Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTowards Effective Multi-Moving-Camera Tracking: A New Dataset and Lightweight Link Model
Ensuring driving safety for autonomous vehicles has become increasingly crucial, highlighting the need for systematic tracking of on-road pedestrians. Most vehicles are equipped with visual sensors, however, the large-scale visual data has not been well studied yet. Multi-target multi-camera (MTMC) tracking systems are composed of two modules: single-camera tracking (SCT) and inter-camera tracking (ICT). To reliably coordinate between them, MTMC tracking has been a very complicated task, while tracking across multiple moving cameras makes it even more challenging. In this paper, we focus on multi-target multi-moving-camera (MTMMC) tracking, which is attracting increasing attention from the research community. Observing there are few datasets for MTMMC tracking, we collect a new dataset, called Multi-Moving-Camera Track (MMCT), which contains sequences under various driving scenarios. To address the common problems of identity switch easily faced by most existing SCT trackers, especially for moving cameras due to ego-motion between the camera and targets, a lightweight appearance-free global link model, called Linker, is proposed to mitigate the identity switch by associating two disjoint tracklets of the same target into a complete trajectory within the same camera. Incorporated with Linker, existing SCT trackers generally obtain a significant improvement. Moreover, to alleviate the impact of the image style variations caused by different cameras, a color transfer module is effectively incorporated to extract cross-camera consistent appearance features for pedestrian association across moving cameras for ICT, resulting in a much improved MTMMC tracking system, which can constitute a step further towards coordinated mining of multiple moving cameras. The project page is available at https://dhu-mmct.github.io/.
CC-3DT: Panoramic 3D Object Tracking via Cross-Camera Fusion
To track the 3D locations and trajectories of the other traffic participants at any given time, modern autonomous vehicles are equipped with multiple cameras that cover the vehicle's full surroundings. Yet, camera-based 3D object tracking methods prioritize optimizing the single-camera setup and resort to post-hoc fusion in a multi-camera setup. In this paper, we propose a method for panoramic 3D object tracking, called CC-3DT, that associates and models object trajectories both temporally and across views, and improves the overall tracking consistency. In particular, our method fuses 3D detections from multiple cameras before association, reducing identity switches significantly and improving motion modeling. Our experiments on large-scale driving datasets show that fusion before association leads to a large margin of improvement over post-hoc fusion. We set a new state-of-the-art with 12.6% improvement in average multi-object tracking accuracy (AMOTA) among all camera-based methods on the competitive NuScenes 3D tracking benchmark, outperforming previously published methods by 6.5% in AMOTA with the same 3D detector.
Generalized Face Anti-spoofing via Finer Domain Partition and Disentangling Liveness-irrelevant Factors
Face anti-spoofing techniques based on domain generalization have recently been studied widely. Adversarial learning and meta-learning techniques have been adopted to learn domain-invariant representations. However, prior approaches often consider the dataset gap as the primary factor behind domain shifts. This perspective is not fine-grained enough to reflect the intrinsic gap among the data accurately. In our work, we redefine domains based on identities rather than datasets, aiming to disentangle liveness and identity attributes. We emphasize ignoring the adverse effect of identity shift, focusing on learning identity-invariant liveness representations through orthogonalizing liveness and identity features. To cope with style shifts, we propose Style Cross module to expand the stylistic diversity and Channel-wise Style Attention module to weaken the sensitivity to style shifts, aiming to learn robust liveness representations. Furthermore, acknowledging the asymmetry between live and spoof samples, we introduce a novel contrastive loss, Asymmetric Augmented Instance Contrast. Extensive experiments on four public datasets demonstrate that our method achieves state-of-the-art performance under cross-dataset and limited source dataset scenarios. Additionally, our method has good scalability when expanding diversity of identities. The codes will be released soon.
DynamicID: Zero-Shot Multi-ID Image Personalization with Flexible Facial Editability
Recent advancements in text-to-image generation have spurred interest in personalized human image generation, which aims to create novel images featuring specific human identities as reference images indicate. Although existing methods achieve high-fidelity identity preservation, they often struggle with limited multi-ID usability and inadequate facial editability. We present DynamicID, a tuning-free framework supported by a dual-stage training paradigm that inherently facilitates both single-ID and multi-ID personalized generation with high fidelity and flexible facial editability. Our key innovations include: 1) Semantic-Activated Attention (SAA), which employs query-level activation gating to minimize disruption to the original model when injecting ID features and achieve multi-ID personalization without requiring multi-ID samples during training. 2) Identity-Motion Reconfigurator (IMR), which leverages contrastive learning to effectively disentangle and re-entangle facial motion and identity features, thereby enabling flexible facial editing. Additionally, we have developed a curated VariFace-10k facial dataset, comprising 10k unique individuals, each represented by 35 distinct facial images. Experimental results demonstrate that DynamicID outperforms state-of-the-art methods in identity fidelity, facial editability, and multi-ID personalization capability.
