Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeIntent3D: 3D Object Detection in RGB-D Scans Based on Human Intention
In real-life scenarios, humans seek out objects in the 3D world to fulfill their daily needs or intentions. This inspires us to introduce 3D intention grounding, a new task in 3D object detection employing RGB-D, based on human intention, such as "I want something to support my back". Closely related, 3D visual grounding focuses on understanding human reference. To achieve detection based on human intention, it relies on humans to observe the scene, reason out the target that aligns with their intention ("pillow" in this case), and finally provide a reference to the AI system, such as "A pillow on the couch". Instead, 3D intention grounding challenges AI agents to automatically observe, reason and detect the desired target solely based on human intention. To tackle this challenge, we introduce the new Intent3D dataset, consisting of 44,990 intention texts associated with 209 fine-grained classes from 1,042 scenes of the ScanNet dataset. We also establish several baselines based on different language-based 3D object detection models on our benchmark. Finally, we propose IntentNet, our unique approach, designed to tackle this intention-based detection problem. It focuses on three key aspects: intention understanding, reasoning to identify object candidates, and cascaded adaptive learning that leverages the intrinsic priority logic of different losses for multiple objective optimization.
Query Intent Detection from the SEO Perspective
Google users have different intents from their queries such as acquiring information, buying products, comparing or simulating services, looking for products, and so on. Understanding the right intention of users helps to provide i) better content on web pages from the Search Engine Optimization (SEO) perspective and ii) more user-satisfying results from the search engine perspective. In this study, we aim to identify the user query's intent by taking advantage of Google results and machine learning methods. Our proposed approach is a clustering model that exploits some features to detect query's intent. A list of keywords extracted from the clustered queries is used to identify the intent of a new given query. Comparing the clustering results with the intents predicted by filtered keywords show the efficiency of the extracted keywords for detecting intents.
Cost-Based Goal Recognition Meets Deep Learning
The ability to observe the effects of actions performed by others and to infer their intent, most likely goals, or course of action, is known as a plan or intention recognition cognitive capability and has long been one of the fundamental research challenges in AI. Deep learning has recently been making significant inroads on various pattern recognition problems, except for intention recognition. While extensively explored since the seventies, the problem remains unsolved for most interesting cases in various areas, ranging from natural language understanding to human behavior understanding based on video feeds. This paper compares symbolic inverse planning, one of the most investigated approaches to goal recognition, to deep learning using CNN and LTSM neural network architectures, on five synthetic benchmarks often used in the literature. The results show that the deep learning approach achieves better goal-prediction accuracy and timeliness than the symbolic cost-based plan recognizer in these domains. Although preliminary, these results point to interesting future research avenues.
A Transfer Learning Method for Goal Recognition Exploiting Cross-Domain Spatial Features
The ability to infer the intentions of others, predict their goals, and deduce their plans are critical features for intelligent agents. For a long time, several approaches investigated the use of symbolic representations and inferences with limited success, principally because it is difficult to capture the cognitive knowledge behind human decisions explicitly. The trend, nowadays, is increasingly focusing on learning to infer intentions directly from data, using deep learning in particular. We are now observing interesting applications of intent classification in natural language processing, visual activity recognition, and emerging approaches in other domains. This paper discusses a novel approach combining few-shot and transfer learning with cross-domain features, to learn to infer the intent of an agent navigating in physical environments, executing arbitrary long sequences of actions to achieve their goals. Experiments in synthetic environments demonstrate improved performance in terms of learning from few samples and generalizing to unseen configurations, compared to a deep-learning baseline approach.
HumanSense: From Multimodal Perception to Empathetic Context-Aware Responses through Reasoning MLLMs
While Multimodal Large Language Models (MLLMs) show immense promise for achieving truly human-like interactions, progress is hindered by the lack of fine-grained evaluation frameworks for human-centered scenarios, encompassing both the understanding of complex human intentions and the provision of empathetic, context-aware responses. Here we introduce HumanSense, a comprehensive benchmark designed to evaluate the human-centered perception and interaction capabilities of MLLMs, with a particular focus on deep understanding of extended multimodal contexts and the formulation of rational feedback. Our evaluation reveals that leading MLLMs still have considerable room for improvement, particularly for advanced interaction-oriented tasks. Supplementing visual input with audio and text information yields substantial improvements, and Omni-modal models show advantages on these tasks. Furthermore, we argue that appropriate feedback stems from a contextual analysis of the interlocutor's needs and emotions, with reasoning ability serving as the key to unlocking it. Accordingly, we employ a multi-stage, modality-progressive reinforcement learning to enhance the reasoning abilities of an Omni model, achieving substantial gains on evaluation results. Additionally, we observe that successful reasoning processes exhibit highly consistent thought patterns. By designing corresponding prompts, we also enhance the performance of non-reasoning models in a training-free manner. Project page: brightpinkhttps://digital-avatar.github.io/ai/HumanSense/
Tell Me More! Towards Implicit User Intention Understanding of Language Model Driven Agents
Current language model-driven agents often lack mechanisms for effective user participation, which is crucial given the vagueness commonly found in user instructions. Although adept at devising strategies and performing tasks, these agents struggle with seeking clarification and grasping precise user intentions. To bridge this gap, we introduce Intention-in-Interaction (IN3), a novel benchmark designed to inspect users' implicit intentions through explicit queries. Next, we propose the incorporation of model experts as the upstream in agent designs to enhance user-agent interaction. Employing IN3, we empirically train Mistral-Interact, a powerful model that proactively assesses task vagueness, inquires user intentions, and refines them into actionable goals before starting downstream agent task execution. Integrating it into the XAgent framework, we comprehensively evaluate the enhanced agent system regarding user instruction understanding and execution, revealing that our approach notably excels at identifying vague user tasks, recovering and summarizing critical missing information, setting precise and necessary agent execution goals, and minimizing redundant tool usage, thus boosting overall efficiency. All the data and codes are released.
