images and volumes. In this paper, we propose a deep learning-based test-time-training method for accurate motion estimation. The key idea is that a neural network trained for motion-free reconstruction has a small loss if there is no motion, thus optimizing over motion parameters passed through the reconstruction network enables accurate estimation of motion. The estimated motion parameters enable to correct for the motion and to reconstruct accurate motion-corrected images. Our method uses 2D reconstruction networks to estimate rigid motion in 3D, and constitutes the first deep learning based method for 3D rigid motion estimation towards 3D-motion-corrected MRI. We show that our method can provably reconstruct motion parameters for a simple signal and neural network model. We demonstrate the effectiveness of our method for both retrospectively simulated motion and prospectively collected real motion-corrupted data.
OnlyFlow: Optical Flow based Motion Conditioning for Video Diffusion Models
We consider the problem of text-to-video generation tasks with precise control for various applications such as camera movement control and video-to-video editing. Most methods tacking this problem rely on providing user-defined controls, such as binary masks or camera movement embeddings. In our approach we propose OnlyFlow, an approach leveraging the optical flow firstly extracted from an input video to condition the motion of generated videos. Using a text prompt and an input video, OnlyFlow allows the user to generate videos that respect the motion of the input video as well as the text prompt. This is implemented through an optical flow estimation model applied on the input video, which is then fed to a trainable optical flow encoder. The output feature maps are then injected into the text-to-video backbone model. We perform quantitative, qualitative and user preference studies to show that OnlyFlow positively compares to state-of-the-art methods on a wide range of tasks, even though OnlyFlow was not specifically trained for such tasks. OnlyFlow thus constitutes a versatile, lightweight yet efficient method for controlling motion in text-to-video generation. Models and code will be made available on GitHub and HuggingFace.
Simulating Fluids in Real-World Still Images
In this work, we tackle the problem of real-world fluid animation from a still image. The key of our system is a surface-based layered representation deriving from video decomposition, where the scene is decoupled into a surface fluid layer and an impervious background layer with corresponding transparencies to characterize the composition of the two layers. The animated video can be produced by warping only the surface fluid layer according to the estimation of fluid motions and recombining it with the background. In addition, we introduce surface-only fluid simulation, a 2.5D fluid calculation version, as a replacement for motion estimation. Specifically, we leverage the triangular mesh based on a monocular depth estimator to represent the fluid surface layer and simulate the motion in the physics-based framework with the inspiration of the classic theory of the hybrid Lagrangian-Eulerian method, along with a learnable network so as to adapt to complex real-world image textures. We demonstrate the effectiveness of the proposed system through comparison with existing methods in both standard objective metrics and subjective ranking scores. Extensive experiments not only indicate our method's competitive performance for common fluid scenes but also better robustness and reasonability under complex transparent fluid scenarios. Moreover, as the proposed surface-based layer representation and surface-only fluid simulation naturally disentangle the scene, interactive editing such as adding objects to the river and texture replacing could be easily achieved with realistic results.
Stereo4D: Learning How Things Move in 3D from Internet Stereo Videos
Learning to understand dynamic 3D scenes from imagery is crucial for applications ranging from robotics to scene reconstruction. Yet, unlike other problems where large-scale supervised training has enabled rapid progress, directly supervising methods for recovering 3D motion remains challenging due to the fundamental difficulty of obtaining ground truth annotations. We present a system for mining high-quality 4D reconstructions from internet stereoscopic, wide-angle videos. Our system fuses and filters the outputs of camera pose estimation, stereo depth estimation, and temporal tracking methods into high-quality dynamic 3D reconstructions. We use this method to generate large-scale data in the form of world-consistent, pseudo-metric 3D point clouds with long-term motion trajectories. We demonstrate the utility of this data by training a variant of DUSt3R to predict structure and 3D motion from real-world image pairs, showing that training on our reconstructed data enables generalization to diverse real-world scenes. Project page: https://stereo4d.github.io
HMD-NeMo: Online 3D Avatar Motion Generation From Sparse Observations
Generating both plausible and accurate full body avatar motion is the key to the quality of immersive experiences in mixed reality scenarios. Head-Mounted Devices (HMDs) typically only provide a few input signals, such as head and hands 6-DoF. Recently, different approaches achieved impressive performance in generating full body motion given only head and hands signal. However, to the best of our knowledge, all existing approaches rely on full hand visibility. While this is the case when, e.g., using motion controllers, a considerable proportion of mixed reality experiences do not involve motion controllers and instead rely on egocentric hand tracking. This introduces the challenge of partial hand visibility owing to the restricted field of view of the HMD. In this paper, we propose the first unified approach, HMD-NeMo, that addresses plausible and accurate full body motion generation even when the hands may be only partially visible. HMD-NeMo is a lightweight neural network that predicts the full body motion in an online and real-time fashion. At the heart of HMD-NeMo is the spatio-temporal encoder with novel temporally adaptable mask tokens that encourage plausible motion in the absence of hand observations. We perform extensive analysis of the impact of different components in HMD-NeMo and introduce a new state-of-the-art on AMASS dataset through our evaluation.
Isotopic effects in molecular attosecond photoelectron interferometry
Isotopic substitution in molecular systems can affect fundamental molecular properties including the energy position and spacing of electronic, vibrational and rotational levels, thus modifying the dynamics associated to their coherent superposition. In extreme ultraviolet spectroscopy, the photoelectron leaving the molecule after the absorption of a single photon can trigger an ultrafast nuclear motion in the cation, which can lead, eventually, to molecular fragmentation. This dynamics depends on the mass of the constituents of the cation, thus showing, in general, a significant isotopic dependence. In time-resolved attosecond photoelectron interferometry, the absorption of the extreme ultraviolet photon is accompanied by the exchange of an additional quantum of energy (typically in the infrared spectral range) with the photoelectron-photoion system, offering the opportunity to investigate in time the influence of isotopic substitution on the characteristics of the photoionisation dynamics. Here we show that attosecond photoelectron interferometry is sensitive to isotopic substitution by investigating the two-color photoionisation spectra measured in a mixture of methane (CH_4) and deuteromethane (CD_4). The isotopic dependence manifests itself in the modification of the amplitude and contrast of the oscillations of the photoelectron peaks generated in the two-color field with the two isotopologues. The observed effects are interpreted considering the differences in the time evolution of the nuclear autocorrelation functions in the two molecules.
SadTalker: Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation
Generating talking head videos through a face image and a piece of speech audio still contains many challenges. ie, unnatural head movement, distorted expression, and identity modification. We argue that these issues are mainly because of learning from the coupled 2D motion fields. On the other hand, explicitly using 3D information also suffers problems of stiff expression and incoherent video. We present SadTalker, which generates 3D motion coefficients (head pose, expression) of the 3DMM from audio and implicitly modulates a novel 3D-aware face render for talking head generation. To learn the realistic motion coefficients, we explicitly model the connections between audio and different types of motion coefficients individually. Precisely, we present ExpNet to learn the accurate facial expression from audio by distilling both coefficients and 3D-rendered faces. As for the head pose, we design PoseVAE via a conditional VAE to synthesize head motion in different styles. Finally, the generated 3D motion coefficients are mapped to the unsupervised 3D keypoints space of the proposed face render, and synthesize the final video. We conducted extensive experiments to demonstrate the superiority of our method in terms of motion and video quality.
MotionGPT: Human Motion as a Foreign Language
Though the advancement of pre-trained large language models unfolds, the exploration of building a unified model for language and other multi-modal data, such as motion, remains challenging and untouched so far. Fortunately, human motion displays a semantic coupling akin to human language, often perceived as a form of body language. By fusing language data with large-scale motion models, motion-language pre-training that can enhance the performance of motion-related tasks becomes feasible. Driven by this insight, we propose MotionGPT, a unified, versatile, and user-friendly motion-language model to handle multiple motion-relevant tasks. Specifically, we employ the discrete vector quantization for human motion and transfer 3D motion into motion tokens, similar to the generation process of word tokens. Building upon this "motion vocabulary", we perform language modeling on both motion and text in a unified manner, treating human motion as a specific language. Moreover, inspired by prompt learning, we pre-train MotionGPT with a mixture of motion-language data and fine-tune it on prompt-based question-and-answer tasks. Extensive experiments demonstrate that MotionGPT achieves state-of-the-art performances on multiple motion tasks including text-driven motion generation, motion captioning, motion prediction, and motion in-between.
Efficient Video Diffusion Models via Content-Frame Motion-Latent Decomposition
Video diffusion models have recently made great progress in generation quality, but are still limited by the high memory and computational requirements. This is because current video diffusion models often attempt to process high-dimensional videos directly. To tackle this issue, we propose content-motion latent diffusion model (CMD), a novel efficient extension of pretrained image diffusion models for video generation. Specifically, we propose an autoencoder that succinctly encodes a video as a combination of a content frame (like an image) and a low-dimensional motion latent representation. The former represents the common content, and the latter represents the underlying motion in the video, respectively. We generate the content frame by fine-tuning a pretrained image diffusion model, and we generate the motion latent representation by training a new lightweight diffusion model. A key innovation here is the design of a compact latent space that can directly utilizes a pretrained image diffusion model, which has not been done in previous latent video diffusion models. This leads to considerably better quality generation and reduced computational costs. For instance, CMD can sample a video 7.7times faster than prior approaches by generating a video of 512times1024 resolution and length 16 in 3.1 seconds. Moreover, CMD achieves an FVD score of 212.7 on WebVid-10M, 27.3% better than the previous state-of-the-art of 292.4.
Go-with-the-Flow: Motion-Controllable Video Diffusion Models Using Real-Time Warped Noise
Generative modeling aims to transform random noise into structured outputs. In this work, we enhance video diffusion models by allowing motion control via structured latent noise sampling. This is achieved by just a change in data: we pre-process training videos to yield structured noise. Consequently, our method is agnostic to diffusion model design, requiring no changes to model architectures or training pipelines. Specifically, we propose a novel noise warping algorithm, fast enough to run in real time, that replaces random temporal Gaussianity with correlated warped noise derived from optical flow fields, while preserving the spatial Gaussianity. The efficiency of our algorithm enables us to fine-tune modern video diffusion base models using warped noise with minimal overhead, and provide a one-stop solution for a wide range of user-friendly motion control: local object motion control, global camera movement control, and motion transfer. The harmonization between temporal coherence and spatial Gaussianity in our warped noise leads to effective motion control while maintaining per-frame pixel quality. Extensive experiments and user studies demonstrate the advantages of our method, making it a robust and scalable approach for controlling motion in video diffusion models. Video results are available on our webpage: https://vgenai-netflix-eyeline-research.github.io/Go-with-the-Flow. Source code and model checkpoints are available on GitHub: https://github.com/VGenAI-Netflix-Eyeline-Research/Go-with-the-Flow.
MotionEditor: Editing Video Motion via Content-Aware Diffusion
Existing diffusion-based video editing models have made gorgeous advances for editing attributes of a source video over time but struggle to manipulate the motion information while preserving the original protagonist's appearance and background. To address this, we propose MotionEditor, a diffusion model for video motion editing. MotionEditor incorporates a novel content-aware motion adapter into ControlNet to capture temporal motion correspondence. While ControlNet enables direct generation based on skeleton poses, it encounters challenges when modifying the source motion in the inverted noise due to contradictory signals between the noise (source) and the condition (reference). Our adapter complements ControlNet by involving source content to transfer adapted control signals seamlessly. Further, we build up a two-branch architecture (a reconstruction branch and an editing branch) with a high-fidelity attention injection mechanism facilitating branch interaction. This mechanism enables the editing branch to query the key and value from the reconstruction branch in a decoupled manner, making the editing branch retain the original background and protagonist appearance. We also propose a skeleton alignment algorithm to address the discrepancies in pose size and position. Experiments demonstrate the promising motion editing ability of MotionEditor, both qualitatively and quantitatively.
Machine Learning Modeling for Multi-order Human Visual Motion Processing
Our research aims to develop machines that learn to perceive visual motion as do humans. While recent advances in computer vision (CV) have enabled DNN-based models to accurately estimate optical flow in naturalistic images, a significant disparity remains between CV models and the biological visual system in both architecture and behavior. This disparity includes humans' ability to perceive the motion of higher-order image features (second-order motion), which many CV models fail to capture because of their reliance on the intensity conservation law. Our model architecture mimics the cortical V1-MT motion processing pathway, utilizing a trainable motion energy sensor bank and a recurrent graph network. Supervised learning employing diverse naturalistic videos allows the model to replicate psychophysical and physiological findings about first-order (luminance-based) motion perception. For second-order motion, inspired by neuroscientific findings, the model includes an additional sensing pathway with nonlinear preprocessing before motion energy sensing, implemented using a simple multilayer 3D CNN block. When exploring how the brain acquired the ability to perceive second-order motion in natural environments, in which pure second-order signals are rare, we hypothesized that second-order mechanisms were critical when estimating robust object motion amidst optical fluctuations, such as highlights on glossy surfaces. We trained our dual-pathway model on novel motion datasets with varying material properties of moving objects. We found that training to estimate object motion from non-Lambertian materials naturally endowed the model with the capacity to perceive second-order motion, as can humans. The resulting model effectively aligns with biological systems while generalizing to both first- and second-order motion phenomena in natural scenes.
SoPo: Text-to-Motion Generation Using Semi-Online Preference Optimization
Text-to-motion generation is essential for advancing the creative industry but often presents challenges in producing consistent, realistic motions. To address this, we focus on fine-tuning text-to-motion models to consistently favor high-quality, human-preferred motions, a critical yet largely unexplored problem. In this work, we theoretically investigate the DPO under both online and offline settings, and reveal their respective limitation: overfitting in offline DPO, and biased sampling in online DPO. Building on our theoretical insights, we introduce Semi-online Preference Optimization (SoPo), a DPO-based method for training text-to-motion models using "semi-online" data pair, consisting of unpreferred motion from online distribution and preferred motion in offline datasets. This method leverages both online and offline DPO, allowing each to compensate for the other's limitations. Extensive experiments demonstrate that SoPo outperforms other preference alignment methods, with an MM-Dist of 3.25% (vs e.g. 0.76% of MoDiPO) on the MLD model, 2.91% (vs e.g. 0.66% of MoDiPO) on MDM model, respectively. Additionally, the MLD model fine-tuned by our SoPo surpasses the SoTA model in terms of R-precision and MM Dist. Visualization results also show the efficacy of our SoPo in preference alignment. Our project page is https://sopo-motion.github.io.
Chronologically Accurate Retrieval for Temporal Grounding of Motion-Language Models
With the release of large-scale motion datasets with textual annotations, the task of establishing a robust latent space for language and 3D human motion has recently witnessed a surge of interest. Methods have been proposed to convert human motion and texts into features to achieve accurate correspondence between them. Despite these efforts to align language and motion representations, we claim that the temporal element is often overlooked, especially for compound actions, resulting in chronological inaccuracies. To shed light on the temporal alignment in motion-language latent spaces, we propose Chronologically Accurate Retrieval (CAR) to evaluate the chronological understanding of the models. We decompose textual descriptions into events, and prepare negative text samples by shuffling the order of events in compound action descriptions. We then design a simple task for motion-language models to retrieve the more likely text from the ground truth and its chronologically shuffled version. CAR reveals many cases where current motion-language models fail to distinguish the event chronology of human motion, despite their impressive performance in terms of conventional evaluation metrics. To achieve better temporal alignment between text and motion, we further propose to use these texts with shuffled sequence of events as negative samples during training to reinforce the motion-language models. We conduct experiments on text-motion retrieval and text-to-motion generation using the reinforced motion-language models, which demonstrate improved performance over conventional approaches, indicating the necessity to consider temporal elements in motion-language alignment.
Real-Time Navigation for Autonomous Surface Vehicles In Ice-Covered Waters
Vessel transit in ice-covered waters poses unique challenges in safe and efficient motion planning. When the concentration of ice is high, it may not be possible to find collision-free trajectories. Instead, ice can be pushed out of the way if it is small or if contact occurs near the edge of the ice. In this work, we propose a real-time navigation framework that minimizes collisions with ice and distance travelled by the vessel. We exploit a lattice-based planner with a cost that captures the ship interaction with ice. To address the dynamic nature of the environment, we plan motion in a receding horizon manner based on updated vessel and ice state information. Further, we present a novel planning heuristic for evaluating the cost-to-go, which is applicable to navigation in a channel without a fixed goal location. The performance of our planner is evaluated across several levels of ice concentration both in simulated and in real-world experiments.
UrbanVideo-Bench: Benchmarking Vision-Language Models on Embodied Intelligence with Video Data in Urban Spaces
Large multimodal models exhibit remarkable intelligence, yet their embodied cognitive abilities during motion in open-ended urban 3D space remain to be explored. We introduce a benchmark to evaluate whether video-large language models (Video-LLMs) can naturally process continuous first-person visual observations like humans, enabling recall, perception, reasoning, and navigation. We have manually control drones to collect 3D embodied motion video data from real-world cities and simulated environments, resulting in 1.5k video clips. Then we design a pipeline to generate 5.2k multiple-choice questions. Evaluations of 17 widely-used Video-LLMs reveal current limitations in urban embodied cognition. Correlation analysis provides insight into the relationships between different tasks, showing that causal reasoning has a strong correlation with recall, perception, and navigation, while the abilities for counterfactual and associative reasoning exhibit lower correlation with other tasks. We also validate the potential for Sim-to-Real transfer in urban embodiment through fine-tuning.
Multiwavelength Variability Analysis of the Blazar PKS 0727-11: A $\sim$168 Days Quasi-periodic Oscillation in Gamma-ray
We performed variability analysis of the multiwavelength light curves for the flat-spectrum radio quasar PKS 0727-11. Using the generalized Lomb-Scargle periodogram, we identified a possible quasi-periodic oscillation (QPO) of sim 168.6 days (persisted for 6 cycles, with a significance of 3.8sigma) in the gamma-ray light curve during the flare period (MJD 54687-55738). It is the first time that periodic variations have been detected in this source, and further supported by other methods: weighted wavelet z-transform, phase dispersion minimization, REDFIT, autoregressive integrated moving average model, and structure function analysis. Cross-correlation analysis shows that there is a strong correlation between multi-band light variations, indicating that gamma-ray and radio flares may originate from the same disturbance, and the distance between the emission regions of gamma-ray and radio flares is calculated based on the time lag. We demonstrate that QPO arising from the non-ballistic helical jet motion driven by the orbital motion in a supermassive binary black hole is a plausible physical explanation. In this scenario, the estimated mass of the primary black hole is Msim3.66times10^8-5.79times10^{9}M_odot.
