Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLongEmbed: Extending Embedding Models for Long Context Retrieval
Embedding models play a pivot role in modern NLP applications such as IR and RAG. While the context limit of LLMs has been pushed beyond 1 million tokens, embedding models are still confined to a narrow context window not exceeding 8k tokens, refrained from application scenarios requiring long inputs such as legal contracts. This paper explores context window extension of existing embedding models, pushing the limit to 32k without requiring additional training. First, we examine the performance of current embedding models for long context retrieval on our newly constructed LongEmbed benchmark. LongEmbed comprises two synthetic tasks and four carefully chosen real-world tasks, featuring documents of varying length and dispersed target information. Benchmarking results underscore huge room for improvement in these models. Based on this, comprehensive experiments show that training-free context window extension strategies like position interpolation can effectively extend the context window of existing embedding models by several folds, regardless of their original context being 512 or beyond 4k. Furthermore, for models employing absolute position encoding (APE), we show the possibility of further fine-tuning to harvest notable performance gains while strictly preserving original behavior for short inputs. For models using rotary position embedding (RoPE), significant enhancements are observed when employing RoPE-specific methods, such as NTK and SelfExtend, indicating RoPE's superiority over APE for context window extension. To facilitate future research, we release E5-Base-4k and E5-RoPE-Base, along with the LongEmbed benchmark.
LongSafety: Evaluating Long-Context Safety of Large Language Models
As Large Language Models (LLMs) continue to advance in understanding and generating long sequences, new safety concerns have been introduced through the long context. However, the safety of LLMs in long-context tasks remains under-explored, leaving a significant gap in both evaluation and improvement of their safety. To address this, we introduce LongSafety, the first comprehensive benchmark specifically designed to evaluate LLM safety in open-ended long-context tasks. LongSafety encompasses 7 categories of safety issues and 6 user-oriented long-context tasks, with a total of 1,543 test cases, averaging 5,424 words per context. Our evaluation towards 16 representative LLMs reveals significant safety vulnerabilities, with most models achieving safety rates below 55%. Our findings also indicate that strong safety performance in short-context scenarios does not necessarily correlate with safety in long-context tasks, emphasizing the unique challenges and urgency of improving long-context safety. Moreover, through extensive analysis, we identify challenging safety issues and task types for long-context models. Furthermore, we find that relevant context and extended input sequences can exacerbate safety risks in long-context scenarios, highlighting the critical need for ongoing attention to long-context safety challenges. Our code and data are available at https://github.com/thu-coai/LongSafety.
Attention Overflow: Language Model Input Blur during Long-Context Missing Items Recommendation
Large language models (LLMs) can suggest missing elements from items listed in a prompt, which can be used for list completion or recommendations based on users' history. However, their performance degrades when presented with too many items, as they start to suggest items already included in the input list. This occurs at around 100 items for mid-2024 flagship LLMs. We evaluate this phenomenon on both synthetic problems (e.g., finding missing numbers in a given range of shuffled integers) and realistic movie recommendation scenarios. We refer to this issue as attention overflow, as preventing repetition requires attending to all items simultaneously. Although iterative loops can mitigate this problem, their costs increase with the repetition rate, affecting the language models' ability to derive novelty from lengthy inputs.
LongLLMLingua: Accelerating and Enhancing LLMs in Long Context Scenarios via Prompt Compression
In long context scenarios, large language models (LLMs) face three main challenges: higher computational/financial cost, longer latency, and inferior performance. Some studies reveal that the performance of LLMs depends on both the density and the position of the key information (question relevant) in the input prompt. Inspired by these findings, we propose LongLLMLingua for prompt compression towards improving LLMs' perception of the key information to simultaneously address the three challenges. We conduct evaluation on a wide range of long context scenarios including single-/multi-document QA, few-shot learning, summarization, synthetic tasks, and code completion. The experimental results show that LongLLMLingua compressed prompt can derive higher performance with much less cost. The latency of the end-to-end system is also reduced. For example, on NaturalQuestions benchmark, LongLLMLingua gains a performance boost of up to 17.1% over the original prompt with ~4x fewer tokens as input to GPT-3.5-Turbo. It can derive cost savings of \28.5 and 27.4 per 1,000 samples from the LongBench and ZeroScrolls benchmark, respectively. Additionally, when compressing prompts of ~10k tokens at a compression rate of 2x-10x, LongLLMLingua can speed up the end-to-end latency by 1.4x-3.8x. Our code is available at https://aka.ms/LLMLingua.
MMDU: A Multi-Turn Multi-Image Dialog Understanding Benchmark and Instruction-Tuning Dataset for LVLMs
Generating natural and meaningful responses to communicate with multi-modal human inputs is a fundamental capability of Large Vision-Language Models(LVLMs). While current open-source LVLMs demonstrate promising performance in simplified scenarios such as single-turn single-image input, they fall short in real-world conversation scenarios such as following instructions in a long context history with multi-turn and multi-images. Existing LVLM benchmarks primarily focus on single-choice questions or short-form responses, which do not adequately assess the capabilities of LVLMs in real-world human-AI interaction applications. Therefore, we introduce MMDU, a comprehensive benchmark, and MMDU-45k, a large-scale instruction tuning dataset, designed to evaluate and improve LVLMs' abilities in multi-turn and multi-image conversations. We employ the clustering algorithm to ffnd the relevant images and textual descriptions from the open-source Wikipedia and construct the question-answer pairs by human annotators with the assistance of the GPT-4o model. MMDU has a maximum of 18k image+text tokens, 20 images, and 27 turns, which is at least 5x longer than previous benchmarks and poses challenges to current LVLMs. Our in-depth analysis of 15 representative LVLMs using MMDU reveals that open-source LVLMs lag behind closed-source counterparts due to limited conversational instruction tuning data. We demonstrate that ffne-tuning open-source LVLMs on MMDU-45k signiffcantly address this gap, generating longer and more accurate conversations, and improving scores on MMDU and existing benchmarks (MMStar: +1.1%, MathVista: +1.5%, ChartQA:+1.2%). Our contributions pave the way for bridging the gap between current LVLM models and real-world application demands. This project is available at https://github.com/Liuziyu77/MMDU.
Accelerating Diffusion Language Model Inference via Efficient KV Caching and Guided Diffusion
Diffusion language models offer parallel token generation and inherent bidirectionality, promising more efficient and powerful sequence modeling compared to autoregressive approaches. However, state-of-the-art diffusion models (e.g., Dream 7B, LLaDA 8B) suffer from slow inference. While they match the quality of similarly sized Autoregressive (AR) Models (e.g., Qwen2.5 7B, Llama3 8B), their iterative denoising requires multiple full-sequence forward passes, resulting in high computational costs and latency, particularly for long input prompts and long-context scenarios. Furthermore, parallel token generation introduces token incoherence problems, and current sampling heuristics suffer from significant quality drops with decreasing denoising steps. We address these limitations with two training-free techniques. First, we propose FreeCache, a Key-Value (KV) approximation caching technique that reuses stable KV projections across denoising steps, effectively reducing the computational cost of DLM inference. Second, we introduce Guided Diffusion, a training-free method that uses a lightweight pretrained autoregressive model to supervise token unmasking, dramatically reducing the total number of denoising iterations without sacrificing quality. We conduct extensive evaluations on open-source reasoning benchmarks, and our combined methods deliver up to a 34x end-to-end speedup without compromising accuracy. For the first time, diffusion language models achieve a comparable and even faster latency as the widely adopted autoregressive models. Our work successfully paved the way for scaling up the diffusion language model to a broader scope of applications across different domains.
Lost in the Middle: How Language Models Use Long Contexts
While recent language models have the ability to take long contexts as input, relatively little is known about how well the language models use longer context. We analyze language model performance on two tasks that require identifying relevant information within their input contexts: multi-document question answering and key-value retrieval. We find that performance is often highest when relevant information occurs at the beginning or end of the input context, and significantly degrades when models must access relevant information in the middle of long contexts. Furthermore, performance substantially decreases as the input context grows longer, even for explicitly long-context models. Our analysis provides a better understanding of how language models use their input context and provides new evaluation protocols for future long-context models.
Is It Really Long Context if All You Need Is Retrieval? Towards Genuinely Difficult Long Context NLP
Improvements in language models' capabilities have pushed their applications towards longer contexts, making long-context evaluation and development an active research area. However, many disparate use-cases are grouped together under the umbrella term of "long-context", defined simply by the total length of the model's input, including - for example - Needle-in-a-Haystack tasks, book summarization, and information aggregation. Given their varied difficulty, in this position paper we argue that conflating different tasks by their context length is unproductive. As a community, we require a more precise vocabulary to understand what makes long-context tasks similar or different. We propose to unpack the taxonomy of long-context based on the properties that make them more difficult with longer contexts. We propose two orthogonal axes of difficulty: (I) Diffusion: How hard is it to find the necessary information in the context? (II) Scope: How much necessary information is there to find? We survey the literature on long-context, provide justification for this taxonomy as an informative descriptor, and situate the literature with respect to it. We conclude that the most difficult and interesting settings, whose necessary information is very long and highly diffused within the input, is severely under-explored. By using a descriptive vocabulary and discussing the relevant properties of difficulty in long-context, we can implement more informed research in this area. We call for a careful design of tasks and benchmarks with distinctly long context, taking into account the characteristics that make it qualitatively different from shorter context.
A Controlled Study on Long Context Extension and Generalization in LLMs
Broad textual understanding and in-context learning require language models that utilize full document contexts. Due to the implementation challenges associated with directly training long-context models, many methods have been proposed for extending models to handle long contexts. However, owing to differences in data and model classes, it has been challenging to compare these approaches, leading to uncertainty as to how to evaluate long-context performance and whether it differs from standard evaluation. We implement a controlled protocol for extension methods with a standardized evaluation, utilizing consistent base models and extension data. Our study yields several insights into long-context behavior. First, we reaffirm the critical role of perplexity as a general-purpose performance indicator even in longer-context tasks. Second, we find that current approximate attention methods systematically underperform across long-context tasks. Finally, we confirm that exact fine-tuning based methods are generally effective within the range of their extension, whereas extrapolation remains challenging. All codebases, models, and checkpoints will be made available open-source, promoting transparency and facilitating further research in this critical area of AI development.
Squeezed Attention: Accelerating Long Context Length LLM Inference
Emerging Large Language Model (LLM) applications require long input prompts to perform complex downstream tasks like document analysis and code generation. For these long context length applications, the length of the input prompt poses a significant challenge in terms of inference efficiency since the inference costs increase linearly with sequence length. However, for many of these applications, much of the context in the prompt is fixed across different user inputs, thereby providing the opportunity to perform offline optimizations to process user inputs quickly, as they are received. In this work, we propose Squeezed Attention as a mechanism to accelerate LLM applications where a large portion of the input prompt is fixed. We first leverage K-means clustering offline to group the keys for the fixed context based on semantic similarity and represent each cluster with a single centroid value. During inference, we compare query tokens from the user input with the centroids to predict which of the keys from the fixed context are semantically relevant and need to be loaded during inference. We then compute exact attention using only these important keys from the fixed context, thereby reducing bandwidth and computational costs. We also extend our method to use a hierarchical centroid lookup to identify important keys, which can reduce the complexity of attention from linear to logarithmic with respect to the context length. We implement optimized Triton kernels for centroid comparison and sparse FlashAttention with important keys, achieving more than 4x speedups during both the prefill and generation phases for long-context inference. Furthermore, we have extensively evaluated our method on various long-context benchmarks including LongBench, where it achieves a 3x reduction in KV cache budget without accuracy loss and up to an 8x reduction with <0.5 point accuracy gap for various models.
KV Cache Compression, But What Must We Give in Return? A Comprehensive Benchmark of Long Context Capable Approaches
Long context capability is a crucial competency for large language models (LLMs) as it mitigates the human struggle to digest long-form texts. This capability enables complex task-solving scenarios such as book summarization, code assistance, and many more tasks that are traditionally manpower-intensive. However, transformer-based LLMs face significant challenges with long context input due to the growing size of the KV cache and the intrinsic complexity of attending to extended inputs; where multiple schools of efficiency-driven approaches -- such as KV cache quantization, token dropping, prompt compression, linear-time sequence models, and hybrid architectures -- have been proposed to produce efficient yet long context-capable models. Despite these advancements, no existing work has comprehensively benchmarked these methods in a reasonably aligned environment. In this work, we fill this gap by providing a taxonomy of current methods and evaluating 10+ state-of-the-art approaches across seven categories of long context tasks. Our work reveals numerous previously unknown phenomena and offers insights -- as well as a friendly workbench -- for the future development of long context-capable LLMs. The source code will be available at https://github.com/henryzhongsc/longctx_bench
Shifting Long-Context LLMs Research from Input to Output
Recent advancements in long-context Large Language Models (LLMs) have primarily concentrated on processing extended input contexts, resulting in significant strides in long-context comprehension. However, the equally critical aspect of generating long-form outputs has received comparatively less attention. This paper advocates for a paradigm shift in NLP research toward addressing the challenges of long-output generation. Tasks such as novel writing, long-term planning, and complex reasoning require models to understand extensive contexts and produce coherent, contextually rich, and logically consistent extended text. These demands highlight a critical gap in current LLM capabilities. We underscore the importance of this under-explored domain and call for focused efforts to develop foundational LLMs tailored for generating high-quality, long-form outputs, which hold immense potential for real-world applications.
Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks?
As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. In many real-world tasks, decisions depend on details scattered across collections of often disparate documents containing mostly irrelevant information. Long-context LLMs appear well-suited to this form of complex information retrieval and reasoning, which has traditionally proven costly and time-consuming. However, although the development of longer context models has seen rapid gains in recent years, our understanding of how effectively LLMs use their context has not kept pace. To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window. Strikingly, we find that many models are remarkably threadsafe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows. Our study also highlights the important point that token counts from different tokenizers should not be directly compared -- they often correspond to substantially different numbers of written characters. We release our code and long-context experimental data.
LongSkywork: A Training Recipe for Efficiently Extending Context Length in Large Language Models
We introduce LongSkywork, a long-context Large Language Model (LLM) capable of processing up to 200,000 tokens. We provide a training recipe for efficiently extending context length of LLMs. We identify that the critical element in enhancing long-context processing capability is to incorporate a long-context SFT stage following the standard SFT stage. A mere 200 iterations can convert the standard SFT model into a long-context model. To reduce the effort in collecting and annotating data for long-context language modeling, we develop two novel methods for creating synthetic data. These methods are applied during the continual pretraining phase as well as the Supervised Fine-Tuning (SFT) phase, greatly enhancing the training efficiency of our long-context LLMs. Our findings suggest that synthetic long-context SFT data can surpass the performance of data curated by humans to some extent. LongSkywork achieves outstanding performance on a variety of long-context benchmarks. In the Needle test, a benchmark for long-context information retrieval, our models achieved perfect accuracy across multiple context spans. Moreover, in realistic application scenarios, LongSkywork-13B demonstrates performance on par with Claude2.1, the leading long-context model, underscoring the effectiveness of our proposed methods.
L-Eval: Instituting Standardized Evaluation for Long Context Language Models
Recently, there has been growing interest in extending the context length of instruction-following models in order to effectively process single-turn long input (e.g. summarizing a paper) and conversations with more extensive histories. While proprietary models such as GPT-4 and Claude have demonstrated considerable advancements in handling tens of thousands of tokens of context, open-sourced models are still in the early stages of experimentation. It also remains unclear whether developing these long context models can offer substantial gains on practical downstream tasks over retrieval-based methods or models simply trained on chunked contexts. To address this challenge, we propose to institute standardized evaluation for long context language models. Concretely, we develop L-Eval which contains 411 long documents and over 2,000 query-response pairs manually annotated and checked by the authors encompassing areas such as law, finance, school lectures, lengthy conversations, news, long-form novels, and meetings. L-Eval also adopts diverse evaluation methods and instruction styles, enabling a more reliable assessment of Long Context Language Models (LCLMs). Our findings indicate that while open-source models typically lag behind their commercial counterparts, they still exhibit impressive performance. LLaMA2 achieves the best results (win 45\% vs turbo-16k) on open-ended tasks with only 4k context length and ChatGLM2 achieves the best results on closed-ended tasks with 8k input tokens. We release our new evaluation suite, code, and all generation results including predictions from all open-sourced LCLMs, GPT4-32k, Cluade-100k at {https://github.com/OpenLMLab/LEval}.
inftyBench: Extending Long Context Evaluation Beyond 100K Tokens
Processing and reasoning over long contexts is crucial for many practical applications of Large Language Models (LLMs), such as document comprehension and agent construction. Despite recent strides in making LLMs process contexts with more than 100K tokens, there is currently a lack of a standardized benchmark to evaluate this long-context capability. Existing public benchmarks typically focus on contexts around 10K tokens, limiting the assessment and comparison of LLMs in processing longer contexts. In this paper, we propose inftyBench, the first LLM benchmark featuring an average data length surpassing 100K tokens. inftyBench comprises synthetic and realistic tasks spanning diverse domains, presented in both English and Chinese. The tasks in inftyBench are designed to require well understanding of long dependencies in contexts, and make simply retrieving a limited number of passages from contexts not sufficient for these tasks. In our experiments, based on inftyBench, we evaluate the state-of-the-art proprietary and open-source LLMs tailored for processing long contexts. The results indicate that existing long context LLMs still require significant advancements to effectively process 100K+ context. We further present three intriguing analyses regarding the behavior of LLMs processing long context.
Do Long-Range Language Models Actually Use Long-Range Context?
Language models are generally trained on short, truncated input sequences, which limits their ability to use discourse-level information present in long-range context to improve their predictions. Recent efforts to improve the efficiency of self-attention have led to a proliferation of long-range Transformer language models, which can process much longer sequences than models of the past. However, the ways in which such models take advantage of the long-range context remain unclear. In this paper, we perform a fine-grained analysis of two long-range Transformer language models (including the Routing Transformer, which achieves state-of-the-art perplexity on the PG-19 long-sequence LM benchmark dataset) that accept input sequences of up to 8K tokens. Our results reveal that providing long-range context (i.e., beyond the previous 2K tokens) to these models only improves their predictions on a small set of tokens (e.g., those that can be copied from the distant context) and does not help at all for sentence-level prediction tasks. Finally, we discover that PG-19 contains a variety of different document types and domains, and that long-range context helps most for literary novels (as opposed to textbooks or magazines).
LIFT: Improving Long Context Understanding of Large Language Models through Long Input Fine-Tuning
Long context understanding remains challenging for large language models due to their limited context windows. This paper presents Long Input Fine-Tuning (LIFT), a novel framework for long-context modeling that can improve the long-context performance of arbitrary (short-context) LLMs by dynamically adapting model parameters based on the long input. Importantly, LIFT, rather than endlessly extending the context window size to accommodate increasingly longer inputs in context, chooses to store and absorb the long input in parameter. By fine-tuning the long input into model parameters, LIFT allows short-context LLMs to answer questions even when the required information is not provided in the context during inference. Furthermore, to enhance LIFT performance while maintaining the original in-context learning (ICL) capabilities, we introduce Gated Memory, a specialized attention adapter that automatically balances long input memorization and ICL. We provide a comprehensive analysis of the strengths and limitations of LIFT on long context understanding, offering valuable directions for future research.
Reducing Distraction in Long-Context Language Models by Focused Learning
Recent advancements in Large Language Models (LLMs) have significantly enhanced their capacity to process long contexts. However, effectively utilizing this long context remains a challenge due to the issue of distraction, where irrelevant information dominates lengthy contexts, causing LLMs to lose focus on the most relevant segments. To address this, we propose a novel training method that enhances LLMs' ability to discern relevant information through a unique combination of retrieval-based data augmentation and contrastive learning. Specifically, during fine-tuning with long contexts, we employ a retriever to extract the most relevant segments, serving as augmented inputs. We then introduce an auxiliary contrastive learning objective to explicitly ensure that outputs from the original context and the retrieved sub-context are closely aligned. Extensive experiments on long single-document and multi-document QA benchmarks demonstrate the effectiveness of our proposed method.