Violation of Expectation via Metacognitive Prompting Reduces Theory of Mind Prediction Error in Large Language Models
Recent research shows that Large Language Models (LLMs) exhibit a compelling level of proficiency in Theory of Mind (ToM) tasks. This ability to impute unobservable mental states to others is vital to human social cognition and may prove equally important in principal-agent relations between individual humans and Artificial Intelligences (AIs). In this paper, we explore how a mechanism studied in developmental psychology known as Violation of Expectation (VoE) can be implemented to reduce errors in LLM prediction about users by leveraging emergent ToM affordances. And we introduce a metacognitive prompting framework to apply VoE in the context of an AI tutor. By storing and retrieving facts derived in cases where LLM expectation about the user was violated, we find that LLMs are able to learn about users in ways that echo theories of human learning. Finally, we discuss latent hazards and augmentative opportunities associated with modeling user psychology and propose ways to mitigate risk along with possible directions for future inquiry.
Vital Insight: Assisting Experts' Sensemaking Process of Multi-modal Personal Tracking Data Using Visualization and LLM
Researchers have long recognized the socio-technical gaps in personal tracking research, where machines can never fully model the complexity of human behavior, making it only able to produce basic rule-based outputs or "black-box" results that lack clear explanations. Real-world deployments rely on experts for this complex translation from sparse data to meaningful insights. In this study, we consider this translation process from data to insights by experts as "sensemaking" and explore how HCI researchers can support it through Vital Insight, an evidence-based 'sensemaking' system that combines direct representation and indirect inference through visualization and Large Language Models. We evaluate Vital Insight in user testing sessions with 14 experts in multi-modal tracking, synthesize design implications, and develop an expert sensemaking model where they iteratively move between direct data representations and AI-supported inferences to explore, retrieve, question, and validate insights.
Literature Meets Data: A Synergistic Approach to Hypothesis Generation
AI holds promise for transforming scientific processes, including hypothesis generation. Prior work on hypothesis generation can be broadly categorized into theory-driven and data-driven approaches. While both have proven effective in generating novel and plausible hypotheses, it remains an open question whether they can complement each other. To address this, we develop the first method that combines literature-based insights with data to perform LLM-powered hypothesis generation. We apply our method on five different datasets and demonstrate that integrating literature and data outperforms other baselines (8.97\% over few-shot, 15.75\% over literature-based alone, and 3.37\% over data-driven alone). Additionally, we conduct the first human evaluation to assess the utility of LLM-generated hypotheses in assisting human decision-making on two challenging tasks: deception detection and AI generated content detection. Our results show that human accuracy improves significantly by 7.44\% and 14.19\% on these tasks, respectively. These findings suggest that integrating literature-based and data-driven approaches provides a comprehensive and nuanced framework for hypothesis generation and could open new avenues for scientific inquiry.
tagE: Enabling an Embodied Agent to Understand Human Instructions
Natural language serves as the primary mode of communication when an intelligent agent with a physical presence engages with human beings. While a plethora of research focuses on natural language understanding (NLU), encompassing endeavors such as sentiment analysis, intent prediction, question answering, and summarization, the scope of NLU directed at situations necessitating tangible actions by an embodied agent remains limited. The inherent ambiguity and incompleteness inherent in natural language present challenges for intelligent agents striving to decipher human intention. To tackle this predicament head-on, we introduce a novel system known as task and argument grounding for Embodied agents (tagE). At its core, our system employs an inventive neural network model designed to extract a series of tasks from complex task instructions expressed in natural language. Our proposed model adopts an encoder-decoder framework enriched with nested decoding to effectively extract tasks and their corresponding arguments from these intricate instructions. These extracted tasks are then mapped (or grounded) to the robot's established collection of skills, while the arguments find grounding in objects present within the environment. To facilitate the training and evaluation of our system, we have curated a dataset featuring complex instructions. The results of our experiments underscore the prowess of our approach, as it outperforms robust baseline models.