MotionBank: A Large-scale Video Motion Benchmark with Disentangled Rule-based Annotations
In this paper, we tackle the problem of how to build and benchmark a large motion model (LMM). The ultimate goal of LMM is to serve as a foundation model for versatile motion-related tasks, e.g., human motion generation, with interpretability and generalizability. Though advanced, recent LMM-related works are still limited by small-scale motion data and costly text descriptions. Besides, previous motion benchmarks primarily focus on pure body movements, neglecting the ubiquitous motions in context, i.e., humans interacting with humans, objects, and scenes. To address these limitations, we consolidate large-scale video action datasets as knowledge banks to build MotionBank, which comprises 13 video action datasets, 1.24M motion sequences, and 132.9M frames of natural and diverse human motions. Different from laboratory-captured motions, in-the-wild human-centric videos contain abundant motions in context. To facilitate better motion text alignment, we also meticulously devise a motion caption generation algorithm to automatically produce rule-based, unbiased, and disentangled text descriptions via the kinematic characteristics for each motion. Extensive experiments show that our MotionBank is beneficial for general motion-related tasks of human motion generation, motion in-context generation, and motion understanding. Video motions together with the rule-based text annotations could serve as an efficient alternative for larger LMMs. Our dataset, codes, and benchmark will be publicly available at https://github.com/liangxuy/MotionBank.
Uni3C: Unifying Precisely 3D-Enhanced Camera and Human Motion Controls for Video Generation
Camera and human motion controls have been extensively studied for video generation, but existing approaches typically address them separately, suffering from limited data with high-quality annotations for both aspects. To overcome this, we present Uni3C, a unified 3D-enhanced framework for precise control of both camera and human motion in video generation. Uni3C includes two key contributions. First, we propose a plug-and-play control module trained with a frozen video generative backbone, PCDController, which utilizes unprojected point clouds from monocular depth to achieve accurate camera control. By leveraging the strong 3D priors of point clouds and the powerful capacities of video foundational models, PCDController shows impressive generalization, performing well regardless of whether the inference backbone is frozen or fine-tuned. This flexibility enables different modules of Uni3C to be trained in specific domains, i.e., either camera control or human motion control, reducing the dependency on jointly annotated data. Second, we propose a jointly aligned 3D world guidance for the inference phase that seamlessly integrates both scenic point clouds and SMPL-X characters to unify the control signals for camera and human motion, respectively. Extensive experiments confirm that PCDController enjoys strong robustness in driving camera motion for fine-tuned backbones of video generation. Uni3C substantially outperforms competitors in both camera controllability and human motion quality. Additionally, we collect tailored validation sets featuring challenging camera movements and human actions to validate the effectiveness of our method.
X-Dancer: Expressive Music to Human Dance Video Generation
We present X-Dancer, a novel zero-shot music-driven image animation pipeline that creates diverse and long-range lifelike human dance videos from a single static image. As its core, we introduce a unified transformer-diffusion framework, featuring an autoregressive transformer model that synthesize extended and music-synchronized token sequences for 2D body, head and hands poses, which then guide a diffusion model to produce coherent and realistic dance video frames. Unlike traditional methods that primarily generate human motion in 3D, X-Dancer addresses data limitations and enhances scalability by modeling a wide spectrum of 2D dance motions, capturing their nuanced alignment with musical beats through readily available monocular videos. To achieve this, we first build a spatially compositional token representation from 2D human pose labels associated with keypoint confidences, encoding both large articulated body movements (e.g., upper and lower body) and fine-grained motions (e.g., head and hands). We then design a music-to-motion transformer model that autoregressively generates music-aligned dance pose token sequences, incorporating global attention to both musical style and prior motion context. Finally we leverage a diffusion backbone to animate the reference image with these synthesized pose tokens through AdaIN, forming a fully differentiable end-to-end framework. Experimental results demonstrate that X-Dancer is able to produce both diverse and characterized dance videos, substantially outperforming state-of-the-art methods in term of diversity, expressiveness and realism. Code and model will be available for research purposes.
Spatio-temporal Vision Transformer for Super-resolution Microscopy
Structured illumination microscopy (SIM) is an optical super-resolution technique that enables live-cell imaging beyond the diffraction limit. Reconstruction of SIM data is prone to artefacts, which becomes problematic when imaging highly dynamic samples because previous methods rely on the assumption that samples are static. We propose a new transformer-based reconstruction method, VSR-SIM, that uses shifted 3-dimensional window multi-head attention in addition to channel attention mechanism to tackle the problem of video super-resolution (VSR) in SIM. The attention mechanisms are found to capture motion in sequences without the need for common motion estimation techniques such as optical flow. We take an approach to training the network that relies solely on simulated data using videos of natural scenery with a model for SIM image formation. We demonstrate a use case enabled by VSR-SIM referred to as rolling SIM imaging, which increases temporal resolution in SIM by a factor of 9. Our method can be applied to any SIM setup enabling precise recordings of dynamic processes in biomedical research with high temporal resolution.
Controllable Human-Object Interaction Synthesis
Synthesizing semantic-aware, long-horizon, human-object interaction is critical to simulate realistic human behaviors. In this work, we address the challenging problem of generating synchronized object motion and human motion guided by language descriptions in 3D scenes. We propose Controllable Human-Object Interaction Synthesis (CHOIS), an approach that generates object motion and human motion simultaneously using a conditional diffusion model given a language description, initial object and human states, and sparse object waypoints. While language descriptions inform style and intent, waypoints ground the motion in the scene and can be effectively extracted using high-level planning methods. Naively applying a diffusion model fails to predict object motion aligned with the input waypoints and cannot ensure the realism of interactions that require precise hand-object contact and appropriate contact grounded by the floor. To overcome these problems, we introduce an object geometry loss as additional supervision to improve the matching between generated object motion and input object waypoints. In addition, we design guidance terms to enforce contact constraints during the sampling process of the trained diffusion model.
MOOSE: Pay Attention to Temporal Dynamics for Video Understanding via Optical Flows
Many motion-centric video analysis tasks, such as atomic actions, detecting atypical motor behavior in individuals with autism, or analyzing articulatory motion in real-time MRI of human speech, require efficient and interpretable temporal modeling. Capturing temporal dynamics is a central challenge in video analysis, often requiring significant computational resources and fine-grained annotations that are not widely available. This paper presents MOOSE (Motion Flow Over Spatial Space), a novel temporally-centric video encoder explicitly integrating optical flow with spatial embeddings to model temporal information efficiently, inspired by human perception of motion. Unlike prior models, MOOSE takes advantage of rich, widely available pre-trained visual and optical flow encoders instead of training video models from scratch. This significantly reduces computational complexity while enhancing temporal interpretability. Our primary contributions includes (1) proposing a computationally efficient temporally-centric architecture for video understanding (2) demonstrating enhanced interpretability in modeling temporal dynamics; and (3) achieving state-of-the-art performance on diverse benchmarks, including clinical, medical, and standard action recognition datasets, confirming the broad applicability and effectiveness of our approach.
Long-Term 3D Point Tracking By Cost Volume Fusion
Long-term point tracking is essential to understand non-rigid motion in the physical world better. Deep learning approaches have recently been incorporated into long-term point tracking, but most prior work predominantly functions in 2D. Although these methods benefit from the well-established backbones and matching frameworks, the motions they produce do not always make sense in the 3D physical world. In this paper, we propose the first deep learning framework for long-term point tracking in 3D that generalizes to new points and videos without requiring test-time fine-tuning. Our model contains a cost volume fusion module that effectively integrates multiple past appearances and motion information via a transformer architecture, significantly enhancing overall tracking performance. In terms of 3D tracking performance, our model significantly outperforms simple scene flow chaining and previous 2D point tracking methods, even if one uses ground truth depth and camera pose to backproject 2D point tracks in a synthetic scenario.
Efficient Image Pre-Training with Siamese Cropped Masked Autoencoders
Self-supervised pre-training of image encoders is omnipresent in the literature, particularly following the introduction of Masked autoencoders (MAE). Current efforts attempt to learn object-centric representations from motion in videos. In particular, SiamMAE recently introduced a Siamese network, training a shared-weight encoder from two frames of a video with a high asymmetric masking ratio (95%). In this work, we propose CropMAE, an alternative approach to the Siamese pre-training introduced by SiamMAE. Our method specifically differs by exclusively considering pairs of cropped images sourced from the same image but cropped differently, deviating from the conventional pairs of frames extracted from a video. CropMAE therefore alleviates the need for video datasets, while maintaining competitive performances and drastically reducing pre-training and learning time. Furthermore, we demonstrate that CropMAE learns similar object-centric representations without explicit motion, showing that current self-supervised learning methods do not learn such representations from explicit object motion, but rather thanks to the implicit image transformations that occur between the two views. Finally, CropMAE achieves the highest masking ratio to date (98.5%), enabling the reconstruction of images using only two visible patches. Our code is available at https://github.com/alexandre-eymael/CropMAE.
DITTO: Demonstration Imitation by Trajectory Transformation
Teaching robots new skills quickly and conveniently is crucial for the broader adoption of robotic systems. In this work, we address the problem of one-shot imitation from a single human demonstration, given by an RGB-D video recording through a two-stage process. In the first stage which is offline, we extract the trajectory of the demonstration. This entails segmenting manipulated objects and determining their relative motion in relation to secondary objects such as containers. Subsequently, in the live online trajectory generation stage, we first re-detect all objects, then we warp the demonstration trajectory to the current scene, and finally, we trace the trajectory with the robot. To complete these steps, our method makes leverages several ancillary models, including those for segmentation, relative object pose estimation, and grasp prediction. We systematically evaluate different combinations of correspondence and re-detection methods to validate our design decision across a diverse range of tasks. Specifically, we collect demonstrations of ten different tasks including pick-and-place tasks as well as articulated object manipulation. Finally, we perform extensive evaluations on a real robot system to demonstrate the effectiveness and utility of our approach in real-world scenarios. We make the code publicly available at http://ditto.cs.uni-freiburg.de.
AI Choreographer: Music Conditioned 3D Dance Generation with AIST++
We present AIST++, a new multi-modal dataset of 3D dance motion and music, along with FACT, a Full-Attention Cross-modal Transformer network for generating 3D dance motion conditioned on music. The proposed AIST++ dataset contains 5.2 hours of 3D dance motion in 1408 sequences, covering 10 dance genres with multi-view videos with known camera poses -- the largest dataset of this kind to our knowledge. We show that naively applying sequence models such as transformers to this dataset for the task of music conditioned 3D motion generation does not produce satisfactory 3D motion that is well correlated with the input music. We overcome these shortcomings by introducing key changes in its architecture design and supervision: FACT model involves a deep cross-modal transformer block with full-attention that is trained to predict N future motions. We empirically show that these changes are key factors in generating long sequences of realistic dance motion that are well-attuned to the input music. We conduct extensive experiments on AIST++ with user studies, where our method outperforms recent state-of-the-art methods both qualitatively and quantitatively.
RoboTAP: Tracking Arbitrary Points for Few-Shot Visual Imitation
For robots to be useful outside labs and specialized factories we need a way to teach them new useful behaviors quickly. Current approaches lack either the generality to onboard new tasks without task-specific engineering, or else lack the data-efficiency to do so in an amount of time that enables practical use. In this work we explore dense tracking as a representational vehicle to allow faster and more general learning from demonstration. Our approach utilizes Track-Any-Point (TAP) models to isolate the relevant motion in a demonstration, and parameterize a low-level controller to reproduce this motion across changes in the scene configuration. We show this results in robust robot policies that can solve complex object-arrangement tasks such as shape-matching, stacking, and even full path-following tasks such as applying glue and sticking objects together, all from demonstrations that can be collected in minutes.
Dynamic Appearance Modeling of Clothed 3D Human Avatars using a Single Camera
The appearance of a human in clothing is driven not only by the pose but also by its temporal context, i.e., motion. However, such context has been largely neglected by existing monocular human modeling methods whose neural networks often struggle to learn a video of a person with large dynamics due to the motion ambiguity, i.e., there exist numerous geometric configurations of clothes that are dependent on the context of motion even for the same pose. In this paper, we introduce a method for high-quality modeling of clothed 3D human avatars using a video of a person with dynamic movements. The main challenge comes from the lack of 3D ground truth data of geometry and its temporal correspondences. We address this challenge by introducing a novel compositional human modeling framework that takes advantage of both explicit and implicit human modeling. For explicit modeling, a neural network learns to generate point-wise shape residuals and appearance features of a 3D body model by comparing its 2D rendering results and the original images. This explicit model allows for the reconstruction of discriminative 3D motion features from UV space by encoding their temporal correspondences. For implicit modeling, an implicit network combines the appearance and 3D motion features to decode high-fidelity clothed 3D human avatars with motion-dependent geometry and texture. The experiments show that our method can generate a large variation of secondary motion in a physically plausible way.
SceneTracker: Long-term Scene Flow Estimation Network
Considering the complementarity of scene flow estimation in the spatial domain's focusing capability and 3D object tracking in the temporal domain's coherence, this study aims to address a comprehensive new task that can simultaneously capture fine-grained and long-term 3D motion in an online manner: long-term scene flow estimation (LSFE). We introduce SceneTracker, a novel learning-based LSFE network that adopts an iterative approach to approximate the optimal trajectory. Besides, it dynamically indexes and constructs appearance and depth correlation features simultaneously and employs the Transformer to explore and utilize long-range connections within and between trajectories. With detailed experiments, SceneTracker shows superior capabilities in handling 3D spatial occlusion and depth noise interference, highly tailored to the LSFE task's needs. Finally, we build the first real-world evaluation dataset, LSFDriving, further substantiating SceneTracker's commendable generalization capacity. The code and data for SceneTracker is available at https://github.com/wwsource/SceneTracker.
Safety-Critical Coordination of Legged Robots via Layered Controllers and Forward Reachable Set based Control Barrier Functions
This paper presents a safety-critical approach to the coordination of robots in dynamic environments. To this end, we leverage control barrier functions (CBFs) with the forward reachable set to guarantee the safe coordination of the robots while preserving a desired trajectory via a layered controller. The top-level planner generates a safety-ensured trajectory for each agent, accounting for the dynamic constraints in the environment. This planner leverages high-order CBFs based on the forward reachable set to ensure safety-critical coordination control, i.e., guarantee the safe coordination of the robots during locomotion. The middle-level trajectory planner employs single rigid body (SRB) dynamics to generate optimal ground reaction forces (GRFs) to track the safety-ensured trajectories from the top-level planner. The whole-body motions to adhere to the optimal GRFs while ensuring the friction cone condition at the end of each stance leg are generated from the low-level controller. The effectiveness of the approach is demonstrated through simulation and hardware experiments.
TrackGo: A Flexible and Efficient Method for Controllable Video Generation
Recent years have seen substantial progress in diffusion-based controllable video generation. However, achieving precise control in complex scenarios, including fine-grained object parts, sophisticated motion trajectories, and coherent background movement, remains a challenge. In this paper, we introduce TrackGo, a novel approach that leverages free-form masks and arrows for conditional video generation. This method offers users with a flexible and precise mechanism for manipulating video content. We also propose the TrackAdapter for control implementation, an efficient and lightweight adapter designed to be seamlessly integrated into the temporal self-attention layers of a pretrained video generation model. This design leverages our observation that the attention map of these layers can accurately activate regions corresponding to motion in videos. Our experimental results demonstrate that our new approach, enhanced by the TrackAdapter, achieves state-of-the-art performance on key metrics such as FVD, FID, and ObjMC scores. The project page of TrackGo can be found at: https://zhtjtcz.github.io/TrackGo-Page/
Synthesizing Moving People with 3D Control
In this paper, we present a diffusion model-based framework for animating people from a single image for a given target 3D motion sequence. Our approach has two core components: a) learning priors about invisible parts of the human body and clothing, and b) rendering novel body poses with proper clothing and texture. For the first part, we learn an in-filling diffusion model to hallucinate unseen parts of a person given a single image. We train this model on texture map space, which makes it more sample-efficient since it is invariant to pose and viewpoint. Second, we develop a diffusion-based rendering pipeline, which is controlled by 3D human poses. This produces realistic renderings of novel poses of the person, including clothing, hair, and plausible in-filling of unseen regions. This disentangled approach allows our method to generate a sequence of images that are faithful to the target motion in the 3D pose and, to the input image in terms of visual similarity. In addition to that, the 3D control allows various synthetic camera trajectories to render a person. Our experiments show that our method is resilient in generating prolonged motions and varied challenging and complex poses compared to prior methods. Please check our website for more details: https://boyiliee.github.io/3DHM.github.io/.
HumanPlus: Humanoid Shadowing and Imitation from Humans
One of the key arguments for building robots that have similar form factors to human beings is that we can leverage the massive human data for training. Yet, doing so has remained challenging in practice due to the complexities in humanoid perception and control, lingering physical gaps between humanoids and humans in morphologies and actuation, and lack of a data pipeline for humanoids to learn autonomous skills from egocentric vision. In this paper, we introduce a full-stack system for humanoids to learn motion and autonomous skills from human data. We first train a low-level policy in simulation via reinforcement learning using existing 40-hour human motion datasets. This policy transfers to the real world and allows humanoid robots to follow human body and hand motion in real time using only a RGB camera, i.e. shadowing. Through shadowing, human operators can teleoperate humanoids to collect whole-body data for learning different tasks in the real world. Using the data collected, we then perform supervised behavior cloning to train skill policies using egocentric vision, allowing humanoids to complete different tasks autonomously by imitating human skills. We demonstrate the system on our customized 33-DoF 180cm humanoid, autonomously completing tasks such as wearing a shoe to stand up and walk, unloading objects from warehouse racks, folding a sweatshirt, rearranging objects, typing, and greeting another robot with 60-100% success rates using up to 40 demonstrations. Project website: https://humanoid-ai.github.io/
Multi-Shot Character Consistency for Text-to-Video Generation
Text-to-video models have made significant strides in generating short video clips from textual descriptions. Yet, a significant challenge remains: generating several video shots of the same characters, preserving their identity without hurting video quality, dynamics, and responsiveness to text prompts. We present Video Storyboarding, a training-free method to enable pretrained text-to-video models to generate multiple shots with consistent characters, by sharing features between them. Our key insight is that self-attention query features (Q) encode both motion and identity. This creates a hard-to-avoid trade-off between preserving character identity and making videos dynamic, when features are shared. To address this issue, we introduce a novel query injection strategy that balances identity preservation and natural motion retention. This approach improves upon naive consistency techniques applied to videos, which often struggle to maintain this delicate equilibrium. Our experiments demonstrate significant improvements in character consistency across scenes while maintaining high-quality motion and text alignment. These results offer insights into critical stages of video generation and the interplay of structure and motion in video diffusion models.