Focused Transformer: Contrastive Training for Context Scaling
Large language models have an exceptional capability to incorporate new information in a contextual manner. However, the full potential of such an approach is often restrained due to a limitation in the effective context length. One solution to this issue is to endow an attention layer with access to an external memory, which comprises of (key, value) pairs. Yet, as the number of documents increases, the proportion of relevant keys to irrelevant ones decreases, leading the model to focus more on the irrelevant keys. We identify a significant challenge, dubbed the distraction issue, where keys linked to different semantic values might overlap, making them hard to distinguish. To tackle this problem, we introduce the Focused Transformer (FoT), a technique that employs a training process inspired by contrastive learning. This novel approach enhances the structure of the (key, value) space, enabling an extension of the context length. Our method allows for fine-tuning pre-existing, large-scale models to lengthen their effective context. This is demonstrated by our fine-tuning of 3B and 7B OpenLLaMA checkpoints. The resulting models, which we name LongLLaMA, exhibit advancements in tasks requiring a long context. We further illustrate that our LongLLaMA models adeptly manage a 256 k context length for passkey retrieval.
Thus Spake Long-Context Large Language Model
Long context is an important topic in Natural Language Processing (NLP), running through the development of NLP architectures, and offers immense opportunities for Large Language Models (LLMs) giving LLMs the lifelong learning potential akin to humans. Unfortunately, the pursuit of a long context is accompanied by numerous obstacles. Nevertheless, long context remains a core competitive advantage for LLMs. In the past two years, the context length of LLMs has achieved a breakthrough extension to millions of tokens. Moreover, the research on long-context LLMs has expanded from length extrapolation to a comprehensive focus on architecture, infrastructure, training, and evaluation technologies. Inspired by the symphonic poem, Thus Spake Zarathustra, we draw an analogy between the journey of extending the context of LLM and the attempts of humans to transcend its mortality. In this survey, We will illustrate how LLM struggles between the tremendous need for a longer context and its equal need to accept the fact that it is ultimately finite. To achieve this, we give a global picture of the lifecycle of long-context LLMs from four perspectives: architecture, infrastructure, training, and evaluation, showcasing the full spectrum of long-context technologies. At the end of this survey, we will present 10 unanswered questions currently faced by long-context LLMs. We hope this survey can serve as a systematic introduction to the research on long-context LLMs.
NeedleChain: Measuring Intact Long-Context Reasoning Capability of Large Language Models
The Needle-in-a-Haystack (NIAH) benchmark is widely used to evaluate Large Language Models' (LLMs) ability to understand long contexts (LC). It evaluates the capability to identify query-relevant context within extensive query-irrelevant passages. Although this method serves as a widely accepted standard for evaluating long-context understanding, our findings suggest it may overestimate the true LC capability of LLMs. We demonstrate that even state-of-the-art models such as GPT-4o struggle to intactly incorporate given contexts made up of solely query-relevant ten sentences. In response, we introduce a novel benchmark, NeedleChain, where the context consists entirely of query-relevant information, requiring the LLM to fully grasp the input to answer correctly. Our benchmark allows for flexible context length and reasoning order, offering a more comprehensive analysis of LLM performance. Additionally, we propose an extremely simple yet compelling strategy to improve LC understanding capability of LLM: ROPE Contraction. Our experiments with various advanced LLMs reveal a notable disparity between their ability to process large contexts and their capacity to fully understand them. Source code and datasets are available at https://github.com/hyeonseokk/NeedleChain
LIFT: Improving Long Context Understanding Through Long Input Fine-Tuning
Long context understanding remains challenging for large language models due to their limited context windows. This paper introduces Long Input Fine-Tuning (LIFT) for long context modeling, a novel framework that enhances LLM performance on long-context tasks by adapting model parameters to the context at test time. LIFT enables efficient processing of lengthy inputs without the computational burden of offline long-context adaptation, and can improve the long-context capabilities of arbitrary short-context models. The framework is further enhanced by integrating in-context learning and pre-LIFT supervised fine-tuning. The combination of in-context learning and LIFT enables short-context models like Llama 3 to handle arbitrarily long contexts and consistently improves their performance on popular long-context benchmarks like LooGLE and LongBench. We also provide a comprehensive analysis of the strengths and limitations of LIFT on long context understanding, offering valuable directions for future research.
Systematic Evaluation of Long-Context LLMs on Financial Concepts
Long-context large language models (LC LLMs) promise to increase reliability of LLMs in real-world tasks requiring processing and understanding of long input documents. However, this ability of LC LLMs to reliably utilize their growing context windows remains under investigation. In this work, we evaluate the performance of state-of-the-art GPT-4 suite of LC LLMs in solving a series of progressively challenging tasks, as a function of factors such as context length, task difficulty, and position of key information by creating a real world financial news dataset. Our findings indicate that LC LLMs exhibit brittleness at longer context lengths even for simple tasks, with performance deteriorating sharply as task complexity increases. At longer context lengths, these state-of-the-art models experience catastrophic failures in instruction following resulting in degenerate outputs. Our prompt ablations also reveal unfortunate continued sensitivity to both the placement of the task instruction in the context window as well as minor markdown formatting. Finally, we advocate for more rigorous evaluation of LC LLMs by employing holistic metrics such as F1 (rather than recall) and reporting confidence intervals, thereby ensuring robust and conclusive findings.
Beyond the Limits: A Survey of Techniques to Extend the Context Length in Large Language Models
Recently, large language models (LLMs) have shown remarkable capabilities including understanding context, engaging in logical reasoning, and generating responses. However, this is achieved at the expense of stringent computational and memory requirements, hindering their ability to effectively support long input sequences. This survey provides an inclusive review of the recent techniques and methods devised to extend the sequence length in LLMs, thereby enhancing their capacity for long-context understanding. In particular, we review and categorize a wide range of techniques including architectural modifications, such as modified positional encoding and altered attention mechanisms, which are designed to enhance the processing of longer sequences while avoiding a proportional increase in computational requirements. The diverse methodologies investigated in this study can be leveraged across different phases of LLMs, i.e., training, fine-tuning and inference. This enables LLMs to efficiently process extended sequences. The limitations of the current methodologies is discussed in the last section along with the suggestions for future research directions, underscoring the importance of sequence length in the continued advancement of LLMs.
Data Engineering for Scaling Language Models to 128K Context
We study the continual pretraining recipe for scaling language models' context lengths to 128K, with a focus on data engineering. We hypothesize that long context modeling, in particular the ability to utilize information at arbitrary input locations, is a capability that is mostly already acquired through large-scale pretraining, and that this capability can be readily extended to contexts substantially longer than seen during training~(e.g., 4K to 128K) through lightweight continual pretraining on appropriate data mixture. We investigate the quantity and quality of the data for continual pretraining: (1) for quantity, we show that 500 million to 5 billion tokens are enough to enable the model to retrieve information anywhere within the 128K context; (2) for quality, our results equally emphasize domain balance and length upsampling. Concretely, we find that naively upsampling longer data on certain domains like books, a common practice of existing work, gives suboptimal performance, and that a balanced domain mixture is important. We demonstrate that continual pretraining of the full model on 1B-5B tokens of such data is an effective and affordable strategy for scaling the context length of language models to 128K. Our recipe outperforms strong open-source long-context models and closes the gap to frontier models like GPT-4 128K.
Selecting Influential Samples for Long Context Alignment via Homologous Models' Guidance and Contextual Awareness Measurement
The expansion of large language models to effectively handle instructions with extremely long contexts has yet to be fully investigated. The primary obstacle lies in constructing a high-quality long instruction-following dataset devised for long context alignment. Existing studies have attempted to scale up the available data volume by synthesizing long instruction-following samples. However, indiscriminately increasing the quantity of data without a well-defined strategy for ensuring data quality may introduce low-quality samples and restrict the final performance. To bridge this gap, we aim to address the unique challenge of long-context alignment, i.e., modeling the long-range dependencies for handling instructions and lengthy input contexts. We propose GATEAU, a novel framework designed to identify the influential and high-quality samples enriched with long-range dependency relations by utilizing crafted Homologous Models' Guidance (HMG) and Contextual Awareness Measurement (CAM). Specifically, HMG attempts to measure the difficulty of generating corresponding responses due to the long-range dependencies, using the perplexity scores of the response from two homologous models with different context windows. Also, the role of CAM is to measure the difficulty of understanding the long input contexts due to long-range dependencies by evaluating whether the model's attention is focused on important segments. Built upon both proposed methods, we select the most challenging samples as the influential data to effectively frame the long-range dependencies, thereby achieving better performance of LLMs. Comprehensive experiments indicate that GATEAU effectively identifies samples enriched with long-range dependency relations and the model trained on these selected samples exhibits better instruction-following and long-context understanding capabilities.
M4LE: A Multi-Ability Multi-Range Multi-Task Multi-Domain Long-Context Evaluation Benchmark for Large Language Models
Managing long sequences has become an important and necessary feature for large language models (LLMs). However, it is still an open question of how to comprehensively and systematically evaluate the long-sequence capability of LLMs. One of the reasons is that conventional and widely-used benchmarks mainly consist of short sequences. In this paper, we propose M4LE, a Multi-ability, Multi-range, Multi-task, Multi-domain benchmark for Long-context Evaluation. M4LE is based on a diverse NLP task pool comprising 36 NLP datasets, 11 task types and 12 domains. To alleviate the scarcity of tasks with naturally long sequences and incorporate multiple-ability assessment, we propose an automatic approach (but with negligible human annotations) to convert short-sequence tasks into a unified long-sequence scenario where LLMs have to identify single or multiple relevant spans in long contexts based on explicit or semantic hints. Specifically, the scenario includes five different types of abilities: (1) explicit single-span; (2) semantic single-span; (3) explicit multiple-span; (4) semantic multiple-span; and (5) global context understanding. The resulting samples in M4LE are evenly distributed from 1k to 8k input length. We conducted a systematic evaluation on 11 well-established LLMs, especially those optimized for long-sequence inputs. Our results reveal that: 1) Current LLMs struggle to understand long context, particularly when tasks require multiple-span attention. 2) Semantic retrieval task is more difficult for competent LLMs. 3) Models fine-tuned on longer text with position interpolation have comparable performance to those using Neural Tangent Kernel (NTK) aware scaling methods without fine-tuning. We make our benchmark publicly available to encourage future research in this challenging area.
The What, Why, and How of Context Length Extension Techniques in Large Language Models -- A Detailed Survey
The advent of Large Language Models (LLMs) represents a notable breakthrough in Natural Language Processing (NLP), contributing to substantial progress in both text comprehension and generation. However, amidst these advancements, it is noteworthy that LLMs often face a limitation in terms of context length extrapolation. Understanding and extending the context length for LLMs is crucial in enhancing their performance across various NLP applications. In this survey paper, we delve into the multifaceted aspects of exploring why it is essential, and the potential transformations that superior techniques could bring to NLP applications. We study the inherent challenges associated with extending context length and present an organized overview of the existing strategies employed by researchers. Additionally, we discuss the intricacies of evaluating context extension techniques and highlight the open challenges that researchers face in this domain. Furthermore, we explore whether there is a consensus within the research community regarding evaluation standards and identify areas where further agreement is needed. This comprehensive survey aims to serve as a valuable resource for researchers, guiding them through the nuances of context length extension techniques and fostering discussions on future advancements in this evolving field.
A Comprehensive Survey on Long Context Language Modeling
Efficient processing of long contexts has been a persistent pursuit in Natural Language Processing. With the growing number of long documents, dialogues, and other textual data, it is important to develop Long Context Language Models (LCLMs) that can process and analyze extensive inputs in an effective and efficient way. In this paper, we present a comprehensive survey on recent advances in long-context modeling for large language models. Our survey is structured around three key aspects: how to obtain effective and efficient LCLMs, how to train and deploy LCLMs efficiently, and how to evaluate and analyze LCLMs comprehensively. For the first aspect, we discuss data strategies, architectural designs, and workflow approaches oriented with long context processing. For the second aspect, we provide a detailed examination of the infrastructure required for LCLM training and inference. For the third aspect, we present evaluation paradigms for long-context comprehension and long-form generation, as well as behavioral analysis and mechanism interpretability of LCLMs. Beyond these three key aspects, we thoroughly explore the diverse application scenarios where existing LCLMs have been deployed and outline promising future development directions. This survey provides an up-to-date review of the literature on long-context LLMs, which we wish to serve as a valuable resource for both researchers and engineers. An associated GitHub repository collecting the latest papers and repos is available at: https://github.com/LCLM-Horizon/A-Comprehensive-Survey-For-Long-Context-Language-Modeling{\color[RGB]{175,36,67}{LCLM-Horizon}}.
Characterizing Prompt Compression Methods for Long Context Inference
Long context inference presents challenges at the system level with increased compute and memory requirements, as well as from an accuracy perspective in being able to reason over long contexts. Recently, several methods have been proposed to compress the prompt to reduce the context length. However, there has been little work on comparing the different proposed methods across different tasks through a standardized analysis. This has led to conflicting results. To address this, here we perform a comprehensive characterization and evaluation of different prompt compression methods. In particular, we analyze extractive compression, summarization-based abstractive compression, and token pruning methods. Surprisingly, we find that extractive compression often outperforms all the other approaches, and enables up to 10x compression with minimal accuracy degradation. Interestingly, we also find that despite several recent claims, token pruning methods often lag behind extractive compression. We only found marginal improvements on summarization tasks.
Hyper-multi-step: The Truth Behind Difficult Long-context Tasks
Long-context language models (LCLM), characterized by their extensive context window, is becoming increasingly popular. Meanwhile, many long-context benchmarks present challenging tasks that even the most advanced LCLMs struggle to complete. However, the underlying sources of various challenging long-context tasks have seldom been studied. To bridge this gap, we conduct experiments to indicate their difficulty stems primarily from two basic issues: "multi-matching retrieval," which requires the simultaneous retrieval of multiple items, and "logic-based retrieval," which necessitates logical judgment within retrieval criteria. These two problems, while seemingly straightforward, actually exceed the capabilities of LCLMs because they are proven to be hyper-multi-step (demanding numerous steps to solve) in nature. This finding could explain why LLMs struggle with more advanced long-context tasks, providing a more accurate perspective for rethinking solutions for them.
Advancing Transformer Architecture in Long-Context Large Language Models: A Comprehensive Survey
With the bomb ignited by ChatGPT, Transformer-based Large Language Models (LLMs) have paved a revolutionary path toward Artificial General Intelligence (AGI) and have been applied in diverse areas as knowledge bases, human interfaces, and dynamic agents. However, a prevailing limitation exists: many current LLMs, constrained by resources, are primarily pre-trained on shorter texts, rendering them less effective for longer-context prompts, commonly encountered in real-world settings. In this paper, we present a comprehensive survey focusing on the advancement of model architecture in Transformer-based LLMs to optimize long-context capabilities across all stages from pre-training to inference. We firstly delineate and analyze the problems of handling long-context input and output with the current Transformer-based models. Then, we mainly offer a holistic taxonomy to navigate the landscape of Transformer upgrades on architecture to solve these problems. Afterward, we provide the investigation on wildly used evaluation necessities tailored for long-context LLMs, including datasets, metrics, and baseline models, as well as some amazing optimization toolkits like libraries, systems, and compilers to augment LLMs' efficiency and efficacy across different stages. Finally, we further discuss the predominant challenges and potential avenues for future research in this domain. Additionally, we have established a repository where we curate relevant literature with real-time updates at https://github.com/Strivin0311/long-llms-learning.
Finch: Prompt-guided Key-Value Cache Compression
Recent large language model applications, such as Retrieval-Augmented Generation and chatbots, have led to an increased need to process longer input contexts. However, this requirement is hampered by inherent limitations. Architecturally, models are constrained by a context window defined during training. Additionally, processing extensive texts requires substantial GPU memory. We propose a novel approach, Finch, to compress the input context by leveraging the pre-trained model weights of the self-attention. Given a prompt and a long text, Finch iteratively identifies the most relevant Key (K) and Value (V) pairs over chunks of the text conditioned on the prompt. Only such pairs are stored in the KV cache, which, within the space constrained by the context window, ultimately contains a compressed version of the long text. Our proposal enables models to consume large inputs even with high compression (up to 93x) while preserving semantic integrity without the need for fine-tuning.
LongRoPE: Extending LLM Context Window Beyond 2 Million Tokens
Large context window is a desirable feature in large language models (LLMs). However, due to high fine-tuning costs, scarcity of long texts, and catastrophic values introduced by new token positions, current extended context windows are limited to around 128k tokens. This paper introduces LongRoPE that, for the first time, extends the context window of pre-trained LLMs to an impressive 2048k tokens, with up to only 1k fine-tuning steps at within 256k training lengths, while maintaining performance at the original short context window. This is achieved by three key innovations: (i) we identify and exploit two forms of non-uniformities in positional interpolation through an efficient search, providing a better initialization for fine-tuning and enabling an 8x extension in non-fine-tuning scenarios; (ii) we introduce a progressive extension strategy that first fine-tunes a 256k length LLM and then conducts a second positional interpolation on the fine-tuned extended LLM to achieve a 2048k context window; (iii) we readjust LongRoPE on 8k length to recover the short context window performance. Extensive experiments on LLaMA2 and Mistral across various tasks demonstrate the effectiveness of our method. Models extended via LongRoPE retain the original architecture with minor modifications to the positional embedding, and can reuse most pre-existing optimizations.
LLM Maybe LongLM: Self-Extend LLM Context Window Without Tuning
This work elicits LLMs' inherent ability to handle long contexts without fine-tuning. The limited length of the training sequence during training may limit the application of Large Language Models (LLMs) on long input sequences for inference. In this work, we argue that existing LLMs themselves have inherent capabilities for handling long contexts. Based on this argument, we suggest extending LLMs' context window by themselves to fully utilize the inherent ability.We propose Self-Extend to stimulate LLMs' long context handling potential. The basic idea is to construct bi-level attention information: the group level and the neighbor level. The two levels are computed by the original model's self-attention, which means the proposed does not require any training. With only four lines of code modification, the proposed method can effortlessly extend existing LLMs' context window without any fine-tuning. We conduct comprehensive experiments and the results show that the proposed method can effectively extend existing LLMs' context window's length.
LongPO: Long Context Self-Evolution of Large Language Models through Short-to-Long Preference Optimization
Large Language Models (LLMs) have demonstrated remarkable capabilities through pretraining and alignment. However, superior short-context LLMs may underperform in long-context scenarios due to insufficient long-context alignment. This alignment process remains challenging due to the impracticality of human annotation for extended contexts and the difficulty in balancing short- and long-context performance. To address these challenges, we introduce LongPO, that enables short-context LLMs to self-evolve to excel on long-context tasks by internally transferring short-context capabilities. LongPO harnesses LLMs to learn from self-generated short-to-long preference data, comprising paired responses generated for identical instructions with long-context inputs and their compressed short-context counterparts, respectively. This preference reveals capabilities and potentials of LLMs cultivated during short-context alignment that may be diminished in under-aligned long-context scenarios. Additionally, LongPO incorporates a short-to-long KL constraint to mitigate short-context performance decline during long-context alignment. When applied to Mistral-7B-Instruct-v0.2 from 128K to 512K context lengths, LongPO fully retains short-context performance and largely outperforms naive SFT and DPO in both long- and short-context tasks. Specifically, \ourMethod-trained models can achieve results on long-context benchmarks comparable to, or even surpassing, those of superior LLMs (e.g., GPT-4-128K) that involve extensive long-context annotation and larger parameter scales.
LongBench: A Bilingual, Multitask Benchmark for Long Context Understanding
Although large language models (LLMs) demonstrate impressive performance for many language tasks, most of them can only handle texts a few thousand tokens long, limiting their applications on longer sequence inputs, such as books, reports, and codebases. Recent works have proposed methods to improve LLMs' long context capabilities by extending context windows and more sophisticated memory mechanisms. However, comprehensive benchmarks tailored for evaluating long context understanding are lacking. In this paper, we introduce LongBench, the first bilingual, multi-task benchmark for long context understanding, enabling a more rigorous evaluation of long context understanding. LongBench comprises 21 datasets across 6 task categories in both English and Chinese, with an average length of 6,711 words (English) and 13,386 characters (Chinese). These tasks cover key long-text application areas including single-doc QA, multi-doc QA, summarization, few-shot learning, synthetic tasks, and code completion. All datasets in LongBench are standardized into a unified format, allowing for effortless automatic evaluation of LLMs. Upon comprehensive evaluation of 8 LLMs on LongBench, we find that: (1) Commercial model (GPT-3.5-Turbo-16k) outperforms other open-sourced models, but still struggles on longer contexts. (2) Scaled position embedding and fine-tuning on longer sequences lead to substantial improvement on long context understanding. (3) Context compression technique such as retrieval brings improvement for model with weak ability on long contexts, but the performance still lags behind models that have strong long context understanding capability. The code and datasets are available at https://github.com/THUDM/LongBench.