Unified Dual-Intent Translation for Joint Modeling of Search and Recommendation
Recommendation systems, which assist users in discovering their preferred items among numerous options, have served billions of users across various online platforms. Intuitively, users' interactions with items are highly driven by their unchanging inherent intents (e.g., always preferring high-quality items) and changing demand intents (e.g., wanting a T-shirt in summer but a down jacket in winter). However, both types of intents are implicitly expressed in recommendation scenario, posing challenges in leveraging them for accurate intent-aware recommendations. Fortunately, in search scenario, often found alongside recommendation on the same online platform, users express their demand intents explicitly through their query words. Intuitively, in both scenarios, a user shares the same inherent intent and the interactions may be influenced by the same demand intent. It is therefore feasible to utilize the interaction data from both scenarios to reinforce the dual intents for joint intent-aware modeling. But the joint modeling should deal with two problems: 1) accurately modeling users' implicit demand intents in recommendation; 2) modeling the relation between the dual intents and the interactive items. To address these problems, we propose a novel model named Unified Dual-Intents Translation for joint modeling of Search and Recommendation (UDITSR). To accurately simulate users' demand intents in recommendation, we utilize real queries from search data as supervision information to guide its generation. To explicitly model the relation among the triplet <inherent intent, demand intent, interactive item>, we propose a dual-intent translation propagation mechanism to learn the triplet in the same semantic space via embedding translations. Extensive experiments demonstrate that UDITSR outperforms SOTA baselines both in search and recommendation tasks.
Vision Language Models See What You Want but not What You See
Knowing others' intentions and taking others' perspectives are two core components of human intelligence that are considered to be instantiations of theory-of-mind. Infiltrating machines with these abilities is an important step towards building human-level artificial intelligence. Here, to investigate intentionality understanding and level-2 perspective-taking in Vision Language Models (VLMs), we constructed the IntentBench and PerspectBench, which together contains over 300 cognitive experiments grounded in real-world scenarios and classic cognitive tasks. We found VLMs achieving high performance on intentionality understanding but low performance on level-2 perspective-taking. This suggests a potential dissociation between simulation-based and theory-based theory-of-mind abilities in VLMs, highlighting the concern that they are not capable of using model-based reasoning to infer others' mental states. See https://growing-ai-like-a-child.github.io/{Website}
Identifying User Goals from UI Trajectories
Autonomous agents that interact with graphical user interfaces (GUIs) hold significant potential for enhancing user experiences. To further improve these experiences, agents need to be personalized and proactive. By effectively comprehending user intentions through their actions and interactions with GUIs, agents will be better positioned to achieve these goals. This paper introduces the task of goal identification from observed UI trajectories, aiming to infer the user's intended task based on their GUI interactions. We propose a novel evaluation metric to assess whether two task descriptions are paraphrases within a specific UI environment. By Leveraging the inverse relation with the UI automation task, we utilized the Android-In-The-Wild and Mind2Web datasets for our experiments. Using our metric and these datasets, we conducted several experiments comparing the performance of humans and state-of-the-art models, specifically GPT-4 and Gemini-1.5 Pro. Our results show that Gemini performs better than GPT but still underperforms compared to humans, indicating significant room for improvement.
HumanOmniV2: From Understanding to Omni-Modal Reasoning with Context
With the rapid evolution of multimodal large language models, the capacity to deeply understand and interpret human intentions has emerged as a critical capability, which demands detailed and thoughtful reasoning. In recent studies, Reinforcement Learning (RL) has demonstrated potential in enhancing the reasoning capabilities of Large Language Models (LLMs). Nonetheless, the challenges associated with adapting RL to multimodal data and formats remain largely unaddressed. In this paper, we identify two issues in existing multimodal reasoning models: insufficient global context understanding and shortcut problems. Insufficient context understanding can happen when a model misinterprets multimodal context, resulting in incorrect answers. The shortcut problem occurs when the model overlooks crucial clues in multimodal inputs, directly addressing the query without considering the multimodal information. To tackle these issues, we emphasize the necessity for the model to reason with a clear understanding of the global context within multimodal inputs. This global context understanding can effectively prevent the model from overlooking key multimodal cues and ensure a thorough reasoning process. To ensure the accurate interpretation of multimodal context information, we implement a context reward judged by a large language model, alongside format and accuracy rewards. Additionally, to improve complex reasoning capability, we employ the LLM to assess the logical reward, determining whether the reasoning process successfully integrates multimodal information with logical methods. We also introduce a reasoning omni-modal benchmark, IntentBench, aimed at evaluating models in understanding complex human intentions and emotions. Our proposed method demonstrates advanced performance across multiple omni-modal benchmarks compared to other open-source omni-modal models.
DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset
We develop a high-quality multi-turn dialog dataset, DailyDialog, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems.
Understanding News Creation Intents: Frame, Dataset, and Method
As the disruptive changes in the media economy and the proliferation of alternative news media outlets, news intent has progressively deviated from ethical standards that serve the public interest. News intent refers to the purpose or intention behind the creation of a news article. While the significance of research on news intent has been widely acknowledged, the absence of a systematic news intent understanding framework hinders further exploration of news intent and its downstream applications. To bridge this gap, we propose News INTent (NINT) frame, the first component-aware formalism for understanding the news creation intent based on research in philosophy, psychology, and cognitive science. Within this frame, we define the news intent identification task and provide a benchmark dataset with fine-grained labels along with an efficient benchmark method. Experiments demonstrate that NINT is beneficial in both the intent identification task and downstream tasks that demand a profound understanding of news. This work marks a foundational step towards a more systematic exploration of news creation intents.
Efficient Intent Detection with Dual Sentence Encoders
Building conversational systems in new domains and with added functionality requires resource-efficient models that work under low-data regimes (i.e., in few-shot setups). Motivated by these requirements, we introduce intent detection methods backed by pretrained dual sentence encoders such as USE and ConveRT. We demonstrate the usefulness and wide applicability of the proposed intent detectors, showing that: 1) they outperform intent detectors based on fine-tuning the full BERT-Large model or using BERT as a fixed black-box encoder on three diverse intent detection data sets; 2) the gains are especially pronounced in few-shot setups (i.e., with only 10 or 30 annotated examples per intent); 3) our intent detectors can be trained in a matter of minutes on a single CPU; and 4) they are stable across different hyperparameter settings. In hope of facilitating and democratizing research focused on intention detection, we release our code, as well as a new challenging single-domain intent detection dataset comprising 13,083 annotated examples over 77 intents.
Towards Dialogues for Joint Human-AI Reasoning and Value Alignment
We argue that enabling human-AI dialogue, purposed to support joint reasoning (i.e., 'inquiry'), is important for ensuring that AI decision making is aligned with human values and preferences. In particular, we point to logic-based models of argumentation and dialogue, and suggest that the traditional focus on persuasion dialogues be replaced by a focus on inquiry dialogues, and the distinct challenges that joint inquiry raises. Given recent dramatic advances in the performance of large language models (LLMs), and the anticipated increase in their use for decision making, we provide a roadmap for research into inquiry dialogues for supporting joint human-LLM reasoning tasks that are ethically salient, and that thereby require that decisions are value aligned.
Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions
Recent advancements in general-purpose AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment. However, the lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment. In particular, ML- and philosophy-oriented alignment research often views AI alignment as a static, unidirectional process (i.e., aiming to ensure that AI systems' objectives match humans) rather than an ongoing, mutual alignment problem [429]. This perspective largely neglects the long-term interaction and dynamic changes of alignment. To understand these gaps, we introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML), and others. We characterize, define and scope human-AI alignment. From this, we present a conceptual framework of "Bidirectional Human-AI Alignment" to organize the literature from a human-centered perspective. This framework encompasses both 1) conventional studies of aligning AI to humans that ensures AI produces the intended outcomes determined by humans, and 2) a proposed concept of aligning humans to AI, which aims to help individuals and society adjust to AI advancements both cognitively and behaviorally. Additionally, we articulate the key findings derived from literature analysis, including discussions about human values, interaction techniques, and evaluations. To pave the way for future studies, we envision three key challenges for future directions and propose examples of potential future solutions.
MetaMind: Modeling Human Social Thoughts with Metacognitive Multi-Agent Systems
Human social interactions depend on the ability to infer others' unspoken intentions, emotions, and beliefs-a cognitive skill grounded in the psychological concept of Theory of Mind (ToM). While large language models (LLMs) excel in semantic understanding tasks, they struggle with the ambiguity and contextual nuance inherent in human communication. To bridge this gap, we introduce MetaMind, a multi-agent framework inspired by psychological theories of metacognition, designed to emulate human-like social reasoning. MetaMind decomposes social understanding into three collaborative stages: (1) a Theory-of-Mind Agent generates hypotheses user mental states (e.g., intent, emotion), (2) a Domain Agent refines these hypotheses using cultural norms and ethical constraints, and (3) a Response Agent generates contextually appropriate responses while validating alignment with inferred intent. Our framework achieves state-of-the-art performance across three challenging benchmarks, with 35.7% improvement in real-world social scenarios and 6.2% gain in ToM reasoning. Notably, it enables LLMs to match human-level performance on key ToM tasks for the first time. Ablation studies confirm the necessity of all components, which showcase the framework's ability to balance contextual plausibility, social appropriateness, and user adaptation. This work advances AI systems toward human-like social intelligence, with applications in empathetic dialogue and culturally sensitive interactions. Code is available at https://github.com/XMZhangAI/MetaMind.