BlendFace: Re-designing Identity Encoders for Face-Swapping
The great advancements of generative adversarial networks and face recognition models in computer vision have made it possible to swap identities on images from single sources. Although a lot of studies seems to have proposed almost satisfactory solutions, we notice previous methods still suffer from an identity-attribute entanglement that causes undesired attributes swapping because widely used identity encoders, eg, ArcFace, have some crucial attribute biases owing to their pretraining on face recognition tasks. To address this issue, we design BlendFace, a novel identity encoder for face-swapping. The key idea behind BlendFace is training face recognition models on blended images whose attributes are replaced with those of another mitigates inter-personal biases such as hairsyles. BlendFace feeds disentangled identity features into generators and guides generators properly as an identity loss function. Extensive experiments demonstrate that BlendFace improves the identity-attribute disentanglement in face-swapping models, maintaining a comparable quantitative performance to previous methods.
MFIM: Megapixel Facial Identity Manipulation
Face swapping is a task that changes a facial identity of a given image to that of another person. In this work, we propose a novel face-swapping framework called Megapixel Facial Identity Manipulation (MFIM). The face-swapping model should achieve two goals. First, it should be able to generate a high-quality image. We argue that a model which is proficient in generating a megapixel image can achieve this goal. However, generating a megapixel image is generally difficult without careful model design. Therefore, our model exploits pretrained StyleGAN in the manner of GAN-inversion to effectively generate a megapixel image. Second, it should be able to effectively transform the identity of a given image. Specifically, it should be able to actively transform ID attributes (e.g., face shape and eyes) of a given image into those of another person, while preserving ID-irrelevant attributes (e.g., pose and expression). To achieve this goal, we exploit 3DMM that can capture various facial attributes. Specifically, we explicitly supervise our model to generate a face-swapped image with the desirable attributes using 3DMM. We show that our model achieves state-of-the-art performance through extensive experiments. Furthermore, we propose a new operation called ID mixing, which creates a new identity by semantically mixing the identities of several people. It allows the user to customize the new identity.
I'm Spartacus, No, I'm Spartacus: Measuring and Understanding LLM Identity Confusion
Large Language Models (LLMs) excel in diverse tasks such as text generation, data analysis, and software development, making them indispensable across domains like education, business, and creative industries. However, the rapid proliferation of LLMs (with over 560 companies developing or deploying them as of 2024) has raised concerns about their originality and trustworthiness. A notable issue, termed identity confusion, has emerged, where LLMs misrepresent their origins or identities. This study systematically examines identity confusion through three research questions: (1) How prevalent is identity confusion among LLMs? (2) Does it arise from model reuse, plagiarism, or hallucination? (3) What are the security and trust-related impacts of identity confusion? To address these, we developed an automated tool combining documentation analysis, self-identity recognition testing, and output similarity comparisons--established methods for LLM fingerprinting--and conducted a structured survey via Credamo to assess its impact on user trust. Our analysis of 27 LLMs revealed that 25.93% exhibit identity confusion. Output similarity analysis confirmed that these issues stem from hallucinations rather than replication or reuse. Survey results further highlighted that identity confusion significantly erodes trust, particularly in critical tasks like education and professional use, with declines exceeding those caused by logical errors or inconsistencies. Users attributed these failures to design flaws, incorrect training data, and perceived plagiarism, underscoring the systemic risks posed by identity confusion to LLM reliability and trustworthiness.
DynamicFace: High-Quality and Consistent Face Swapping for Image and Video using Composable 3D Facial Priors
Face swapping transfers the identity of a source face to a target face while retaining the attributes like expression, pose, hair, and background of the target face. Advanced face swapping methods have achieved attractive results. However, these methods often inadvertently transfer identity information from the target face, compromising expression-related details and accurate identity. We propose a novel method DynamicFace that leverages the power of diffusion models and plug-and-play adaptive attention layers for image and video face swapping. First, we introduce four fine-grained facial conditions using 3D facial priors. All conditions are designed to be disentangled from each other for precise and unique control. Then, we adopt Face Former and ReferenceNet for high-level and detailed identity injection. Through experiments on the FF++ dataset, we demonstrate that our method achieves state-of-the-art results in face swapping, showcasing superior image quality, identity preservation, and expression accuracy. Our framework seamlessly adapts to both image and video domains. Our code and results will be available on the project page: https://dynamic-face.github.io/
High-Fidelity Diffusion Face Swapping with ID-Constrained Facial Conditioning
Face swapping aims to seamlessly transfer a source facial identity onto a target while preserving target attributes such as pose and expression. Diffusion models, known for their superior generative capabilities, have recently shown promise in advancing face-swapping quality. This paper addresses two key challenges in diffusion-based face swapping: the prioritized preservation of identity over target attributes and the inherent conflict between identity and attribute conditioning. To tackle these issues, we introduce an identity-constrained attribute-tuning framework for face swapping that first ensures identity preservation and then fine-tunes for attribute alignment, achieved through a decoupled condition injection. We further enhance fidelity by incorporating identity and adversarial losses in a post-training refinement stage. Our proposed identity-constrained diffusion-based face-swapping model outperforms existing methods in both qualitative and quantitative evaluations, demonstrating superior identity similarity and attribute consistency, achieving a new state-of-the-art performance in high-fidelity face swapping.