LCIRC: A Recurrent Compression Approach for Efficient Long-form Context and Query Dependent Modeling in LLMs
While large language models (LLMs) excel in generating coherent and contextually rich outputs, their capacity to efficiently handle long-form contexts is limited by fixed-length position embeddings. Additionally, the computational cost of processing long sequences increases quadratically, making it challenging to extend context length. To address these challenges, we propose Long-form Context Injection with Recurrent Compression (LCIRC), a method that enables the efficient processing long-form sequences beyond the model's length limit through recurrent compression without retraining the entire model. We further introduce query dependent context modeling, which selectively compresses query-relevant information, ensuring that the model retains the most pertinent content. Our empirical results demonstrate that Query Dependent LCIRC (QD-LCIRC) significantly improves LLM's ability to manage extended contexts, making it well-suited for tasks that require both comprehensive context understanding and query relevance.
LongGenBench: Long-context Generation Benchmark
Current long-context benchmarks primarily focus on retrieval-based tests, requiring Large Language Models (LLMs) to locate specific information within extensive input contexts, such as the needle-in-a-haystack (NIAH) benchmark. Long-context generation refers to the ability of a language model to generate coherent and contextually accurate text that spans across lengthy passages or documents. While recent studies show strong performance on NIAH and other retrieval-based long-context benchmarks, there is a significant lack of benchmarks for evaluating long-context generation capabilities. To bridge this gap and offer a comprehensive assessment, we introduce a synthetic benchmark, LongGenBench, which allows for flexible configurations of customized generation context lengths. LongGenBench advances beyond traditional benchmarks by redesigning the format of questions and necessitating that LLMs respond with a single, cohesive long-context answer. Upon extensive evaluation using LongGenBench, we observe that: (1) both API accessed and open source models exhibit performance degradation in long-context generation scenarios, ranging from 1.2% to 47.1%; (2) different series of LLMs exhibit varying trends of performance degradation, with the Gemini-1.5-Flash model showing the least degradation among API accessed models, and the Qwen2 series exhibiting the least degradation in LongGenBench among open source models.
Long-context LLMs Struggle with Long In-context Learning
Large Language Models (LLMs) have made significant strides in handling long sequences exceeding 32K tokens. However, their performance evaluation has largely been confined to metrics like perplexity and synthetic tasks, which may not fully capture their abilities in more nuanced, real-world scenarios. This study introduces a specialized benchmark (LIConBench) focusing on long in-context learning within the realm of extreme-label classification. We meticulously selected six datasets with a label range spanning 28 to 174 classes covering different input (few-shot demonstration) length from 2K to 50K. Our benchmark requires LLMs to comprehend the entire input to recognize the massive label spaces to make correct prediction. We evaluate 13 long-context LLMs on our benchmarks. We find that the long-context LLMs perform relatively well under the token length of 20K and the performance benefits from utilizing the long context window. However, after the context window exceeds 20K, most LLMs except GPT-4 will dip dramatically. This suggests a notable gap in current LLM capabilities for processing and understanding long, context-rich sequences. Further analysis revealed a tendency among models to favor predictions for labels presented towards the end at the sequence. Their ability to reason over multiple pieces in the long sequence is yet to be improved. Our study reveals that long context understanding and reasoning is still a challenging task for the existing LLMs. We believe LIConBench could serve as a more realistic evaluation for the future long context LLMs.
How to Train Long-Context Language Models (Effectively)
We study continued training and supervised fine-tuning (SFT) of a language model (LM) to make effective use of long-context information. We first establish a reliable evaluation protocol to guide model development -- Instead of perplexity or simple needle-in-a-haystack (NIAH) tests, we use a broad set of long-context tasks, and we evaluate models after SFT with instruction data as this better reveals long-context abilities. Supported by our robust evaluations, we run thorough experiments to decide the data mix for continued pre-training, the instruction tuning dataset, and many other design choices. We find that (1) code repositories and books are excellent sources of long data, but it is crucial to combine them with high-quality short data; (2) training with a sequence length beyond the evaluation length boosts long-context performance; (3) for SFT, using only short instruction datasets yields strong performance on long-context tasks. Our final model, ProLong-8B, which is initialized from Llama-3 and trained on 40B tokens, demonstrates state-of-the-art long-context performance among similarly sized models at a length of 128K. ProLong outperforms Llama-3.18B-Instruct on the majority of long-context tasks despite having seen only 5% as many tokens during long-context training. Additionally, ProLong can effectively process up to 512K tokens, one of the longest context windows of publicly available LMs.
Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA
Long-context modeling capabilities have garnered widespread attention, leading to the emergence of Large Language Models (LLMs) with ultra-context windows. Meanwhile, benchmarks for evaluating long-context LLMs are gradually catching up. However, existing benchmarks employ irrelevant noise texts to artificially extend the length of test cases, diverging from the real-world scenarios of long-context applications. To bridge this gap, we propose a novel long-context benchmark, Loong, aligning with realistic scenarios through extended multi-document question answering (QA). Unlike typical document QA, in Loong's test cases, each document is relevant to the final answer, ignoring any document will lead to the failure of the answer. Furthermore, Loong introduces four types of tasks with a range of context lengths: Spotlight Locating, Comparison, Clustering, and Chain of Reasoning, to facilitate a more realistic and comprehensive evaluation of long-context understanding. Extensive experiments indicate that existing long-context language models still exhibit considerable potential for enhancement. Retrieval augmented generation (RAG) achieves poor performance, demonstrating that Loong can reliably assess the model's long-context modeling capabilities.
Equipping Transformer with Random-Access Reading for Long-Context Understanding
Long-context modeling presents a significant challenge for transformer-based large language models (LLMs) due to the quadratic complexity of the self-attention mechanism and issues with length extrapolation caused by pretraining exclusively on short inputs. Existing methods address computational complexity through techniques such as text chunking, the kernel approach, and structured attention, and tackle length extrapolation problems through positional encoding, continued pretraining, and data engineering. These approaches typically require sequential access to the document, necessitating reading from the first to the last token. We contend that for goal-oriented reading of long documents, such sequential access is not necessary, and a proficiently trained model can learn to omit hundreds of less pertinent tokens. Inspired by human reading behaviors and existing empirical observations, we propose random access, a novel reading strategy that enables transformers to efficiently process long documents without examining every token. Experimental results from pretraining, fine-tuning, and inference phases validate the efficacy of our method.
LongMagpie: A Self-synthesis Method for Generating Large-scale Long-context Instructions
High-quality long-context instruction data is essential for aligning long-context large language models (LLMs). Despite the public release of models like Qwen and Llama, their long-context instruction data remains proprietary. Human annotation is costly and challenging, while template-based synthesis methods limit scale, diversity, and quality. We introduce LongMagpie, a self-synthesis framework that automatically generates large-scale long-context instruction data. Our key insight is that aligned long-context LLMs, when presented with a document followed by special tokens preceding a user turn, auto-regressively generate contextually relevant queries. By harvesting these document-query pairs and the model's responses, LongMagpie produces high-quality instructions without human effort. Experiments on HELMET, RULER, and Longbench v2 demonstrate that LongMagpie achieves leading performance on long-context tasks while maintaining competitive performance on short-context tasks, establishing it as a simple and effective approach for open, diverse, and scalable long-context instruction data synthesis.
Rope to Nope and Back Again: A New Hybrid Attention Strategy
Long-context large language models (LLMs) have achieved remarkable advancements, driven by techniques like Rotary Position Embedding (RoPE) (Su et al., 2023) and its extensions (Chen et al., 2023; Liu et al., 2024c; Peng et al., 2023). By adjusting RoPE parameters and incorporating training data with extended contexts, we can train performant models with considerably longer input sequences. However, existing RoPE-based methods exhibit performance limitations when applied to extended context lengths. This paper presents a comprehensive analysis of various attention mechanisms, including RoPE, No Positional Embedding (NoPE), and Query-Key Normalization (QK-Norm), identifying their strengths and shortcomings in long-context modeling. Our investigation identifies distinctive attention patterns in these methods and highlights their impact on long-context performance, providing valuable insights for architectural design. Building on these findings, we propose a novel architectural based on a hybrid attention mechanism that not only surpasses conventional RoPE-based transformer models in long context tasks but also achieves competitive performance on benchmarks requiring shorter context lengths.
Can Few-shot Work in Long-Context? Recycling the Context to Generate Demonstrations
Despite recent advancements in Large Language Models (LLMs), their performance on tasks involving long contexts remains sub-optimal. In-Context Learning (ICL) with few-shot examples may be an appealing solution to enhance LLM performance in this scenario; However, naively adding ICL examples with long context introduces challenges, including substantial token overhead added for each few-shot example and context mismatch between the demonstrations and the target query. In this work, we propose to automatically generate few-shot examples for long context QA tasks by recycling contexts. Specifically, given a long input context (1-3k tokens) and a query, we generate additional query-output pairs from the given context as few-shot examples, while introducing the context only once. This ensures that the demonstrations are leveraging the same context as the target query while only adding a small number of tokens to the prompt. We further enhance each demonstration by instructing the model to explicitly identify the relevant paragraphs before the answer, which improves performance while providing fine-grained attribution to the answer source. We apply our method on multiple LLMs and obtain substantial improvements (+23\% on average across models) on various QA datasets with long context, especially when the answer lies within the middle of the context. Surprisingly, despite introducing only single-hop ICL examples, LLMs also successfully generalize to multi-hop long-context QA using our approach.
From 128K to 4M: Efficient Training of Ultra-Long Context Large Language Models
Long-context capabilities are essential for a wide range of applications, including document and video understanding, in-context learning, and inference-time scaling, all of which require models to process and reason over long sequences of text and multimodal data. In this work, we introduce a efficient training recipe for building ultra-long context LLMs from aligned instruct model, pushing the boundaries of context lengths from 128K to 1M, 2M, and 4M tokens. Our approach leverages efficient continued pretraining strategies to extend the context window and employs effective instruction tuning to maintain the instruction-following and reasoning abilities. Our UltraLong-8B, built on Llama3.1-Instruct with our recipe, achieves state-of-the-art performance across a diverse set of long-context benchmarks. Importantly, models trained with our approach maintain competitive performance on standard benchmarks, demonstrating balanced improvements for both long and short context tasks. We further provide an in-depth analysis of key design choices, highlighting the impacts of scaling strategies and data composition. Our findings establish a robust framework for efficiently scaling context lengths while preserving general model capabilities. We release all model weights at: https://ultralong.github.io/.
LongIns: A Challenging Long-context Instruction-based Exam for LLMs
The long-context capabilities of large language models (LLMs) have been a hot topic in recent years. To evaluate the performance of LLMs in different scenarios, various assessment benchmarks have emerged. However, as most of these benchmarks focus on identifying key information to answer questions, which mainly requires the retrieval ability of LLMs, these benchmarks can partially represent the reasoning performance of LLMs from large amounts of information. Meanwhile, although LLMs often claim to have context windows of 32k, 128k, 200k, or even longer, these benchmarks fail to reveal the actual supported length of these LLMs. To address these issues, we propose the LongIns benchmark dataset, a challenging long-context instruction-based exam for LLMs, which is built based on the existing instruction datasets. Specifically, in our LongIns, we introduce three evaluation settings: Global Instruction & Single Task (GIST), Local Instruction & Single Task (LIST), and Local Instruction & Multiple Tasks (LIMT). Based on LongIns, we perform comprehensive evaluations on existing LLMs and have the following important findings: (1). The top-performing GPT-4 with 128k context length performs poorly on the evaluation context window of 16k in our LongIns. (2). For the multi-hop reasoning ability of many existing LLMs, significant efforts are still needed under short context windows (less than 4k).
Benchmarking and Building Long-Context Retrieval Models with LoCo and M2-BERT
Retrieval pipelines-an integral component of many machine learning systems-perform poorly in domains where documents are long (e.g., 10K tokens or more) and where identifying the relevant document requires synthesizing information across the entire text. Developing long-context retrieval encoders suitable for these domains raises three challenges: (1) how to evaluate long-context retrieval performance, (2) how to pretrain a base language model to represent both short contexts (corresponding to queries) and long contexts (corresponding to documents), and (3) how to fine-tune this model for retrieval under the batch size limitations imposed by GPU memory constraints. To address these challenges, we first introduce LoCoV1, a novel 12 task benchmark constructed to measure long-context retrieval where chunking is not possible or not effective. We next present the M2-BERT retrieval encoder, an 80M parameter state-space encoder model built from the Monarch Mixer architecture, capable of scaling to documents up to 32K tokens long. We describe a pretraining data mixture which allows this encoder to process both short and long context sequences, and a finetuning approach that adapts this base model to retrieval with only single-sample batches. Finally, we validate the M2-BERT retrieval encoder on LoCoV1, finding that it outperforms competitive Transformer-based models by at least 23.3 points, despite containing upwards of 90x fewer parameters.
Effective Long-Context Scaling of Foundation Models
We present a series of long-context LLMs that support effective context windows of up to 32,768 tokens. Our model series are built through continual pretraining from Llama 2 with longer training sequences and on a dataset where long texts are upsampled. We perform extensive evaluation on language modeling, synthetic context probing tasks, and a wide range of research benchmarks. On research benchmarks, our models achieve consistent improvements on most regular tasks and significant improvements on long-context tasks over Llama 2. Notably, with a cost-effective instruction tuning procedure that does not require human-annotated long instruction data, the 70B variant can already surpass gpt-3.5-turbo-16k's overall performance on a suite of long-context tasks. Alongside these results, we provide an in-depth analysis on the individual components of our method. We delve into Llama's position encodings and discuss its limitation in modeling long dependencies. We also examine the impact of various design choices in the pretraining process, including the data mix and the training curriculum of sequence lengths -- our ablation experiments suggest that having abundant long texts in the pretrain dataset is not the key to achieving strong performance, and we empirically verify that long context continual pretraining is more efficient and similarly effective compared to pretraining from scratch with long sequences.
Giraffe: Adventures in Expanding Context Lengths in LLMs
Modern large language models (LLMs) that rely on attention mechanisms are typically trained with fixed context lengths which enforce upper limits on the length of input sequences that they can handle at evaluation time. To use these models on sequences longer than the train-time context length, one might employ techniques from the growing family of context length extrapolation methods -- most of which focus on modifying the system of positional encodings used in the attention mechanism to indicate where tokens or activations are located in the input sequence. We conduct a wide survey of existing methods of context length extrapolation on a base LLaMA or LLaMA 2 model, and introduce some of our own design as well -- in particular, a new truncation strategy for modifying the basis for the position encoding. We test these methods using three new evaluation tasks (FreeFormQA, AlteredNumericQA, and LongChat-Lines) as well as perplexity, which we find to be less fine-grained as a measure of long context performance of LLMs. We release the three tasks publicly as datasets on HuggingFace. We discover that linear scaling is the best method for extending context length, and show that further gains can be achieved by using longer scales at evaluation time. We also discover promising extrapolation capabilities in the truncated basis. To support further research in this area, we release three new 13B parameter long-context models which we call Giraffe: 4k and 16k context models trained from base LLaMA-13B, and a 32k context model trained from base LLaMA2-13B. We also release the code to replicate our results.
NeedleBench: Can LLMs Do Retrieval and Reasoning in 1 Million Context Window?
In evaluating the long-context capabilities of large language models (LLMs), identifying content relevant to a user's query from original long documents is a crucial prerequisite for any LLM to answer questions based on long text. We present NeedleBench, a framework consisting of a series of progressively more challenging tasks for assessing bilingual long-context capabilities, spanning multiple length intervals (4k, 8k, 32k, 128k, 200k, 1000k, and beyond) and different depth ranges, allowing the strategic insertion of critical data points in different text depth zones to rigorously test the retrieval and reasoning capabilities of models in diverse contexts. We use the NeedleBench framework to assess how well the leading open-source models can identify key information relevant to the question and apply that information to reasoning in bilingual long texts. Furthermore, we propose the Ancestral Trace Challenge (ATC) to mimic the complexity of logical reasoning challenges that are likely to be present in real-world long-context tasks, providing a simple method for evaluating LLMs in dealing with complex long-context situations. Our results suggest that current LLMs have significant room for improvement in practical long-context applications, as they struggle with the complexity of logical reasoning challenges that are likely to be present in real-world long-context tasks. All codes and resources are available at OpenCompass: https://github.com/open-compass/opencompass.
LongReason: A Synthetic Long-Context Reasoning Benchmark via Context Expansion
Large language models (LLMs) have demonstrated remarkable progress in understanding long-context inputs. However, benchmarks for evaluating the long-context reasoning abilities of LLMs fall behind the pace. Existing benchmarks often focus on a narrow range of tasks or those that do not demand complex reasoning. To address this gap and enable a more comprehensive evaluation of the long-context reasoning capabilities of current LLMs, we propose a new synthetic benchmark, LongReason, which is constructed by synthesizing long-context reasoning questions from a varied set of short-context reasoning questions through context expansion. LongReason consists of 794 multiple-choice reasoning questions with diverse reasoning patterns across three task categories: reading comprehension, logical inference, and mathematical word problems. We evaluate 21 LLMs on LongReason, revealing that most models experience significant performance drops as context length increases. Our further analysis shows that even state-of-the-art LLMs still have significant room for improvement in providing robust reasoning across different tasks. We will open-source LongReason to support the comprehensive evaluation of LLMs' long-context reasoning capabilities.
Chain of Agents: Large Language Models Collaborating on Long-Context Tasks
Addressing the challenge of effectively processing long contexts has become a critical issue for Large Language Models (LLMs). Two common strategies have emerged: 1) reducing the input length, such as retrieving relevant chunks by Retrieval-Augmented Generation (RAG), and 2) expanding the context window limit of LLMs. However, both strategies have drawbacks: input reduction has no guarantee of covering the part with needed information, while window extension struggles with focusing on the pertinent information for solving the task. To mitigate these limitations, we propose Chain-of-Agents (CoA), a novel framework that harnesses multi-agent collaboration through natural language to enable information aggregation and context reasoning across various LLMs over long-context tasks. CoA consists of multiple worker agents who sequentially communicate to handle different segmented portions of the text, followed by a manager agent who synthesizes these contributions into a coherent final output. CoA processes the entire input by interleaving reading and reasoning, and it mitigates long context focus issues by assigning each agent a short context. We perform comprehensive evaluation of CoA on a wide range of long-context tasks in question answering, summarization, and code completion, demonstrating significant improvements by up to 10% over strong baselines of RAG, Full-Context, and multi-agent LLMs.
Evaluating Language Model Context Windows: A "Working Memory" Test and Inference-time Correction
Large language models are prominently used in real-world applications, often tasked with reasoning over large volumes of documents. An exciting development in this space is models boasting extended context capabilities, with some accommodating over 2 million tokens. Such long context model capabilities remain uncertain in production systems, motivating the need to benchmark their performance on real world use cases. We address this challenge by proposing SWiM, an evaluation framework that addresses the limitations of standard tests. Testing the framework on eight long context models, we find that even strong models such as GPT-4 and Claude 3 Opus degrade in performance when information is present in the middle of the context window (lost-in-the-middle effect). Next, in addition to our benchmark, we propose medoid voting, a simple, but effective training-free approach that helps alleviate this effect, by generating responses a few times, each time randomly permuting documents in the context, and selecting the medoid answer. We evaluate medoid voting on single document QA tasks, achieving up to a 24% lift in accuracy.
Overflow Prevention Enhances Long-Context Recurrent LLMs
A recent trend in LLMs is developing recurrent sub-quadratic models that improve long-context processing efficiency. We investigate leading large long-context models, focusing on how their fixed-size recurrent memory affects their performance. Our experiments reveal that, even when these models are trained for extended contexts, their use of long contexts remains underutilized. Specifically, we demonstrate that a chunk-based inference procedure, which identifies and processes only the most relevant portion of the input can mitigate recurrent memory failures and be effective for many long-context tasks: On LongBench, our method improves the overall performance of Falcon3-Mamba-Inst-7B by 14%, Falcon-Mamba-Inst-7B by 28%, RecurrentGemma-IT-9B by 50%, and RWKV6-Finch-7B by 51%. Surprisingly, this simple approach also leads to state-of-the-art results in the challenging LongBench v2 benchmark, showing competitive performance with equivalent size Transformers. Furthermore, our findings raise questions about whether recurrent models genuinely exploit long-range dependencies, as our single-chunk strategy delivers stronger performance - even in tasks that presumably require cross-context relations.
LooGLE: Can Long-Context Language Models Understand Long Contexts?