Are Large Language Models Aligned with People's Social Intuitions for Human-Robot Interactions?
Large language models (LLMs) are increasingly used in robotics, especially for high-level action planning. Meanwhile, many robotics applications involve human supervisors or collaborators. Hence, it is crucial for LLMs to generate socially acceptable actions that align with people's preferences and values. In this work, we test whether LLMs capture people's intuitions about behavior judgments and communication preferences in human-robot interaction (HRI) scenarios. For evaluation, we reproduce three HRI user studies, comparing the output of LLMs with that of real participants. We find that GPT-4 strongly outperforms other models, generating answers that correlate strongly with users' answers in two studies x2014 the first study dealing with selecting the most appropriate communicative act for a robot in various situations (r_s = 0.82), and the second with judging the desirability, intentionality, and surprisingness of behavior (r_s = 0.83). However, for the last study, testing whether people judge the behavior of robots and humans differently, no model achieves strong correlations. Moreover, we show that vision models fail to capture the essence of video stimuli and that LLMs tend to rate different communicative acts and behavior desirability higher than people.
Thinking Fast and Slow in AI
This paper proposes a research direction to advance AI which draws inspiration from cognitive theories of human decision making. The premise is that if we gain insights about the causes of some human capabilities that are still lacking in AI (for instance, adaptability, generalizability, common sense, and causal reasoning), we may obtain similar capabilities in an AI system by embedding these causal components. We hope that the high-level description of our vision included in this paper, as well as the several research questions that we propose to consider, can stimulate the AI research community to define, try and evaluate new methodologies, frameworks, and evaluation metrics, in the spirit of achieving a better understanding of both human and machine intelligence.
MMHU: A Massive-Scale Multimodal Benchmark for Human Behavior Understanding
Humans are integral components of the transportation ecosystem, and understanding their behaviors is crucial to facilitating the development of safe driving systems. Although recent progress has explored various aspects of human behaviorx2014such as motion, trajectories, and intentionx2014a comprehensive benchmark for evaluating human behavior understanding in autonomous driving remains unavailable. In this work, we propose MMHU, a large-scale benchmark for human behavior analysis featuring rich annotations, such as human motion and trajectories, text description for human motions, human intention, and critical behavior labels relevant to driving safety. Our dataset encompasses 57k human motion clips and 1.73M frames gathered from diverse sources, including established driving datasets such as Waymo, in-the-wild videos from YouTube, and self-collected data. A human-in-the-loop annotation pipeline is developed to generate rich behavior captions. We provide a thorough dataset analysis and benchmark multiple tasksx2014ranging from motion prediction to motion generation and human behavior question answeringx2014thereby offering a broad evaluation suite. Project page : https://MMHU-Benchmark.github.io.
Detecting Conversational Mental Manipulation with Intent-Aware Prompting
Mental manipulation severely undermines mental wellness by covertly and negatively distorting decision-making. While there is an increasing interest in mental health care within the natural language processing community, progress in tackling manipulation remains limited due to the complexity of detecting subtle, covert tactics in conversations. In this paper, we propose Intent-Aware Prompting (IAP), a novel approach for detecting mental manipulations using large language models (LLMs), providing a deeper understanding of manipulative tactics by capturing the underlying intents of participants. Experimental results on the MentalManip dataset demonstrate superior effectiveness of IAP against other advanced prompting strategies. Notably, our approach substantially reduces false negatives, helping detect more instances of mental manipulation with minimal misjudgment of positive cases. The code of this paper is available at https://github.com/Anton-Jiayuan-MA/Manip-IAP.
Mutual Theory of Mind for Human-AI Communication
New developments are enabling AI systems to perceive, recognize, and respond with social cues based on inferences made from humans' explicit or implicit behavioral and verbal cues. These AI systems, equipped with an equivalent of human's Theory of Mind (ToM) capability, are currently serving as matchmakers on dating platforms, assisting student learning as teaching assistants, and enhancing productivity as work partners. They mark a new era in human-AI interaction (HAI) that diverges from traditional human-computer interaction (HCI), where computers are commonly seen as tools instead of social actors. Designing and understanding the human perceptions and experiences in this emerging HAI era becomes an urgent and critical issue for AI systems to fulfill human needs and mitigate risks across social contexts. In this paper, we posit the Mutual Theory of Mind (MToM) framework, inspired by our capability of ToM in human-human communications, to guide this new generation of HAI research by highlighting the iterative and mutual shaping nature of human-AI communication. We discuss the motivation of the MToM framework and its three key components that iteratively shape the human-AI communication in three stages. We then describe two empirical studies inspired by the MToM framework to demonstrate the power of MToM in guiding the design and understanding of human-AI communication. Finally, we discuss future research opportunities in human-AI interaction through the lens of MToM.