MambaTrack: A Simple Baseline for Multiple Object Tracking with State Space Model
Tracking by detection has been the prevailing paradigm in the field of Multi-object Tracking (MOT). These methods typically rely on the Kalman Filter to estimate the future locations of objects, assuming linear object motion. However, they fall short when tracking objects exhibiting nonlinear and diverse motion in scenarios like dancing and sports. In addition, there has been limited focus on utilizing learning-based motion predictors in MOT. To address these challenges, we resort to exploring data-driven motion prediction methods. Inspired by the great expectation of state space models (SSMs), such as Mamba, in long-term sequence modeling with near-linear complexity, we introduce a Mamba-based motion model named Mamba moTion Predictor (MTP). MTP is designed to model the complex motion patterns of objects like dancers and athletes. Specifically, MTP takes the spatial-temporal location dynamics of objects as input, captures the motion pattern using a bi-Mamba encoding layer, and predicts the next motion. In real-world scenarios, objects may be missed due to occlusion or motion blur, leading to premature termination of their trajectories. To tackle this challenge, we further expand the application of MTP. We employ it in an autoregressive way to compensate for missing observations by utilizing its own predictions as inputs, thereby contributing to more consistent trajectories. Our proposed tracker, MambaTrack, demonstrates advanced performance on benchmarks such as Dancetrack and SportsMOT, which are characterized by complex motion and severe occlusion.
Adaptive Human Trajectory Prediction via Latent Corridors
Human trajectory prediction is typically posed as a zero-shot generalization problem: a predictor is learnt on a dataset of human motion in training scenes, and then deployed on unseen test scenes. While this paradigm has yielded tremendous progress, it fundamentally assumes that trends in human behavior within the deployment scene are constant over time. As such, current prediction models are unable to adapt to scene-specific transient human behaviors, such as crowds temporarily gathering to see buskers, pedestrians hurrying through the rain and avoiding puddles, or a protest breaking out. We formalize the problem of scene-specific adaptive trajectory prediction and propose a new adaptation approach inspired by prompt tuning called latent corridors. By augmenting the input of any pre-trained human trajectory predictor with learnable image prompts, the predictor can improve in the deployment scene by inferring trends from extremely small amounts of new data (e.g., 2 humans observed for 30 seconds). With less than 0.1% additional model parameters, we see up to 23.9% ADE improvement in MOTSynth simulated data and 16.4% ADE in MOT and Wildtrack real pedestrian data. Qualitatively, we observe that latent corridors imbue predictors with an awareness of scene geometry and scene-specific human behaviors that non-adaptive predictors struggle to capture. The project website can be found at https://neerja.me/atp_latent_corridors/.
MPI-Flow: Learning Realistic Optical Flow with Multiplane Images
The accuracy of learning-based optical flow estimation models heavily relies on the realism of the training datasets. Current approaches for generating such datasets either employ synthetic data or generate images with limited realism. However, the domain gap of these data with real-world scenes constrains the generalization of the trained model to real-world applications. To address this issue, we investigate generating realistic optical flow datasets from real-world images. Firstly, to generate highly realistic new images, we construct a layered depth representation, known as multiplane images (MPI), from single-view images. This allows us to generate novel view images that are highly realistic. To generate optical flow maps that correspond accurately to the new image, we calculate the optical flows of each plane using the camera matrix and plane depths. We then project these layered optical flows into the output optical flow map with volume rendering. Secondly, to ensure the realism of motion, we present an independent object motion module that can separate the camera and dynamic object motion in MPI. This module addresses the deficiency in MPI-based single-view methods, where optical flow is generated only by camera motion and does not account for any object movement. We additionally devise a depth-aware inpainting module to merge new images with dynamic objects and address unnatural motion occlusions. We show the superior performance of our method through extensive experiments on real-world datasets. Moreover, our approach achieves state-of-the-art performance in both unsupervised and supervised training of learning-based models. The code will be made publicly available at: https://github.com/Sharpiless/MPI-Flow.
Deep Ensemble Learning with Frame Skipping for Face Anti-Spoofing
Face presentation attacks (PA), also known as spoofing attacks, pose a substantial threat to biometric systems that rely on facial recognition systems, such as access control systems, mobile payments, and identity verification systems. To mitigate the spoofing risk, several video-based methods have been presented in the literature that analyze facial motion in successive video frames. However, estimating the motion between adjacent frames is a challenging task and requires high computational cost. In this paper, we rephrase the face anti-spoofing task as a motion prediction problem and introduce a deep ensemble learning model with a frame skipping mechanism. In particular, the proposed frame skipping adopts a uniform sampling approach by dividing the original video into video clips of fixed size. By doing so, every nth frame of the clip is selected to ensure that the temporal patterns can easily be perceived during the training of three different recurrent neural networks (RNNs). Motivated by the performance of individual RNNs, a meta-model is developed to improve the overall detection performance by combining the prediction of individual RNNs. Extensive experiments were performed on four datasets, and state-of-the-art performance is reported on MSU-MFSD (3.12%), Replay-Attack (11.19%), and OULU-NPU (12.23%) databases by using half total error rates (HTERs) in the most challenging cross-dataset testing scenario.
VEnhancer: Generative Space-Time Enhancement for Video Generation
We present VEnhancer, a generative space-time enhancement framework that improves the existing text-to-video results by adding more details in spatial domain and synthetic detailed motion in temporal domain. Given a generated low-quality video, our approach can increase its spatial and temporal resolution simultaneously with arbitrary up-sampling space and time scales through a unified video diffusion model. Furthermore, VEnhancer effectively removes generated spatial artifacts and temporal flickering of generated videos. To achieve this, basing on a pretrained video diffusion model, we train a video ControlNet and inject it to the diffusion model as a condition on low frame-rate and low-resolution videos. To effectively train this video ControlNet, we design space-time data augmentation as well as video-aware conditioning. Benefiting from the above designs, VEnhancer yields to be stable during training and shares an elegant end-to-end training manner. Extensive experiments show that VEnhancer surpasses existing state-of-the-art video super-resolution and space-time super-resolution methods in enhancing AI-generated videos. Moreover, with VEnhancer, exisiting open-source state-of-the-art text-to-video method, VideoCrafter-2, reaches the top one in video generation benchmark -- VBench.
Keyframer: Empowering Animation Design using Large Language Models
Large language models (LLMs) have the potential to impact a wide range of creative domains, but the application of LLMs to animation is underexplored and presents novel challenges such as how users might effectively describe motion in natural language. In this paper, we present Keyframer, a design tool for animating static images (SVGs) with natural language. Informed by interviews with professional animation designers and engineers, Keyframer supports exploration and refinement of animations through the combination of prompting and direct editing of generated output. The system also enables users to request design variants, supporting comparison and ideation. Through a user study with 13 participants, we contribute a characterization of user prompting strategies, including a taxonomy of semantic prompt types for describing motion and a 'decomposed' prompting style where users continually adapt their goals in response to generated output.We share how direct editing along with prompting enables iteration beyond one-shot prompting interfaces common in generative tools today. Through this work, we propose how LLMs might empower a range of audiences to engage with animation creation.
Visual IRL for Human-Like Robotic Manipulation
We present a novel method for collaborative robots (cobots) to learn manipulation tasks and perform them in a human-like manner. Our method falls under the learn-from-observation (LfO) paradigm, where robots learn to perform tasks by observing human actions, which facilitates quicker integration into industrial settings compared to programming from scratch. We introduce Visual IRL that uses the RGB-D keypoints in each frame of the observed human task performance directly as state features, which are input to inverse reinforcement learning (IRL). The inversely learned reward function, which maps keypoints to reward values, is transferred from the human to the cobot using a novel neuro-symbolic dynamics model, which maps human kinematics to the cobot arm. This model allows similar end-effector positioning while minimizing joint adjustments, aiming to preserve the natural dynamics of human motion in robotic manipulation. In contrast with previous techniques that focus on end-effector placement only, our method maps multiple joint angles of the human arm to the corresponding cobot joints. Moreover, it uses an inverse kinematics model to then minimally adjust the joint angles, for accurate end-effector positioning. We evaluate the performance of this approach on two different realistic manipulation tasks. The first task is produce processing, which involves picking, inspecting, and placing onions based on whether they are blemished. The second task is liquid pouring, where the robot picks up bottles, pours the contents into designated containers, and disposes of the empty bottles. Our results demonstrate advances in human-like robotic manipulation, leading to more human-robot compatibility in manufacturing applications.
One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing
We propose a neural talking-head video synthesis model and demonstrate its application to video conferencing. Our model learns to synthesize a talking-head video using a source image containing the target person's appearance and a driving video that dictates the motion in the output. Our motion is encoded based on a novel keypoint representation, where the identity-specific and motion-related information is decomposed unsupervisedly. Extensive experimental validation shows that our model outperforms competing methods on benchmark datasets. Moreover, our compact keypoint representation enables a video conferencing system that achieves the same visual quality as the commercial H.264 standard while only using one-tenth of the bandwidth. Besides, we show our keypoint representation allows the user to rotate the head during synthesis, which is useful for simulating face-to-face video conferencing experiences.
Automated SSIM Regression for Detection and Quantification of Motion Artefacts in Brain MR Images
Motion artefacts in magnetic resonance brain images can have a strong impact on diagnostic confidence. The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis. Motion artefacts can alter the delineation of structures such as the brain, lesions or tumours and may require a repeat scan. Otherwise, an inaccurate (e.g. correct pathology but wrong severity) or incorrect diagnosis (e.g. wrong pathology) may occur. "Image quality assessment" as a fast, automated step right after scanning can assist in deciding if the acquired images are diagnostically sufficient. An automated image quality assessment based on the structural similarity index (SSIM) regression through a residual neural network is proposed in this work. Additionally, a classification into different groups - by subdividing with SSIM ranges - is evaluated. Importantly, this method predicts SSIM values of an input image in the absence of a reference ground truth image. The networks were able to detect motion artefacts, and the best performance for the regression and classification task has always been achieved with ResNet-18 with contrast augmentation. The mean and standard deviation of residuals' distribution were mu=-0.0009 and sigma=0.0139, respectively. Whilst for the classification task in 3, 5 and 10 classes, the best accuracies were 97, 95 and 89\%, respectively. The results show that the proposed method could be a tool for supporting neuro-radiologists and radiographers in evaluating image quality quickly.
Generative Human Motion Stylization in Latent Space
Human motion stylization aims to revise the style of an input motion while keeping its content unaltered. Unlike existing works that operate directly in pose space, we leverage the latent space of pretrained autoencoders as a more expressive and robust representation for motion extraction and infusion. Building upon this, we present a novel generative model that produces diverse stylization results of a single motion (latent) code. During training, a motion code is decomposed into two coding components: a deterministic content code, and a probabilistic style code adhering to a prior distribution; then a generator massages the random combination of content and style codes to reconstruct the corresponding motion codes. Our approach is versatile, allowing the learning of probabilistic style space from either style labeled or unlabeled motions, providing notable flexibility in stylization as well. In inference, users can opt to stylize a motion using style cues from a reference motion or a label. Even in the absence of explicit style input, our model facilitates novel re-stylization by sampling from the unconditional style prior distribution. Experimental results show that our proposed stylization models, despite their lightweight design, outperform the state-of-the-art in style reenactment, content preservation, and generalization across various applications and settings. Project Page: https://murrol.github.io/GenMoStyle
Words in Motion: Extracting Interpretable Control Vectors for Motion Transformers
Transformer-based models generate hidden states that are difficult to interpret. In this work, we analyze hidden states and modify them at inference, with a focus on motion forecasting. We use linear probing to analyze whether interpretable features are embedded in hidden states. Our experiments reveal high probing accuracy, indicating latent space regularities with functionally important directions. Building on this, we use the directions between hidden states with opposing features to fit control vectors. At inference, we add our control vectors to hidden states and evaluate their impact on predictions. Remarkably, such modifications preserve the feasibility of predictions. We further refine our control vectors using sparse autoencoders (SAEs). This leads to more linear changes in predictions when scaling control vectors. Our approach enables mechanistic interpretation as well as zero-shot generalization to unseen dataset characteristics with negligible computational overhead.
MotionShop: Zero-Shot Motion Transfer in Video Diffusion Models with Mixture of Score Guidance
In this work, we propose the first motion transfer approach in diffusion transformer through Mixture of Score Guidance (MSG), a theoretically-grounded framework for motion transfer in diffusion models. Our key theoretical contribution lies in reformulating conditional score to decompose motion score and content score in diffusion models. By formulating motion transfer as a mixture of potential energies, MSG naturally preserves scene composition and enables creative scene transformations while maintaining the integrity of transferred motion patterns. This novel sampling operates directly on pre-trained video diffusion models without additional training or fine-tuning. Through extensive experiments, MSG demonstrates successful handling of diverse scenarios including single object, multiple objects, and cross-object motion transfer as well as complex camera motion transfer. Additionally, we introduce MotionBench, the first motion transfer dataset consisting of 200 source videos and 1000 transferred motions, covering single/multi-object transfers, and complex camera motions.
SMILE: Infusing Spatial and Motion Semantics in Masked Video Learning
Masked video modeling, such as VideoMAE, is an effective paradigm for video self-supervised learning (SSL). However, they are primarily based on reconstructing pixel-level details on natural videos which have substantial temporal redundancy, limiting their capability for semantic representation and sufficient encoding of motion dynamics. To address these issues, this paper introduces a novel SSL approach for video representation learning, dubbed as SMILE, by infusing both spatial and motion semantics. In SMILE, we leverage image-language pretrained models, such as CLIP, to guide the learning process with their high-level spatial semantics. We enhance the representation of motion by introducing synthetic motion patterns in the training data, allowing the model to capture more complex and dynamic content. Furthermore, using SMILE, we establish a new self-supervised video learning paradigm capable of learning strong video representations without requiring any natural video data. We have carried out extensive experiments on 7 datasets with various downstream scenarios. SMILE surpasses current state-of-the-art SSL methods, showcasing its effectiveness in learning more discriminative and generalizable video representations. Code is available: https://github.com/fmthoker/SMILE
HiMo: High-Speed Objects Motion Compensation in Point Clouds
LiDAR point clouds often contain motion-induced distortions, degrading the accuracy of object appearances in the captured data. In this paper, we first characterize the underlying reasons for the point cloud distortion and show that this is present in public datasets. We find that this distortion is more pronounced in high-speed environments such as highways, as well as in multi-LiDAR configurations, a common setup for heavy vehicles. Previous work has dealt with point cloud distortion from the ego-motion but fails to consider distortion from the motion of other objects. We therefore introduce a novel undistortion pipeline, HiMo, that leverages scene flow estimation for object motion compensation, correcting the depiction of dynamic objects. We further propose an extension of a state-of-the-art self-supervised scene flow method. Due to the lack of well-established motion distortion metrics in the literature, we also propose two metrics for compensation performance evaluation: compensation accuracy at a point level and shape similarity on objects. To demonstrate the efficacy of our method, we conduct extensive experiments on the Argoverse 2 dataset and a new real-world dataset. Our new dataset is collected from heavy vehicles equipped with multi-LiDARs and on highways as opposed to mostly urban settings in the existing datasets. The source code, including all methods and the evaluation data, will be provided upon publication. See https://kin-zhang.github.io/HiMo for more details.
Quantifying Uncertainty in Motion Prediction with Variational Bayesian Mixture
Safety and robustness are crucial factors in developing trustworthy autonomous vehicles. One essential aspect of addressing these factors is to equip vehicles with the capability to predict future trajectories for all moving objects in the surroundings and quantify prediction uncertainties. In this paper, we propose the Sequential Neural Variational Agent (SeNeVA), a generative model that describes the distribution of future trajectories for a single moving object. Our approach can distinguish Out-of-Distribution data while quantifying uncertainty and achieving competitive performance compared to state-of-the-art methods on the Argoverse 2 and INTERACTION datasets. Specifically, a 0.446 meters minimum Final Displacement Error, a 0.203 meters minimum Average Displacement Error, and a 5.35% Miss Rate are achieved on the INTERACTION test set. Extensive qualitative and quantitative analysis is also provided to evaluate the proposed model. Our open-source code is available at https://github.com/PurdueDigitalTwin/seneva.
PianoMotion10M: Dataset and Benchmark for Hand Motion Generation in Piano Performance
Recently, artificial intelligence techniques for education have been received increasing attentions, while it still remains an open problem to design the effective music instrument instructing systems. Although key presses can be directly derived from sheet music, the transitional movements among key presses require more extensive guidance in piano performance. In this work, we construct a piano-hand motion generation benchmark to guide hand movements and fingerings for piano playing. To this end, we collect an annotated dataset, PianoMotion10M, consisting of 116 hours of piano playing videos from a bird's-eye view with 10 million annotated hand poses. We also introduce a powerful baseline model that generates hand motions from piano audios through a position predictor and a position-guided gesture generator. Furthermore, a series of evaluation metrics are designed to assess the performance of the baseline model, including motion similarity, smoothness, positional accuracy of left and right hands, and overall fidelity of movement distribution. Despite that piano key presses with respect to music scores or audios are already accessible, PianoMotion10M aims to provide guidance on piano fingering for instruction purposes. The source code and dataset can be accessed at https://github.com/agnJason/PianoMotion10M.
Fréchet Video Motion Distance: A Metric for Evaluating Motion Consistency in Videos
Significant advancements have been made in video generative models recently. Unlike image generation, video generation presents greater challenges, requiring not only generating high-quality frames but also ensuring temporal consistency across these frames. Despite the impressive progress, research on metrics for evaluating the quality of generated videos, especially concerning temporal and motion consistency, remains underexplored. To bridge this research gap, we propose Fr\'echet Video Motion Distance (FVMD) metric, which focuses on evaluating motion consistency in video generation. Specifically, we design explicit motion features based on key point tracking, and then measure the similarity between these features via the Fr\'echet distance. We conduct sensitivity analysis by injecting noise into real videos to verify the effectiveness of FVMD. Further, we carry out a large-scale human study, demonstrating that our metric effectively detects temporal noise and aligns better with human perceptions of generated video quality than existing metrics. Additionally, our motion features can consistently improve the performance of Video Quality Assessment (VQA) models, indicating that our approach is also applicable to unary video quality evaluation. Code is available at https://github.com/ljh0v0/FMD-frechet-motion-distance.
Deep Stochastic Kinematic Models for Probabilistic Motion Forecasting in Traffic
In trajectory forecasting tasks for traffic, future output trajectories can be computed by advancing the ego vehicle's state with predicted actions according to a kinematics model. By unrolling predicted trajectories via time integration and models of kinematic dynamics, predicted trajectories should not only be kinematically feasible but also relate uncertainty from one timestep to the next. While current works in probabilistic prediction do incorporate kinematic priors for mean trajectory prediction, variance is often left as a learnable parameter, despite uncertainty in one time step being inextricably tied to uncertainty in the previous time step. In this paper, we show simple and differentiable analytical approximations describing the relationship between variance at one timestep and that at the next with the kinematic bicycle model. These approximations can be easily incorporated with negligible additional overhead into any existing trajectory forecasting framework utilizing probabilistic predictions, whether it is autoregressive or one-shot prediction. In our results, we find that encoding the relationship between variance across timesteps works especially well in unoptimal settings, such as with small or noisy datasets. We observe up to a 50% performance boost in partial dataset settings and up to an 8% performance boost in large-scale learning compared to previous kinematic prediction methods on SOTA trajectory forecasting architectures out-of-the-box, with no fine-tuning. In this paper, we show four analytical formulations of probabilistic kinematic priors which can be used for any Gaussian Mixture Model (GMM)-based deep learning models, quantify the error bound on linear approximations applied during trajectory unrolling, and show results to evaluate each formulation in trajectory forecasting.