Person Re-identification by Contour Sketch under Moderate Clothing Change
Person re-identification (re-id), the process of matching pedestrian images across different camera views, is an important task in visual surveillance. Substantial development of re-id has recently been observed, and the majority of existing models are largely dependent on color appearance and assume that pedestrians do not change their clothes across camera views. This limitation, however, can be an issue for re-id when tracking a person at different places and at different time if that person (e.g., a criminal suspect) changes his/her clothes, causing most existing methods to fail, since they are heavily relying on color appearance and thus they are inclined to match a person to another person wearing similar clothes. In this work, we call the person re-id under clothing change the "cross-clothes person re-id". In particular, we consider the case when a person only changes his clothes moderately as a first attempt at solving this problem based on visible light images; that is we assume that a person wears clothes of a similar thickness, and thus the shape of a person would not change significantly when the weather does not change substantially within a short period of time. We perform cross-clothes person re-id based on a contour sketch of person image to take advantage of the shape of the human body instead of color information for extracting features that are robust to moderate clothing change. Due to the lack of a large-scale dataset for cross-clothes person re-id, we contribute a new dataset that consists of 33698 images from 221 identities. Our experiments illustrate the challenges of cross-clothes person re-id and demonstrate the effectiveness of our proposed method.
MagicID: Hybrid Preference Optimization for ID-Consistent and Dynamic-Preserved Video Customization
Video identity customization seeks to produce high-fidelity videos that maintain consistent identity and exhibit significant dynamics based on users' reference images. However, existing approaches face two key challenges: identity degradation over extended video length and reduced dynamics during training, primarily due to their reliance on traditional self-reconstruction training with static images. To address these issues, we introduce MagicID, a novel framework designed to directly promote the generation of identity-consistent and dynamically rich videos tailored to user preferences. Specifically, we propose constructing pairwise preference video data with explicit identity and dynamic rewards for preference learning, instead of sticking to the traditional self-reconstruction. To address the constraints of customized preference data, we introduce a hybrid sampling strategy. This approach first prioritizes identity preservation by leveraging static videos derived from reference images, then enhances dynamic motion quality in the generated videos using a Frontier-based sampling method. By utilizing these hybrid preference pairs, we optimize the model to align with the reward differences between pairs of customized preferences. Extensive experiments show that MagicID successfully achieves consistent identity and natural dynamics, surpassing existing methods across various metrics.
Infinite-ID: Identity-preserved Personalization via ID-semantics Decoupling Paradigm
Drawing on recent advancements in diffusion models for text-to-image generation, identity-preserved personalization has made significant progress in accurately capturing specific identities with just a single reference image. However, existing methods primarily integrate reference images within the text embedding space, leading to a complex entanglement of image and text information, which poses challenges for preserving both identity fidelity and semantic consistency. To tackle this challenge, we propose Infinite-ID, an ID-semantics decoupling paradigm for identity-preserved personalization. Specifically, we introduce identity-enhanced training, incorporating an additional image cross-attention module to capture sufficient ID information while deactivating the original text cross-attention module of the diffusion model. This ensures that the image stream faithfully represents the identity provided by the reference image while mitigating interference from textual input. Additionally, we introduce a feature interaction mechanism that combines a mixed attention module with an AdaIN-mean operation to seamlessly merge the two streams. This mechanism not only enhances the fidelity of identity and semantic consistency but also enables convenient control over the styles of the generated images. Extensive experimental results on both raw photo generation and style image generation demonstrate the superior performance of our proposed method.
Identity-Driven Hierarchical Role-Playing Agents
Utilizing large language models (LLMs) to achieve role-playing has gained great attention recently. The primary implementation methods include leveraging refined prompts and fine-tuning on role-specific datasets. However, these methods suffer from insufficient precision and limited flexibility respectively. To achieve a balance between flexibility and precision, we construct a Hierarchical Identity Role-Playing Framework (HIRPF) based on identity theory, constructing complex characters using multiple identity combinations. We develop an identity dialogue dataset for this framework and propose an evaluation benchmark including scale evaluation and open situation evaluation. Empirical results indicate the remarkable efficacy of our framework in modeling identity-level role simulation, and reveal its potential for application in social simulation.