Automated Rationale Generation: A Technique for Explainable AI and its Effects on Human Perceptions
Automated rationale generation is an approach for real-time explanation generation whereby a computational model learns to translate an autonomous agent's internal state and action data representations into natural language. Training on human explanation data can enable agents to learn to generate human-like explanations for their behavior. In this paper, using the context of an agent that plays Frogger, we describe (a) how to collect a corpus of explanations, (b) how to train a neural rationale generator to produce different styles of rationales, and (c) how people perceive these rationales. We conducted two user studies. The first study establishes the plausibility of each type of generated rationale and situates their user perceptions along the dimensions of confidence, humanlike-ness, adequate justification, and understandability. The second study further explores user preferences between the generated rationales with regard to confidence in the autonomous agent, communicating failure and unexpected behavior. Overall, we find alignment between the intended differences in features of the generated rationales and the perceived differences by users. Moreover, context permitting, participants preferred detailed rationales to form a stable mental model of the agent's behavior.
MuMA-ToM: Multi-modal Multi-Agent Theory of Mind
Understanding people's social interactions in complex real-world scenarios often relies on intricate mental reasoning. To truly understand how and why people interact with one another, we must infer the underlying mental states that give rise to the social interactions, i.e., Theory of Mind reasoning in multi-agent interactions. Additionally, social interactions are often multi-modal -- we can watch people's actions, hear their conversations, and/or read about their past behaviors. For AI systems to successfully and safely interact with people in real-world environments, they also need to understand people's mental states as well as their inferences about each other's mental states based on multi-modal information about their interactions. For this, we introduce MuMA-ToM, a Multi-modal Multi-Agent Theory of Mind benchmark. MuMA-ToM is the first multi-modal Theory of Mind benchmark that evaluates mental reasoning in embodied multi-agent interactions. In MuMA-ToM, we provide video and text descriptions of people's multi-modal behavior in realistic household environments. Based on the context, we then ask questions about people's goals, beliefs, and beliefs about others' goals. We validated MuMA-ToM in a human experiment and provided a human baseline. We also proposed a novel multi-modal, multi-agent ToM model, LIMP (Language model-based Inverse Multi-agent Planning). Our experimental results show that LIMP significantly outperforms state-of-the-art methods, including large multi-modal models (e.g., GPT-4o, Gemini-1.5 Pro) and a recent multi-modal ToM model, BIP-ALM.
Enhancing Human-Like Responses in Large Language Models
This paper explores the advancements in making large language models (LLMs) more human-like. We focus on techniques that enhance natural language understanding, conversational coherence, and emotional intelligence in AI systems. The study evaluates various approaches, including fine-tuning with diverse datasets, incorporating psychological principles, and designing models that better mimic human reasoning patterns. Our findings demonstrate that these enhancements not only improve user interactions but also open new possibilities for AI applications across different domains. Future work will address the ethical implications and potential biases introduced by these human-like attributes.
Large Language Models as Zero-Shot Human Models for Human-Robot Interaction
Human models play a crucial role in human-robot interaction (HRI), enabling robots to consider the impact of their actions on people and plan their behavior accordingly. However, crafting good human models is challenging; capturing context-dependent human behavior requires significant prior knowledge and/or large amounts of interaction data, both of which are difficult to obtain. In this work, we explore the potential of large-language models (LLMs) -- which have consumed vast amounts of human-generated text data -- to act as zero-shot human models for HRI. Our experiments on three social datasets yield promising results; the LLMs are able to achieve performance comparable to purpose-built models. That said, we also discuss current limitations, such as sensitivity to prompts and spatial/numerical reasoning mishaps. Based on our findings, we demonstrate how LLM-based human models can be integrated into a social robot's planning process and applied in HRI scenarios. Specifically, we present one case study on a simulated trust-based table-clearing task and replicate past results that relied on custom models. Next, we conduct a new robot utensil-passing experiment (n = 65) where preliminary results show that planning with a LLM-based human model can achieve gains over a basic myopic plan. In summary, our results show that LLMs offer a promising (but incomplete) approach to human modeling for HRI.