LaserHuman: Language-guided Scene-aware Human Motion Generation in Free Environment
Language-guided scene-aware human motion generation has great significance for entertainment and robotics. In response to the limitations of existing datasets, we introduce LaserHuman, a pioneering dataset engineered to revolutionize Scene-Text-to-Motion research. LaserHuman stands out with its inclusion of genuine human motions within 3D environments, unbounded free-form natural language descriptions, a blend of indoor and outdoor scenarios, and dynamic, ever-changing scenes. Diverse modalities of capture data and rich annotations present great opportunities for the research of conditional motion generation, and can also facilitate the development of real-life applications. Moreover, to generate semantically consistent and physically plausible human motions, we propose a multi-conditional diffusion model, which is simple but effective, achieving state-of-the-art performance on existing datasets.
Generalizing Event-Based Motion Deblurring in Real-World Scenarios
Event-based motion deblurring has shown promising results by exploiting low-latency events. However, current approaches are limited in their practical usage, as they assume the same spatial resolution of inputs and specific blurriness distributions. This work addresses these limitations and aims to generalize the performance of event-based deblurring in real-world scenarios. We propose a scale-aware network that allows flexible input spatial scales and enables learning from different temporal scales of motion blur. A two-stage self-supervised learning scheme is then developed to fit real-world data distribution. By utilizing the relativity of blurriness, our approach efficiently ensures the restored brightness and structure of latent images and further generalizes deblurring performance to handle varying spatial and temporal scales of motion blur in a self-distillation manner. Our method is extensively evaluated, demonstrating remarkable performance, and we also introduce a real-world dataset consisting of multi-scale blurry frames and events to facilitate research in event-based deblurring.
LiveHPS++: Robust and Coherent Motion Capture in Dynamic Free Environment
LiDAR-based human motion capture has garnered significant interest in recent years for its practicability in large-scale and unconstrained environments. However, most methods rely on cleanly segmented human point clouds as input, the accuracy and smoothness of their motion results are compromised when faced with noisy data, rendering them unsuitable for practical applications. To address these limitations and enhance the robustness and precision of motion capture with noise interference, we introduce LiveHPS++, an innovative and effective solution based on a single LiDAR system. Benefiting from three meticulously designed modules, our method can learn dynamic and kinematic features from human movements, and further enable the precise capture of coherent human motions in open settings, making it highly applicable to real-world scenarios. Through extensive experiments, LiveHPS++ has proven to significantly surpass existing state-of-the-art methods across various datasets, establishing a new benchmark in the field.
A Data-driven Model for Interaction-aware Pedestrian Motion Prediction in Object Cluttered Environments
This paper reports on a data-driven, interaction-aware motion prediction approach for pedestrians in environments cluttered with static obstacles. When navigating in such workspaces shared with humans, robots need accurate motion predictions of the surrounding pedestrians. Human navigation behavior is mostly influenced by their surrounding pedestrians and by the static obstacles in their vicinity. In this paper we introduce a new model based on Long-Short Term Memory (LSTM) neural networks, which is able to learn human motion behavior from demonstrated data. To the best of our knowledge, this is the first approach using LSTMs, that incorporates both static obstacles and surrounding pedestrians for trajectory forecasting. As part of the model, we introduce a new way of encoding surrounding pedestrians based on a 1d-grid in polar angle space. We evaluate the benefit of interaction-aware motion prediction and the added value of incorporating static obstacles on both simulation and real-world datasets by comparing with state-of-the-art approaches. The results show, that our new approach outperforms the other approaches while being very computationally efficient and that taking into account static obstacles for motion predictions significantly improves the prediction accuracy, especially in cluttered environments.
GaraMoSt: Parallel Multi-Granularity Motion and Structural Modeling for Efficient Multi-Frame Interpolation in DSA Images
The rapid and accurate direct multi-frame interpolation method for Digital Subtraction Angiography (DSA) images is crucial for reducing radiation and providing real-time assistance to physicians for precise diagnostics and treatment. DSA images contain complex vascular structures and various motions. Applying natural scene Video Frame Interpolation (VFI) methods results in motion artifacts, structural dissipation, and blurriness. Recently, MoSt-DSA has specifically addressed these issues for the first time and achieved SOTA results. However, MoSt-DSA's focus on real-time performance leads to insufficient suppression of high-frequency noise and incomplete filtering of low-frequency noise in the generated images. To address these issues within the same computational time scale, we propose GaraMoSt. Specifically, we optimize the network pipeline with a parallel design and propose a module named MG-MSFE. MG-MSFE extracts frame-relative motion and structural features at various granularities in a fully convolutional parallel manner and supports independent, flexible adjustment of context-aware granularity at different scales, thus enhancing computational efficiency and accuracy. Extensive experiments demonstrate that GaraMoSt achieves the SOTA performance in accuracy, robustness, visual effects, and noise suppression, comprehensively surpassing MoSt-DSA and other natural scene VFI methods. The code and models are available at https://github.com/ZyoungXu/GaraMoSt.
In-2-4D: Inbetweening from Two Single-View Images to 4D Generation
We propose a new problem, In-2-4D, for generative 4D (i.e., 3D + motion) inbetweening from a minimalistic input setting: two single-view images capturing an object in two distinct motion states. Given two images representing the start and end states of an object in motion, our goal is to generate and reconstruct the motion in 4D. We utilize a video interpolation model to predict the motion, but large frame-to-frame motions can lead to ambiguous interpretations. To overcome this, we employ a hierarchical approach to identify keyframes that are visually close to the input states and show significant motion, then generate smooth fragments between them. For each fragment, we construct the 3D representation of the keyframe using Gaussian Splatting. The temporal frames within the fragment guide the motion, enabling their transformation into dynamic Gaussians through a deformation field. To improve temporal consistency and refine 3D motion, we expand the self-attention of multi-view diffusion across timesteps and apply rigid transformation regularization. Finally, we merge the independently generated 3D motion segments by interpolating boundary deformation fields and optimizing them to align with the guiding video, ensuring smooth and flicker-free transitions. Through extensive qualitative and quantitiave experiments as well as a user study, we show the effectiveness of our method and its components. The project page is available at https://in-2-4d.github.io/
MotionBridge: Dynamic Video Inbetweening with Flexible Controls
By generating plausible and smooth transitions between two image frames, video inbetweening is an essential tool for video editing and long video synthesis. Traditional works lack the capability to generate complex large motions. While recent video generation techniques are powerful in creating high-quality results, they often lack fine control over the details of intermediate frames, which can lead to results that do not align with the creative mind. We introduce MotionBridge, a unified video inbetweening framework that allows flexible controls, including trajectory strokes, keyframes, masks, guide pixels, and text. However, learning such multi-modal controls in a unified framework is a challenging task. We thus design two generators to extract the control signal faithfully and encode feature through dual-branch embedders to resolve ambiguities. We further introduce a curriculum training strategy to smoothly learn various controls. Extensive qualitative and quantitative experiments have demonstrated that such multi-modal controls enable a more dynamic, customizable, and contextually accurate visual narrative.
Generative Inbetweening through Frame-wise Conditions-Driven Video Generation
Generative inbetweening aims to generate intermediate frame sequences by utilizing two key frames as input. Although remarkable progress has been made in video generation models, generative inbetweening still faces challenges in maintaining temporal stability due to the ambiguous interpolation path between two key frames. This issue becomes particularly severe when there is a large motion gap between input frames. In this paper, we propose a straightforward yet highly effective Frame-wise Conditions-driven Video Generation (FCVG) method that significantly enhances the temporal stability of interpolated video frames. Specifically, our FCVG provides an explicit condition for each frame, making it much easier to identify the interpolation path between two input frames and thus ensuring temporally stable production of visually plausible video frames. To achieve this, we suggest extracting matched lines from two input frames that can then be easily interpolated frame by frame, serving as frame-wise conditions seamlessly integrated into existing video generation models. In extensive evaluations covering diverse scenarios such as natural landscapes, complex human poses, camera movements and animations, existing methods often exhibit incoherent transitions across frames. In contrast, our FCVG demonstrates the capability to generate temporally stable videos using both linear and non-linear interpolation curves. Our project page and code are available at https://fcvg-inbetween.github.io/.
Seamless Human Motion Composition with Blended Positional Encodings
Conditional human motion generation is an important topic with many applications in virtual reality, gaming, and robotics. While prior works have focused on generating motion guided by text, music, or scenes, these typically result in isolated motions confined to short durations. Instead, we address the generation of long, continuous sequences guided by a series of varying textual descriptions. In this context, we introduce FlowMDM, the first diffusion-based model that generates seamless Human Motion Compositions (HMC) without any postprocessing or redundant denoising steps. For this, we introduce the Blended Positional Encodings, a technique that leverages both absolute and relative positional encodings in the denoising chain. More specifically, global motion coherence is recovered at the absolute stage, whereas smooth and realistic transitions are built at the relative stage. As a result, we achieve state-of-the-art results in terms of accuracy, realism, and smoothness on the Babel and HumanML3D datasets. FlowMDM excels when trained with only a single description per motion sequence thanks to its Pose-Centric Cross-ATtention, which makes it robust against varying text descriptions at inference time. Finally, to address the limitations of existing HMC metrics, we propose two new metrics: the Peak Jerk and the Area Under the Jerk, to detect abrupt transitions.
MotionCLIP: Exposing Human Motion Generation to CLIP Space
We introduce MotionCLIP, a 3D human motion auto-encoder featuring a latent embedding that is disentangled, well behaved, and supports highly semantic textual descriptions. MotionCLIP gains its unique power by aligning its latent space with that of the Contrastive Language-Image Pre-training (CLIP) model. Aligning the human motion manifold to CLIP space implicitly infuses the extremely rich semantic knowledge of CLIP into the manifold. In particular, it helps continuity by placing semantically similar motions close to one another, and disentanglement, which is inherited from the CLIP-space structure. MotionCLIP comprises a transformer-based motion auto-encoder, trained to reconstruct motion while being aligned to its text label's position in CLIP-space. We further leverage CLIP's unique visual understanding and inject an even stronger signal through aligning motion to rendered frames in a self-supervised manner. We show that although CLIP has never seen the motion domain, MotionCLIP offers unprecedented text-to-motion abilities, allowing out-of-domain actions, disentangled editing, and abstract language specification. For example, the text prompt "couch" is decoded into a sitting down motion, due to lingual similarity, and the prompt "Spiderman" results in a web-swinging-like solution that is far from seen during training. In addition, we show how the introduced latent space can be leveraged for motion interpolation, editing and recognition.
Multi-Track Timeline Control for Text-Driven 3D Human Motion Generation
Recent advances in generative modeling have led to promising progress on synthesizing 3D human motion from text, with methods that can generate character animations from short prompts and specified durations. However, using a single text prompt as input lacks the fine-grained control needed by animators, such as composing multiple actions and defining precise durations for parts of the motion. To address this, we introduce the new problem of timeline control for text-driven motion synthesis, which provides an intuitive, yet fine-grained, input interface for users. Instead of a single prompt, users can specify a multi-track timeline of multiple prompts organized in temporal intervals that may overlap. This enables specifying the exact timings of each action and composing multiple actions in sequence or at overlapping intervals. To generate composite animations from a multi-track timeline, we propose a new test-time denoising method. This method can be integrated with any pre-trained motion diffusion model to synthesize realistic motions that accurately reflect the timeline. At every step of denoising, our method processes each timeline interval (text prompt) individually, subsequently aggregating the predictions with consideration for the specific body parts engaged in each action. Experimental comparisons and ablations validate that our method produces realistic motions that respect the semantics and timing of given text prompts. Our code and models are publicly available at https://mathis.petrovich.fr/stmc.
MoVideo: Motion-Aware Video Generation with Diffusion Models
While recent years have witnessed great progress on using diffusion models for video generation, most of them are simple extensions of image generation frameworks, which fail to explicitly consider one of the key differences between videos and images, i.e., motion. In this paper, we propose a novel motion-aware video generation (MoVideo) framework that takes motion into consideration from two aspects: video depth and optical flow. The former regulates motion by per-frame object distances and spatial layouts, while the later describes motion by cross-frame correspondences that help in preserving fine details and improving temporal consistency. More specifically, given a key frame that exists or generated from text prompts, we first design a diffusion model with spatio-temporal modules to generate the video depth and the corresponding optical flows. Then, the video is generated in the latent space by another spatio-temporal diffusion model under the guidance of depth, optical flow-based warped latent video and the calculated occlusion mask. Lastly, we use optical flows again to align and refine different frames for better video decoding from the latent space to the pixel space. In experiments, MoVideo achieves state-of-the-art results in both text-to-video and image-to-video generation, showing promising prompt consistency, frame consistency and visual quality.
MotionPro: A Precise Motion Controller for Image-to-Video Generation
Animating images with interactive motion control has garnered popularity for image-to-video (I2V) generation. Modern approaches typically rely on large Gaussian kernels to extend motion trajectories as condition without explicitly defining movement region, leading to coarse motion control and failing to disentangle object and camera moving. To alleviate these, we present MotionPro, a precise motion controller that novelly leverages region-wise trajectory and motion mask to regulate fine-grained motion synthesis and identify target motion category (i.e., object or camera moving), respectively. Technically, MotionPro first estimates the flow maps on each training video via a tracking model, and then samples the region-wise trajectories to simulate inference scenario. Instead of extending flow through large Gaussian kernels, our region-wise trajectory approach enables more precise control by directly utilizing trajectories within local regions, thereby effectively characterizing fine-grained movements. A motion mask is simultaneously derived from the predicted flow maps to capture the holistic motion dynamics of the movement regions. To pursue natural motion control, MotionPro further strengthens video denoising by incorporating both region-wise trajectories and motion mask through feature modulation. More remarkably, we meticulously construct a benchmark, i.e., MC-Bench, with 1.1K user-annotated image-trajectory pairs, for the evaluation of both fine-grained and object-level I2V motion control. Extensive experiments conducted on WebVid-10M and MC-Bench demonstrate the effectiveness of MotionPro. Please refer to our project page for more results: https://zhw-zhang.github.io/MotionPro-page/.
AniDoc: Animation Creation Made Easier
The production of 2D animation follows an industry-standard workflow, encompassing four essential stages: character design, keyframe animation, in-betweening, and coloring. Our research focuses on reducing the labor costs in the above process by harnessing the potential of increasingly powerful generative AI. Using video diffusion models as the foundation, AniDoc emerges as a video line art colorization tool, which automatically converts sketch sequences into colored animations following the reference character specification. Our model exploits correspondence matching as an explicit guidance, yielding strong robustness to the variations (e.g., posture) between the reference character and each line art frame. In addition, our model could even automate the in-betweening process, such that users can easily create a temporally consistent animation by simply providing a character image as well as the start and end sketches. Our code is available at: https://yihao-meng.github.io/AniDoc_demo.
Follow-Your-Click: Open-domain Regional Image Animation via Short Prompts
Despite recent advances in image-to-video generation, better controllability and local animation are less explored. Most existing image-to-video methods are not locally aware and tend to move the entire scene. However, human artists may need to control the movement of different objects or regions. Additionally, current I2V methods require users not only to describe the target motion but also to provide redundant detailed descriptions of frame contents. These two issues hinder the practical utilization of current I2V tools. In this paper, we propose a practical framework, named Follow-Your-Click, to achieve image animation with a simple user click (for specifying what to move) and a short motion prompt (for specifying how to move). Technically, we propose the first-frame masking strategy, which significantly improves the video generation quality, and a motion-augmented module equipped with a short motion prompt dataset to improve the short prompt following abilities of our model. To further control the motion speed, we propose flow-based motion magnitude control to control the speed of target movement more precisely. Our framework has simpler yet precise user control and better generation performance than previous methods. Extensive experiments compared with 7 baselines, including both commercial tools and research methods on 8 metrics, suggest the superiority of our approach. Project Page: https://follow-your-click.github.io/
MotionCrafter: One-Shot Motion Customization of Diffusion Models
The essence of a video lies in its dynamic motions, including character actions, object movements, and camera movements. While text-to-video generative diffusion models have recently advanced in creating diverse contents, controlling specific motions through text prompts remains a significant challenge. A primary issue is the coupling of appearance and motion, often leading to overfitting on appearance. To tackle this challenge, we introduce MotionCrafter, a novel one-shot instance-guided motion customization method. MotionCrafter employs a parallel spatial-temporal architecture that injects the reference motion into the temporal component of the base model, while the spatial module is independently adjusted for character or style control. To enhance the disentanglement of motion and appearance, we propose an innovative dual-branch motion disentanglement approach, comprising a motion disentanglement loss and an appearance prior enhancement strategy. During training, a frozen base model provides appearance normalization, effectively separating appearance from motion and thereby preserving diversity. Comprehensive quantitative and qualitative experiments, along with user preference tests, demonstrate that MotionCrafter can successfully integrate dynamic motions while preserving the coherence and quality of the base model with a wide range of appearance generation capabilities. Project page: https://zyxelsa.github.io/homepage-motioncrafter. Codes are available at https://github.com/zyxElsa/MotionCrafter.
Computational Long Exposure Mobile Photography
Long exposure photography produces stunning imagery, representing moving elements in a scene with motion-blur. It is generally employed in two modalities, producing either a foreground or a background blur effect. Foreground blur images are traditionally captured on a tripod-mounted camera and portray blurred moving foreground elements, such as silky water or light trails, over a perfectly sharp background landscape. Background blur images, also called panning photography, are captured while the camera is tracking a moving subject, to produce an image of a sharp subject over a background blurred by relative motion. Both techniques are notoriously challenging and require additional equipment and advanced skills. In this paper, we describe a computational burst photography system that operates in a hand-held smartphone camera app, and achieves these effects fully automatically, at the tap of the shutter button. Our approach first detects and segments the salient subject. We track the scene motion over multiple frames and align the images in order to preserve desired sharpness and to produce aesthetically pleasing motion streaks. We capture an under-exposed burst and select the subset of input frames that will produce blur trails of controlled length, regardless of scene or camera motion velocity. We predict inter-frame motion and synthesize motion-blur to fill the temporal gaps between the input frames. Finally, we composite the blurred image with the sharp regular exposure to protect the sharpness of faces or areas of the scene that are barely moving, and produce a final high resolution and high dynamic range (HDR) photograph. Our system democratizes a capability previously reserved to professionals, and makes this creative style accessible to most casual photographers. More information and supplementary material can be found on our project webpage: https://motion-mode.github.io/
Human Motion Diffusion as a Generative Prior
Recent work has demonstrated the significant potential of denoising diffusion models for generating human motion, including text-to-motion capabilities. However, these methods are restricted by the paucity of annotated motion data, a focus on single-person motions, and a lack of detailed control. In this paper, we introduce three forms of composition based on diffusion priors: sequential, parallel, and model composition. Using sequential composition, we tackle the challenge of long sequence generation. We introduce DoubleTake, an inference-time method with which we generate long animations consisting of sequences of prompted intervals and their transitions, using a prior trained only for short clips. Using parallel composition, we show promising steps toward two-person generation. Beginning with two fixed priors as well as a few two-person training examples, we learn a slim communication block, ComMDM, to coordinate interaction between the two resulting motions. Lastly, using model composition, we first train individual priors to complete motions that realize a prescribed motion for a given joint. We then introduce DiffusionBlending, an interpolation mechanism to effectively blend several such models to enable flexible and efficient fine-grained joint and trajectory-level control and editing. We evaluate the composition methods using an off-the-shelf motion diffusion model, and further compare the results to dedicated models trained for these specific tasks.