Large language models (LLMs), despite their impressive performance in various language tasks, are typically limited to processing texts within context-window size. This limitation has spurred significant research efforts to enhance LLMs' long-context understanding with high-quality long-sequence benchmarks. However, prior datasets in this regard suffer from shortcomings, such as short context length compared to the context window of modern LLMs; outdated documents that have data leakage problems; and an emphasis on short dependency tasks rather than long dependency tasks. In this paper, we present LooGLE, a Long Context Generic Language Evaluation benchmark for LLMs' long context understanding. LooGLE features relatively new documents post-2022, with over 24,000 tokens per document and 6,000 newly generated questions spanning diverse domains. Human annotators meticulously crafted more than 1,100 high-quality question-answer pairs to meet the long dependency requirements. These pairs underwent thorough cross-validation, yielding the most precise assessment of LLMs' long dependency capabilities. The evaluation of eight state-of-the-art LLMs on LooGLE revealed key findings: (i) commercial models outperformed open-sourced models; (ii) LLMs excelled in short dependency tasks like short question-answering and cloze tasks but struggled with more intricate long dependency tasks; (iii) in-context learning and chaining thoughts offered only marginal improvements; (iv) retrieval-based techniques demonstrated substantial benefits for short question-answering, while strategies for extending context window length had limited impact on long context understanding. As such, LooGLE not only provides a systematic and comprehensive evaluation schema on long-context LLMs, but also sheds light on future development of enhanced models towards "true long-context understanding".
Walking Down the Memory Maze: Beyond Context Limit through Interactive Reading
Large language models (LLMs) have advanced in large strides due to the effectiveness of the self-attention mechanism that processes and compares all tokens at once. However, this mechanism comes with a fundamental issue -- the predetermined context window is bound to be limited. Despite attempts to extend the context window through methods like extrapolating the positional embedding, using recurrence, or selectively retrieving essential parts of the long sequence, long-text understanding continues to be a challenge. We propose an alternative approach which instead treats the LLM as an interactive agent, allowing it to decide how to read the text via iterative prompting. We introduce MemWalker, a method that first processes the long context into a tree of summary nodes. Upon receiving a query, the model navigates this tree in search of relevant information, and responds once it gathers sufficient information. On long-text question answering tasks our method outperforms baseline approaches that use long context windows, recurrence, and retrieval. We show that, beyond effective reading, MemWalker enhances explainability by highlighting the reasoning steps as it interactively reads the text; pinpointing the relevant text segments related to the query.
NExtLong: Toward Effective Long-Context Training without Long Documents
Large language models (LLMs) with extended context windows have made significant strides yet remain a challenge due to the scarcity of long documents. Existing methods tend to synthesize long-context data but lack a clear mechanism to reinforce the long-range dependency modeling. To address this limitation, we propose NExtLong, a novel framework for synthesizing long-context data through Negative document Extension. NExtLong decomposes a document into multiple meta-chunks and extends the context by interleaving hard negative distractors retrieved from pretraining corpora. This approach compels the model to discriminate long-range dependent context from distracting content, enhancing its ability to model long-range dependencies. Extensive experiments demonstrate that NExtLong achieves significant performance improvements on the HELMET and RULER benchmarks compared to existing long-context synthesis approaches and leading models, which are trained on non-synthetic long documents. These findings highlight NExtLong's ability to reduce reliance on non-synthetic long documents, making it an effective framework for developing advanced long-context LLMs.
LongWriter: Unleashing 10,000+ Word Generation from Long Context LLMs
Current long context large language models (LLMs) can process inputs up to 100,000 tokens, yet struggle to generate outputs exceeding even a modest length of 2,000 words. Through controlled experiments, we find that the model's effective generation length is inherently bounded by the sample it has seen during supervised fine-tuning (SFT). In other words, their output limitation is due to the scarcity of long-output examples in existing SFT datasets. To address this, we introduce AgentWrite, an agent-based pipeline that decomposes ultra-long generation tasks into subtasks, enabling off-the-shelf LLMs to generate coherent outputs exceeding 20,000 words. Leveraging AgentWrite, we construct LongWriter-6k, a dataset containing 6,000 SFT data with output lengths ranging from 2k to 32k words. By incorporating this dataset into model training, we successfully scale the output length of existing models to over 10,000 words while maintaining output quality. We also develop LongBench-Write, a comprehensive benchmark for evaluating ultra-long generation capabilities. Our 9B parameter model, further improved through DPO, achieves state-of-the-art performance on this benchmark, surpassing even much larger proprietary models. In general, our work demonstrates that existing long context LLM already possesses the potential for a larger output window--all you need is data with extended output during model alignment to unlock this capability. Our code & models are at: https://github.com/THUDM/LongWriter.
Efficient Prompt Compression with Evaluator Heads for Long-Context Transformer Inference
Although applications involving long-context inputs are crucial for the effective utilization of large language models (LLMs), they also result in increased computational costs and reduced performance. To address this challenge, we propose an efficient, training-free prompt compression method that retains key information within compressed prompts. We identify specific attention heads in transformer-based LLMs, which we designate as evaluator heads, that are capable of selecting tokens in long inputs that are most significant for inference. Building on this discovery, we develop EHPC, an Evaluator Head-based Prompt Compression method, which enables LLMs to rapidly "skim through" input prompts by leveraging only the first few layers with evaluator heads during the pre-filling stage, subsequently passing only the important tokens to the model for inference. EHPC achieves state-of-the-art results across two mainstream benchmarks: prompt compression and long-context inference acceleration. Consequently, it effectively reduces the complexity and costs associated with commercial API calls. We further demonstrate that EHPC attains competitive results compared to key-value cache-based acceleration methods, thereby highlighting its potential to enhance the efficiency of LLMs for long-context tasks.
LongAlign: A Recipe for Long Context Alignment of Large Language Models
Extending large language models to effectively handle long contexts requires instruction fine-tuning on input sequences of similar length. To address this, we present LongAlign -- a recipe of the instruction data, training, and evaluation for long context alignment. First, we construct a long instruction-following dataset using Self-Instruct. To ensure the data diversity, it covers a broad range of tasks from various long context sources. Second, we adopt the packing and sorted batching strategies to speed up supervised fine-tuning on data with varied length distributions. Additionally, we develop a loss weighting method to balance the contribution to the loss across different sequences during packing training. Third, we introduce the LongBench-Chat benchmark for evaluating instruction-following capabilities on queries of 10k-100k in length. Experiments show that LongAlign outperforms existing recipes for LLMs in long context tasks by up to 30\%, while also maintaining their proficiency in handling short, generic tasks. The code, data, and long-aligned models are open-sourced at https://github.com/THUDM/LongAlign.
Unveiling Simplicities of Attention: Adaptive Long-Context Head Identification
The ability to process long contexts is crucial for many natural language processing tasks, yet it remains a significant challenge. While substantial progress has been made in enhancing the efficiency of attention mechanisms, there is still a gap in understanding how attention heads function in long-context settings. In this paper, we observe that while certain heads consistently attend to local information only, others swing between attending to local and long-context information depending on the query. This raises the question: can we identify which heads require long-context information to predict the next token accurately? We demonstrate that it's possible to predict which heads are crucial for long-context processing using only local keys. The core idea here is to exploit a simple model for the long-context scores via second moment approximations. These findings unveil simple properties of attention in the context of long sequences, and open the door to potentially significant gains in efficiency.
ETHIC: Evaluating Large Language Models on Long-Context Tasks with High Information Coverage
Recent advancements in large language models (LLM) capable of processing extremely long texts highlight the need for a dedicated evaluation benchmark to assess their long-context capabilities. However, existing methods, like the needle-in-a-haystack test, do not effectively assess whether these models fully utilize contextual information, raising concerns about the reliability of current evaluation techniques. To thoroughly examine the effectiveness of existing benchmarks, we introduce a new metric called information coverage (IC), which quantifies the proportion of the input context necessary for answering queries. Our findings indicate that current benchmarks exhibit low IC; although the input context may be extensive, the actual usable context is often limited. To address this, we present ETHIC, a novel benchmark designed to assess LLMs' ability to leverage the entire context. Our benchmark comprises 2,648 test instances spanning four long-context tasks with high IC scores in the domains of books, debates, medicine, and law. Our evaluations reveal significant performance drops in contemporary LLMs, highlighting a critical challenge in managing long contexts. Our benchmark is available at https://github.com/dmis-lab/ETHIC.
Chain-of-Thought Matters: Improving Long-Context Language Models with Reasoning Path Supervision
Recent advances in Large Language Models (LLMs) have highlighted the challenge of handling long-context tasks, where models need to reason over extensive input contexts to aggregate target information. While Chain-of-Thought (CoT) prompting has shown promise for multi-step reasoning, its effectiveness for long-context scenarios remains underexplored. Through systematic investigation across diverse tasks, we demonstrate that CoT's benefits generalize across most long-context scenarios and amplify with increasing context length. Motivated by this critical observation, we propose LongRePS, a process-supervised framework that teaches models to generate high-quality reasoning paths for enhanced long-context performance. Our framework incorporates a self-sampling mechanism to bootstrap reasoning paths and a novel quality assessment protocol specifically designed for long-context scenarios. Experimental results on various long-context benchmarks demonstrate the effectiveness of our approach, achieving significant improvements over outcome supervision baselines on both in-domain tasks (+13.6/+3.8 points for LLaMA/Qwen on MuSiQue) and cross-domain generalization (+9.3/+8.1 points on average across diverse QA tasks). Our code, data and trained models are made public to facilitate future research.
Superposition Prompting: Improving and Accelerating Retrieval-Augmented Generation
Despite the successes of large language models (LLMs), they exhibit significant drawbacks, particularly when processing long contexts. Their inference cost scales quadratically with respect to sequence length, making it expensive for deployment in some real-world text processing applications, such as retrieval-augmented generation (RAG). Additionally, LLMs also exhibit the "distraction phenomenon," where irrelevant context in the prompt degrades output quality. To address these drawbacks, we propose a novel RAG prompting methodology, superposition prompting, which can be directly applied to pre-trained transformer-based LLMs without the need for fine-tuning. At a high level, superposition prompting allows the LLM to process input documents in parallel prompt paths, discarding paths once they are deemed irrelevant. We demonstrate the capability of our method to simultaneously enhance time efficiency across a variety of question-answering benchmarks using multiple pre-trained LLMs. Furthermore, our technique significantly improves accuracy when the retrieved context is large relative the context the model was trained on. For example, our approach facilitates an 93x reduction in compute time while improving accuracy by 43\% on the NaturalQuestions-Open dataset with the MPT-7B instruction-tuned model over naive RAG.
LongHeads: Multi-Head Attention is Secretly a Long Context Processor
Large language models (LLMs) have achieved impressive performance in numerous domains but often struggle to process lengthy inputs effectively and efficiently due to limited length generalization and attention's quadratic computational demands. Many sought to mitigate this by restricting the attention window within the pre-trained length. However, these methods introduce new issues such as ignoring the middle context and requiring additional training. To address these problems, we propose LongHeads, a training-free framework that enhances LLM's long context ability by unlocking multi-head attention's untapped potential. Instead of allowing each head to attend to the full sentence, which struggles with generalizing to longer sequences due to out-of-distribution (OOD) issues, we allow each head to process in-distribution length by selecting and attending to important context chunks. To this end, we propose a chunk selection strategy that relies on the inherent correlation between the query and the key representations, efficiently distributing context chunks to different heads. In this way, each head ensures it can effectively process attended tokens within the trained length, while different heads in different layers can collectively process longer contexts. LongHeads works efficiently in linear time, fits seamlessly with many LLMs that use relative positional encoding. Our extensive empirical analyses verify LongHeads's efficacy in extending the usable context window for existing models, showcasing its promise for enhancing long text understanding.
Revisiting Parallel Context Windows: A Frustratingly Simple Alternative and Chain-of-Thought Deterioration
We identify two crucial limitations in the evaluation of recent parallel-integrated method Parallel Context Windows (PCW), which extends the maximum context lengths of language models, e.g., 2048 for LLaMA, by harnessing window-wise attention and positional embedding techniques. We first show that a simple yet strong baseline, weighted sum ensemble, is missing for the in-context few-shot classification. Moreover, on more challenging Chain-of-Thought (CoT) reasoning (e.g., HotpotQA), PCW would present unexpected deterioration regarding question miscomprehension and false inference. Based on our findings, we suggest that the existing PCW design may not guarantee sufficient improvement and practicality in handling lengthy documents in real-world applications. More community efforts on enabling language models' long context understanding ability should be paid.
Long Context is Not Long at All: A Prospector of Long-Dependency Data for Large Language Models
Long-context modeling capabilities are important for large language models (LLMs) in various applications. However, directly training LLMs with long context windows is insufficient to enhance this capability since some training samples do not exhibit strong semantic dependencies across long contexts. In this study, we propose a data mining framework ProLong that can assign each training sample with a long dependency score, which can be used to rank and filter samples that are more advantageous for enhancing long-context modeling abilities in LLM training. Specifically, we first use delta perplexity scores to measure the Dependency Strength between text segments in a given document. Then we refine this metric based on the Dependency Distance of these segments to incorporate spatial relationships across long-contexts. Final results are calibrated with a Dependency Specificity metric to prevent trivial dependencies introduced by repetitive patterns. Moreover, a random sampling approach is proposed to optimize the computational efficiency of ProLong. Comprehensive experiments on multiple benchmarks indicate that ProLong effectively identifies documents that carry long dependencies and LLMs trained on these documents exhibit significantly enhanced long-context modeling capabilities.
Extending Input Contexts of Language Models through Training on Segmented Sequences
Effectively training language models on long inputs poses many technical challenges. As a cost consideration, languages models are pretrained on a fixed sequence length before being adapted to longer sequences. We explore various methods for adapting models to longer inputs by training on segmented sequences and an interpolation-based method for extending absolute positional embeddings. We develop a training procedure to extend the input context size of pretrained models with no architectural changes and no additional memory costs than training on the original input lengths. By sub-sampling segments from long inputs while maintaining their original position the model is able to learn new positional interactions. Our method benefits both models trained with absolute positional embeddings, by extending their input contexts, as well as popular relative positional embedding methods showing a reduced perplexity on sequences longer than they were trained on. We demonstrate our method can extend input contexts by a factor of 4x while improving perplexity.
Revisiting In-Context Learning with Long Context Language Models
In-Context Learning (ICL) is a technique by which language models make predictions based on examples provided in their input context. Previously, their context window size imposed a limit on the number of examples that can be shown, making example selection techniques crucial for identifying the maximally effective set of examples. However, the recent advent of Long Context Language Models (LCLMs) has significantly increased the number of examples that can be included in context, raising an important question of whether ICL performance in a many-shot regime is still sensitive to the method of sample selection. To answer this, we revisit these approaches in the context of LCLMs through extensive experiments on 18 datasets spanning 4 tasks. Surprisingly, we observe that sophisticated example selection techniques do not yield significant improvements over a simple random sample selection method. Instead, we find that the advent of LCLMs has fundamentally shifted the challenge of ICL from that of selecting the most effective examples to that of collecting sufficient examples to fill the context window. Specifically, in certain datasets, including all available examples does not fully utilize the context window; however, by augmenting the examples in context with a simple data augmentation approach, we substantially improve ICL performance by 5%.
Marathon: A Race Through the Realm of Long Context with Large Language Models
Although there are currently many benchmarks available for evaluating the long context understanding and reasoning capability of large language models, with the expansion of the context window in these models, the existing long context benchmarks are no longer sufficient for evaluating the long context understanding and reasoning capability of large language models. In this paper, we have developed a fresh long context evaluation benchmark, which we name it Marathon in the form of multiple choice questions, inspired by benchmarks such as MMLU, for assessing the long context comprehension capability of large language models quickly, accurately, and objectively. We have evaluated several of the latest and most popular large language models, as well as three recent and effective long context optimization methods, on our benchmark. This showcases the long context reasoning and comprehension capabilities of these large language models and validates the effectiveness of these optimization methods. Marathon is available at https://huggingface.co/datasets/Lemoncoke/Marathon.
Infinite Retrieval: Attention Enhanced LLMs in Long-Context Processing
Limited by the context window size of Large Language Models(LLMs), handling various tasks with input tokens exceeding the upper limit has been challenging, whether it is a simple direct retrieval task or a complex multi-hop reasoning task. Although various methods have been proposed to enhance the long-context processing capabilities of LLMs, they either incur substantial post-training costs, or require additional tool modules(e.g.,RAG), or have not shown significant improvement in realistic tasks. Our work observes the correlation between the attention distribution and generated answers across each layer, and establishes the attention allocation aligns with retrieval-augmented capabilities through experiments. Drawing on the above insights, we propose a novel method InfiniRetri that leverages the LLMs's own attention information to enable accurate retrieval across inputs of infinitely length. Our evaluations indicate that InfiniRetri achieves 100% accuracy in the Needle-In-a-Haystack(NIH) test over 1M tokens using a 0.5B parameter model, surpassing other method or larger models and setting a new state-of-the-art(SOTA). Moreover, our method achieves significant performance improvements on real-world benchmarks, with a maximum 288% improvement. In addition, InfiniRetri can be applied to any Transformer-based LLMs without additional training and substantially reduces inference latency and compute overhead in long texts. In summary, our comprehensive studies show InfiniRetri's potential for practical applications and creates a paradigm for retrievaling information using LLMs own capabilities under infinite-length tokens. Code will be released in link.
"Paraphrasing The Original Text" Makes High Accuracy Long-Context QA
Although LLMs continue to iterate and improve, most open-source models still have a context window of no more than 4k, limiting their ability to handle long-context problems. Most existing open-source models for long-context chat still lack satisfactory accuracy. To address this issue, I approach it from the perspective of training data and theoretically prove that training the capability to handle long contexts requires "effective" rather than "long" data. Based on this, I propose using the "original text paraphrase" task, and successfully extend the context window of the existing model to 32k by a low-cost and effective method, achieving extremely high accuracy in multi-document-QA and surpassing all existing open-source models of the same scale. The model and training data have been open-sourced on HuggingFace and WiseModel.
Compressing Context to Enhance Inference Efficiency of Large Language Models
Large language models (LLMs) achieved remarkable performance across various tasks. However, they face challenges in managing long documents and extended conversations, due to significantly increased computational requirements, both in memory and inference time, and potential context truncation when the input exceeds the LLM's fixed context length. This paper proposes a method called Selective Context that enhances the inference efficiency of LLMs by identifying and pruning redundancy in the input context to make the input more compact. We test our approach using common data sources requiring long context processing: arXiv papers, news articles, and long conversations, on tasks of summarisation, question answering, and response generation. Experimental results show that Selective Context significantly reduces memory cost and decreases generation latency while maintaining comparable performance compared to that achieved when full context is used. Specifically, we achieve a 50\% reduction in context cost, resulting in a 36\% reduction in inference memory usage and a 32\% reduction in inference time, while observing only a minor drop of .023 in BERTscore and .038 in faithfulness on four downstream applications, indicating that our method strikes a good balance between efficiency and performance.
Long Context vs. RAG for LLMs: An Evaluation and Revisits
Extending context windows (i.e., Long Context, LC) and using retrievers to selectively access relevant information (i.e., Retrieval-Augmented Generation, RAG) are the two main strategies to enable LLMs to incorporate extremely long external contexts. This paper revisits recent studies on this topic, highlighting their key insights and discrepancies. We then provide a more comprehensive evaluation by filtering out questions answerable without external context, identifying the most effective retrieval methods, and expanding the datasets. We show that LC generally outperforms RAG in question-answering benchmarks, especially for Wikipedia-based questions. Summarization-based retrieval performs comparably to LC, while chunk-based retrieval lags behind. However, RAG has advantages in dialogue-based and general question queries. These insights underscore the trade-offs between RAG and LC strategies, offering guidance for future optimization of LLMs with external knowledge sources. We also provide an in-depth discussion on this topic, highlighting the overlooked importance of context relevance in existing studies.
Empower Your Model with Longer and Better Context Comprehension
Recently, with the emergence of numerous Large Language Models (LLMs), the implementation of AI has entered a new era. Irrespective of these models' own capacity and structure, there is a growing demand for LLMs to possess enhanced comprehension of longer and more complex contexts with relatively smaller sizes. Models often encounter an upper limit when processing sequences of sentences that extend beyond their comprehension capacity and result in off-topic or even chaotic responses. While several recent works attempt to address this issue in various ways, they rarely focus on "why models are unable to compensate or strengthen their capabilities on their own". In this paper, we thoroughly investigate the nature of information transfer within LLMs and propose a novel technique called Attention Transition. This technique empowers models to achieve longer and better context comprehension with minimal additional training or impact on generation fluency. Our experiments are conducted on the challenging XSum dataset using LLaMa-7b model with context token length ranging from 800 to 1900. Results demonstrate that we achieve substantial improvements compared with the original generation results evaluated by GPT4.