StableIdentity: Inserting Anybody into Anywhere at First Sight
Recent advances in large pretrained text-to-image models have shown unprecedented capabilities for high-quality human-centric generation, however, customizing face identity is still an intractable problem. Existing methods cannot ensure stable identity preservation and flexible editability, even with several images for each subject during training. In this work, we propose StableIdentity, which allows identity-consistent recontextualization with just one face image. More specifically, we employ a face encoder with an identity prior to encode the input face, and then land the face representation into a space with an editable prior, which is constructed from celeb names. By incorporating identity prior and editability prior, the learned identity can be injected anywhere with various contexts. In addition, we design a masked two-phase diffusion loss to boost the pixel-level perception of the input face and maintain the diversity of generation. Extensive experiments demonstrate our method outperforms previous customization methods. In addition, the learned identity can be flexibly combined with the off-the-shelf modules such as ControlNet. Notably, to the best knowledge, we are the first to directly inject the identity learned from a single image into video/3D generation without finetuning. We believe that the proposed StableIdentity is an important step to unify image, video, and 3D customized generation models.
SPeCtrum: A Grounded Framework for Multidimensional Identity Representation in LLM-Based Agent
Existing methods for simulating individual identities often oversimplify human complexity, which may lead to incomplete or flattened representations. To address this, we introduce SPeCtrum, a grounded framework for constructing authentic LLM agent personas by incorporating an individual's multidimensional self-concept. SPeCtrum integrates three core components: Social Identity (S), Personal Identity (P), and Personal Life Context (C), each contributing distinct yet interconnected aspects of identity. To evaluate SPeCtrum's effectiveness in identity representation, we conducted automated and human evaluations. Automated evaluations using popular drama characters showed that Personal Life Context (C)-derived from short essays on preferences and daily routines-modeled characters' identities more effectively than Social Identity (S) and Personal Identity (P) alone and performed comparably to the full SPC combination. In contrast, human evaluations involving real-world individuals found that the full SPC combination provided a more comprehensive self-concept representation than C alone. Our findings suggest that while C alone may suffice for basic identity simulation, integrating S, P, and C enhances the authenticity and accuracy of real-world identity representation. Overall, SPeCtrum offers a structured approach for simulating individuals in LLM agents, enabling more personalized human-AI interactions and improving the realism of simulation-based behavioral studies.
IDAdapter: Learning Mixed Features for Tuning-Free Personalization of Text-to-Image Models
Leveraging Stable Diffusion for the generation of personalized portraits has emerged as a powerful and noteworthy tool, enabling users to create high-fidelity, custom character avatars based on their specific prompts. However, existing personalization methods face challenges, including test-time fine-tuning, the requirement of multiple input images, low preservation of identity, and limited diversity in generated outcomes. To overcome these challenges, we introduce IDAdapter, a tuning-free approach that enhances the diversity and identity preservation in personalized image generation from a single face image. IDAdapter integrates a personalized concept into the generation process through a combination of textual and visual injections and a face identity loss. During the training phase, we incorporate mixed features from multiple reference images of a specific identity to enrich identity-related content details, guiding the model to generate images with more diverse styles, expressions, and angles compared to previous works. Extensive evaluations demonstrate the effectiveness of our method, achieving both diversity and identity fidelity in generated images.
MasterWeaver: Taming Editability and Identity for Personalized Text-to-Image Generation
Text-to-image (T2I) diffusion models have shown significant success in personalized text-to-image generation, which aims to generate novel images with human identities indicated by the reference images. Despite promising identity fidelity has been achieved by several tuning-free methods, they usually suffer from overfitting issues. The learned identity tends to entangle with irrelevant information, resulting in unsatisfied text controllability, especially on faces. In this work, we present MasterWeaver, a test-time tuning-free method designed to generate personalized images with both faithful identity fidelity and flexible editability. Specifically, MasterWeaver adopts an encoder to extract identity features and steers the image generation through additional introduced cross attention. To improve editability while maintaining identity fidelity, we propose an editing direction loss for training, which aligns the editing directions of our MasterWeaver with those of the original T2I model. Additionally, a face-augmented dataset is constructed to facilitate disentangled identity learning, and further improve the editability. Extensive experiments demonstrate that our MasterWeaver can not only generate personalized images with faithful identity, but also exhibit superiority in text controllability. Our code will be publicly available at https://github.com/csyxwei/MasterWeaver.
Reinforced Disentanglement for Face Swapping without Skip Connection
The SOTA face swap models still suffer the problem of either target identity (i.e., shape) being leaked or the target non-identity attributes (i.e., background, hair) failing to be fully preserved in the final results. We show that this insufficient disentanglement is caused by two flawed designs that were commonly adopted in prior models: (1) counting on only one compressed encoder to represent both the semantic-level non-identity facial attributes(i.e., pose) and the pixel-level non-facial region details, which is contradictory to satisfy at the same time; (2) highly relying on long skip-connections between the encoder and the final generator, leaking a certain amount of target face identity into the result. To fix them, we introduce a new face swap framework called 'WSC-swap' that gets rid of skip connections and uses two target encoders to respectively capture the pixel-level non-facial region attributes and the semantic non-identity attributes in the face region. To further reinforce the disentanglement learning for the target encoder, we employ both identity removal loss via adversarial training (i.e., GAN) and the non-identity preservation loss via prior 3DMM models like [11]. Extensive experiments on both FaceForensics++ and CelebA-HQ show that our results significantly outperform previous works on a rich set of metrics, including one novel metric for measuring identity consistency that was completely neglected before.