How Animals Dance (When You're Not Looking)
We present a keyframe-based framework for generating music-synchronized, choreography aware animal dance videos. Starting from a few keyframes representing distinct animal poses -- generated via text-to-image prompting or GPT-4o -- we formulate dance synthesis as a graph optimization problem: find the optimal keyframe structure that satisfies a specified choreography pattern of beats, which can be automatically estimated from a reference dance video. We also introduce an approach for mirrored pose image generation, essential for capturing symmetry in dance. In-between frames are synthesized using an video diffusion model. With as few as six input keyframes, our method can produce up to 30 second dance videos across a wide range of animals and music tracks.
Motion Prompting: Controlling Video Generation with Motion Trajectories
Motion control is crucial for generating expressive and compelling video content; however, most existing video generation models rely mainly on text prompts for control, which struggle to capture the nuances of dynamic actions and temporal compositions. To this end, we train a video generation model conditioned on spatio-temporally sparse or dense motion trajectories. In contrast to prior motion conditioning work, this flexible representation can encode any number of trajectories, object-specific or global scene motion, and temporally sparse motion; due to its flexibility we refer to this conditioning as motion prompts. While users may directly specify sparse trajectories, we also show how to translate high-level user requests into detailed, semi-dense motion prompts, a process we term motion prompt expansion. We demonstrate the versatility of our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing. Our results showcase emergent behaviors, such as realistic physics, suggesting the potential of motion prompts for probing video models and interacting with future generative world models. Finally, we evaluate quantitatively, conduct a human study, and demonstrate strong performance. Video results are available on our webpage: https://motion-prompting.github.io/
InfiniMotion: Mamba Boosts Memory in Transformer for Arbitrary Long Motion Generation
Text-to-motion generation holds potential for film, gaming, and robotics, yet current methods often prioritize short motion generation, making it challenging to produce long motion sequences effectively: (1) Current methods struggle to handle long motion sequences as a single input due to prohibitively high computational cost; (2) Breaking down the generation of long motion sequences into shorter segments can result in inconsistent transitions and requires interpolation or inpainting, which lacks entire sequence modeling. To solve these challenges, we propose InfiniMotion, a method that generates continuous motion sequences of arbitrary length within an autoregressive framework. We highlight its groundbreaking capability by generating a continuous 1-hour human motion with around 80,000 frames. Specifically, we introduce the Motion Memory Transformer with Bidirectional Mamba Memory, enhancing the transformer's memory to process long motion sequences effectively without overwhelming computational resources. Notably our method achieves over 30% improvement in FID and 6 times longer demonstration compared to previous state-of-the-art methods, showcasing significant advancements in long motion generation. See project webpage: https://steve-zeyu-zhang.github.io/InfiniMotion/
Controllable Longer Image Animation with Diffusion Models
Generating realistic animated videos from static images is an important area of research in computer vision. Methods based on physical simulation and motion prediction have achieved notable advances, but they are often limited to specific object textures and motion trajectories, failing to exhibit highly complex environments and physical dynamics. In this paper, we introduce an open-domain controllable image animation method using motion priors with video diffusion models. Our method achieves precise control over the direction and speed of motion in the movable region by extracting the motion field information from videos and learning moving trajectories and strengths. Current pretrained video generation models are typically limited to producing very short videos, typically less than 30 frames. In contrast, we propose an efficient long-duration video generation method based on noise reschedule specifically tailored for image animation tasks, facilitating the creation of videos over 100 frames in length while maintaining consistency in content scenery and motion coordination. Specifically, we decompose the denoise process into two distinct phases: the shaping of scene contours and the refining of motion details. Then we reschedule the noise to control the generated frame sequences maintaining long-distance noise correlation. We conducted extensive experiments with 10 baselines, encompassing both commercial tools and academic methodologies, which demonstrate the superiority of our method. Our project page: https://wangqiang9.github.io/Controllable.github.io/
AnimateAnything: Consistent and Controllable Animation for Video Generation
We present a unified controllable video generation approach AnimateAnything that facilitates precise and consistent video manipulation across various conditions, including camera trajectories, text prompts, and user motion annotations. Specifically, we carefully design a multi-scale control feature fusion network to construct a common motion representation for different conditions. It explicitly converts all control information into frame-by-frame optical flows. Then we incorporate the optical flows as motion priors to guide final video generation. In addition, to reduce the flickering issues caused by large-scale motion, we propose a frequency-based stabilization module. It can enhance temporal coherence by ensuring the video's frequency domain consistency. Experiments demonstrate that our method outperforms the state-of-the-art approaches. For more details and videos, please refer to the webpage: https://yu-shaonian.github.io/Animate_Anything/.
Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models
Diffusion models have achieved great progress in image animation due to powerful generative capabilities. However, maintaining spatio-temporal consistency with detailed information from the input static image over time (e.g., style, background, and object of the input static image) and ensuring smoothness in animated video narratives guided by textual prompts still remains challenging. In this paper, we introduce Cinemo, a novel image animation approach towards achieving better motion controllability, as well as stronger temporal consistency and smoothness. In general, we propose three effective strategies at the training and inference stages of Cinemo to accomplish our goal. At the training stage, Cinemo focuses on learning the distribution of motion residuals, rather than directly predicting subsequent via a motion diffusion model. Additionally, a structural similarity index-based strategy is proposed to enable Cinemo to have better controllability of motion intensity. At the inference stage, a noise refinement technique based on discrete cosine transformation is introduced to mitigate sudden motion changes. Such three strategies enable Cinemo to produce highly consistent, smooth, and motion-controllable results. Compared to previous methods, Cinemo offers simpler and more precise user controllability. Extensive experiments against several state-of-the-art methods, including both commercial tools and research approaches, across multiple metrics, demonstrate the effectiveness and superiority of our proposed approach.
MotionLCM: Real-time Controllable Motion Generation via Latent Consistency Model
This work introduces MotionLCM, extending controllable motion generation to a real-time level. Existing methods for spatial control in text-conditioned motion generation suffer from significant runtime inefficiency. To address this issue, we first propose the motion latent consistency model (MotionLCM) for motion generation, building upon the latent diffusion model (MLD). By employing one-step (or few-step) inference, we further improve the runtime efficiency of the motion latent diffusion model for motion generation. To ensure effective controllability, we incorporate a motion ControlNet within the latent space of MotionLCM and enable explicit control signals (e.g., pelvis trajectory) in the vanilla motion space to control the generation process directly, similar to controlling other latent-free diffusion models for motion generation. By employing these techniques, our approach can generate human motions with text and control signals in real-time. Experimental results demonstrate the remarkable generation and controlling capabilities of MotionLCM while maintaining real-time runtime efficiency.
SINC: Spatial Composition of 3D Human Motions for Simultaneous Action Generation
Our goal is to synthesize 3D human motions given textual inputs describing simultaneous actions, for example 'waving hand' while 'walking' at the same time. We refer to generating such simultaneous movements as performing 'spatial compositions'. In contrast to temporal compositions that seek to transition from one action to another, spatial compositing requires understanding which body parts are involved in which action, to be able to move them simultaneously. Motivated by the observation that the correspondence between actions and body parts is encoded in powerful language models, we extract this knowledge by prompting GPT-3 with text such as "what are the body parts involved in the action <action name>?", while also providing the parts list and few-shot examples. Given this action-part mapping, we combine body parts from two motions together and establish the first automated method to spatially compose two actions. However, training data with compositional actions is always limited by the combinatorics. Hence, we further create synthetic data with this approach, and use it to train a new state-of-the-art text-to-motion generation model, called SINC ("SImultaneous actioN Compositions for 3D human motions"). In our experiments, that training with such GPT-guided synthetic data improves spatial composition generation over baselines. Our code is publicly available at https://sinc.is.tue.mpg.de/.
MotionCraft: Physics-based Zero-Shot Video Generation
Generating videos with realistic and physically plausible motion is one of the main recent challenges in computer vision. While diffusion models are achieving compelling results in image generation, video diffusion models are limited by heavy training and huge models, resulting in videos that are still biased to the training dataset. In this work we propose MotionCraft, a new zero-shot video generator to craft physics-based and realistic videos. MotionCraft is able to warp the noise latent space of an image diffusion model, such as Stable Diffusion, by applying an optical flow derived from a physics simulation. We show that warping the noise latent space results in coherent application of the desired motion while allowing the model to generate missing elements consistent with the scene evolution, which would otherwise result in artefacts or missing content if the flow was applied in the pixel space. We compare our method with the state-of-the-art Text2Video-Zero reporting qualitative and quantitative improvements, demonstrating the effectiveness of our approach to generate videos with finely-prescribed complex motion dynamics. Project page: https://mezzelfo.github.io/MotionCraft/
HumanMM: Global Human Motion Recovery from Multi-shot Videos
In this paper, we present a novel framework designed to reconstruct long-sequence 3D human motion in the world coordinates from in-the-wild videos with multiple shot transitions. Such long-sequence in-the-wild motions are highly valuable to applications such as motion generation and motion understanding, but are of great challenge to be recovered due to abrupt shot transitions, partial occlusions, and dynamic backgrounds presented in such videos. Existing methods primarily focus on single-shot videos, where continuity is maintained within a single camera view, or simplify multi-shot alignment in camera space only. In this work, we tackle the challenges by integrating an enhanced camera pose estimation with Human Motion Recovery (HMR) by incorporating a shot transition detector and a robust alignment module for accurate pose and orientation continuity across shots. By leveraging a custom motion integrator, we effectively mitigate the problem of foot sliding and ensure temporal consistency in human pose. Extensive evaluations on our created multi-shot dataset from public 3D human datasets demonstrate the robustness of our method in reconstructing realistic human motion in world coordinates.
GMD: Controllable Human Motion Synthesis via Guided Diffusion Models
Denoising diffusion models have shown great promise in human motion synthesis conditioned on natural language descriptions. However, integrating spatial constraints, such as pre-defined motion trajectories and obstacles, remains a challenge despite being essential for bridging the gap between isolated human motion and its surrounding environment. To address this issue, we propose Guided Motion Diffusion (GMD), a method that incorporates spatial constraints into the motion generation process. Specifically, we propose an effective feature projection scheme that manipulates motion representation to enhance the coherency between spatial information and local poses. Together with a new imputation formulation, the generated motion can reliably conform to spatial constraints such as global motion trajectories. Furthermore, given sparse spatial constraints (e.g. sparse keyframes), we introduce a new dense guidance approach to turn a sparse signal, which is susceptible to being ignored during the reverse steps, into denser signals to guide the generated motion to the given constraints. Our extensive experiments justify the development of GMD, which achieves a significant improvement over state-of-the-art methods in text-based motion generation while allowing control of the synthesized motions with spatial constraints.
LivePhoto: Real Image Animation with Text-guided Motion Control
Despite the recent progress in text-to-video generation, existing studies usually overlook the issue that only spatial contents but not temporal motions in synthesized videos are under the control of text. Towards such a challenge, this work presents a practical system, named LivePhoto, which allows users to animate an image of their interest with text descriptions. We first establish a strong baseline that helps a well-learned text-to-image generator (i.e., Stable Diffusion) take an image as a further input. We then equip the improved generator with a motion module for temporal modeling and propose a carefully designed training pipeline to better link texts and motions. In particular, considering the facts that (1) text can only describe motions roughly (e.g., regardless of the moving speed) and (2) text may include both content and motion descriptions, we introduce a motion intensity estimation module as well as a text re-weighting module to reduce the ambiguity of text-to-motion mapping. Empirical evidence suggests that our approach is capable of well decoding motion-related textual instructions into videos, such as actions, camera movements, or even conjuring new contents from thin air (e.g., pouring water into an empty glass). Interestingly, thanks to the proposed intensity learning mechanism, our system offers users an additional control signal (i.e., the motion intensity) besides text for video customization.
ATI: Any Trajectory Instruction for Controllable Video Generation
We propose a unified framework for motion control in video generation that seamlessly integrates camera movement, object-level translation, and fine-grained local motion using trajectory-based inputs. In contrast to prior methods that address these motion types through separate modules or task-specific designs, our approach offers a cohesive solution by projecting user-defined trajectories into the latent space of pre-trained image-to-video generation models via a lightweight motion injector. Users can specify keypoints and their motion paths to control localized deformations, entire object motion, virtual camera dynamics, or combinations of these. The injected trajectory signals guide the generative process to produce temporally consistent and semantically aligned motion sequences. Our framework demonstrates superior performance across multiple video motion control tasks, including stylized motion effects (e.g., motion brushes), dynamic viewpoint changes, and precise local motion manipulation. Experiments show that our method provides significantly better controllability and visual quality compared to prior approaches and commercial solutions, while remaining broadly compatible with various state-of-the-art video generation backbones. Project page: https://anytraj.github.io/.
Sci-Fi: Symmetric Constraint for Frame Inbetweening
Frame inbetweening aims to synthesize intermediate video sequences conditioned on the given start and end frames. Current state-of-the-art methods mainly extend large-scale pre-trained Image-to-Video Diffusion models (I2V-DMs) by incorporating end-frame constraints via directly fine-tuning or omitting training. We identify a critical limitation in their design: Their injections of the end-frame constraint usually utilize the same mechanism that originally imposed the start-frame (single image) constraint. However, since the original I2V-DMs are adequately trained for the start-frame condition in advance, naively introducing the end-frame constraint by the same mechanism with much less (even zero) specialized training probably can't make the end frame have a strong enough impact on the intermediate content like the start frame. This asymmetric control strength of the two frames over the intermediate content likely leads to inconsistent motion or appearance collapse in generated frames. To efficiently achieve symmetric constraints of start and end frames, we propose a novel framework, termed Sci-Fi, which applies a stronger injection for the constraint of a smaller training scale. Specifically, it deals with the start-frame constraint as before, while introducing the end-frame constraint by an improved mechanism. The new mechanism is based on a well-designed lightweight module, named EF-Net, which encodes only the end frame and expands it into temporally adaptive frame-wise features injected into the I2V-DM. This makes the end-frame constraint as strong as the start-frame constraint, enabling our Sci-Fi to produce more harmonious transitions in various scenarios. Extensive experiments prove the superiority of our Sci-Fi compared with other baselines.
Move-in-2D: 2D-Conditioned Human Motion Generation
Generating realistic human videos remains a challenging task, with the most effective methods currently relying on a human motion sequence as a control signal. Existing approaches often use existing motion extracted from other videos, which restricts applications to specific motion types and global scene matching. We propose Move-in-2D, a novel approach to generate human motion sequences conditioned on a scene image, allowing for diverse motion that adapts to different scenes. Our approach utilizes a diffusion model that accepts both a scene image and text prompt as inputs, producing a motion sequence tailored to the scene. To train this model, we collect a large-scale video dataset featuring single-human activities, annotating each video with the corresponding human motion as the target output. Experiments demonstrate that our method effectively predicts human motion that aligns with the scene image after projection. Furthermore, we show that the generated motion sequence improves human motion quality in video synthesis tasks.
VideoJAM: Joint Appearance-Motion Representations for Enhanced Motion Generation in Video Models
Despite tremendous recent progress, generative video models still struggle to capture real-world motion, dynamics, and physics. We show that this limitation arises from the conventional pixel reconstruction objective, which biases models toward appearance fidelity at the expense of motion coherence. To address this, we introduce VideoJAM, a novel framework that instills an effective motion prior to video generators, by encouraging the model to learn a joint appearance-motion representation. VideoJAM is composed of two complementary units. During training, we extend the objective to predict both the generated pixels and their corresponding motion from a single learned representation. During inference, we introduce Inner-Guidance, a mechanism that steers the generation toward coherent motion by leveraging the model's own evolving motion prediction as a dynamic guidance signal. Notably, our framework can be applied to any video model with minimal adaptations, requiring no modifications to the training data or scaling of the model. VideoJAM achieves state-of-the-art performance in motion coherence, surpassing highly competitive proprietary models while also enhancing the perceived visual quality of the generations. These findings emphasize that appearance and motion can be complementary and, when effectively integrated, enhance both the visual quality and the coherence of video generation. Project website: https://hila-chefer.github.io/videojam-paper.github.io/
InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint
Text-conditioned motion synthesis has made remarkable progress with the emergence of diffusion models. However, the majority of these motion diffusion models are primarily designed for a single character and overlook multi-human interactions. In our approach, we strive to explore this problem by synthesizing human motion with interactions for a group of characters of any size in a zero-shot manner. The key aspect of our approach is the adaptation of human-wise interactions as pairs of human joints that can be either in contact or separated by a desired distance. In contrast to existing methods that necessitate training motion generation models on multi-human motion datasets with a fixed number of characters, our approach inherently possesses the flexibility to model human interactions involving an arbitrary number of individuals, thereby transcending the limitations imposed by the training data. We introduce a novel controllable motion generation method, InterControl, to encourage the synthesized motions maintaining the desired distance between joint pairs. It consists of a motion controller and an inverse kinematics guidance module that realistically and accurately aligns the joints of synthesized characters to the desired location. Furthermore, we demonstrate that the distance between joint pairs for human-wise interactions can be generated using an off-the-shelf Large Language Model (LLM). Experimental results highlight the capability of our framework to generate interactions with multiple human characters and its potential to work with off-the-shelf physics-based character simulators.
MovingParts: Motion-based 3D Part Discovery in Dynamic Radiance Field
We present MovingParts, a NeRF-based method for dynamic scene reconstruction and part discovery. We consider motion as an important cue for identifying parts, that all particles on the same part share the common motion pattern. From the perspective of fluid simulation, existing deformation-based methods for dynamic NeRF can be seen as parameterizing the scene motion under the Eulerian view, i.e., focusing on specific locations in space through which the fluid flows as time passes. However, it is intractable to extract the motion of constituting objects or parts using the Eulerian view representation. In this work, we introduce the dual Lagrangian view and enforce representations under the Eulerian/Lagrangian views to be cycle-consistent. Under the Lagrangian view, we parameterize the scene motion by tracking the trajectory of particles on objects. The Lagrangian view makes it convenient to discover parts by factorizing the scene motion as a composition of part-level rigid motions. Experimentally, our method can achieve fast and high-quality dynamic scene reconstruction from even a single moving camera, and the induced part-based representation allows direct applications of part tracking, animation, 3D scene editing, etc.