SEGMENT+: Long Text Processing with Short-Context Language Models
There is a growing interest in expanding the input capacity of language models (LMs) across various domains. However, simply increasing the context window does not guarantee robust performance across diverse long-input processing tasks, such as understanding extensive documents and extracting detailed information from lengthy and noisy data. In response, we introduce SEGMENT+, a general framework that enables LMs to handle extended inputs within limited context windows efficiently. SEGMENT+ utilizes structured notes and a filtering module to manage information flow, resulting in a system that is both controllable and interpretable. Our extensive experiments across various model sizes, focusing on long-document question-answering and Needle-in-a-Haystack tasks, demonstrate the effectiveness of SEGMENT+ in improving performance.
ALR^2: A Retrieve-then-Reason Framework for Long-context Question Answering
The context window of large language models (LLMs) has been extended significantly in recent years. However, while the context length that the LLM can process has grown, the capability of the model to accurately reason over that context degrades noticeably. This occurs because modern LLMs often become overwhelmed by the vast amount of information in the context; when answering questions, the model must identify and reason over relevant evidence sparsely distributed throughout the text. To alleviate the challenge of long-context reasoning, we develop a retrieve-then-reason framework, enabling LLMs to reason over relevant evidence collected during an intermediate retrieval step. We find that modern LLMs struggle to accurately retrieve relevant facts and instead, often hallucinate "retrieved facts", resulting in flawed reasoning and the production of incorrect answers. To address these issues, we introduce ALR^2, a method that augments the long-context reasoning capability of LLMs via an explicit two-stage procedure, i.e., aligning LLMs with the objectives of both retrieval and reasoning. We demonstrate the efficacy of ALR^2 for mitigating performance degradation in long-context reasoning tasks. Through extensive experiments on long-context QA benchmarks, we find our method to outperform competitive baselines by large margins, achieving at least 8.4 and 7.9 EM gains on the long-context versions of HotpotQA and SQuAD datasets, respectively.
In-Context Learning with Long-Context Models: An In-Depth Exploration
As model context lengths continue to increase, the number of demonstrations that can be provided in-context approaches the size of entire training datasets. We study the behavior of in-context learning (ICL) at this extreme scale on multiple datasets and models. We show that, for many datasets with large label spaces, performance continues to increase with hundreds or thousands of demonstrations. We contrast this with example retrieval and finetuning: example retrieval shows excellent performance at low context lengths but has diminished gains with more demonstrations; finetuning is more data hungry than ICL but can sometimes exceed long-context ICL performance with additional data. We use this ICL setting as a testbed to study several properties of both in-context learning and long-context models. We show that long-context ICL is less sensitive to random input shuffling than short-context ICL, that grouping of same-label examples can negatively impact performance, and that the performance boosts we see do not arise from cumulative gain from encoding many examples together. We conclude that although long-context ICL can be surprisingly effective, most of this gain comes from attending back to similar examples rather than task learning.
Long Context RAG Performance of Large Language Models
Retrieval Augmented Generation (RAG) has emerged as a crucial technique for enhancing the accuracy of Large Language Models (LLMs) by incorporating external information. With the advent of LLMs that support increasingly longer context lengths, there is a growing interest in understanding how these models perform in RAG scenarios. Can these new long context models improve RAG performance? This paper presents a comprehensive study of the impact of increased context length on RAG performance across 20 popular open source and commercial LLMs. We ran RAG workflows while varying the total context length from 2,000 to 128,000 tokens (and 2 million tokens when possible) on three domain-specific datasets, and report key insights on the benefits and limitations of long context in RAG applications. Our findings reveal that while retrieving more documents can improve performance, only a handful of the most recent state of the art LLMs can maintain consistent accuracy at long context above 64k tokens. We also identify distinct failure modes in long context scenarios, suggesting areas for future research.
MuLD: The Multitask Long Document Benchmark
The impressive progress in NLP techniques has been driven by the development of multi-task benchmarks such as GLUE and SuperGLUE. While these benchmarks focus on tasks for one or two input sentences, there has been exciting work in designing efficient techniques for processing much longer inputs. In this paper, we present MuLD: a new long document benchmark consisting of only documents over 10,000 tokens. By modifying existing NLP tasks, we create a diverse benchmark which requires models to successfully model long-term dependencies in the text. We evaluate how existing models perform, and find that our benchmark is much more challenging than their `short document' equivalents. Furthermore, by evaluating both regular and efficient transformers, we show that models with increased context length are better able to solve the tasks presented, suggesting that future improvements in these models are vital for solving similar long document problems. We release the data and code for baselines to encourage further research on efficient NLP models.
Are Long-LLMs A Necessity For Long-Context Tasks?
The learning and deployment of long-LLMs remains a challenging problem despite recent progresses. In this work, we argue that the long-LLMs are not a necessity to solve long-context tasks, as common long-context tasks are short-context solvable, i.e. they can be solved by purely working with oracle short-contexts within the long-context tasks' inputs. On top of this argument, we propose a framework called LC-Boost (Long-Context Bootstrapper), which enables a short-LLM to address the long-context tasks in a bootstrapping manner. In our framework, the short-LLM prompts itself to reason for two critical decisions: 1) how to access to the appropriate part of context within the input, 2) how to make effective use of the accessed context. By adaptively accessing and utilizing the context based on the presented tasks, LC-Boost can serve as a general framework to handle diversified long-context processing problems. We comprehensively evaluate different types of tasks from popular long-context benchmarks, where LC-Boost is able to achieve a substantially improved performance with a much smaller consumption of resource.
Eliciting Fine-Tuned Transformer Capabilities via Inference-Time Techniques
Large language models have transformed natural language processing, yet supervised fine-tuning (SFT) remains computationally intensive. This paper formally proves that capabilities acquired through SFT can be approximated by a base transformer model using inference-time techniques, specifically in-context learning (ICL), without altering model parameters, under idealized assumptions including unbounded computational resources and access to the fine-tuning dataset. We extend these results to practical scenarios with finite context lengths and partial dataset access. For text generation tasks with fixed output length l, datasets of size Oleft( m V{varepsilon^2} log m{delta} right) or, with bounded context, Oleft( l log V{varepsilon^2} log 1{delta} right) suffice to approximate fine-tuned behavior across m contexts within error varepsilon, where V is the vocabulary size and delta is the failure probability. For linear classification, datasets of size Oleft( d{varepsilon} right) or, with fixed context, Oleft( 1{varepsilon^2} log 1{delta} right) are sufficient, where d is the input dimension. Grounded in the Turing completeness of transformers, these results provide a theoretical foundation for resource-efficient deployment of large language models, with practical techniques like retrieval-augmented generation bridging theory to real-world applications.
Improving Retrieval Augmented Open-Domain Question-Answering with Vectorized Contexts
In the era of large language models, applying techniques such as Retrieval Augmented Generation can better address Open-Domain Question-Answering problems. Due to constraints including model sizes and computing resources, the length of context is often limited, and it becomes challenging to empower the model to cover overlong contexts while answering questions from open domains. This paper proposes a general and convenient method to covering longer contexts in Open-Domain Question-Answering tasks. It leverages a small encoder language model that effectively encodes contexts, and the encoding applies cross-attention with origin inputs. With our method, the origin language models can cover several times longer contexts while keeping the computing requirements close to the baseline. Our experiments demonstrate that after fine-tuning, there is improved performance across two held-in datasets, four held-out datasets, and also in two In Context Learning settings.
Untie the Knots: An Efficient Data Augmentation Strategy for Long-Context Pre-Training in Language Models
Large language models (LLM) have prioritized expanding the context window from which models can incorporate more information. However, training models to handle long contexts presents significant challenges. These include the scarcity of high-quality natural long-context data, the potential for performance degradation on short-context tasks, and the reduced training efficiency associated with attention mechanisms. In this paper, we introduce Untie the Knots (UtK), a novel data augmentation strategy employed during the continue pre-training phase, designed to efficiently enable LLMs to gain long-context capabilities without the need to modify the existing data mixture. In particular, we chunk the documents, shuffle the chunks, and create a complex and knotted structure of long texts; LLMs are then trained to untie these knots and identify relevant segments within seemingly chaotic token sequences. This approach greatly improves the model's performance by accurately attending to relevant information in long context and the training efficiency is also largely increased. We conduct extensive experiments on models with 7B and 72B parameters, trained on 20 billion tokens, demonstrating that UtK achieves 75\% and 84.5\% accurracy on RULER at 128K context length, significantly outperforming other long context strategies. The trained models will open-source for further research.
Context Embeddings for Efficient Answer Generation in RAG
Retrieval-Augmented Generation (RAG) allows overcoming the limited knowledge of LLMs by extending the input with external information. As a consequence, the contextual inputs to the model become much longer which slows down decoding time directly translating to the time a user has to wait for an answer. We address this challenge by presenting COCOM, an effective context compression method, reducing long contexts to only a handful of Context Embeddings speeding up the generation time by a large margin. Our method allows for different compression rates trading off decoding time for answer quality. Compared to earlier methods, COCOM allows for handling multiple contexts more effectively, significantly reducing decoding time for long inputs. Our method demonstrates a speed-up of up to 5.69 times while achieving higher performance compared to existing efficient context compression methods.
DocFinQA: A Long-Context Financial Reasoning Dataset
For large language models (LLMs) to be effective in the financial domain -- where each decision can have a significant impact -- it is necessary to investigate realistic tasks and data. Financial professionals often interact with documents that are hundreds of pages long, but most financial research datasets only deal with short excerpts from these documents. To address this, we introduce a long-document financial QA task. We augment 7,437 questions from the existing FinQA dataset with the full-document context, extending the average context length from under 700 words in FinQA to 123k words in DocFinQA. We conduct extensive experiments over retrieval-based QA pipelines and long-context language models. DocFinQA proves a significant challenge for even state-of-the-art systems. We also provide a case-study on the longest documents in DocFinQA and find that models particularly struggle on these documents. Addressing these challenges may have a wide reaching impact across applications where specificity and long-range contexts are critical, like gene sequences and legal document contract analysis.
LoRaLay: A Multilingual and Multimodal Dataset for Long Range and Layout-Aware Summarization
Text Summarization is a popular task and an active area of research for the Natural Language Processing community. By definition, it requires to account for long input texts, a characteristic which poses computational challenges for neural models. Moreover, real-world documents come in a variety of complex, visually-rich, layouts. This information is of great relevance, whether to highlight salient content or to encode long-range interactions between textual passages. Yet, all publicly available summarization datasets only provide plain text content. To facilitate research on how to exploit visual/layout information to better capture long-range dependencies in summarization models, we present LoRaLay, a collection of datasets for long-range summarization with accompanying visual/layout information. We extend existing and popular English datasets (arXiv and PubMed) with layout information and propose four novel datasets -- consistently built from scholar resources -- covering French, Spanish, Portuguese, and Korean languages. Further, we propose new baselines merging layout-aware and long-range models -- two orthogonal approaches -- and obtain state-of-the-art results, showing the importance of combining both lines of research.
Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation
We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books. Previous efforts to construct such datasets relied on crowd-sourcing, but the emergence of transformers with a context size of 1 million or more tokens now enables entirely automatic approaches. Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text, such as questions involving character arcs, broader themes, or the consequences of early actions later in the story. We propose a holistic pipeline for automatic data generation including question generation, answering, and model scoring using an ``Evaluator''. We find that a relative approach, comparing answers between models in a pairwise fashion and ranking with a Bradley-Terry model, provides a more consistent and differentiating scoring mechanism than an absolute scorer that rates answers individually. We also show that LLMs from different model families produce moderate agreement in their ratings. We ground our approach using the manually curated NarrativeQA dataset, where our evaluator shows excellent agreement with human judgement and even finds errors in the dataset. Using our automatic evaluation approach, we show that using an entire book as context produces superior reading comprehension performance compared to baseline no-context (parametric knowledge only) and retrieval-based approaches.
Attention Sorting Combats Recency Bias In Long Context Language Models
Current language models often fail to incorporate long contexts efficiently during generation. We show that a major contributor to this issue are attention priors that are likely learned during pre-training: relevant information located earlier in context is attended to less on average. Yet even when models fail to use the information from a relevant document in their response, they still pay preferential attention to that document compared to an irrelevant document at the same position. We leverage this fact to introduce ``attention sorting'': perform one step of decoding, sort documents by the attention they receive (highest attention going last), repeat the process, generate the answer with the newly sorted context. We find that attention sorting improves performance of long context models. Our findings highlight some challenges in using off-the-shelf language models for retrieval augmented generation.
WildLong: Synthesizing Realistic Long-Context Instruction Data at Scale
Large language models (LLMs) with extended context windows enable tasks requiring extensive information integration but are limited by the scarcity of high-quality, diverse datasets for long-context instruction tuning. Existing data synthesis methods focus narrowly on objectives like fact retrieval and summarization, restricting their generalizability to complex, real-world tasks. WildLong extracts meta-information from real user queries, models co-occurrence relationships via graph-based methods, and employs adaptive generation to produce scalable data. It extends beyond single-document tasks to support multi-document reasoning, such as cross-document comparison and aggregation. Our models, finetuned on 150K instruction-response pairs synthesized using WildLong, surpasses existing open-source long-context-optimized models across benchmarks while maintaining strong performance on short-context tasks without incorporating supplementary short-context data. By generating a more diverse and realistic long-context instruction dataset, WildLong enhances LLMs' ability to generalize to complex, real-world reasoning over long contexts, establishing a new paradigm for long-context data synthesis.
Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases. Leveraging LCLMs' ability to natively ingest and process entire corpora of information offers numerous advantages. It enhances user-friendliness by eliminating the need for specialized knowledge of tools, provides robust end-to-end modeling that minimizes cascading errors in complex pipelines, and allows for the application of sophisticated prompting techniques across the entire system. To assess this paradigm shift, we introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning. Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks. However, LCLMs still face challenges in areas like compositional reasoning that are required in SQL-like tasks. Notably, prompting strategies significantly influence performance, emphasizing the need for continued research as context lengths grow. Overall, LOFT provides a rigorous testing ground for LCLMs, showcasing their potential to supplant existing paradigms and tackle novel tasks as model capabilities scale.
Position-Aware Parameter Efficient Fine-Tuning Approach for Reducing Positional Bias in LLMs
Recent advances in large language models (LLMs) have enhanced their ability to process long input contexts. This development is particularly crucial for tasks that involve retrieving knowledge from an external datastore, which can result in long inputs. However, recent studies show a positional bias in LLMs, demonstrating varying performance depending on the location of useful information within the input sequence. In this study, we conduct extensive experiments to investigate the root causes of positional bias. Our findings indicate that the primary contributor to LLM positional bias stems from the inherent positional preferences of different models. We demonstrate that merely employing prompt-based solutions is inadequate for overcoming the positional preferences. To address this positional bias issue of a pre-trained LLM, we developed a Position-Aware Parameter Efficient Fine-Tuning (PAPEFT) approach which is composed of a data augmentation technique and a parameter efficient adapter, enhancing a uniform attention distribution across the input context. Our experiments demonstrate that the proposed approach effectively reduces positional bias, improving LLMs' effectiveness in handling long context sequences for various tasks that require externally retrieved knowledge.
E2LLM: Encoder Elongated Large Language Models for Long-Context Understanding and Reasoning
In the realm of Large Language Models (LLMs), the ability to process long contexts is increasingly crucial for tasks such as multi-round dialogues, code generation, and document summarization. This paper addresses the challenges of enhancing the long-context performance, reducing computational complexity, and leveraging pretrained models collectively termed the "impossible triangle." We introduce E2LLM (Encoder Elongated Large Language Models), a novel approach that effectively navigates this paradox. The method involves splitting long contexts into chunks, compressing each into embedding vectors via a pretrained text encoder, and utilizing an adapter to align these representations with a decoder-only LLM. Two training objectives, focusing on reconstruction of the encoder output and long-context instruction fine-tuning, are employed to facilitate the understanding of soft prompts by the LLM. Experimental results demonstrate that E2LLM achieves superior performance in long-context scenarios while balancing efficiency, performance, and compatibility with pretrained models. Our framework thus represents a significant advancement in the field, contributing to effective long-text modeling.
Unlocking Context Constraints of LLMs: Enhancing Context Efficiency of LLMs with Self-Information-Based Content Filtering
Large language models (LLMs) have received significant attention by achieving remarkable performance across various tasks. However, their fixed context length poses challenges when processing long documents or maintaining extended conversations. This paper proposes a method called Selective Context that employs self-information to filter out less informative content, thereby enhancing the efficiency of the fixed context length. We demonstrate the effectiveness of our approach on tasks of summarisation and question answering across different data sources, including academic papers, news articles, and conversation transcripts.
LongCodeBench: Evaluating Coding LLMs at 1M Context Windows
Context lengths for models have grown rapidly, from thousands to millions of tokens in just a few years. The extreme context sizes of modern long-context models have made it difficult to construct realistic long-context benchmarks -- not only due to the cost of collecting million-context tasks but also in identifying realistic scenarios that require significant contexts. We identify code comprehension and repair as a natural testbed and challenge task for long-context models and introduce LongCodeBench (LCB), a benchmark to test LLM coding abilities in long-context scenarios. Our benchmark tests both the comprehension and repair capabilities of LCLMs in realistic and important settings by drawing from real-world GitHub issues and constructing QA (LongCodeQA) and bug fixing (LongSWE-Bench) tasks. We carefully stratify the complexity of our benchmark, enabling us to evaluate models across different scales -- ranging from Qwen2.5 14B Instruct to Google's flagship Gemini model. We find that long-context remains a weakness for all models, with performance drops such as from 29% to 3% for Claude 3.5 Sonnet, or from 70.2% to 40% for Qwen2.5.
CAFE: Retrieval Head-based Coarse-to-Fine Information Seeking to Enhance Multi-Document QA Capability
Advancements in Large Language Models (LLMs) have extended their input context length, yet they still struggle with retrieval and reasoning in long-context inputs. Existing methods propose to utilize the prompt strategy and retrieval head to alleviate this limitation. However, they still face challenges in balancing retrieval precision and recall, impacting their efficacy in answering questions. To address this, we introduce CAFE, a two-stage coarse-to-fine method to enhance multi-document question-answering capacities. By gradually eliminating the negative impacts of background and distracting documents, CAFE makes the responses more reliant on the evidence documents. Initially, a coarse-grained filtering method leverages retrieval heads to identify and rank relevant documents. Then, a fine-grained steering method guides attention to the most relevant content. Experiments across benchmarks show CAFE outperforms baselines, achieving up to 22.1% and 13.7% SubEM improvement over SFT and RAG methods on the Mistral model, respectively.
Large Language Models Can Self-Improve in Long-context Reasoning
Large language models (LLMs) have achieved substantial progress in processing long contexts but still struggle with long-context reasoning. Existing approaches typically involve fine-tuning LLMs with synthetic data, which depends on annotations from human experts or advanced models like GPT-4, thus restricting further advancements. To address this issue, we investigate the potential for LLMs to self-improve in long-context reasoning and propose \ours, an approach specifically designed for this purpose. This approach is straightforward: we sample multiple outputs for each question, score them with Minimum Bayes Risk, and then apply supervised fine-tuning or preference optimization based on these outputs. Extensive experiments on several leading LLMs demonstrate the effectiveness of \ours, with an absolute improvement of 4.2 points for Llama-3.1-8B-Instruct. Furthermore, \ours achieves superior performance compared to prior approaches that depend on data produced by human experts or advanced models. We anticipate that this work will open new avenues for self-improvement techniques in long-context scenarios, which are essential for the continual advancement of LLMs.