Learning Joint ID-Textual Representation for ID-Preserving Image Synthesis
We propose a novel framework for ID-preserving generation using a multi-modal encoding strategy rather than injecting identity features via adapters into pre-trained models. Our method treats identity and text as a unified conditioning input. To achieve this, we introduce FaceCLIP, a multi-modal encoder that learns a joint embedding space for both identity and textual semantics. Given a reference face and a text prompt, FaceCLIP produces a unified representation that encodes both identity and text, which conditions a base diffusion model to generate images that are identity-consistent and text-aligned. We also present a multi-modal alignment algorithm to train FaceCLIP, using a loss that aligns its joint representation with face, text, and image embedding spaces. We then build FaceCLIP-SDXL, an ID-preserving image synthesis pipeline by integrating FaceCLIP with Stable Diffusion XL (SDXL). Compared to prior methods, FaceCLIP-SDXL enables photorealistic portrait generation with better identity preservation and textual relevance. Extensive experiments demonstrate its quantitative and qualitative superiority.
Deployment of a Blockchain-Based Self-Sovereign Identity
Digital identity is unsolved: after many years of research there is still no trusted communication over the Internet. To provide identity within the context of mutual distrust, this paper presents a blockchain-based digital identity solution. Without depending upon a single trusted third party, the proposed solution achieves passport-level legally valid identity. This solution for making identities Self-Sovereign, builds on a generic provable claim model for which attestations of truth from third parties need to be collected. The claim model is then shown to be both blockchain structure and proof method agnostic. Four different implementations in support of these two claim model properties are shown to offer sub-second performance for claim creation and claim verification. Through the properties of Self-Sovereign Identity, legally valid status and acceptable performance, our solution is considered to be fit for adoption by the general public.
Presumed Cultural Identity: How Names Shape LLM Responses
Names are deeply tied to human identity. They can serve as markers of individuality, cultural heritage, and personal history. However, using names as a core indicator of identity can lead to over-simplification of complex identities. When interacting with LLMs, user names are an important point of information for personalisation. Names can enter chatbot conversations through direct user input (requested by chatbots), as part of task contexts such as CV reviews, or as built-in memory features that store user information for personalisation. We study biases associated with names by measuring cultural presumptions in the responses generated by LLMs when presented with common suggestion-seeking queries, which might involve making assumptions about the user. Our analyses demonstrate strong assumptions about cultural identity associated with names present in LLM generations across multiple cultures. Our work has implications for designing more nuanced personalisation systems that avoid reinforcing stereotypes while maintaining meaningful customisation.
When StyleGAN Meets Stable Diffusion: a W_+ Adapter for Personalized Image Generation
Text-to-image diffusion models have remarkably excelled in producing diverse, high-quality, and photo-realistic images. This advancement has spurred a growing interest in incorporating specific identities into generated content. Most current methods employ an inversion approach to embed a target visual concept into the text embedding space using a single reference image. However, the newly synthesized faces either closely resemble the reference image in terms of facial attributes, such as expression, or exhibit a reduced capacity for identity preservation. Text descriptions intended to guide the facial attributes of the synthesized face may fall short, owing to the intricate entanglement of identity information with identity-irrelevant facial attributes derived from the reference image. To address these issues, we present the novel use of the extended StyleGAN embedding space W_+, to achieve enhanced identity preservation and disentanglement for diffusion models. By aligning this semantically meaningful human face latent space with text-to-image diffusion models, we succeed in maintaining high fidelity in identity preservation, coupled with the capacity for semantic editing. Additionally, we propose new training objectives to balance the influences of both prompt and identity conditions, ensuring that the identity-irrelevant background remains unaffected during facial attribute modifications. Extensive experiments reveal that our method adeptly generates personalized text-to-image outputs that are not only compatible with prompt descriptions but also amenable to common StyleGAN editing directions in diverse settings. Our source code will be available at https://github.com/csxmli2016/w-plus-adapter.