Self-Supervised Learning via Conditional Motion Propagation
Intelligent agent naturally learns from motion. Various self-supervised algorithms have leveraged motion cues to learn effective visual representations. The hurdle here is that motion is both ambiguous and complex, rendering previous works either suffer from degraded learning efficacy, or resort to strong assumptions on object motions. In this work, we design a new learning-from-motion paradigm to bridge these gaps. Instead of explicitly modeling the motion probabilities, we design the pretext task as a conditional motion propagation problem. Given an input image and several sparse flow guidance vectors on it, our framework seeks to recover the full-image motion. Compared to other alternatives, our framework has several appealing properties: (1) Using sparse flow guidance during training resolves the inherent motion ambiguity, and thus easing feature learning. (2) Solving the pretext task of conditional motion propagation encourages the emergence of kinematically-sound representations that poss greater expressive power. Extensive experiments demonstrate that our framework learns structural and coherent features; and achieves state-of-the-art self-supervision performance on several downstream tasks including semantic segmentation, instance segmentation, and human parsing. Furthermore, our framework is successfully extended to several useful applications such as semi-automatic pixel-level annotation. Project page: "http://mmlab.ie.cuhk.edu.hk/projects/CMP/".
Segment Any Motion in Videos
Moving object segmentation is a crucial task for achieving a high-level understanding of visual scenes and has numerous downstream applications. Humans can effortlessly segment moving objects in videos. Previous work has largely relied on optical flow to provide motion cues; however, this approach often results in imperfect predictions due to challenges such as partial motion, complex deformations, motion blur and background distractions. We propose a novel approach for moving object segmentation that combines long-range trajectory motion cues with DINO-based semantic features and leverages SAM2 for pixel-level mask densification through an iterative prompting strategy. Our model employs Spatio-Temporal Trajectory Attention and Motion-Semantic Decoupled Embedding to prioritize motion while integrating semantic support. Extensive testing on diverse datasets demonstrates state-of-the-art performance, excelling in challenging scenarios and fine-grained segmentation of multiple objects. Our code is available at https://motion-seg.github.io/.
MotionAgent: Fine-grained Controllable Video Generation via Motion Field Agent
We propose MotionAgent, enabling fine-grained motion control for text-guided image-to-video generation. The key technique is the motion field agent that converts motion information in text prompts into explicit motion fields, providing flexible and precise motion guidance. Specifically, the agent extracts the object movement and camera motion described in the text and converts them into object trajectories and camera extrinsics, respectively. An analytical optical flow composition module integrates these motion representations in 3D space and projects them into a unified optical flow. An optical flow adapter takes the flow to control the base image-to-video diffusion model for generating fine-grained controlled videos. The significant improvement in the Video-Text Camera Motion metrics on VBench indicates that our method achieves precise control over camera motion. We construct a subset of VBench to evaluate the alignment of motion information in the text and the generated video, outperforming other advanced models on motion generation accuracy.
MotionCLR: Motion Generation and Training-free Editing via Understanding Attention Mechanisms
This research delves into the problem of interactive editing of human motion generation. Previous motion diffusion models lack explicit modeling of the word-level text-motion correspondence and good explainability, hence restricting their fine-grained editing ability. To address this issue, we propose an attention-based motion diffusion model, namely MotionCLR, with CLeaR modeling of attention mechanisms. Technically, MotionCLR models the in-modality and cross-modality interactions with self-attention and cross-attention, respectively. More specifically, the self-attention mechanism aims to measure the sequential similarity between frames and impacts the order of motion features. By contrast, the cross-attention mechanism works to find the fine-grained word-sequence correspondence and activate the corresponding timesteps in the motion sequence. Based on these key properties, we develop a versatile set of simple yet effective motion editing methods via manipulating attention maps, such as motion (de-)emphasizing, in-place motion replacement, and example-based motion generation, etc. For further verification of the explainability of the attention mechanism, we additionally explore the potential of action-counting and grounded motion generation ability via attention maps. Our experimental results show that our method enjoys good generation and editing ability with good explainability.
PACE: Data-Driven Virtual Agent Interaction in Dense and Cluttered Environments
We present PACE, a novel method for modifying motion-captured virtual agents to interact with and move throughout dense, cluttered 3D scenes. Our approach changes a given motion sequence of a virtual agent as needed to adjust to the obstacles and objects in the environment. We first take the individual frames of the motion sequence most important for modeling interactions with the scene and pair them with the relevant scene geometry, obstacles, and semantics such that interactions in the agents motion match the affordances of the scene (e.g., standing on a floor or sitting in a chair). We then optimize the motion of the human by directly altering the high-DOF pose at each frame in the motion to better account for the unique geometric constraints of the scene. Our formulation uses novel loss functions that maintain a realistic flow and natural-looking motion. We compare our method with prior motion generating techniques and highlight the benefits of our method with a perceptual study and physical plausibility metrics. Human raters preferred our method over the prior approaches. Specifically, they preferred our method 57.1% of the time versus the state-of-the-art method using existing motions, and 81.0% of the time versus a state-of-the-art motion synthesis method. Additionally, our method performs significantly higher on established physical plausibility and interaction metrics. Specifically, we outperform competing methods by over 1.2% in terms of the non-collision metric and by over 18% in terms of the contact metric. We have integrated our interactive system with Microsoft HoloLens and demonstrate its benefits in real-world indoor scenes. Our project website is available at https://gamma.umd.edu/pace/.
LayerAnimate: Layer-specific Control for Animation
Animated video separates foreground and background elements into layers, with distinct processes for sketching, refining, coloring, and in-betweening. Existing video generation methods typically treat animation as a monolithic data domain, lacking fine-grained control over individual layers. In this paper, we introduce LayerAnimate, a novel architectural approach that enhances fine-grained control over individual animation layers within a video diffusion model, allowing users to independently manipulate foreground and background elements in distinct layers. To address the challenge of limited layer-specific data, we propose a data curation pipeline that features automated element segmentation, motion-state hierarchical merging, and motion coherence refinement. Through quantitative and qualitative comparisons, and user study, we demonstrate that LayerAnimate outperforms current methods in terms of animation quality, control precision, and usability, making it an ideal tool for both professional animators and amateur enthusiasts. This framework opens up new possibilities for layer-specific animation applications and creative flexibility. Our code is available at https://layeranimate.github.io.
Training-Free Motion-Guided Video Generation with Enhanced Temporal Consistency Using Motion Consistency Loss
In this paper, we address the challenge of generating temporally consistent videos with motion guidance. While many existing methods depend on additional control modules or inference-time fine-tuning, recent studies suggest that effective motion guidance is achievable without altering the model architecture or requiring extra training. Such approaches offer promising compatibility with various video generation foundation models. However, existing training-free methods often struggle to maintain consistent temporal coherence across frames or to follow guided motion accurately. In this work, we propose a simple yet effective solution that combines an initial-noise-based approach with a novel motion consistency loss, the latter being our key innovation. Specifically, we capture the inter-frame feature correlation patterns of intermediate features from a video diffusion model to represent the motion pattern of the reference video. We then design a motion consistency loss to maintain similar feature correlation patterns in the generated video, using the gradient of this loss in the latent space to guide the generation process for precise motion control. This approach improves temporal consistency across various motion control tasks while preserving the benefits of a training-free setup. Extensive experiments show that our method sets a new standard for efficient, temporally coherent video generation.
Framer: Interactive Frame Interpolation
We propose Framer for interactive frame interpolation, which targets producing smoothly transitioning frames between two images as per user creativity. Concretely, besides taking the start and end frames as inputs, our approach supports customizing the transition process by tailoring the trajectory of some selected keypoints. Such a design enjoys two clear benefits. First, incorporating human interaction mitigates the issue arising from numerous possibilities of transforming one image to another, and in turn enables finer control of local motions. Second, as the most basic form of interaction, keypoints help establish the correspondence across frames, enhancing the model to handle challenging cases (e.g., objects on the start and end frames are of different shapes and styles). It is noteworthy that our system also offers an "autopilot" mode, where we introduce a module to estimate the keypoints and refine the trajectory automatically, to simplify the usage in practice. Extensive experimental results demonstrate the appealing performance of Framer on various applications, such as image morphing, time-lapse video generation, cartoon interpolation, etc. The code, the model, and the interface will be released to facilitate further research.
Priority-Centric Human Motion Generation in Discrete Latent Space
Text-to-motion generation is a formidable task, aiming to produce human motions that align with the input text while also adhering to human capabilities and physical laws. While there have been advancements in diffusion models, their application in discrete spaces remains underexplored. Current methods often overlook the varying significance of different motions, treating them uniformly. It is essential to recognize that not all motions hold the same relevance to a particular textual description. Some motions, being more salient and informative, should be given precedence during generation. In response, we introduce a Priority-Centric Motion Discrete Diffusion Model (M2DM), which utilizes a Transformer-based VQ-VAE to derive a concise, discrete motion representation, incorporating a global self-attention mechanism and a regularization term to counteract code collapse. We also present a motion discrete diffusion model that employs an innovative noise schedule, determined by the significance of each motion token within the entire motion sequence. This approach retains the most salient motions during the reverse diffusion process, leading to more semantically rich and varied motions. Additionally, we formulate two strategies to gauge the importance of motion tokens, drawing from both textual and visual indicators. Comprehensive experiments on the HumanML3D and KIT-ML datasets confirm that our model surpasses existing techniques in fidelity and diversity, particularly for intricate textual descriptions.
Motion Anything: Any to Motion Generation
Conditional motion generation has been extensively studied in computer vision, yet two critical challenges remain. First, while masked autoregressive methods have recently outperformed diffusion-based approaches, existing masking models lack a mechanism to prioritize dynamic frames and body parts based on given conditions. Second, existing methods for different conditioning modalities often fail to integrate multiple modalities effectively, limiting control and coherence in generated motion. To address these challenges, we propose Motion Anything, a multimodal motion generation framework that introduces an Attention-based Mask Modeling approach, enabling fine-grained spatial and temporal control over key frames and actions. Our model adaptively encodes multimodal conditions, including text and music, improving controllability. Additionally, we introduce Text-Music-Dance (TMD), a new motion dataset consisting of 2,153 pairs of text, music, and dance, making it twice the size of AIST++, thereby filling a critical gap in the community. Extensive experiments demonstrate that Motion Anything surpasses state-of-the-art methods across multiple benchmarks, achieving a 15% improvement in FID on HumanML3D and showing consistent performance gains on AIST++ and TMD. See our project website https://steve-zeyu-zhang.github.io/MotionAnything
DropletVideo: A Dataset and Approach to Explore Integral Spatio-Temporal Consistent Video Generation
Spatio-temporal consistency is a critical research topic in video generation. A qualified generated video segment must ensure plot plausibility and coherence while maintaining visual consistency of objects and scenes across varying viewpoints. Prior research, especially in open-source projects, primarily focuses on either temporal or spatial consistency, or their basic combination, such as appending a description of a camera movement after a prompt without constraining the outcomes of this movement. However, camera movement may introduce new objects to the scene or eliminate existing ones, thereby overlaying and affecting the preceding narrative. Especially in videos with numerous camera movements, the interplay between multiple plots becomes increasingly complex. This paper introduces and examines integral spatio-temporal consistency, considering the synergy between plot progression and camera techniques, and the long-term impact of prior content on subsequent generation. Our research encompasses dataset construction through to the development of the model. Initially, we constructed a DropletVideo-10M dataset, which comprises 10 million videos featuring dynamic camera motion and object actions. Each video is annotated with an average caption of 206 words, detailing various camera movements and plot developments. Following this, we developed and trained the DropletVideo model, which excels in preserving spatio-temporal coherence during video generation. The DropletVideo dataset and model are accessible at https://dropletx.github.io.
MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model
Human motion modeling is important for many modern graphics applications, which typically require professional skills. In order to remove the skill barriers for laymen, recent motion generation methods can directly generate human motions conditioned on natural languages. However, it remains challenging to achieve diverse and fine-grained motion generation with various text inputs. To address this problem, we propose MotionDiffuse, the first diffusion model-based text-driven motion generation framework, which demonstrates several desired properties over existing methods. 1) Probabilistic Mapping. Instead of a deterministic language-motion mapping, MotionDiffuse generates motions through a series of denoising steps in which variations are injected. 2) Realistic Synthesis. MotionDiffuse excels at modeling complicated data distribution and generating vivid motion sequences. 3) Multi-Level Manipulation. MotionDiffuse responds to fine-grained instructions on body parts, and arbitrary-length motion synthesis with time-varied text prompts. Our experiments show MotionDiffuse outperforms existing SoTA methods by convincing margins on text-driven motion generation and action-conditioned motion generation. A qualitative analysis further demonstrates MotionDiffuse's controllability for comprehensive motion generation. Homepage: https://mingyuan-zhang.github.io/projects/MotionDiffuse.html
Towards An End-to-End Framework for Flow-Guided Video Inpainting
Optical flow, which captures motion information across frames, is exploited in recent video inpainting methods through propagating pixels along its trajectories. However, the hand-crafted flow-based processes in these methods are applied separately to form the whole inpainting pipeline. Thus, these methods are less efficient and rely heavily on the intermediate results from earlier stages. In this paper, we propose an End-to-End framework for Flow-Guided Video Inpainting (E^2FGVI) through elaborately designed three trainable modules, namely, flow completion, feature propagation, and content hallucination modules. The three modules correspond with the three stages of previous flow-based methods but can be jointly optimized, leading to a more efficient and effective inpainting process. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods both qualitatively and quantitatively and shows promising efficiency. The code is available at https://github.com/MCG-NKU/E2FGVI.
LightMotion: A Light and Tuning-free Method for Simulating Camera Motion in Video Generation
Existing camera motion-controlled video generation methods face computational bottlenecks in fine-tuning and inference. This paper proposes LightMotion, a light and tuning-free method for simulating camera motion in video generation. Operating in the latent space, it eliminates additional fine-tuning, inpainting, and depth estimation, making it more streamlined than existing methods. The endeavors of this paper comprise: (i) The latent space permutation operation effectively simulates various camera motions like panning, zooming, and rotation. (ii) The latent space resampling strategy combines background-aware sampling and cross-frame alignment to accurately fill new perspectives while maintaining coherence across frames. (iii) Our in-depth analysis shows that the permutation and resampling cause an SNR shift in latent space, leading to poor-quality generation. To address this, we propose latent space correction, which reintroduces noise during denoising to mitigate SNR shift and enhance video generation quality. Exhaustive experiments show that our LightMotion outperforms existing methods, both quantitatively and qualitatively.
Diffusion Implicit Policy for Unpaired Scene-aware Motion Synthesis
Human motion generation is a long-standing problem, and scene-aware motion synthesis has been widely researched recently due to its numerous applications. Prevailing methods rely heavily on paired motion-scene data whose quantity is limited. Meanwhile, it is difficult to generalize to diverse scenes when trained only on a few specific ones. Thus, we propose a unified framework, termed Diffusion Implicit Policy (DIP), for scene-aware motion synthesis, where paired motion-scene data are no longer necessary. In this framework, we disentangle human-scene interaction from motion synthesis during training and then introduce an interaction-based implicit policy into motion diffusion during inference. Synthesized motion can be derived through iterative diffusion denoising and implicit policy optimization, thus motion naturalness and interaction plausibility can be maintained simultaneously. The proposed implicit policy optimizes the intermediate noised motion in a GAN Inversion manner to maintain motion continuity and control keyframe poses though the ControlNet branch and motion inpainting. For long-term motion synthesis, we introduce motion blending for stable transitions between multiple sub-tasks, where motions are fused in rotation power space and translation linear space. The proposed method is evaluated on synthesized scenes with ShapeNet furniture, and real scenes from PROX and Replica. Results show that our framework presents better motion naturalness and interaction plausibility than cutting-edge methods. This also indicates the feasibility of utilizing the DIP for motion synthesis in more general tasks and versatile scenes. https://jingyugong.github.io/DiffusionImplicitPolicy/
Training-free Camera Control for Video Generation
We propose a training-free and robust solution to offer camera movement control for off-the-shelf video diffusion models. Unlike previous work, our method does not require any supervised finetuning on camera-annotated datasets or self-supervised training via data augmentation. Instead, it can be plugged and played with most pretrained video diffusion models and generate camera controllable videos with a single image or text prompt as input. The inspiration of our work comes from the layout prior that intermediate latents hold towards generated results, thus rearranging noisy pixels in them will make output content reallocated as well. As camera move could also be seen as a kind of pixel rearrangement caused by perspective change, videos could be reorganized following specific camera motion if their noisy latents change accordingly. Established on this, we propose our method CamTrol, which enables robust camera control for video diffusion models. It is achieved by a two-stage process. First, we model image layout rearrangement through explicit camera movement in 3D point cloud space. Second, we generate videos with camera motion using layout prior of noisy latents formed by a series of rearranged images. Extensive experiments have demonstrated the robustness our method holds in controlling camera motion of generated videos. Furthermore, we show that our method can produce impressive results in generating 3D rotation videos with dynamic content. Project page at https://lifedecoder.github.io/CamTrol/.
Animate Your Motion: Turning Still Images into Dynamic Videos
In recent years, diffusion models have made remarkable strides in text-to-video generation, sparking a quest for enhanced control over video outputs to more accurately reflect user intentions. Traditional efforts predominantly focus on employing either semantic cues, like images or depth maps, or motion-based conditions, like moving sketches or object bounding boxes. Semantic inputs offer a rich scene context but lack detailed motion specificity; conversely, motion inputs provide precise trajectory information but miss the broader semantic narrative. For the first time, we integrate both semantic and motion cues within a diffusion model for video generation, as demonstrated in Fig 1. To this end, we introduce the Scene and Motion Conditional Diffusion (SMCD), a novel methodology for managing multimodal inputs. It incorporates a recognized motion conditioning module and investigates various approaches to integrate scene conditions, promoting synergy between different modalities. For model training, we separate the conditions for the two modalities, introducing a two-stage training pipeline. Experimental results demonstrate that our design significantly enhances video quality, motion precision, and semantic coherence.
Loopy: Taming Audio-Driven Portrait Avatar with Long-Term Motion Dependency
With the introduction of diffusion-based video generation techniques, audio-conditioned human video generation has recently achieved significant breakthroughs in both the naturalness of motion and the synthesis of portrait details. Due to the limited control of audio signals in driving human motion, existing methods often add auxiliary spatial signals to stabilize movements, which may compromise the naturalness and freedom of motion. In this paper, we propose an end-to-end audio-only conditioned video diffusion model named Loopy. Specifically, we designed an inter- and intra-clip temporal module and an audio-to-latents module, enabling the model to leverage long-term motion information from the data to learn natural motion patterns and improving audio-portrait movement correlation. This method removes the need for manually specified spatial motion templates used in existing methods to constrain motion during inference. Extensive experiments show that Loopy outperforms recent audio-driven portrait diffusion models, delivering more lifelike and high-quality results across various scenarios.