LOOM-Scope: a comprehensive and efficient LOng-cOntext Model evaluation framework
Long-context processing has become a fundamental capability for large language models~(LLMs). To assess model's long-context performance, numerous long-context evaluation benchmarks have been proposed. However, variations in evaluation settings across these benchmarks lead to inconsistent results, making it difficult to draw reliable comparisons. Besides, the high computational cost of long-context evaluation poses a significant barrier for the community to conduct comprehensive assessments of long-context models. In this paper, we propose LOOM-Scope, a comprehensive and efficient framework for long-context evaluation. LOOM-Scope standardizes evaluation settings across diverse benchmarks, supports deployment of efficient long-context inference acceleration methods, and introduces a holistic yet lightweight benchmark suite to evaluate models comprehensively. Homepage: https://loomscope.github.io
LongProc: Benchmarking Long-Context Language Models on Long Procedural Generation
Existing benchmarks for evaluating long-context language models (LCLMs) primarily focus on long-context recall, requiring models to produce short responses based on a few critical snippets while processing thousands of irrelevant tokens. We introduce LongProc (Long Procedural Generation), a new benchmark that requires both the integration of highly dispersed information and long-form generation. LongProc consists of six diverse procedural generation tasks, such as extracting structured information from HTML pages into a TSV format and executing complex search procedures to create travel plans. These tasks challenge LCLMs by testing their ability to follow detailed procedural instructions, synthesize and reason over dispersed information, and generate structured, long-form outputs (up to 8K tokens). Furthermore, as these tasks adhere to deterministic procedures and yield structured outputs, they enable reliable rule-based evaluation. We evaluate 17 LCLMs on LongProc across three difficulty levels, with maximum numbers of output tokens set at 500, 2K, and 8K. Notably, while all tested models claim a context window size above 32K tokens, open-weight models typically falter on 2K-token tasks, and closed-source models like GPT-4o show significant degradation on 8K-token tasks. Further analysis reveals that LCLMs struggle to maintain long-range coherence in long-form generations. These findings highlight critical limitations in current LCLMs and suggest substantial room for improvement. Data and code available at: https://princeton-pli.github.io/LongProc
Auto-ICL: In-Context Learning without Human Supervision
In the era of Large Language Models (LLMs), human-computer interaction has evolved towards natural language, offering unprecedented flexibility. Despite this, LLMs are heavily reliant on well-structured prompts to function efficiently within the realm of In-Context Learning. Vanilla In-Context Learning relies on human-provided contexts, such as labeled examples, explicit instructions, or other guiding mechanisms that shape the model's outputs. To address this challenge, our study presents a universal framework named Automatic In-Context Learning. Upon receiving a user's request, we ask the model to independently generate examples, including labels, instructions, or reasoning pathways. The model then leverages this self-produced context to tackle the given problem. Our approach is universally adaptable and can be implemented in any setting where vanilla In-Context Learning is applicable. We demonstrate that our method yields strong performance across a range of tasks, standing up well when compared to existing methods.
A Controllable Examination for Long-Context Language Models
Existing frameworks for evaluating long-context language models (LCLM) can be broadly categorized into real-world and synthetic tasks. Despite their utility, both approaches are accompanied by certain intrinsic limitations. Real-world tasks are too complex to interpret or characterize and are susceptible to data contamination. In contrast, synthetic tasks often adopt the needle-in-the-haystack (NIAH) format, wherein a lack of coherence between the "needle" and the "haystack" compromises their validity as proxies for realistic applications. In response to these challenges, we posit that an ideal long-context evaluation framework should be characterized by three essential features: seamless context, controllable setting, and sound evaluation. This study introduces LongBioBench, a novel benchmark that utilizes artificially generated biographies as a controlled environment for assessing LCLMs across dimensions of understanding, reasoning, and trustworthiness. Our experimental evaluation, which includes 18 LCLMs in total, demonstrates that most models still exhibit deficiencies in semantic understanding and elementary reasoning over retrieved results and are less trustworthy as context length increases. Our further analysis indicates some design choices employed by existing synthetic benchmarks, such as contextual non-coherence, numerical needles, and the absence of distractors, rendering them vulnerable to test the model long-context capabilities. Moreover, we also reveal that long-context continual pretraining primarily adjusts RoPE embedding to accommodate extended context lengths. To sum up, compared to previous synthetic benchmarks, LongBioBench achieves a better trade-off between mirroring authentic language tasks and maintaining controllability, and is highly interpretable and configurable.
Long Input Benchmark for Russian Analysis
Recent advancements in Natural Language Processing (NLP) have fostered the development of Large Language Models (LLMs) that can solve an immense variety of tasks. One of the key aspects of their application is their ability to work with long text documents and to process long sequences of tokens. This has created a demand for proper evaluation of long-context understanding. To address this need for the Russian language, we propose LIBRA (Long Input Benchmark for Russian Analysis), which comprises 21 adapted datasets to study the LLM's abilities to understand long texts thoroughly. The tests are divided into four complexity groups and allow the evaluation of models across various context lengths ranging from 4k up to 128k tokens. We provide the open-source datasets, codebase, and public leaderboard for LIBRA to guide forthcoming research.
LLoCO: Learning Long Contexts Offline
Processing long contexts remains a challenge for large language models (LLMs) due to the quadratic computational and memory overhead of the self-attention mechanism and the substantial KV cache sizes during generation. We propose a novel approach to address this problem by learning contexts offline through context compression and in-domain parameter-efficient finetuning. Our method enables an LLM to create a concise representation of the original context and efficiently retrieve relevant information to answer questions accurately. We introduce LLoCO, a technique that combines context compression, retrieval, and parameter-efficient finetuning using LoRA. Our approach extends the effective context window of a 4k token LLaMA2-7B model to handle up to 128k tokens. We evaluate our approach on several long-context question-answering datasets, demonstrating that LLoCO significantly outperforms in-context learning while using 30times fewer tokens during inference. LLoCO achieves up to 7.62times speed-up and substantially reduces the cost of long document question answering, making it a promising solution for efficient long context processing. Our code is publicly available at https://github.com/jeffreysijuntan/lloco.
Long-Context Language Modeling with Parallel Context Encoding
Extending large language models (LLMs) to process longer inputs is crucial for numerous applications. However, the considerable computational cost of transformers, coupled with limited generalization of positional encoding, restricts the size of their context window. We introduce Context Expansion with Parallel Encoding (CEPE), a framework that can be applied to any existing decoder-only LLMs to extend their context window. CEPE adopts a small encoder to process long inputs chunk by chunk and enables the frozen decoder to leverage additional contexts via cross-attention. CEPE is efficient, generalizable, and versatile: trained with 8K-token documents, CEPE extends the context window of LLAMA-2 to 128K tokens, offering 10x the throughput with only 1/6 of the memory. CEPE yields strong performance on language modeling and in-context learning. CEPE also excels in retrieval-augmented applications, while existing long-context models degenerate with retrieved contexts. We further introduce a CEPE variant that can extend the context window of instruction-tuned models with only unlabeled data, and showcase its effectiveness on LLAMA-2-CHAT, leading to a strong instruction-following model that can leverage very long context on downstream tasks.
XL3M: A Training-free Framework for LLM Length Extension Based on Segment-wise Inference
Length generalization failure problem, namely the large language model (LLM) fails to generalize to texts longer than its maximum training length, greatly restricts the application of LLM in the scenarios with streaming long inputs. To address this problem, the existing methods either require substantial costs or introduce precision loss. In this paper, we empirically find that the accuracy of the LLM's prediction is highly correlated to its certainty. Based on this, we propose an efficient training free framework, named XL3M (it means extra-long large language model), which enables the LLMs trained on short sequences to reason extremely long sequence without any further training or fine-tuning. Under the XL3M framework, the input context will be firstly decomposed into multiple short sub-contexts, where each sub-context contains an independent segment and a common ``question'' which is a few tokens from the end of the original context. Then XL3M gives a method to measure the relevance between each segment and the ``question'', and constructs a concise key context by splicing all the relevant segments in chronological order. The key context is further used instead of the original context to complete the inference task. Evaluations on comprehensive benchmarks show the superiority of XL3M. Using our framework, a Llama2-7B model is able to reason 20M long sequences on an 8-card Huawei Ascend 910B NPU machine with 64GB memory per card.
SirLLM: Streaming Infinite Retentive LLM
As Large Language Models (LLMs) become increasingly prevalent in various domains, their ability to process inputs of any length and maintain a degree of memory becomes essential. However, the one-off input of overly long texts is limited, as studies have shown that when input lengths exceed the LLMs' pre-trained text length, there is a dramatic decline in text generation capabilities. Moreover, simply extending the length of pre-training texts is impractical due to the difficulty in obtaining long text data and the substantial memory consumption costs this would entail for LLMs. Recent efforts have employed streaming inputs to alleviate the pressure of excessively long text inputs, but this approach can significantly impair the model's long-term memory capabilities. Motivated by this challenge, we introduce Streaming Infinite Retentive LLM (SirLLM), which allows LLMs to maintain longer memory during infinite-length dialogues without the need for fine-tuning. SirLLM utilizes the Token Entropy metric and a memory decay mechanism to filter key phrases, endowing LLMs with both long-lasting and flexible memory. We designed three distinct tasks and constructed three datasets to measure the effectiveness of SirLLM from various angles: (1) DailyDialog; (2) Grocery Shopping; (3) Rock-Paper-Scissors. Our experimental results robustly demonstrate that SirLLM can achieve stable and significant improvements across different LLMs and tasks, compellingly proving its effectiveness. When having a coversation, "A sir could forget himself," but SirLLM never does! Our code is publicly available at https://github.com/Zoeyyao27/SirLLM
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
Long-context capabilities are essential for large language models (LLMs) to tackle complex and long-input tasks. Despite numerous efforts made to optimize LLMs for long contexts, challenges persist in robustly processing long inputs. In this paper, we introduce GraphReader, a graph-based agent system designed to handle long texts by structuring them into a graph and employing an agent to explore this graph autonomously. Upon receiving a question, the agent first undertakes a step-by-step analysis and devises a rational plan. It then invokes a set of predefined functions to read node content and neighbors, facilitating a coarse-to-fine exploration of the graph. Throughout the exploration, the agent continuously records new insights and reflects on current circumstances to optimize the process until it has gathered sufficient information to generate an answer. Experimental results on the LV-Eval dataset reveal that GraphReader, using a 4k context window, consistently outperforms GPT-4-128k across context lengths from 16k to 256k by a large margin. Additionally, our approach demonstrates superior performance on four challenging single-hop and multi-hop benchmarks.
Structured Packing in LLM Training Improves Long Context Utilization
Recent developments in long-context large language models have attracted considerable attention. Yet, their real-world applications are often hindered by ineffective context information use. This work shows that structuring training data to increase semantic interdependence is an effective strategy for optimizing context utilization. To this end, we introduce Structured Packing for Long Context (SPLiCe), a method for creating training examples by using information retrieval methods to collate mutually relevant documents into a single training context. We empirically validate SPLiCe on large 3B and 7B models, showing perplexity improvements and better long-context utilization on downstream tasks. Remarkably, already relatively short fine-tuning with SPLiCe is enough to attain these benefits. Additionally, the comprehensive study of SPLiCe reveals intriguing transfer effects such as training on code data leading to perplexity improvements on text data.
AdaSkip: Adaptive Sublayer Skipping for Accelerating Long-Context LLM Inference
Long-context large language models (LLMs) inference is increasingly critical, motivating a number of studies devoted to alleviating the substantial storage and computational costs in such scenarios. Layer-wise skipping methods are promising optimizations but rarely explored in long-context inference. We observe that existing layer-wise skipping strategies have several limitations when applied in long-context inference, including the inability to adapt to model and context variability, disregard for sublayer significance, and inapplicability for the prefilling phase. This paper proposes \sysname, an adaptive sublayer skipping method specifically designed for long-context inference. \sysname adaptively identifies less important layers by leveraging on-the-fly similarity information, enables sublayer-wise skipping, and accelerates both the prefilling and decoding phases. The effectiveness of \sysname is demonstrated through extensive experiments on various long-context benchmarks and models, showcasing its superior inference performance over existing baselines.
Adapting LLMs for Efficient Context Processing through Soft Prompt Compression
The rapid advancement of Large Language Models (LLMs) has inaugurated a transformative epoch in natural language processing, fostering unprecedented proficiency in text generation, comprehension, and contextual scrutiny. Nevertheless, effectively handling extensive contexts, crucial for myriad applications, poses a formidable obstacle owing to the intrinsic constraints of the models' context window sizes and the computational burdens entailed by their operations. This investigation presents an innovative framework that strategically tailors LLMs for streamlined context processing by harnessing the synergies among natural language summarization, soft prompt compression, and augmented utility preservation mechanisms. Our methodology, dubbed SoftPromptComp, amalgamates natural language prompts extracted from summarization methodologies with dynamically generated soft prompts to forge a concise yet semantically robust depiction of protracted contexts. This depiction undergoes further refinement via a weighting mechanism optimizing information retention and utility for subsequent tasks. We substantiate that our framework markedly diminishes computational overhead and enhances LLMs' efficacy across various benchmarks, while upholding or even augmenting the caliber of the produced content. By amalgamating soft prompt compression with sophisticated summarization, SoftPromptComp confronts the dual challenges of managing lengthy contexts and ensuring model scalability. Our findings point towards a propitious trajectory for augmenting LLMs' applicability and efficiency, rendering them more versatile and pragmatic for real-world applications. This research enriches the ongoing discourse on optimizing language models, providing insights into the potency of soft prompts and summarization techniques as pivotal instruments for the forthcoming generation of NLP solutions.
InfiniPot: Infinite Context Processing on Memory-Constrained LLMs
Handling long input contexts remains a significant challenge for Large Language Models (LLMs), particularly in resource-constrained environments such as mobile devices. Our work aims to address this limitation by introducing InfiniPot, a novel KV cache control framework designed to enable pre-trained LLMs to manage extensive sequences within fixed memory constraints efficiently, without requiring additional training. InfiniPot leverages Continual Context Distillation (CCD), an iterative process that compresses and retains essential information through novel importance metrics, effectively maintaining critical data even without access to future context. Our comprehensive evaluations indicate that InfiniPot significantly outperforms models trained for long contexts in various NLP tasks, establishing its efficacy and versatility. This work represents a substantial advancement toward making LLMs applicable to a broader range of real-world scenarios.
Extending Context Window of Large Language Models via Semantic Compression
Transformer-based Large Language Models (LLMs) often impose limitations on the length of the text input to ensure the generation of fluent and relevant responses. This constraint restricts their applicability in scenarios involving long texts. We propose a novel semantic compression method that enables generalization to texts that are 6-8 times longer, without incurring significant computational costs or requiring fine-tuning. Our proposed framework draws inspiration from source coding in information theory and employs a pre-trained model to reduce the semantic redundancy of long inputs before passing them to the LLMs for downstream tasks. Experimental results demonstrate that our method effectively extends the context window of LLMs across a range of tasks including question answering, summarization, few-shot learning, and information retrieval. Furthermore, the proposed semantic compression method exhibits consistent fluency in text generation while reducing the associated computational overhead.
Landmark Attention: Random-Access Infinite Context Length for Transformers
While transformers have shown remarkable success in natural language processing, their attention mechanism's large memory requirements have limited their ability to handle longer contexts. Prior approaches, such as recurrent memory or retrieval-based augmentation, have either compromised the random-access flexibility of attention (i.e., the capability to select any token in the entire context) or relied on separate mechanisms for relevant context retrieval, which may not be compatible with the model's attention. In this paper, we present a novel approach that allows access to the complete context while retaining random-access flexibility, closely resembling running attention on the entire context. Our method uses a landmark token to represent each block of the input and trains the attention to use it for selecting relevant blocks, enabling retrieval of blocks directly through the attention mechanism instead of by relying on a separate mechanism. Our approach seamlessly integrates with specialized data structures and the system's memory hierarchy, enabling processing of arbitrarily long context lengths. We demonstrate that our method can obtain comparable performance with Transformer-XL while significantly reducing the number of retrieved tokens in each step. Finally, we show that fine-tuning LLaMA 7B with our method successfully extends its context length capacity up to 32k tokens, allowing for inference at the context lengths of GPT-4.
Beyond RAG: Task-Aware KV Cache Compression for Comprehensive Knowledge Reasoning
Incorporating external knowledge in large language models (LLMs) enhances their utility across diverse applications, but existing methods have trade-offs. Retrieval-Augmented Generation (RAG) fetches evidence via similarity search, but key information may fall outside top ranked results. Long-context models can process multiple documents but are computationally expensive and limited by context window size. Inspired by students condensing study material for open-book exams, we propose task-aware key-value (KV) cache compression, which compresses external knowledge in a zero- or few-shot setup. This enables LLMs to reason efficiently over a compacted representation of all relevant information. Experiments show our approach outperforms both RAG and task-agnostic compression methods. On LongBench v2, it improves accuracy by up to 7 absolute points over RAG with a 30x compression rate, while reducing inference latency from 0.43s to 0.16s. A synthetic dataset highlights that RAG performs well when sparse evidence suffices, whereas task-aware compression is superior for broad knowledge tasks.
LM-Infinite: Simple On-the-Fly Length Generalization for Large Language Models
In recent years, there have been remarkable advancements in the performance of Transformer-based Large Language Models (LLMs) across various domains. As these LLMs are deployed for increasingly complex tasks, they often face the needs to conduct longer reasoning processes or understanding larger contexts. In these situations, the length generalization failure of LLMs on long sequences become more prominent. Most pre-training schemes truncate training sequences to a fixed length (such as 2048 for LLaMa). LLMs often struggle to generate fluent texts, let alone carry out downstream tasks, after longer contexts, even with relative positional encoding which is designed to cope with this problem. Common solutions such as finetuning on longer corpora often involves daunting hardware and time costs and requires careful training process design. To more efficiently leverage the generation capacity of existing LLMs, we theoretically and empirically investigate the main out-of-distribution (OOD) factors contributing to this problem. Inspired by this diagnosis, we propose a simple yet effective solution for on-the-fly length generalization, LM-Infinite, which involves only a Lambda-shaped attention mask and a distance limit while requiring no parameter updates or learning. We find it applicable to a variety of LLMs using relative-position encoding methods. LM-Infinite is computational efficient with O(n) time and space, and demonstrates consistent fluency and generation quality to as long as 32k tokens on ArXiv and OpenWebText2 datasets, with 2.72x decoding speedup. On downstream task such as passkey retrieval, it continues to work on inputs much longer than training lengths where vanilla models fail immediately.
Stuffed Mamba: State Collapse and State Capacity of RNN-Based Long-Context Modeling
One essential advantage of recurrent neural networks (RNNs) over transformer-based language models is their linear computational complexity concerning the sequence length, which makes them much faster in handling long sequences during inference. However, most publicly available RNNs (e.g., Mamba and RWKV) are trained on sequences with less than 10K tokens, and their effectiveness in longer contexts remains largely unsatisfying so far. In this paper, we study the cause of the inability to process long context for RNNs and suggest critical mitigations. We examine two practical concerns when applying state-of-the-art RNNs to long contexts: (1) the inability to extrapolate to inputs longer than the training length and (2) the upper bound of memory capacity. Addressing the first concern, we first investigate *state collapse* (SC), a phenomenon that causes severe performance degradation on sequence lengths not encountered during training. With controlled experiments, we attribute this to overfitting due to the recurrent state being overparameterized for the training length. For the second concern, we train a series of Mamba-2 models on long documents to empirically estimate the recurrent state capacity in language modeling and passkey retrieval. Then, three SC mitigation methods are proposed to improve Mamba-2's length generalizability, allowing the model to process more than 1M tokens without SC. We also find that the recurrent state capacity in passkey retrieval scales exponentially to the state size, and we empirically train a Mamba-2 370M with near-perfect passkey retrieval accuracy on 256K context length. This suggests a promising future for RNN-based long-context modeling.
Enhancing LLM's Cognition via Structurization
When reading long-form text, human cognition is complex and structurized. While large language models (LLMs) process input contexts through a causal and sequential perspective, this approach can potentially limit their ability to handle intricate and complex inputs effectively. To enhance LLM's cognition capability, this paper presents a novel concept of context structurization. Specifically, we transform the plain, unordered contextual sentences into well-ordered and hierarchically structurized elements. By doing so, LLMs can better grasp intricate and extended contexts through precise attention and information-seeking along the organized structures. Extensive evaluations are conducted across various model architectures and sizes (including a series of auto-regressive LLMs as well as BERT-like masking models) on a diverse set of NLP tasks (e.g., context-based question-answering, exhaustive hallucination evaluation, and passage-level dense retrieval). Empirical results show consistent and significant performance gains afforded by a single-round structurization. In particular, we boost the open-sourced LLaMA2-70B model to achieve comparable performance against GPT-3.5-Turbo as the hallucination evaluator. Besides, we show the feasibility of distilling advanced LLMs' language processing abilities to a smaller yet effective StruXGPT-7B to execute structurization, addressing the practicality of our approach. Code is available at https://github.com/alibaba/struxgpt.