ID-Patch: Robust ID Association for Group Photo Personalization
The ability to synthesize personalized group photos and specify the positions of each identity offers immense creative potential. While such imagery can be visually appealing, it presents significant challenges for existing technologies. A persistent issue is identity (ID) leakage, where injected facial features interfere with one another, resulting in low face resemblance, incorrect positioning, and visual artifacts. Existing methods suffer from limitations such as the reliance on segmentation models, increased runtime, or a high probability of ID leakage. To address these challenges, we propose ID-Patch, a novel method that provides robust association between identities and 2D positions. Our approach generates an ID patch and ID embeddings from the same facial features: the ID patch is positioned on the conditional image for precise spatial control, while the ID embeddings integrate with text embeddings to ensure high resemblance. Experimental results demonstrate that ID-Patch surpasses baseline methods across metrics, such as face ID resemblance, ID-position association accuracy, and generation efficiency. Project Page is: https://byteaigc.github.io/ID-Patch/
SimSwap: An Efficient Framework For High Fidelity Face Swapping
We propose an efficient framework, called Simple Swap (SimSwap), aiming for generalized and high fidelity face swapping. In contrast to previous approaches that either lack the ability to generalize to arbitrary identity or fail to preserve attributes like facial expression and gaze direction, our framework is capable of transferring the identity of an arbitrary source face into an arbitrary target face while preserving the attributes of the target face. We overcome the above defects in the following two ways. First, we present the ID Injection Module (IIM) which transfers the identity information of the source face into the target face at feature level. By using this module, we extend the architecture of an identity-specific face swapping algorithm to a framework for arbitrary face swapping. Second, we propose the Weak Feature Matching Loss which efficiently helps our framework to preserve the facial attributes in an implicit way. Extensive experiments on wild faces demonstrate that our SimSwap is able to achieve competitive identity performance while preserving attributes better than previous state-of-the-art methods. The code is already available on github: https://github.com/neuralchen/SimSwap.
InstantID: Zero-shot Identity-Preserving Generation in Seconds
There has been significant progress in personalized image synthesis with methods such as Textual Inversion, DreamBooth, and LoRA. Yet, their real-world applicability is hindered by high storage demands, lengthy fine-tuning processes, and the need for multiple reference images. Conversely, existing ID embedding-based methods, while requiring only a single forward inference, face challenges: they either necessitate extensive fine-tuning across numerous model parameters, lack compatibility with community pre-trained models, or fail to maintain high face fidelity. Addressing these limitations, we introduce InstantID, a powerful diffusion model-based solution. Our plug-and-play module adeptly handles image personalization in various styles using just a single facial image, while ensuring high fidelity. To achieve this, we design a novel IdentityNet by imposing strong semantic and weak spatial conditions, integrating facial and landmark images with textual prompts to steer the image generation. InstantID demonstrates exceptional performance and efficiency, proving highly beneficial in real-world applications where identity preservation is paramount. Moreover, our work seamlessly integrates with popular pre-trained text-to-image diffusion models like SD1.5 and SDXL, serving as an adaptable plugin. Our codes and pre-trained checkpoints will be available at https://github.com/InstantID/InstantID.
Face Anonymization Made Simple
Current face anonymization techniques often depend on identity loss calculated by face recognition models, which can be inaccurate and unreliable. Additionally, many methods require supplementary data such as facial landmarks and masks to guide the synthesis process. In contrast, our approach uses diffusion models with only a reconstruction loss, eliminating the need for facial landmarks or masks while still producing images with intricate, fine-grained details. We validated our results on two public benchmarks through both quantitative and qualitative evaluations. Our model achieves state-of-the-art performance in three key areas: identity anonymization, facial attribute preservation, and image quality. Beyond its primary function of anonymization, our model can also perform face swapping tasks by incorporating an additional facial image as input, demonstrating its versatility and potential for diverse applications. Our code and models are available at https://github.com/hanweikung/face_anon_simple .
HiFiVFS: High Fidelity Video Face Swapping
Face swapping aims to generate results that combine the identity from the source with attributes from the target. Existing methods primarily focus on image-based face swapping. When processing videos, each frame is handled independently, making it difficult to ensure temporal stability. From a model perspective, face swapping is gradually shifting from generative adversarial networks (GANs) to diffusion models (DMs), as DMs have been shown to possess stronger generative capabilities. Current diffusion-based approaches often employ inpainting techniques, which struggle to preserve fine-grained attributes like lighting and makeup. To address these challenges, we propose a high fidelity video face swapping (HiFiVFS) framework, which leverages the strong generative capability and temporal prior of Stable Video Diffusion (SVD). We build a fine-grained attribute module to extract identity-disentangled and fine-grained attribute features through identity desensitization and adversarial learning. Additionally, We introduce detailed identity injection to further enhance identity similarity. Extensive experiments demonstrate that our method achieves state-of-the-art (SOTA) in video face swapping, both qualitatively and quantitatively.