KinMo: Kinematic-aware Human Motion Understanding and Generation
Controlling human motion based on text presents an important challenge in computer vision. Traditional approaches often rely on holistic action descriptions for motion synthesis, which struggle to capture subtle movements of local body parts. This limitation restricts the ability to isolate and manipulate specific movements. To address this, we propose a novel motion representation that decomposes motion into distinct body joint group movements and interactions from a kinematic perspective. We design an automatic dataset collection pipeline that enhances the existing text-motion benchmark by incorporating fine-grained local joint-group motion and interaction descriptions. To bridge the gap between text and motion domains, we introduce a hierarchical motion semantics approach that progressively fuses joint-level interaction information into the global action-level semantics for modality alignment. With this hierarchy, we introduce a coarse-to-fine motion synthesis procedure for various generation and editing downstream applications. Our quantitative and qualitative experiments demonstrate that the proposed formulation enhances text-motion retrieval by improving joint-spatial understanding, and enables more precise joint-motion generation and control. Project Page: {\smallhttps://andypinxinliu.github.io/KinMo/}
Objects do not disappear: Video object detection by single-frame object location anticipation
Objects in videos are typically characterized by continuous smooth motion. We exploit continuous smooth motion in three ways. 1) Improved accuracy by using object motion as an additional source of supervision, which we obtain by anticipating object locations from a static keyframe. 2) Improved efficiency by only doing the expensive feature computations on a small subset of all frames. Because neighboring video frames are often redundant, we only compute features for a single static keyframe and predict object locations in subsequent frames. 3) Reduced annotation cost, where we only annotate the keyframe and use smooth pseudo-motion between keyframes. We demonstrate computational efficiency, annotation efficiency, and improved mean average precision compared to the state-of-the-art on four datasets: ImageNet VID, EPIC KITCHENS-55, YouTube-BoundingBoxes, and Waymo Open dataset. Our source code is available at https://github.com/L-KID/Videoobject-detection-by-location-anticipation.
Story-to-Motion: Synthesizing Infinite and Controllable Character Animation from Long Text
Generating natural human motion from a story has the potential to transform the landscape of animation, gaming, and film industries. A new and challenging task, Story-to-Motion, arises when characters are required to move to various locations and perform specific motions based on a long text description. This task demands a fusion of low-level control (trajectories) and high-level control (motion semantics). Previous works in character control and text-to-motion have addressed related aspects, yet a comprehensive solution remains elusive: character control methods do not handle text description, whereas text-to-motion methods lack position constraints and often produce unstable motions. In light of these limitations, we propose a novel system that generates controllable, infinitely long motions and trajectories aligned with the input text. (1) We leverage contemporary Large Language Models to act as a text-driven motion scheduler to extract a series of (text, position, duration) pairs from long text. (2) We develop a text-driven motion retrieval scheme that incorporates motion matching with motion semantic and trajectory constraints. (3) We design a progressive mask transformer that addresses common artifacts in the transition motion such as unnatural pose and foot sliding. Beyond its pioneering role as the first comprehensive solution for Story-to-Motion, our system undergoes evaluation across three distinct sub-tasks: trajectory following, temporal action composition, and motion blending, where it outperforms previous state-of-the-art motion synthesis methods across the board. Homepage: https://story2motion.github.io/.
Motion Control for Enhanced Complex Action Video Generation
Existing text-to-video (T2V) models often struggle with generating videos with sufficiently pronounced or complex actions. A key limitation lies in the text prompt's inability to precisely convey intricate motion details. To address this, we propose a novel framework, MVideo, designed to produce long-duration videos with precise, fluid actions. MVideo overcomes the limitations of text prompts by incorporating mask sequences as an additional motion condition input, providing a clearer, more accurate representation of intended actions. Leveraging foundational vision models such as GroundingDINO and SAM2, MVideo automatically generates mask sequences, enhancing both efficiency and robustness. Our results demonstrate that, after training, MVideo effectively aligns text prompts with motion conditions to produce videos that simultaneously meet both criteria. This dual control mechanism allows for more dynamic video generation by enabling alterations to either the text prompt or motion condition independently, or both in tandem. Furthermore, MVideo supports motion condition editing and composition, facilitating the generation of videos with more complex actions. MVideo thus advances T2V motion generation, setting a strong benchmark for improved action depiction in current video diffusion models. Our project page is available at https://mvideo-v1.github.io/.
TrackDiffusion: Tracklet-Conditioned Video Generation via Diffusion Models
Despite remarkable achievements in video synthesis, achieving granular control over complex dynamics, such as nuanced movement among multiple interacting objects, still presents a significant hurdle for dynamic world modeling, compounded by the necessity to manage appearance and disappearance, drastic scale changes, and ensure consistency for instances across frames. These challenges hinder the development of video generation that can faithfully mimic real-world complexity, limiting utility for applications requiring high-level realism and controllability, including advanced scene simulation and training of perception systems. To address that, we propose TrackDiffusion, a novel video generation framework affording fine-grained trajectory-conditioned motion control via diffusion models, which facilitates the precise manipulation of the object trajectories and interactions, overcoming the prevalent limitation of scale and continuity disruptions. A pivotal component of TrackDiffusion is the instance enhancer, which explicitly ensures inter-frame consistency of multiple objects, a critical factor overlooked in the current literature. Moreover, we demonstrate that generated video sequences by our TrackDiffusion can be used as training data for visual perception models. To the best of our knowledge, this is the first work to apply video diffusion models with tracklet conditions and demonstrate that generated frames can be beneficial for improving the performance of object trackers.
Jump Cut Smoothing for Talking Heads
A jump cut offers an abrupt, sometimes unwanted change in the viewing experience. We present a novel framework for smoothing these jump cuts, in the context of talking head videos. We leverage the appearance of the subject from the other source frames in the video, fusing it with a mid-level representation driven by DensePose keypoints and face landmarks. To achieve motion, we interpolate the keypoints and landmarks between the end frames around the cut. We then use an image translation network from the keypoints and source frames, to synthesize pixels. Because keypoints can contain errors, we propose a cross-modal attention scheme to select and pick the most appropriate source amongst multiple options for each key point. By leveraging this mid-level representation, our method can achieve stronger results than a strong video interpolation baseline. We demonstrate our method on various jump cuts in the talking head videos, such as cutting filler words, pauses, and even random cuts. Our experiments show that we can achieve seamless transitions, even in the challenging cases where the talking head rotates or moves drastically in the jump cut.
Persistent-Transient Duality: A Multi-mechanism Approach for Modeling Human-Object Interaction
Humans are highly adaptable, swiftly switching between different modes to progressively handle different tasks, situations and contexts. In Human-object interaction (HOI) activities, these modes can be attributed to two mechanisms: (1) the large-scale consistent plan for the whole activity and (2) the small-scale children interactive actions that start and end along the timeline. While neuroscience and cognitive science have confirmed this multi-mechanism nature of human behavior, machine modeling approaches for human motion are trailing behind. While attempted to use gradually morphing structures (e.g., graph attention networks) to model the dynamic HOI patterns, they miss the expeditious and discrete mode-switching nature of the human motion. To bridge that gap, this work proposes to model two concurrent mechanisms that jointly control human motion: the Persistent process that runs continually on the global scale, and the Transient sub-processes that operate intermittently on the local context of the human while interacting with objects. These two mechanisms form an interactive Persistent-Transient Duality that synergistically governs the activity sequences. We model this conceptual duality by a parent-child neural network of Persistent and Transient channels with a dedicated neural module for dynamic mechanism switching. The framework is trialed on HOI motion forecasting. On two rich datasets and a wide variety of settings, the model consistently delivers superior performances, proving its suitability for the challenge.
FlexiClip: Locality-Preserving Free-Form Character Animation
Animating clipart images with seamless motion while maintaining visual fidelity and temporal coherence presents significant challenges. Existing methods, such as AniClipart, effectively model spatial deformations but often fail to ensure smooth temporal transitions, resulting in artifacts like abrupt motions and geometric distortions. Similarly, text-to-video (T2V) and image-to-video (I2V) models struggle to handle clipart due to the mismatch in statistical properties between natural video and clipart styles. This paper introduces FlexiClip, a novel approach designed to overcome these limitations by addressing the intertwined challenges of temporal consistency and geometric integrity. FlexiClip extends traditional B\'ezier curve-based trajectory modeling with key innovations: temporal Jacobians to correct motion dynamics incrementally, continuous-time modeling via probability flow ODEs (pfODEs) to mitigate temporal noise, and a flow matching loss inspired by GFlowNet principles to optimize smooth motion transitions. These enhancements ensure coherent animations across complex scenarios involving rapid movements and non-rigid deformations. Extensive experiments validate the effectiveness of FlexiClip in generating animations that are not only smooth and natural but also structurally consistent across diverse clipart types, including humans and animals. By integrating spatial and temporal modeling with pre-trained video diffusion models, FlexiClip sets a new standard for high-quality clipart animation, offering robust performance across a wide range of visual content. Project Page: https://creative-gen.github.io/flexiclip.github.io/
Frame In-N-Out: Unbounded Controllable Image-to-Video Generation
Controllability, temporal coherence, and detail synthesis remain the most critical challenges in video generation. In this paper, we focus on a commonly used yet underexplored cinematic technique known as Frame In and Frame Out. Specifically, starting from image-to-video generation, users can control the objects in the image to naturally leave the scene or provide breaking new identity references to enter the scene, guided by user-specified motion trajectory. To support this task, we introduce a new dataset curated semi-automatically, a comprehensive evaluation protocol targeting this setting, and an efficient identity-preserving motion-controllable video Diffusion Transformer architecture. Our evaluation shows that our proposed approach significantly outperforms existing baselines.
MotionFlow: Attention-Driven Motion Transfer in Video Diffusion Models
Text-to-video models have demonstrated impressive capabilities in producing diverse and captivating video content, showcasing a notable advancement in generative AI. However, these models generally lack fine-grained control over motion patterns, limiting their practical applicability. We introduce MotionFlow, a novel framework designed for motion transfer in video diffusion models. Our method utilizes cross-attention maps to accurately capture and manipulate spatial and temporal dynamics, enabling seamless motion transfers across various contexts. Our approach does not require training and works on test-time by leveraging the inherent capabilities of pre-trained video diffusion models. In contrast to traditional approaches, which struggle with comprehensive scene changes while maintaining consistent motion, MotionFlow successfully handles such complex transformations through its attention-based mechanism. Our qualitative and quantitative experiments demonstrate that MotionFlow significantly outperforms existing models in both fidelity and versatility even during drastic scene alterations.
DiffusionPoser: Real-time Human Motion Reconstruction From Arbitrary Sparse Sensors Using Autoregressive Diffusion
Motion capture from a limited number of body-worn sensors, such as inertial measurement units (IMUs) and pressure insoles, has important applications in health, human performance, and entertainment. Recent work has focused on accurately reconstructing whole-body motion from a specific sensor configuration using six IMUs. While a common goal across applications is to use the minimal number of sensors to achieve required accuracy, the optimal arrangement of the sensors might differ from application to application. We propose a single diffusion model, DiffusionPoser, which reconstructs human motion in real-time from an arbitrary combination of sensors, including IMUs placed at specified locations, and, pressure insoles. Unlike existing methods, our model grants users the flexibility to determine the number and arrangement of sensors tailored to the specific activity of interest, without the need for retraining. A novel autoregressive inferencing scheme ensures real-time motion reconstruction that closely aligns with measured sensor signals. The generative nature of DiffusionPoser ensures realistic behavior, even for degrees-of-freedom not directly measured. Qualitative results can be found on our website: https://diffusionposer.github.io/.
CoCoCo: Improving Text-Guided Video Inpainting for Better Consistency, Controllability and Compatibility
Recent advancements in video generation have been remarkable, yet many existing methods struggle with issues of consistency and poor text-video alignment. Moreover, the field lacks effective techniques for text-guided video inpainting, a stark contrast to the well-explored domain of text-guided image inpainting. To this end, this paper proposes a novel text-guided video inpainting model that achieves better consistency, controllability and compatibility. Specifically, we introduce a simple but efficient motion capture module to preserve motion consistency, and design an instance-aware region selection instead of a random region selection to obtain better textual controllability, and utilize a novel strategy to inject some personalized models into our CoCoCo model and thus obtain better model compatibility. Extensive experiments show that our model can generate high-quality video clips. Meanwhile, our model shows better motion consistency, textual controllability and model compatibility. More details are shown in [cococozibojia.github.io](cococozibojia.github.io).
MotionMix: Weakly-Supervised Diffusion for Controllable Motion Generation
Controllable generation of 3D human motions becomes an important topic as the world embraces digital transformation. Existing works, though making promising progress with the advent of diffusion models, heavily rely on meticulously captured and annotated (e.g., text) high-quality motion corpus, a resource-intensive endeavor in the real world. This motivates our proposed MotionMix, a simple yet effective weakly-supervised diffusion model that leverages both noisy and unannotated motion sequences. Specifically, we separate the denoising objectives of a diffusion model into two stages: obtaining conditional rough motion approximations in the initial T-T^* steps by learning the noisy annotated motions, followed by the unconditional refinement of these preliminary motions during the last T^* steps using unannotated motions. Notably, though learning from two sources of imperfect data, our model does not compromise motion generation quality compared to fully supervised approaches that access gold data. Extensive experiments on several benchmarks demonstrate that our MotionMix, as a versatile framework, consistently achieves state-of-the-art performances on text-to-motion, action-to-motion, and music-to-dance tasks. Project page: https://nhathoang2002.github.io/MotionMix-page/
TEDi: Temporally-Entangled Diffusion for Long-Term Motion Synthesis
The gradual nature of a diffusion process that synthesizes samples in small increments constitutes a key ingredient of Denoising Diffusion Probabilistic Models (DDPM), which have presented unprecedented quality in image synthesis and been recently explored in the motion domain. In this work, we propose to adapt the gradual diffusion concept (operating along a diffusion time-axis) into the temporal-axis of the motion sequence. Our key idea is to extend the DDPM framework to support temporally varying denoising, thereby entangling the two axes. Using our special formulation, we iteratively denoise a motion buffer that contains a set of increasingly-noised poses, which auto-regressively produces an arbitrarily long stream of frames. With a stationary diffusion time-axis, in each diffusion step we increment only the temporal-axis of the motion such that the framework produces a new, clean frame which is removed from the beginning of the buffer, followed by a newly drawn noise vector that is appended to it. This new mechanism paves the way towards a new framework for long-term motion synthesis with applications to character animation and other domains.
Generalizable Implicit Motion Modeling for Video Frame Interpolation
Motion modeling is critical in flow-based Video Frame Interpolation (VFI). Existing paradigms either consider linear combinations of bidirectional flows or directly predict bilateral flows for given timestamps without exploring favorable motion priors, thus lacking the capability of effectively modeling spatiotemporal dynamics in real-world videos. To address this limitation, in this study, we introduce Generalizable Implicit Motion Modeling (GIMM), a novel and effective approach to motion modeling for VFI. Specifically, to enable GIMM as an effective motion modeling paradigm, we design a motion encoding pipeline to model spatiotemporal motion latent from bidirectional flows extracted from pre-trained flow estimators, effectively representing input-specific motion priors. Then, we implicitly predict arbitrary-timestep optical flows within two adjacent input frames via an adaptive coordinate-based neural network, with spatiotemporal coordinates and motion latent as inputs. Our GIMM can be smoothly integrated with existing flow-based VFI works without further modifications. We show that GIMM performs better than the current state of the art on the VFI benchmarks.
LumosFlow: Motion-Guided Long Video Generation
Long video generation has gained increasing attention due to its widespread applications in fields such as entertainment and simulation. Despite advances, synthesizing temporally coherent and visually compelling long sequences remains a formidable challenge. Conventional approaches often synthesize long videos by sequentially generating and concatenating short clips, or generating key frames and then interpolate the intermediate frames in a hierarchical manner. However, both of them still remain significant challenges, leading to issues such as temporal repetition or unnatural transitions. In this paper, we revisit the hierarchical long video generation pipeline and introduce LumosFlow, a framework introduce motion guidance explicitly. Specifically, we first employ the Large Motion Text-to-Video Diffusion Model (LMTV-DM) to generate key frames with larger motion intervals, thereby ensuring content diversity in the generated long videos. Given the complexity of interpolating contextual transitions between key frames, we further decompose the intermediate frame interpolation into motion generation and post-hoc refinement. For each pair of key frames, the Latent Optical Flow Diffusion Model (LOF-DM) synthesizes complex and large-motion optical flows, while MotionControlNet subsequently refines the warped results to enhance quality and guide intermediate frame generation. Compared with traditional video frame interpolation, we achieve 15x interpolation, ensuring reasonable and continuous motion between adjacent frames. Experiments show that our method can generate long videos with consistent motion and appearance. Code and models will be made publicly available upon acceptance. Our project page: https://jiahaochen1.github.io/LumosFlow/
Motion-Aware Generative Frame Interpolation
Generative frame interpolation, empowered by large-scale pre-trained video generation models, has demonstrated remarkable advantages in complex scenes. However, existing methods heavily rely on the generative model to independently infer the correspondences between input frames, an ability that is inadequately developed during pre-training. In this work, we propose a novel framework, termed Motion-aware Generative frame interpolation (MoG), to significantly enhance the model's motion awareness by integrating explicit motion guidance. Specifically we investigate two key questions: what can serve as an effective motion guidance, and how we can seamlessly embed this guidance into the generative model. For the first question, we reveal that the intermediate flow from flow-based interpolation models could efficiently provide task-oriented motion guidance. Regarding the second, we first obtain guidance-based representations of intermediate frames by warping input frames' representations using guidance, and then integrate them into the model at both latent and feature levels. To demonstrate the versatility of our method, we train MoG on both real-world and animation datasets. Comprehensive evaluations show that our MoG significantly outperforms the existing methods in both domains, achieving superior video quality and improved fidelity.
AnimateAnything: Fine-Grained Open Domain Image Animation with Motion Guidance
Image animation is a key task in computer vision which aims to generate dynamic visual content from static image. Recent image animation methods employ neural based rendering technique to generate realistic animations. Despite these advancements, achieving fine-grained and controllable image animation guided by text remains challenging, particularly for open-domain images captured in diverse real environments. In this paper, we introduce an open domain image animation method that leverages the motion prior of video diffusion model. Our approach introduces targeted motion area guidance and motion strength guidance, enabling precise control the movable area and its motion speed. This results in enhanced alignment between the animated visual elements and the prompting text, thereby facilitating a fine-grained and interactive animation generation process for intricate motion sequences. We validate the effectiveness of our method through rigorous experiments on an open-domain dataset, with the results showcasing its superior performance. Project page can be found at https://animationai.github.io/AnimateAnything.