Focus Directions Make Your Language Models Pay More Attention to Relevant Contexts
Long-context large language models (LLMs) are prone to be distracted by irrelevant contexts. The reason for distraction remains poorly understood. In this paper, we first identify the contextual heads, a special group of attention heads that control the overall attention of the LLM. Then, we demonstrate that distraction arises when contextual heads fail to allocate sufficient attention to relevant contexts and can be mitigated by increasing attention to these contexts. We further identify focus directions, located at the key and query activations of these heads, which enable them to allocate more attention to relevant contexts without explicitly specifying which context is relevant. We comprehensively evaluate the effect of focus direction on various long-context tasks and find out focus directions could help to mitigate the poor task alignment of the long-context LLMs. We believe our findings could promote further research on long-context LLM alignment.
LongRecipe: Recipe for Efficient Long Context Generalization in Large Languge Models
Large language models (LLMs) face significant challenges in handling long-context tasks because of their limited effective context window size during pretraining, which restricts their ability to generalize over extended sequences. Meanwhile, extending the context window in LLMs through post-pretraining is highly resource-intensive. To address this, we introduce **LongRecipe**, an efficient training strategy for extending the context window of LLMs, including impactful token analysis, position index transformation, and training optimization strategies. It simulates long-sequence inputs while maintaining training efficiency and significantly improves the model's understanding of long-range dependencies. Experiments on three types of LLMs show that LongRecipe can utilize long sequences while requiring only 30% of the target context window size, and reduces computational training resource over 85% compared to full sequence training. Furthermore, LongRecipe also preserves the original LLM's capabilities in general tasks. Ultimately, *we can extend the effective context window of open-source LLMs from 8k to 128k, achieving performance close to GPT-4 with just one day of dedicated training using a single GPU with 80G memory.* Our code is released at the [link](https://github.com/zhiyuanhubj/LongRecipe).
Recovering document annotations for sentence-level bitext
Data availability limits the scope of any given task. In machine translation, historical models were incapable of handling longer contexts, so the lack of document-level datasets was less noticeable. Now, despite the emergence of long-sequence methods, we remain within a sentence-level paradigm and without data to adequately approach context-aware machine translation. Most large-scale datasets have been processed through a pipeline that discards document-level metadata. In this work, we reconstruct document-level information for three (ParaCrawl, News Commentary, and Europarl) large datasets in German, French, Spanish, Italian, Polish, and Portuguese (paired with English). We then introduce a document-level filtering technique as an alternative to traditional bitext filtering. We present this filtering with analysis to show that this method prefers context-consistent translations rather than those that may have been sentence-level machine translated. Last we train models on these longer contexts and demonstrate improvement in document-level translation without degradation of sentence-level translation. We release our dataset, ParaDocs, and resulting models as a resource to the community.
CNNSum: Exploring Long-Context Summarization with Large Language Models in Chinese Novels
Large Language Models (LLMs) have been well-researched in various long-context tasks. However, the scarcity of high-quality long-context summarization datasets has hindered further advancements in this area. To address this, we introduce CNNSum, a multi-scale long-context summarization benchmark based on Chinese novels, featuring human-driven annotations, which comprises four subsets totaling 695 samples, with lengths ranging from 16k to 128k. We evaluate numerous LLMs and conduct detailed case analyses. Furthermore, we conduct extensive fine-tuning experiments to explore and improve long-context summarization. In our study: (1) Advanced LLMs like GPT-4o may still generate subjective commentary, leading to vague summaries. (2) Currently, long-context summarization mainly relies on memory ability afforded by longer context lengths. The advantages of Large LLMs are hard to utilize, thus small LLMs are the most cost-effective. (3) Different prompt templates paired with various version models may cause large performance gaps. In further fine-tuning, these can be mitigated, and the Base version models perform better. (4) LLMs with RoPE-base scaled exhibit strong extrapolation potential; using short-context data can significantly improve long-context summarization performance. However, further applying other interpolation methods requires careful selection. (5) CNNSum provides more reliable and insightful evaluation results than other benchmarks. We release CNNSum to advance future research in this field. https://github.com/CxsGhost/CNNSum
Spinning the Golden Thread: Benchmarking Long-Form Generation in Language Models
The abilities of long-context language models (LMs) are often evaluated using the "Needle-in-a-Haystack" (NIAH) test, which comprises tasks designed to assess a model's ability to identify specific information ("needle") within large text sequences ("haystack"). While these benchmarks measure how well models understand long-context input sequences, they do not effectively gauge the quality of long-form text generation--a critical aspect for applications such as design proposals and creative writing. To address this gap, we have introduced a new long-form text evaluation benchmark, Spinning the Golden Thread (SGT), which tests models' ability to identify specific events within generated long text sequences. In this benchmark, we prompt long-context LMs to create long-form text that must include particular events or constraints and evaluate their ability to incorporate these elements. We evaluated ten long-context LMs across four distinct scenarios, three types of prompt instructions, and two different generation-length settings (16K and 32K). Although these models perform well on NIAH benchmarks, none demonstrated satisfactory performance on the Spinning the Golden Thread, raising concerns about their ability to generate coherent long-form text that follows instructions. Additionally, as the length of the generated text increases, all models exhibit a significant drop in performance.
Adapting Language Models to Compress Contexts
Transformer-based language models (LMs) are powerful and widely-applicable tools, but their usefulness is constrained by a finite context window and the expensive computational cost of processing long text documents. We propose to adapt pre-trained LMs into AutoCompressors. These models are capable of compressing long contexts into compact summary vectors, which are then accessible to the model as soft prompts. Summary vectors are trained with an unsupervised objective, whereby long documents are processed in segments and summary vectors from all previous segments are used in language modeling. We fine-tune OPT models on sequences of up to 30,720 tokens and show that AutoCompressors can utilize long contexts to improve perplexity. We evaluate AutoCompressors on in-context learning by compressing task demonstrations. We find that summary vectors are good substitutes for plain-text demonstrations, increasing accuracy while reducing inference cost. Finally, we explore the benefits of pre-computing summary vectors for large corpora by applying summary vectors to retrieval-augmented language modeling. Overall, AutoCompressors emerge as a simple and inexpensive solution for extending the context window of LMs while speeding up inference over long contexts.
Does RAG Really Perform Bad For Long-Context Processing?
The efficient processing of long context poses a serious challenge for large language models (LLMs). Recently, retrieval-augmented generation (RAG) has emerged as a promising strategy for this problem, as it enables LLMs to make selective use of the long context for efficient computation. However, existing RAG approaches lag behind other long-context processing methods due to inherent limitations on inaccurate retrieval and fragmented contexts. To address these challenges, we introduce RetroLM, a novel RAG framework for long-context processing. Unlike traditional methods, RetroLM employs KV-level retrieval augmentation, where it partitions the LLM's KV cache into contiguous pages and retrieves the most crucial ones for efficient computation. This approach enhances robustness to retrieval inaccuracy, facilitates effective utilization of fragmented contexts, and saves the cost from repeated computation. Building on this framework, we further develop a specialized retriever for precise retrieval of critical pages and conduct unsupervised post-training to optimize the model's ability to leverage retrieved information. We conduct comprehensive evaluations with a variety of benchmarks, including LongBench, InfiniteBench, and RULER, where RetroLM significantly outperforms existing long-context LLMs and efficient long-context processing methods, particularly in tasks requiring intensive reasoning or extremely long-context comprehension.
LongSpec: Long-Context Lossless Speculative Decoding with Efficient Drafting and Verification
As Large Language Models (LLMs) can now process extremely long contexts, efficient inference over these extended inputs has become increasingly important, especially for emerging applications like LLM agents that highly depend on this capability. Speculative decoding (SD) offers a promising lossless acceleration technique compared to lossy alternatives such as quantization and model cascades. However, most state-of-the-art SD methods are trained on short texts (typically fewer than 4k tokens), making them unsuitable for long-context scenarios. Specifically, adapting these methods to long contexts presents three key challenges: (1) the excessive memory demands posed by draft models due to large Key-Value (KV) cache; (2) performance degradation resulting from the mismatch between short-context training and long-context inference; and (3) inefficiencies in tree attention mechanisms when managing long token sequences. This work introduces LongSpec, a framework that addresses these challenges through three core innovations: a memory-efficient draft model with a constant-sized KV cache; novel position indices that mitigate the training-inference mismatch; and an attention aggregation strategy that combines fast prefix computation with standard tree attention to enable efficient decoding. Experimental results confirm the effectiveness of LongSpec, achieving up to a 3.26x speedup over strong Flash Attention baselines across five long-context understanding datasets, as well as a 2.25x reduction in wall-clock time on the AIME24 long reasoning task with the QwQ model, demonstrating significant latency improvements for long-context applications. The code is available at https://github.com/sail-sg/LongSpec.
LongAttn: Selecting Long-context Training Data via Token-level Attention
With the development of large language models (LLMs), there has been an increasing need for significant advancements in handling long contexts. To enhance long-context capabilities, constructing high-quality training data with long-range dependencies is crucial. Existing methods to select long-context data often rely on sentence-level analysis, which can be greatly optimized in both performance and efficiency. In this paper, we propose a novel token-level framework, LongAttn, which leverages the self-attention mechanism of LLMs to measure the long-range dependencies for the data. By calculating token-level dependency strength and distribution uniformity of token scores, LongAttn effectively quantifies long-range dependencies, enabling more accurate and efficient data selection. We filter LongABC-32K from open-source long-context datasets (ArXiv, Book, and Code). Through our comprehensive experiments, LongAttn has demonstrated its excellent effectiveness, scalability, and efficiency. To facilitate future research in long-context data, we released our code and the high-quality long-context training data LongABC-32K.
Structured Prompting: Scaling In-Context Learning to 1,000 Examples
Large language models have exhibited intriguing in-context learning capability, achieving promising zero- and few-shot performance without updating the parameters. However, conventional in-context learning is usually restricted by length constraints, rendering it ineffective to absorb supervision from a large number of examples. In order to go beyond few shots, we introduce structured prompting that breaks the length limit and scales in-context learning to thousands of examples. Specifically, demonstration examples are separately encoded with well-designed position embeddings, and then they are jointly attended by the test example using a rescaled attention mechanism. So we can scale the number of exemplars with linear complexity instead of quadratic complexity with respect to length. Experimental results on a diverse set of tasks show that our approach improves end-task performance and reduces evaluation variance over conventional in-context learning as the number of demonstration examples increases. Code has been released at https://aka.ms/structured-prompting.
Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers
As large language models increasingly gain popularity in real-world applications, processing extremely long contexts, often exceeding the model's pre-trained context limits, has emerged as a critical challenge. While existing approaches to efficient long-context processing show promise, recurrent compression-based methods struggle with information preservation, whereas random access approaches require substantial memory resources. We introduce REFORM, a novel inference framework that efficiently handles long contexts through a two-phase approach. First, it incrementally processes input chunks while maintaining a compressed KV cache, constructs cross-layer context embeddings, and utilizes early exit strategy for improved efficiency. Second, it identifies and gathers essential tokens via similarity matching and selectively recomputes the KV cache. Compared to baselines, REFORM achieves over 50% and 27% performance gains on RULER and BABILong respectively at 1M context length. It also outperforms baselines on Infinite-Bench and MM-NIAH, demonstrating flexibility across diverse tasks and domains. Additionally, REFORM reduces inference time by 30% and peak memory usage by 5%, achieving both efficiency and superior performance.
LADM: Long-context Training Data Selection with Attention-based Dependency Measurement for LLMs
Long-context modeling has drawn more and more attention in the area of Large Language Models (LLMs). Continual training with long-context data becomes the de-facto method to equip LLMs with the ability to process long inputs. However, it still remains an open challenge to measure the quality of long-context training data. To address this issue, we propose a Long-context data selection framework with Attention-based Dependency Measurement (LADM), which can efficiently identify high-quality long-context data from a large-scale, multi-domain pre-training corpus. LADM leverages the retrieval capabilities of the attention mechanism to capture contextual dependencies, ensuring a comprehensive quality measurement of long-context data. Experimental results show that our LADM framework significantly boosts the performance of LLMs on multiple long-context tasks with only 1B tokens for continual training.
Scaling Transformer to 1M tokens and beyond with RMT
This technical report presents the application of a recurrent memory to extend the context length of BERT, one of the most effective Transformer-based models in natural language processing. By leveraging the Recurrent Memory Transformer architecture, we have successfully increased the model's effective context length to an unprecedented two million tokens, while maintaining high memory retrieval accuracy. Our method allows for the storage and processing of both local and global information and enables information flow between segments of the input sequence through the use of recurrence. Our experiments demonstrate the effectiveness of our approach, which holds significant potential to enhance long-term dependency handling in natural language understanding and generation tasks as well as enable large-scale context processing for memory-intensive applications.
Never Lost in the Middle: Improving Large Language Models via Attention Strengthening Question Answering
While large language models (LLMs) are equipped with longer text input capabilities than before, they are struggling to seek correct information in long contexts. The "lost in the middle" problem challenges most LLMs, referring to the dramatic decline in accuracy when correct information is located in the middle. To overcome this crucial issue, this paper proposes to enhance the information searching and reflection ability of LLMs in long contexts via specially designed tasks called Attention Strengthening Multi-doc QA (ASM QA). Following these tasks, our model excels in focusing more precisely on the desired information. Experimental results show substantial improvement in Multi-doc QA and other benchmarks, superior to state-of-the-art models by 13.7% absolute gain in shuffled settings, by 21.5% in passage retrieval task. We release our model, Ziya-Reader to promote related research in the community.
Bootstrap Your Own Context Length
We introduce a bootstrapping approach to train long-context language models by exploiting their short-context capabilities only. Our method utilizes a simple agent workflow to synthesize diverse long-context instruction tuning data, thereby eliminating the necessity for manual data collection and annotation. The proposed data synthesis workflow requires only a short-context language model, a text retriever, and a document collection, all of which are readily accessible within the open-source ecosystem. Subsequently, language models are fine-tuned using the synthesized data to extend their context lengths. In this manner, we effectively transfer the short-context capabilities of language models to long-context scenarios through a bootstrapping process. We conduct experiments with the open-source Llama-3 family of models and demonstrate that our method can successfully extend the context length to up to 1M tokens, achieving superior performance across various benchmarks.
L-CiteEval: Do Long-Context Models Truly Leverage Context for Responding?
Long-context models (LCMs) have made remarkable strides in recent years, offering users great convenience for handling tasks that involve long context, such as document summarization. As the community increasingly prioritizes the faithfulness of generated results, merely ensuring the accuracy of LCM outputs is insufficient, as it is quite challenging for humans to verify the results from the extremely lengthy context. Yet, although some efforts have been made to assess whether LCMs respond truly based on the context, these works either are limited to specific tasks or heavily rely on external evaluation resources like GPT-4.In this work, we introduce L-CiteEval, a comprehensive multi-task benchmark for long-context understanding with citations, aiming to evaluate both the understanding capability and faithfulness of LCMs. L-CiteEval covers 11 tasks from diverse domains, spanning context lengths from 8K to 48K, and provides a fully automated evaluation suite. Through testing with 11 cutting-edge closed-source and open-source LCMs, we find that although these models show minor differences in their generated results, open-source models substantially trail behind their closed-source counterparts in terms of citation accuracy and recall. This suggests that current open-source LCMs are prone to responding based on their inherent knowledge rather than the given context, posing a significant risk to the user experience in practical applications. We also evaluate the RAG approach and observe that RAG can significantly improve the faithfulness of LCMs, albeit with a slight decrease in the generation quality. Furthermore, we discover a correlation between the attention mechanisms of LCMs and the citation generation process.
In-Context Learning for Text Classification with Many Labels
In-context learning (ICL) using large language models for tasks with many labels is challenging due to the limited context window, which makes it difficult to fit a sufficient number of examples in the prompt. In this paper, we use a pre-trained dense retrieval model to bypass this limitation, giving the model only a partial view of the full label space for each inference call. Testing with recent open-source LLMs (OPT, LLaMA), we set new state of the art performance in few-shot settings for three common intent classification datasets, with no finetuning. We also surpass fine-tuned performance on fine-grained sentiment classification in certain cases. We analyze the performance across number of in-context examples and different model scales, showing that larger models are necessary to effectively and consistently make use of larger context lengths for ICL. By running several ablations, we analyze the model's use of: a) the similarity of the in-context examples to the current input, b) the semantic content of the class names, and c) the correct correspondence between examples and labels. We demonstrate that all three are needed to varying degrees depending on the domain, contrary to certain recent works.
Se^2: Sequential Example Selection for In-Context Learning
The remarkable capability of large language models (LLMs) for in-context learning (ICL) needs to be activated by demonstration examples. Prior work has extensively explored the selection of examples for ICL, predominantly following the "select then organize" paradigm, such approaches often neglect the internal relationships between examples and exist an inconsistency between the training and inference. In this paper, we formulate the problem as a sequential selection problem and introduce Se^2, a sequential-aware method that leverages the LLM's feedback on varying context, aiding in capturing inter-relationships and sequential information among examples, significantly enriching the contextuality and relevance of ICL prompts. Meanwhile, we utilize beam search to seek and construct example sequences, enhancing both quality and diversity. Extensive experiments across 23 NLP tasks from 8 distinct categories illustrate that Se^2 markedly surpasses competitive baselines and achieves 42% relative improvement over random selection. Further in-depth analysis show the effectiveness of proposed strategies, highlighting Se^2's exceptional stability and adaptability across various scenarios. Our code will be released to facilitate future research.
Augmenting Language Models with Long-Term Memory
Existing large language models (LLMs) can only afford fix-sized inputs due to the input length limit, preventing them from utilizing rich long-context information from past inputs. To address this, we propose a framework, Language Models Augmented with Long-Term Memory (LongMem), which enables LLMs to memorize long history. We design a novel decoupled network architecture with the original backbone LLM frozen as a memory encoder and an adaptive residual side-network as a memory retriever and reader. Such a decoupled memory design can easily cache and update long-term past contexts for memory retrieval without suffering from memory staleness. Enhanced with memory-augmented adaptation training, LongMem can thus memorize long past context and use long-term memory for language modeling. The proposed memory retrieval module can handle unlimited-length context in its memory bank to benefit various downstream tasks. Typically, LongMem can enlarge the long-form memory to 65k tokens and thus cache many-shot extra demonstration examples as long-form memory for in-context learning. Experiments show that our method outperforms strong long-context models on ChapterBreak, a challenging long-context modeling benchmark, and achieves remarkable improvements on memory-augmented in-context learning over LLMs. The results demonstrate that the proposed method is effective in helping language models to memorize and utilize long-form contents. Our code is open-sourced at https://aka.ms/LongMem.
The Role of Global and Local Context in Named Entity Recognition
Pre-trained transformer-based models have recently shown great performance when applied to Named Entity Recognition (NER). As the complexity of their self-attention mechanism prevents them from processing long documents at once, these models are usually applied in a sequential fashion. Such an approach unfortunately only incorporates local context and prevents leveraging global document context in long documents such as novels, which might hinder performance. In this article, we explore the impact of global document context, and its relationships with local context. We find that correctly retrieving global document context has a greater impact on performance than only leveraging local context, prompting for further research on how to better retrieve that context.
CLEX: Continuous Length Extrapolation for Large Language Models
Transformer-based Large Language Models (LLMs) are pioneering advances in many natural language processing tasks, however, their exceptional capabilities are restricted within the preset context window of Transformer. Position Embedding (PE) scaling methods, while effective in extending the context window to a specific length, demonstrate either notable limitations in their extrapolation abilities or sacrificing partial performance within the context window. Length extrapolation methods, although theoretically capable of extending the context window beyond the training sequence length, often underperform in practical long-context applications. To address these challenges, we propose Continuous Length EXtrapolation (CLEX) for LLMs. We generalise the PE scaling approaches to model the continuous dynamics by ordinary differential equations over the length scaling factor, thereby overcoming the constraints of current PE scaling methods designed for specific lengths. Moreover, by extending the dynamics to desired context lengths beyond the training sequence length, CLEX facilitates the length extrapolation with impressive performance in practical tasks. We demonstrate that CLEX can be seamlessly incorporated into LLMs equipped with Rotary Position Embedding, such as LLaMA and GPT-NeoX, with negligible impact on training and inference latency. Experimental results reveal that CLEX can effectively extend the context window to over 4x or almost 8x training length, with no deterioration in performance. Furthermore, when evaluated on the practical LongBench benchmark, our model trained on a 4k length exhibits competitive performance against state-of-the-art open-source models trained on context lengths up to 32k.