Clothes-Changing Person Re-Identification with Feasibility-Aware Intermediary Matching
Current clothes-changing person re-identification (re-id) approaches usually perform retrieval based on clothes-irrelevant features, while neglecting the potential of clothes-relevant features. However, we observe that relying solely on clothes-irrelevant features for clothes-changing re-id is limited, since they often lack adequate identity information and suffer from large intra-class variations. On the contrary, clothes-relevant features can be used to discover same-clothes intermediaries that possess informative identity clues. Based on this observation, we propose a Feasibility-Aware Intermediary Matching (FAIM) framework to additionally utilize clothes-relevant features for retrieval. Firstly, an Intermediary Matching (IM) module is designed to perform an intermediary-assisted matching process. This process involves using clothes-relevant features to find informative intermediates, and then using clothes-irrelevant features of these intermediates to complete the matching. Secondly, in order to reduce the negative effect of low-quality intermediaries, an Intermediary-Based Feasibility Weighting (IBFW) module is designed to evaluate the feasibility of intermediary matching process by assessing the quality of intermediaries. Extensive experiments demonstrate that our method outperforms state-of-the-art methods on several widely-used clothes-changing re-id benchmarks.
ID-Aligner: Enhancing Identity-Preserving Text-to-Image Generation with Reward Feedback Learning
The rapid development of diffusion models has triggered diverse applications. Identity-preserving text-to-image generation (ID-T2I) particularly has received significant attention due to its wide range of application scenarios like AI portrait and advertising. While existing ID-T2I methods have demonstrated impressive results, several key challenges remain: (1) It is hard to maintain the identity characteristics of reference portraits accurately, (2) The generated images lack aesthetic appeal especially while enforcing identity retention, and (3) There is a limitation that cannot be compatible with LoRA-based and Adapter-based methods simultaneously. To address these issues, we present ID-Aligner, a general feedback learning framework to enhance ID-T2I performance. To resolve identity features lost, we introduce identity consistency reward fine-tuning to utilize the feedback from face detection and recognition models to improve generated identity preservation. Furthermore, we propose identity aesthetic reward fine-tuning leveraging rewards from human-annotated preference data and automatically constructed feedback on character structure generation to provide aesthetic tuning signals. Thanks to its universal feedback fine-tuning framework, our method can be readily applied to both LoRA and Adapter models, achieving consistent performance gains. Extensive experiments on SD1.5 and SDXL diffusion models validate the effectiveness of our approach. Project Page: \url{https://idaligner.github.io/}
ID-Booth: Identity-consistent Face Generation with Diffusion Models
Recent advances in generative modeling have enabled the generation of high-quality synthetic data that is applicable in a variety of domains, including face recognition. Here, state-of-the-art generative models typically rely on conditioning and fine-tuning of powerful pretrained diffusion models to facilitate the synthesis of realistic images of a desired identity. Yet, these models often do not consider the identity of subjects during training, leading to poor consistency between generated and intended identities. In contrast, methods that employ identity-based training objectives tend to overfit on various aspects of the identity, and in turn, lower the diversity of images that can be generated. To address these issues, we present in this paper a novel generative diffusion-based framework, called ID-Booth. ID-Booth consists of a denoising network responsible for data generation, a variational auto-encoder for mapping images to and from a lower-dimensional latent space and a text encoder that allows for prompt-based control over the generation procedure. The framework utilizes a novel triplet identity training objective and enables identity-consistent image generation while retaining the synthesis capabilities of pretrained diffusion models. Experiments with a state-of-the-art latent diffusion model and diverse prompts reveal that our method facilitates better intra-identity consistency and inter-identity separability than competing methods, while achieving higher image diversity. In turn, the produced data allows for effective augmentation of small-scale datasets and training of better-performing recognition models in a privacy-preserving manner. The source code for the ID-Booth framework is publicly available at https://github.com/dariant/ID-Booth.
FlexIP: Dynamic Control of Preservation and Personality for Customized Image Generation
With the rapid advancement of 2D generative models, preserving subject identity while enabling diverse editing has emerged as a critical research focus. Existing methods typically face inherent trade-offs between identity preservation and personalized manipulation. We introduce FlexIP, a novel framework that decouples these objectives through two dedicated components: a Personalization Adapter for stylistic manipulation and a Preservation Adapter for identity maintenance. By explicitly injecting both control mechanisms into the generative model, our framework enables flexible parameterized control during inference through dynamic tuning of the weight adapter. Experimental results demonstrate that our approach breaks through the performance limitations of conventional methods, achieving superior identity preservation while supporting more diverse personalized generation capabilities (Project Page: https://flexip-tech.github.io/flexip/).
SelfSwapper: Self-Supervised Face Swapping via Shape Agnostic Masked AutoEncoder
Face swapping has gained significant attention for its varied applications. The majority of previous face swapping approaches have relied on the seesaw game training scheme, which often leads to the instability of the model training and results in undesired samples with blended identities due to the target identity leakage problem. This paper introduces the Shape Agnostic Masked AutoEncoder (SAMAE) training scheme, a novel self-supervised approach designed to enhance face swapping model training. Our training scheme addresses the limitations of traditional training methods by circumventing the conventional seesaw game and introducing clear ground truth through its self-reconstruction training regime. It effectively mitigates identity leakage by masking facial regions of the input images and utilizing learned disentangled identity and non-identity features. Additionally, we tackle the shape misalignment problem with new techniques including perforation confusion and random mesh scaling, and establishes a new state-of-the-art, surpassing other baseline methods, preserving both identity and non-identity attributes, without sacrificing on either aspect.