Animated Stickers: Bringing Stickers to Life with Video Diffusion
We introduce animated stickers, a video diffusion model which generates an animation conditioned on a text prompt and static sticker image. Our model is built on top of the state-of-the-art Emu text-to-image model, with the addition of temporal layers to model motion. Due to the domain gap, i.e. differences in visual and motion style, a model which performed well on generating natural videos can no longer generate vivid videos when applied to stickers. To bridge this gap, we employ a two-stage finetuning pipeline: first with weakly in-domain data, followed by human-in-the-loop (HITL) strategy which we term ensemble-of-teachers. It distills the best qualities of multiple teachers into a smaller student model. We show that this strategy allows us to specifically target improvements to motion quality while maintaining the style from the static image. With inference optimizations, our model is able to generate an eight-frame video with high-quality, interesting, and relevant motion in under one second.
MotionStreamer: Streaming Motion Generation via Diffusion-based Autoregressive Model in Causal Latent Space
This paper addresses the challenge of text-conditioned streaming motion generation, which requires us to predict the next-step human pose based on variable-length historical motions and incoming texts. Existing methods struggle to achieve streaming motion generation, e.g., diffusion models are constrained by pre-defined motion lengths, while GPT-based methods suffer from delayed response and error accumulation problem due to discretized non-causal tokenization. To solve these problems, we propose MotionStreamer, a novel framework that incorporates a continuous causal latent space into a probabilistic autoregressive model. The continuous latents mitigate information loss caused by discretization and effectively reduce error accumulation during long-term autoregressive generation. In addition, by establishing temporal causal dependencies between current and historical motion latents, our model fully utilizes the available information to achieve accurate online motion decoding. Experiments show that our method outperforms existing approaches while offering more applications, including multi-round generation, long-term generation, and dynamic motion composition. Project Page: https://zju3dv.github.io/MotionStreamer/
Perception-as-Control: Fine-grained Controllable Image Animation with 3D-aware Motion Representation
Motion-controllable image animation is a fundamental task with a wide range of potential applications. Recent works have made progress in controlling camera or object motion via various motion representations, while they still struggle to support collaborative camera and object motion control with adaptive control granularity. To this end, we introduce 3D-aware motion representation and propose an image animation framework, called Perception-as-Control, to achieve fine-grained collaborative motion control. Specifically, we construct 3D-aware motion representation from a reference image, manipulate it based on interpreted user intentions, and perceive it from different viewpoints. In this way, camera and object motions are transformed into intuitive, consistent visual changes. Then, the proposed framework leverages the perception results as motion control signals, enabling it to support various motion-related video synthesis tasks in a unified and flexible way. Experiments demonstrate the superiority of the proposed framework. For more details and qualitative results, please refer to our project webpage: https://chen-yingjie.github.io/projects/Perception-as-Control.
Learning segmentation from point trajectories
We consider the problem of segmenting objects in videos based on their motion and no other forms of supervision. Prior work has often approached this problem by using the principle of common fate, namely the fact that the motion of points that belong to the same object is strongly correlated. However, most authors have only considered instantaneous motion from optical flow. In this work, we present a way to train a segmentation network using long-term point trajectories as a supervisory signal to complement optical flow. The key difficulty is that long-term motion, unlike instantaneous motion, is difficult to model -- any parametric approximation is unlikely to capture complex motion patterns over long periods of time. We instead draw inspiration from subspace clustering approaches, proposing a loss function that seeks to group the trajectories into low-rank matrices where the motion of object points can be approximately explained as a linear combination of other point tracks. Our method outperforms the prior art on motion-based segmentation, which shows the utility of long-term motion and the effectiveness of our formulation.
PhysDiff: Physics-Guided Human Motion Diffusion Model
Denoising diffusion models hold great promise for generating diverse and realistic human motions. However, existing motion diffusion models largely disregard the laws of physics in the diffusion process and often generate physically-implausible motions with pronounced artifacts such as floating, foot sliding, and ground penetration. This seriously impacts the quality of generated motions and limits their real-world application. To address this issue, we present a novel physics-guided motion diffusion model (PhysDiff), which incorporates physical constraints into the diffusion process. Specifically, we propose a physics-based motion projection module that uses motion imitation in a physics simulator to project the denoised motion of a diffusion step to a physically-plausible motion. The projected motion is further used in the next diffusion step to guide the denoising diffusion process. Intuitively, the use of physics in our model iteratively pulls the motion toward a physically-plausible space, which cannot be achieved by simple post-processing. Experiments on large-scale human motion datasets show that our approach achieves state-of-the-art motion quality and improves physical plausibility drastically (>78% for all datasets).
DragAnything: Motion Control for Anything using Entity Representation
We introduce DragAnything, which utilizes a entity representation to achieve motion control for any object in controllable video generation. Comparison to existing motion control methods, DragAnything offers several advantages. Firstly, trajectory-based is more userfriendly for interaction, when acquiring other guidance signals (e.g., masks, depth maps) is labor-intensive. Users only need to draw a line (trajectory) during interaction. Secondly, our entity representation serves as an open-domain embedding capable of representing any object, enabling the control of motion for diverse entities, including background. Lastly, our entity representation allows simultaneous and distinct motion control for multiple objects. Extensive experiments demonstrate that our DragAnything achieves state-of-the-art performance for FVD, FID, and User Study, particularly in terms of object motion control, where our method surpasses the previous methods (e.g., DragNUWA) by 26% in human voting.
ReMoDiffuse: Retrieval-Augmented Motion Diffusion Model
3D human motion generation is crucial for creative industry. Recent advances rely on generative models with domain knowledge for text-driven motion generation, leading to substantial progress in capturing common motions. However, the performance on more diverse motions remains unsatisfactory. In this work, we propose ReMoDiffuse, a diffusion-model-based motion generation framework that integrates a retrieval mechanism to refine the denoising process. ReMoDiffuse enhances the generalizability and diversity of text-driven motion generation with three key designs: 1) Hybrid Retrieval finds appropriate references from the database in terms of both semantic and kinematic similarities. 2) Semantic-Modulated Transformer selectively absorbs retrieval knowledge, adapting to the difference between retrieved samples and the target motion sequence. 3) Condition Mixture better utilizes the retrieval database during inference, overcoming the scale sensitivity in classifier-free guidance. Extensive experiments demonstrate that ReMoDiffuse outperforms state-of-the-art methods by balancing both text-motion consistency and motion quality, especially for more diverse motion generation.
Moving Object Segmentation: All You Need Is SAM (and Flow)
The objective of this paper is motion segmentation -- discovering and segmenting the moving objects in a video. This is a much studied area with numerous careful,and sometimes complex, approaches and training schemes including: self-supervised learning, learning from synthetic datasets, object-centric representations, amodal representations, and many more. Our interest in this paper is to determine if the Segment Anything model (SAM) can contribute to this task. We investigate two models for combining SAM with optical flow that harness the segmentation power of SAM with the ability of flow to discover and group moving objects. In the first model, we adapt SAM to take optical flow, rather than RGB, as an input. In the second, SAM takes RGB as an input, and flow is used as a segmentation prompt. These surprisingly simple methods, without any further modifications, outperform all previous approaches by a considerable margin in both single and multi-object benchmarks. We also extend these frame-level segmentations to sequence-level segmentations that maintain object identity. Again, this simple model outperforms previous methods on multiple video object segmentation benchmarks.
Progressive Temporal Feature Alignment Network for Video Inpainting
Video inpainting aims to fill spatio-temporal "corrupted" regions with plausible content. To achieve this goal, it is necessary to find correspondences from neighbouring frames to faithfully hallucinate the unknown content. Current methods achieve this goal through attention, flow-based warping, or 3D temporal convolution. However, flow-based warping can create artifacts when optical flow is not accurate, while temporal convolution may suffer from spatial misalignment. We propose 'Progressive Temporal Feature Alignment Network', which progressively enriches features extracted from the current frame with the feature warped from neighbouring frames using optical flow. Our approach corrects the spatial misalignment in the temporal feature propagation stage, greatly improving visual quality and temporal consistency of the inpainted videos. Using the proposed architecture, we achieve state-of-the-art performance on the DAVIS and FVI datasets compared to existing deep learning approaches. Code is available at https://github.com/MaureenZOU/TSAM.
MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion
We introduce MoRAG, a novel multi-part fusion based retrieval-augmented generation strategy for text-based human motion generation. The method enhances motion diffusion models by leveraging additional knowledge obtained through an improved motion retrieval process. By effectively prompting large language models (LLMs), we address spelling errors and rephrasing issues in motion retrieval. Our approach utilizes a multi-part retrieval strategy to improve the generalizability of motion retrieval across the language space. We create diverse samples through the spatial composition of the retrieved motions. Furthermore, by utilizing low-level, part-specific motion information, we can construct motion samples for unseen text descriptions. Our experiments demonstrate that our framework can serve as a plug-and-play module, improving the performance of motion diffusion models. Code, pretrained models and sample videos will be made available at: https://motion-rag.github.io/
MotionCanvas: Cinematic Shot Design with Controllable Image-to-Video Generation
This paper presents a method that allows users to design cinematic video shots in the context of image-to-video generation. Shot design, a critical aspect of filmmaking, involves meticulously planning both camera movements and object motions in a scene. However, enabling intuitive shot design in modern image-to-video generation systems presents two main challenges: first, effectively capturing user intentions on the motion design, where both camera movements and scene-space object motions must be specified jointly; and second, representing motion information that can be effectively utilized by a video diffusion model to synthesize the image animations. To address these challenges, we introduce MotionCanvas, a method that integrates user-driven controls into image-to-video (I2V) generation models, allowing users to control both object and camera motions in a scene-aware manner. By connecting insights from classical computer graphics and contemporary video generation techniques, we demonstrate the ability to achieve 3D-aware motion control in I2V synthesis without requiring costly 3D-related training data. MotionCanvas enables users to intuitively depict scene-space motion intentions, and translates them into spatiotemporal motion-conditioning signals for video diffusion models. We demonstrate the effectiveness of our method on a wide range of real-world image content and shot-design scenarios, highlighting its potential to enhance the creative workflows in digital content creation and adapt to various image and video editing applications.
MotionMaster: Training-free Camera Motion Transfer For Video Generation
The emergence of diffusion models has greatly propelled the progress in image and video generation. Recently, some efforts have been made in controllable video generation, including text-to-video generation and video motion control, among which camera motion control is an important topic. However, existing camera motion control methods rely on training a temporal camera module, and necessitate substantial computation resources due to the large amount of parameters in video generation models. Moreover, existing methods pre-define camera motion types during training, which limits their flexibility in camera control. Therefore, to reduce training costs and achieve flexible camera control, we propose COMD, a novel training-free video motion transfer model, which disentangles camera motions and object motions in source videos and transfers the extracted camera motions to new videos. We first propose a one-shot camera motion disentanglement method to extract camera motion from a single source video, which separates the moving objects from the background and estimates the camera motion in the moving objects region based on the motion in the background by solving a Poisson equation. Furthermore, we propose a few-shot camera motion disentanglement method to extract the common camera motion from multiple videos with similar camera motions, which employs a window-based clustering technique to extract the common features in temporal attention maps of multiple videos. Finally, we propose a motion combination method to combine different types of camera motions together, enabling our model a more controllable and flexible camera control. Extensive experiments demonstrate that our training-free approach can effectively decouple camera-object motion and apply the decoupled camera motion to a wide range of controllable video generation tasks, achieving flexible and diverse camera motion control.
Disentangled Motion Modeling for Video Frame Interpolation
Video frame interpolation (VFI) aims to synthesize intermediate frames in between existing frames to enhance visual smoothness and quality. Beyond the conventional methods based on the reconstruction loss, recent works employ the high quality generative models for perceptual quality. However, they require complex training and large computational cost for modeling on the pixel space. In this paper, we introduce disentangled Motion Modeling (MoMo), a diffusion-based approach for VFI that enhances visual quality by focusing on intermediate motion modeling. We propose disentangled two-stage training process, initially training a frame synthesis model to generate frames from input pairs and their optical flows. Subsequently, we propose a motion diffusion model, equipped with our novel diffusion U-Net architecture designed for optical flow, to produce bi-directional flows between frames. This method, by leveraging the simpler low-frequency representation of motions, achieves superior perceptual quality with reduced computational demands compared to generative modeling methods on the pixel space. Our method surpasses state-of-the-art methods in perceptual metrics across various benchmarks, demonstrating its efficacy and efficiency in VFI. Our code is available at: https://github.com/JHLew/MoMo
Make-An-Animation: Large-Scale Text-conditional 3D Human Motion Generation
Text-guided human motion generation has drawn significant interest because of its impactful applications spanning animation and robotics. Recently, application of diffusion models for motion generation has enabled improvements in the quality of generated motions. However, existing approaches are limited by their reliance on relatively small-scale motion capture data, leading to poor performance on more diverse, in-the-wild prompts. In this paper, we introduce Make-An-Animation, a text-conditioned human motion generation model which learns more diverse poses and prompts from large-scale image-text datasets, enabling significant improvement in performance over prior works. Make-An-Animation is trained in two stages. First, we train on a curated large-scale dataset of (text, static pseudo-pose) pairs extracted from image-text datasets. Second, we fine-tune on motion capture data, adding additional layers to model the temporal dimension. Unlike prior diffusion models for motion generation, Make-An-Animation uses a U-Net architecture similar to recent text-to-video generation models. Human evaluation of motion realism and alignment with input text shows that our model reaches state-of-the-art performance on text-to-motion generation.
MotionSight: Boosting Fine-Grained Motion Understanding in Multimodal LLMs
Despite advancements in Multimodal Large Language Models (MLLMs), their proficiency in fine-grained video motion understanding remains critically limited. They often lack inter-frame differencing and tend to average or ignore subtle visual cues. Furthermore, while visual prompting has shown potential in static images, its application to video's temporal complexities, particularly for fine-grained motion understanding, remains largely unexplored. We investigate whether inherent capability can be unlocked and boost MLLMs' motion perception and enable distinct visual signatures tailored to decouple object and camera motion cues. In this study, we introduce MotionSight, a novel zero-shot method pioneering object-centric visual spotlight and motion blur as visual prompts to effectively improve fine-grained motion understanding without training. To convert this into valuable data assets, we curated MotionVid-QA, the first large-scale dataset for fine-grained video motion understanding, with hierarchical annotations including SFT and preference data, {\Theta}(40K) video clips and {\Theta}(87K) QAs. Experiments show MotionSight achieves state-of-the-art open-source performance and competitiveness with commercial models. In particular, for fine-grained motion understanding we present a novel zero-shot technique and a large-scale, high-quality dataset. All the code and annotations will be publicly available.
LeviTor: 3D Trajectory Oriented Image-to-Video Synthesis
The intuitive nature of drag-based interaction has led to its growing adoption for controlling object trajectories in image-to-video synthesis. Still, existing methods that perform dragging in the 2D space usually face ambiguity when handling out-of-plane movements. In this work, we augment the interaction with a new dimension, i.e., the depth dimension, such that users are allowed to assign a relative depth for each point on the trajectory. That way, our new interaction paradigm not only inherits the convenience from 2D dragging, but facilitates trajectory control in the 3D space, broadening the scope of creativity. We propose a pioneering method for 3D trajectory control in image-to-video synthesis by abstracting object masks into a few cluster points. These points, accompanied by the depth information and the instance information, are finally fed into a video diffusion model as the control signal. Extensive experiments validate the effectiveness of our approach, dubbed LeviTor, in precisely manipulating the object movements when producing photo-realistic videos from static images. Project page: https://ppetrichor.github.io/levitor.github.io/
LaMP: Language-Motion Pretraining for Motion Generation, Retrieval, and Captioning
Language plays a vital role in the realm of human motion. Existing methods have largely depended on CLIP text embeddings for motion generation, yet they fall short in effectively aligning language and motion due to CLIP's pretraining on static image-text pairs. This work introduces LaMP, a novel Language-Motion Pretraining model, which transitions from a language-vision to a more suitable language-motion latent space. It addresses key limitations by generating motion-informative text embeddings, significantly enhancing the relevance and semantics of generated motion sequences. With LaMP, we advance three key tasks: text-to-motion generation, motion-text retrieval, and motion captioning through aligned language-motion representation learning. For generation, we utilize LaMP to provide the text condition instead of CLIP, and an autoregressive masked prediction is designed to achieve mask modeling without rank collapse in transformers. For retrieval, motion features from LaMP's motion transformer interact with query tokens to retrieve text features from the text transformer, and vice versa. For captioning, we finetune a large language model with the language-informative motion features to develop a strong motion captioning model. In addition, we introduce the LaMP-BertScore metric to assess the alignment of generated motions with textual descriptions. Extensive experimental results on multiple datasets demonstrate substantial improvements over previous methods across all three tasks. The code of our method will be made public.
Generative Inbetweening: Adapting Image-to-Video Models for Keyframe Interpolation
We present a method for generating video sequences with coherent motion between a pair of input key frames. We adapt a pretrained large-scale image-to-video diffusion model (originally trained to generate videos moving forward in time from a single input image) for key frame interpolation, i.e., to produce a video in between two input frames. We accomplish this adaptation through a lightweight fine-tuning technique that produces a version of the model that instead predicts videos moving backwards in time from a single input image. This model (along with the original forward-moving model) is subsequently used in a dual-directional diffusion sampling process that combines the overlapping model estimates starting from each of the two keyframes. Our experiments show that our method outperforms both existing diffusion-based methods and traditional frame interpolation techniques.
Image Conductor: Precision Control for Interactive Video Synthesis
Filmmaking and animation production often require sophisticated techniques for coordinating camera transitions and object movements, typically involving labor-intensive real-world capturing. Despite advancements in generative AI for video creation, achieving precise control over motion for interactive video asset generation remains challenging. To this end, we propose Image Conductor, a method for precise control of camera transitions and object movements to generate video assets from a single image. An well-cultivated training strategy is proposed to separate distinct camera and object motion by camera LoRA weights and object LoRA weights. To further address cinematographic variations from ill-posed trajectories, we introduce a camera-free guidance technique during inference, enhancing object movements while eliminating camera transitions. Additionally, we develop a trajectory-oriented video motion data curation pipeline for training. Quantitative and qualitative experiments demonstrate our method's precision and fine-grained control in generating motion-controllable videos from images, advancing the practical application of interactive video synthesis. Project webpage available at https://liyaowei-stu.github.io/project/ImageConductor/
Explorative Inbetweening of Time and Space
We introduce bounded generation as a generalized task to control video generation to synthesize arbitrary camera and subject motion based only on a given start and end frame. Our objective is to fully leverage the inherent generalization capability of an image-to-video model without additional training or fine-tuning of the original model. This is achieved through the proposed new sampling strategy, which we call Time Reversal Fusion, that fuses the temporally forward and backward denoising paths conditioned on the start and end frame, respectively. The fused path results in a video that smoothly connects the two frames, generating inbetweening of faithful subject motion, novel views of static scenes, and seamless video looping when the two bounding frames are identical. We curate a diverse evaluation dataset of image pairs and compare against the closest existing methods. We find that Time Reversal Fusion outperforms related work on all subtasks, exhibiting the ability to generate complex motions and 3D-consistent views guided by bounded frames. See project page at https://time-reversal.github.io.