L^2M: Mutual Information Scaling Law for Long-Context Language Modeling
We rigorously establish a bipartite mutual information scaling law in natural language that governs long-range dependencies. This scaling law, which we show is distinct from and scales independently of the conventional two-point mutual information, is the key to understanding long-context language modeling. Using this scaling law, we formulate the Long-context Language Modeling (L^2M) condition, which relates a model's capacity for effective long context length modeling to the scaling of its latent state size for storing past information. Our results are validated through experiments on both transformers and state space models. This work establishes a theoretical foundation that guides the development of large language models toward longer context lengths.
Same Task, More Tokens: the Impact of Input Length on the Reasoning Performance of Large Language Models
This paper explores the impact of extending input lengths on the capabilities of Large Language Models (LLMs). Despite LLMs advancements in recent times, their performance consistency across different input lengths is not well understood. We investigate this aspect by introducing a novel QA reasoning framework, specifically designed to assess the impact of input length. We isolate the effect of input length using multiple versions of the same sample, each being extended with padding of different lengths, types and locations. Our findings show a notable degradation in LLMs' reasoning performance at much shorter input lengths than their technical maximum. We show that the degradation trend appears in every version of our dataset, although at different intensities. Additionally, our study reveals that traditional perplexity metrics do not correlate with performance of LLMs' in long input reasoning tasks. We analyse our results and identify failure modes that can serve as useful guides for future research, potentially informing strategies to address the limitations observed in LLMs.
Activation-aware Probe-Query: Effective Key-Value Retrieval for Long-Context LLMs Inference
Recent advances in large language models (LLMs) have showcased exceptional performance in long-context tasks, while facing significant inference efficiency challenges with limited GPU memory. Existing solutions first proposed the sliding-window approach to accumulate a set of historical key-value (KV) pairs for reuse, then further improvements selectively retain its subsets at each step. However, due to the sparse attention distribution across a long context, it is hard to identify and recall relevant KV pairs, as the attention is distracted by massive candidate pairs. Additionally, we found it promising to select representative tokens as probe-Query in each sliding window to effectively represent the entire context, which is an approach overlooked by existing methods. Thus, we propose ActQKV, a training-free, Activation-aware approach that dynamically determines probe-Query and leverages it to retrieve the relevant KV pairs for inference. Specifically, ActQKV monitors a token-level indicator, Activation Bias, within each context window, enabling the proper construction of probe-Query for retrieval at pre-filling stage. To accurately recall the relevant KV pairs and minimize the irrelevant ones, we design a dynamic KV cut-off mechanism guided by information density across layers at the decoding stage. Experiments on the Long-Bench and infty Benchmarks demonstrate its state-of-the-art performance with competitive inference quality and resource efficiency.
CoLT5: Faster Long-Range Transformers with Conditional Computation
Many natural language processing tasks benefit from long inputs, but processing long documents with Transformers is expensive -- not only due to quadratic attention complexity but also from applying feedforward and projection layers to every token. However, not all tokens are equally important, especially for longer documents. We propose CoLT5, a long-input Transformer model that builds on this intuition by employing conditional computation, devoting more resources to important tokens in both feedforward and attention layers. We show that CoLT5 achieves stronger performance than LongT5 with much faster training and inference, achieving SOTA on the long-input SCROLLS benchmark. Moreover, CoLT5 can effectively and tractably make use of extremely long inputs, showing strong gains up to 64k input length.
MiniLongBench: The Low-cost Long Context Understanding Benchmark for Large Language Models
Long Context Understanding (LCU) is a critical area for exploration in current large language models (LLMs). However, due to the inherently lengthy nature of long-text data, existing LCU benchmarks for LLMs often result in prohibitively high evaluation costs, like testing time and inference expenses. Through extensive experimentation, we discover that existing LCU benchmarks exhibit significant redundancy, which means the inefficiency in evaluation. In this paper, we propose a concise data compression method tailored for long-text data with sparse information characteristics. By pruning the well-known LCU benchmark LongBench, we create MiniLongBench. This benchmark includes only 237 test samples across six major task categories and 21 distinct tasks. Through empirical analysis of over 60 LLMs, MiniLongBench achieves an average evaluation cost reduced to only 4.5% of the original while maintaining an average rank correlation coefficient of 0.97 with LongBench results. Therefore, our MiniLongBench, as a low-cost benchmark, holds great potential to substantially drive future research into the LCU capabilities of LLMs. See https://github.com/MilkThink-Lab/MiniLongBench for our code, data and tutorial.
In-context Interference in Chat-based Large Language Models
Large language models (LLMs) have had a huge impact on society due to their impressive capabilities and vast knowledge of the world. Various applications and tools have been created that allow users to interact with these models in a black-box scenario. However, one limitation of this scenario is that users cannot modify the internal knowledge of the model, and the only way to add or modify internal knowledge is by explicitly mentioning it to the model during the current interaction. This learning process is called in-context training, and it refers to training that is confined to the user's current session or context. In-context learning has significant applications, but also has limitations that are seldom studied. In this paper, we present a study that shows how the model can suffer from interference between information that continually flows in the context, causing it to forget previously learned knowledge, which can reduce the model's performance. Along with showing the problem, we propose an evaluation benchmark based on the bAbI dataset.
Recurrent Context Compression: Efficiently Expanding the Context Window of LLM
To extend the context length of Transformer-based large language models (LLMs) and improve comprehension capabilities, we often face limitations due to computational resources and bounded memory storage capacity. This work introduces a method called Recurrent Context Compression (RCC), designed to efficiently expand the context window length of LLMs within constrained storage space. We also investigate the issue of poor model responses when both instructions and context are compressed in downstream tasks, and propose an instruction reconstruction method to mitigate this problem. We validated the effectiveness of our approach on multiple tasks, achieving a compression rate of up to 32x on text reconstruction tasks with a BLEU4 score close to 0.95, and nearly 100\% accuracy on a passkey retrieval task with a sequence length of 1M. Finally, our method demonstrated competitive performance in long-text question-answering tasks compared to non-compressed methods, while significantly saving storage resources in long-text inference tasks. Our code, models, and demo are available at https://github.com/WUHU-G/RCC_Transformer
LongCite: Enabling LLMs to Generate Fine-grained Citations in Long-context QA
Though current long-context large language models (LLMs) have demonstrated impressive capacities in answering user questions based on extensive text, the lack of citations in their responses makes user verification difficult, leading to concerns about their trustworthiness due to their potential hallucinations. In this work, we aim to enable long-context LLMs to generate responses with fine-grained sentence-level citations, improving their faithfulness and verifiability. We first introduce LongBench-Cite, an automated benchmark for assessing current LLMs' performance in Long-Context Question Answering with Citations (LQAC), revealing considerable room for improvement. To this end, we propose CoF (Coarse to Fine), a novel pipeline that utilizes off-the-shelf LLMs to automatically generate long-context QA instances with precise sentence-level citations, and leverage this pipeline to construct LongCite-45k, a large-scale SFT dataset for LQAC. Finally, we train LongCite-8B and LongCite-9B using the LongCite-45k dataset, successfully enabling their generation of accurate responses and fine-grained sentence-level citations in a single output. The evaluation results on LongBench-Cite show that our trained models achieve state-of-the-art citation quality, surpassing advanced proprietary models including GPT-4o.
Length Generalization of Causal Transformers without Position Encoding
Generalizing to longer sentences is important for recent Transformer-based language models. Besides algorithms manipulating explicit position features, the success of Transformers without position encodings (NoPE) provides a new way to overcome the challenge. In this paper, we study the length generalization property of NoPE. We find that although NoPE can extend to longer sequences than the commonly used explicit position encodings, it still has a limited context length. We identify a connection between the failure of NoPE's generalization and the distraction of attention distributions. We propose a parameter-efficient tuning for searching attention heads' best temperature hyper-parameters, which substantially expands NoPE's context size. Experiments on long sequence language modeling, the synthetic passkey retrieval task and real-world long context tasks show that NoPE can achieve competitive performances with state-of-the-art length generalization algorithms. The source code is publicly accessible
Minimum Tuning to Unlock Long Output from LLMs with High Quality Data as the Key
As large language models rapidly evolve to support longer context, there is a notable disparity in their capability to generate output at greater lengths. Recent study suggests that the primary cause for this imbalance may arise from the lack of data with long-output during alignment training. In light of this observation, attempts are made to re-align foundation models with data that fills the gap, which result in models capable of generating lengthy output when instructed. In this paper, we explore the impact of data-quality in tuning a model for long output, and the possibility of doing so from the starting points of human-aligned (instruct or chat) models. With careful data curation, we show that it possible to achieve similar performance improvement in our tuned models, with only a small fraction of training data instances and compute. In addition, we assess the generalizability of such approaches by applying our tuning-recipes to several models. our findings suggest that, while capacities for generating long output vary across different models out-of-the-box, our approach to tune them with high-quality data using lite compute, consistently yields notable improvement across all models we experimented on. We have made public our curated dataset for tuning long-writing capability, the implementations of model tuning and evaluation, as well as the fine-tuned models, all of which can be openly-accessed.
Taipan: Efficient and Expressive State Space Language Models with Selective Attention
Efficient long-context language modeling remains a significant challenge in Natural Language Processing (NLP). While Transformers dominate language tasks, they struggle with long sequences due to quadratic computational complexity in training and linearly scaling memory costs during inference. Recent State Space Models (SSMs) such as Mamba offer alternatives with constant memory usage, but they underperform in tasks requiring extensive in-context retrieval. We introduce Taipan, a novel hybrid architecture that combines Mamba-2 with Selective Attention Layers (SALs). These SALs identify tokens requiring long-range interactions, remove less important features, and then augment their representations using the attention module. This approach balances Mamba's efficiency with Transformer-like performance in memory-intensive tasks. By constraining the attention budget, Taipan extends accurate predictions to context lengths of up to 1 million tokens while preserving computational efficiency. Our experiments demonstrate Taipan's superior performance across various scales and tasks, offering a promising solution for efficient long-context language modeling.
On Many-Shot In-Context Learning for Long-Context Evaluation
Many-shot in-context learning (ICL) has emerged as a unique setup to both utilize and test the ability of large language models to handle long context. This paper delves into long-context language model (LCLM) evaluation through many-shot ICL. We first ask: what types of ICL tasks benefit from additional demonstrations, and how effective are they in evaluating LCLMs? We find that classification and summarization tasks show performance improvements with additional demonstrations, while translation and reasoning tasks do not exhibit clear trends. Next, we investigate the extent to which different tasks necessitate retrieval versus global context understanding. We develop metrics to categorize ICL tasks into two groups: (i) similar-sample learning (SSL): tasks where retrieval of the most similar examples is sufficient for good performance, and (ii) all-sample learning (ASL): tasks that necessitate a deeper comprehension of all examples in the prompt. Lastly, we introduce a new many-shot ICL benchmark, MANYICLBENCH, to characterize model's ability on both fronts and benchmark 12 LCLMs using MANYICLBENCH. We find that while state-of-the-art models demonstrate good performance up to 64k tokens in SSL tasks, many models experience significant performance drops at only 16k tokens in ASL tasks.
LongProLIP: A Probabilistic Vision-Language Model with Long Context Text
Recently, Probabilistic Language-Image Pre-Training (ProLIP) has been proposed to tackle the multiplicity issue of vision-language (VL) tasks. Despite their success in probabilistic representation learning at a scale, the ProLIP models cannot handle long context texts longer than 64 context length, which limits their ability to capture rich contextual information from longer text sequences. To address this issue, this paper proposes a fine-tuning strategy for ProLIP to accept longer texts, e.g., 256 text tokens. Experimental results on Urban-1k and the DataComp evaluation suite show that the proposed LongProLIP recipe can improve understanding of long contexts while minimizing the negative effect of fine-tuning. We also observe a trade-off between the long context understanding (measured by Urban-1k) and general zero-shot capability (measured by ImageNet or the average of 38 zero-shot evaluation datasets by DataComp).
NoLiMa: Long-Context Evaluation Beyond Literal Matching
Recent large language models (LLMs) support long contexts ranging from 128K to 1M tokens. A popular method for evaluating these capabilities is the needle-in-a-haystack (NIAH) test, which involves retrieving a "needle" (relevant information) from a "haystack" (long irrelevant context). Extensions of this approach include increasing distractors, fact chaining, and in-context reasoning. However, in these benchmarks, models can exploit existing literal matches between the needle and haystack to simplify the task. To address this, we introduce NoLiMa, a benchmark extending NIAH with a carefully designed needle set, where questions and needles have minimal lexical overlap, requiring models to infer latent associations to locate the needle within the haystack. We evaluate 12 popular LLMs that claim to support contexts of at least 128K tokens. While they perform well in short contexts (<1K), performance degrades significantly as context length increases. At 32K, for instance, 10 models drop below 50% of their strong short-length baselines. Even GPT-4o, one of the top-performing exceptions, experiences a reduction from an almost-perfect baseline of 99.3% to 69.7%. Our analysis suggests these declines stem from the increased difficulty the attention mechanism faces in longer contexts when literal matches are absent, making it harder to retrieve relevant information.
MacRAG: Compress, Slice, and Scale-up for Multi-Scale Adaptive Context RAG
Long-context large language models (LC LLMs) combined with retrieval-augmented generation (RAG) hold strong potential for complex multi-hop and large-document tasks. However, existing RAG systems often suffer from imprecise retrieval, incomplete context coverage under constrained windows, and fragmented information from suboptimal context construction. We introduce Multi-scale Adaptive Context RAG (MacRAG), a hierarchical RAG framework that compresses and partitions documents into coarse-to-fine granularities, then adaptively merges relevant contexts through real-time chunk- and document-level expansions. By initiating with finest-level retrieval and progressively incorporating broader, higher-level context, MacRAG constructs effective query-specific long contexts, optimizing both precision and coverage. Evaluations on challenging LongBench expansions of HotpotQA, 2WikiMultihopQA, and Musique confirm MacRAG consistently surpasses baseline RAG pipelines in single- and multi-step generation using Llama-3.1-8B, Gemini-1.5-pro, and GPT-4o. Our results establish MacRAG as an efficient, scalable solution for real-world long-context, multi-hop reasoning. Our code is available at https://github.com/Leezekun/MacRAG.
UIO-LLMs: Unbiased Incremental Optimization for Long-Context LLMs
Managing long texts is challenging for large language models (LLMs) due to limited context window sizes. This study introduces UIO-LLMs, an unbiased incremental optimization approach for memory-enhanced transformers under long-context settings. We initially conceptualize the process as a streamlined encoder-decoder framework where the weights-shared encoder and decoder respectively encapsulate a context segment into memories and leverage these memories to predict outputs of the subsequent segment. Subsequently, by treating our memory-enhanced transformers as fully-connected recurrent neural networks (RNNs), we refine the training process using the Truncated Backpropagation Through Time (TBPTT) algorithm, which incorporates innovative incremental optimization techniques. These techniques not only diminish time complexity but also address the bias in gradient computation through an unbiased optimization process. UIO-LLMs successfully handle long context, such as extending the context window of Llama2-7b-chat from 4K to 100K tokens with minimal 2% additional parameters, while keeping the inference cost nearly linear as context length increases.
SCROLLS: Standardized CompaRison Over Long Language Sequences
NLP benchmarks have largely focused on short texts, such as sentences and paragraphs, even though long texts comprise a considerable amount of natural language in the wild. We introduce SCROLLS, a suite of tasks that require reasoning over long texts. We examine existing long-text datasets, and handpick ones where the text is naturally long, while prioritizing tasks that involve synthesizing information across the input. SCROLLS contains summarization, question answering, and natural language inference tasks, covering multiple domains, including literature, science, business, and entertainment. Initial baselines, including Longformer Encoder-Decoder, indicate that there is ample room for improvement on SCROLLS. We make all datasets available in a unified text-to-text format and host a live leaderboard to facilitate research on model architecture and pretraining methods.
QuALITY: Question Answering with Long Input Texts, Yes!
To enable building and testing models on long-document comprehension, we introduce QuALITY, a multiple-choice QA dataset with context passages in English that have an average length of about 5,000 tokens, much longer than typical current models can process. Unlike in prior work with passages, our questions are written and validated by contributors who have read the entire passage, rather than relying on summaries or excerpts. In addition, only half of the questions are answerable by annotators working under tight time constraints, indicating that skimming and simple search are not enough to consistently perform well. Our baseline models perform poorly on this task (55.4%) and significantly lag behind human performance (93.5%).
DeciMamba: Exploring the Length Extrapolation Potential of Mamba
Long-range sequence processing poses a significant challenge for Transformers due to their quadratic complexity in input length. A promising alternative is Mamba, which demonstrates high performance and achieves Transformer-level capabilities while requiring substantially fewer computational resources. In this paper we explore the length-generalization capabilities of Mamba, which we find to be relatively limited. Through a series of visualizations and analyses we identify that the limitations arise from a restricted effective receptive field, dictated by the sequence length used during training. To address this constraint, we introduce DeciMamba, a context-extension method specifically designed for Mamba. This mechanism, built on top of a hidden filtering mechanism embedded within the S6 layer, enables the trained model to extrapolate well even without additional training. Empirical experiments over real-world long-range NLP tasks show that DeciMamba can extrapolate to context lengths that are 25x times longer than the ones seen during training, and does so without utilizing additional computational resources. We will release our code and models.
Current Limitations of Language Models: What You Need is Retrieval
We classify and re-examine some of the current approaches to improve the performance-computes trade-off of language models, including (1) non-causal models (such as masked language models), (2) extension of batch length with efficient attention, (3) recurrence, (4) conditional computation and (5) retrieval. We identify some limitations (1) - (4) suffer from. For example, (1) currently struggles with open-ended text generation with the output loosely constrained by the input as well as performing general textual tasks like GPT-2/3 due to its need for a specific fine-tuning dataset. (2) and (3) do not improve the prediction of the first sim 10^3 tokens. Scaling up a model size (e.g. efficiently with (4)) still results in poor performance scaling for some tasks. We argue (5) would resolve many of these limitations, and it can (a) reduce the amount of supervision and (b) efficiently extend the context over the entire training dataset and the entire past of the current sample. We speculate how to modify MARGE to perform unsupervised causal modeling that achieves (b) with the retriever jointly trained.
DetectiveQA: Evaluating Long-Context Reasoning on Detective Novels
With the rapid advancement of Large Language Models (LLMs), long-context information understanding and processing have become a hot topic in academia and industry. However, benchmarks for evaluating the ability of LLMs to handle long-context information do not seem to have kept pace with the development of LLMs. Despite the emergence of various long-context evaluation benchmarks, the types of capability assessed are still limited, without new capability dimensions. In this paper, we introduce DetectiveQA, a narrative reasoning benchmark featured with an average context length of over 100K tokens. DetectiveQA focuses on evaluating the long-context reasoning ability of LLMs, which not only requires a full understanding of context but also requires extracting important evidences from the context and reasoning according to extracted evidences to answer the given questions. This is a new dimension of capability evaluation, which is more in line with the current intelligence level of LLMs. We use detective novels as data sources, which naturally have various reasoning elements. Finally, we manually annotated 600 questions in Chinese and then also provided an English edition of the context information and questions. We evaluate many long-context LLMs on DetectiveQA, including commercial and open-sourced models, and the results indicate that existing long-context LLMs still require significant advancements to effectively process true long-context dependency questions.
LLMtimesMapReduce: Simplified Long-Sequence Processing using Large Language Models
Enlarging the context window of large language models (LLMs) has become a crucial research area, particularly for applications involving extremely long texts. In this work, we propose a novel training-free framework for processing long texts, utilizing a divide-and-conquer strategy to achieve comprehensive document understanding. The proposed LLMtimesMapReduce framework splits the entire document into several chunks for LLMs to read and then aggregates the intermediate answers to produce the final output. The main challenge for divide-and-conquer long text processing frameworks lies in the risk of losing essential long-range information when splitting the document, which can lead the model to produce incomplete or incorrect answers based on the segmented texts. Disrupted long-range information can be classified into two categories: inter-chunk dependency and inter-chunk conflict. We design a structured information protocol to better cope with inter-chunk dependency and an in-context confidence calibration mechanism to resolve inter-chunk conflicts. Experimental results demonstrate that LLMtimesMapReduce can outperform representative open-source and commercial long-context LLMs, and is applicable to several different models.