SeFi-IDE: Semantic-Fidelity Identity Embedding for Personalized Diffusion-Based Generation
Advanced diffusion-based Text-to-Image (T2I) models, such as the Stable Diffusion Model, have made significant progress in generating diverse and high-quality images using text prompts alone. However, T2I models are unable to accurately map identities (IDs) when non-famous users require personalized image generation. The main problem is that existing T2I models do not learn the ID-image alignments of new users. The previous methods either failed to accurately fit the face region or lost the interactive generative ability with other existing concepts in T2I models (i.e., unable to generate other concepts described in given prompts such as scenes, actions, and facial attributes). In this paper, we focus on accurate and semantic-fidelity ID embedding into the Stable Diffusion Model for personalized generation. We address this challenge from two perspectives: face-wise region fitting, and semantic-fidelity token optimization. Specifically, we first visualize the attention overfit problem, and propose a face-wise attention loss to fit the face region instead of the whole target image. This key trick significantly enhances the ID accuracy and interactive generative ability with other existing concepts. Then, we optimize one ID representation as multiple per-stage tokens where each token contains two disentangled features. This expansion of the textual conditioning space enhances semantic-fidelity control. Extensive experiments validate that our results exhibit superior ID accuracy and manipulation ability compared to previous methods.
PortraitBooth: A Versatile Portrait Model for Fast Identity-preserved Personalization
Recent advancements in personalized image generation using diffusion models have been noteworthy. However, existing methods suffer from inefficiencies due to the requirement for subject-specific fine-tuning. This computationally intensive process hinders efficient deployment, limiting practical usability. Moreover, these methods often grapple with identity distortion and limited expression diversity. In light of these challenges, we propose PortraitBooth, an innovative approach designed for high efficiency, robust identity preservation, and expression-editable text-to-image generation, without the need for fine-tuning. PortraitBooth leverages subject embeddings from a face recognition model for personalized image generation without fine-tuning. It eliminates computational overhead and mitigates identity distortion. The introduced dynamic identity preservation strategy further ensures close resemblance to the original image identity. Moreover, PortraitBooth incorporates emotion-aware cross-attention control for diverse facial expressions in generated images, supporting text-driven expression editing. Its scalability enables efficient and high-quality image creation, including multi-subject generation. Extensive results demonstrate superior performance over other state-of-the-art methods in both single and multiple image generation scenarios.
Persona Vectors: Monitoring and Controlling Character Traits in Language Models
Large language models interact with users through a simulated 'Assistant' persona. While the Assistant is typically trained to be helpful, harmless, and honest, it sometimes deviates from these ideals. In this paper, we identify directions in the model's activation space-persona vectors-underlying several traits, such as evil, sycophancy, and propensity to hallucinate. We confirm that these vectors can be used to monitor fluctuations in the Assistant's personality at deployment time. We then apply persona vectors to predict and control personality shifts that occur during training. We find that both intended and unintended personality changes after finetuning are strongly correlated with shifts along the relevant persona vectors. These shifts can be mitigated through post-hoc intervention, or avoided in the first place with a new preventative steering method. Moreover, persona vectors can be used to flag training data that will produce undesirable personality changes, both at the dataset level and the individual sample level. Our method for extracting persona vectors is automated and can be applied to any personality trait of interest, given only a natural-language description.
Monocular Identity-Conditioned Facial Reflectance Reconstruction
Recent 3D face reconstruction methods have made remarkable advancements, yet there remain huge challenges in monocular high-quality facial reflectance reconstruction. Existing methods rely on a large amount of light-stage captured data to learn facial reflectance models. However, the lack of subject diversity poses challenges in achieving good generalization and widespread applicability. In this paper, we learn the reflectance prior in image space rather than UV space and present a framework named ID2Reflectance. Our framework can directly estimate the reflectance maps of a single image while using limited reflectance data for training. Our key insight is that reflectance data shares facial structures with RGB faces, which enables obtaining expressive facial prior from inexpensive RGB data thus reducing the dependency on reflectance data. We first learn a high-quality prior for facial reflectance. Specifically, we pretrain multi-domain facial feature codebooks and design a codebook fusion method to align the reflectance and RGB domains. Then, we propose an identity-conditioned swapping module that injects facial identity from the target image into the pre-trained autoencoder to modify the identity of the source reflectance image. Finally, we stitch multi-view swapped reflectance images to obtain renderable assets. Extensive experiments demonstrate that our method exhibits excellent generalization capability and achieves state-of-the-art facial reflectance reconstruction results for in-the-wild faces. Our project page is https://xingyuren.github.io/id2reflectance/.