InteRACT: Transformer Models for Human Intent Prediction Conditioned on Robot Actions
In collaborative human-robot manipulation, a robot must predict human intents and adapt its actions accordingly to smoothly execute tasks. However, the human's intent in turn depends on actions the robot takes, creating a chicken-or-egg problem. Prior methods ignore such inter-dependency and instead train marginal intent prediction models independent of robot actions. This is because training conditional models is hard given a lack of paired human-robot interaction datasets. Can we instead leverage large-scale human-human interaction data that is more easily accessible? Our key insight is to exploit a correspondence between human and robot actions that enables transfer learning from human-human to human-robot data. We propose a novel architecture, InteRACT, that pre-trains a conditional intent prediction model on large human-human datasets and fine-tunes on a small human-robot dataset. We evaluate on a set of real-world collaborative human-robot manipulation tasks and show that our conditional model improves over various marginal baselines. We also introduce new techniques to tele-operate a 7-DoF robot arm and collect a diverse range of human-robot collaborative manipulation data, which we open-source.
KwaiAgents: Generalized Information-seeking Agent System with Large Language Models
Driven by curiosity, humans have continually sought to explore and understand the world around them, leading to the invention of various tools to satiate this inquisitiveness. Despite not having the capacity to process and memorize vast amounts of information in their brains, humans excel in critical thinking, planning, reflection, and harnessing available tools to interact with and interpret the world, enabling them to find answers efficiently. The recent advancements in large language models (LLMs) suggest that machines might also possess the aforementioned human-like capabilities, allowing them to exhibit powerful abilities even with a constrained parameter count. In this paper, we introduce KwaiAgents, a generalized information-seeking agent system based on LLMs. Within KwaiAgents, we propose an agent system that employs LLMs as its cognitive core, which is capable of understanding a user's query, behavior guidelines, and referencing external documents. The agent can also update and retrieve information from its internal memory, plan and execute actions using a time-aware search-browse toolkit, and ultimately provide a comprehensive response. We further investigate the system's performance when powered by LLMs less advanced than GPT-4, and introduce the Meta-Agent Tuning (MAT) framework, designed to ensure even an open-sourced 7B or 13B model performs well among many agent systems. We exploit both benchmark and human evaluations to systematically validate these capabilities. Extensive experiments show the superiority of our agent system compared to other autonomous agents and highlight the enhanced generalized agent-abilities of our fine-tuned LLMs.
A Survey on Human-Centric LLMs
The rapid evolution of large language models (LLMs) and their capacity to simulate human cognition and behavior has given rise to LLM-based frameworks and tools that are evaluated and applied based on their ability to perform tasks traditionally performed by humans, namely those involving cognition, decision-making, and social interaction. This survey provides a comprehensive examination of such human-centric LLM capabilities, focusing on their performance in both individual tasks (where an LLM acts as a stand-in for a single human) and collective tasks (where multiple LLMs coordinate to mimic group dynamics). We first evaluate LLM competencies across key areas including reasoning, perception, and social cognition, comparing their abilities to human-like skills. Then, we explore real-world applications of LLMs in human-centric domains such as behavioral science, political science, and sociology, assessing their effectiveness in replicating human behaviors and interactions. Finally, we identify challenges and future research directions, such as improving LLM adaptability, emotional intelligence, and cultural sensitivity, while addressing inherent biases and enhancing frameworks for human-AI collaboration. This survey aims to provide a foundational understanding of LLMs from a human-centric perspective, offering insights into their current capabilities and potential for future development.
On Evaluating Explanation Utility for Human-AI Decision Making in NLP
Is explainability a false promise? This debate has emerged from the insufficient evidence that explanations aid people in situations they are introduced for. More human-centered, application-grounded evaluations of explanations are needed to settle this. Yet, with no established guidelines for such studies in NLP, researchers accustomed to standardized proxy evaluations must discover appropriate measurements, tasks, datasets, and sensible models for human-AI teams in their studies. To help with this, we first review fitting existing metrics. We then establish requirements for datasets to be suitable for application-grounded evaluations. Among over 50 datasets available for explainability research in NLP, we find that 4 meet our criteria. By finetuning Flan-T5-3B, we demonstrate the importance of reassessing the state of the art to form and study human-AI teams. Finally, we present the exemplar studies of human-AI decision-making for one of the identified suitable tasks -- verifying the correctness of a legal claim given a contract.
Does GPT-4 Pass the Turing Test?
We evaluated GPT-4 in a public online Turing Test. The best-performing GPT-4 prompt passed in 41% of games, outperforming baselines set by ELIZA (27%) and GPT-3.5 (14%), but falling short of chance and the baseline set by human participants (63%). Participants' decisions were based mainly on linguistic style (35%) and socio-emotional traits (27%), supporting the idea that intelligence is not sufficient to pass the Turing Test. Participants' demographics, including education and familiarity with LLMs, did not predict detection rate, suggesting that even those who understand systems deeply and interact with them frequently may be susceptible to deception. Despite known limitations as a test of intelligence, we argue that the Turing Test continues to be relevant as an assessment of naturalistic communication and deception. AI models with the ability to masquerade as humans could have widespread societal consequences, and we analyse the effectiveness of different strategies and criteria for judging humanlikeness.
EALM: Introducing Multidimensional Ethical Alignment in Conversational Information Retrieval
Artificial intelligence (AI) technologies should adhere to human norms to better serve our society and avoid disseminating harmful or misleading information, particularly in Conversational Information Retrieval (CIR). Previous work, including approaches and datasets, has not always been successful or sufficiently robust in taking human norms into consideration. To this end, we introduce a workflow that integrates ethical alignment, with an initial ethical judgment stage for efficient data screening. To address the need for ethical judgment in CIR, we present the QA-ETHICS dataset, adapted from the ETHICS benchmark, which serves as an evaluation tool by unifying scenarios and label meanings. However, each scenario only considers one ethical concept. Therefore, we introduce the MP-ETHICS dataset to evaluate a scenario under multiple ethical concepts, such as justice and Deontology. In addition, we suggest a new approach that achieves top performance in both binary and multi-label ethical judgment tasks. Our research provides a practical method for introducing ethical alignment into the CIR workflow. The data and code are available at https://github.com/wanng-ide/ealm .
Étude cognitive des processus de construction d'une requête dans un système de gestion de connaissances médicales
This article presents the Cogni-CISMeF project, which aims at improving medical information search in the CISMeF system (Catalog and Index of French-language health resources) by including a conversational agent to interact with the user in natural language. To study the cognitive processes involved during the information search, a bottom-up methodology was adopted. Experimentation has been set up to obtain human dialogs between a user (playing the role of patient) dealing with medical information search and a CISMeF expert refining the request. The analysis of these dialogs underlined the use of discursive evidence: vocabulary, reformulation, implicit or explicit expression of user intentions, conversational sequences, etc. A model of artificial agent is proposed. It leads the user in its information search by proposing to him examples, assistance and choices. This model was implemented and integrated in the CISMeF system. ---- Cet article d\'ecrit le projet Cogni-CISMeF qui propose un module de dialogue Homme-Machine \`a int\'egrer dans le syst\`eme d'indexation de connaissances m\'edicales CISMeF (Catalogue et Index des Sites M\'edicaux Francophones). Nous avons adopt\'e une d\'emarche de mod\'elisation cognitive en proc\'edant \`a un recueil de corpus de dialogues entre un utilisateur (jouant le r\^ole d'un patient) d\'esirant une information m\'edicale et un expert CISMeF af inant cette demande pour construire la requ\^ete. Nous avons analys\'e la structure des dialogues ainsi obtenus et avons \'etudi\'e un certain nombre d'indices discursifs : vocabulaire employ\'e, marques de reformulation, commentaires m\'eta et \'epilinguistiques, expression implicite ou explicite des intentions de l'utilisateur, encha\^inement conversationnel, etc. De cette analyse, nous avons construit un mod\`ele d'agent artificiel dot\'e de capacit\'es cognitives capables d'aider l'utilisateur dans sa t\^ache de recherche d'information. Ce mod\`ele a \'et\'e impl\'ement\'e et int\'egr\'e dans le syst\`eme CISMeF.
Revisiting Citizen Science Through the Lens of Hybrid Intelligence
Artificial Intelligence (AI) can augment and sometimes even replace human cognition. Inspired by efforts to value human agency alongside productivity, we discuss the benefits of solving Citizen Science (CS) tasks with Hybrid Intelligence (HI), a synergetic mixture of human and artificial intelligence. Currently there is no clear framework or methodology on how to create such an effective mixture. Due to the unique participant-centered set of values and the abundance of tasks drawing upon both human common sense and complex 21st century skills, we believe that the field of CS offers an invaluable testbed for the development of HI and human-centered AI of the 21st century, while benefiting CS as well. In order to investigate this potential, we first relate CS to adjacent computational disciplines. Then, we demonstrate that CS projects can be grouped according to their potential for HI-enhancement by examining two key dimensions: the level of digitization and the amount of knowledge or experience required for participation. Finally, we propose a framework for types of human-AI interaction in CS based on established criteria of HI. This "HI lens" provides the CS community with an overview of several ways to utilize the combination of AI and human intelligence in their projects. It also allows the AI community to gain ideas on how developing AI in CS projects can further their own field.
Curiosity-Driven Exploration via Latent Bayesian Surprise
The human intrinsic desire to pursue knowledge, also known as curiosity, is considered essential in the process of skill acquisition. With the aid of artificial curiosity, we could equip current techniques for control, such as Reinforcement Learning, with more natural exploration capabilities. A promising approach in this respect has consisted of using Bayesian surprise on model parameters, i.e. a metric for the difference between prior and posterior beliefs, to favour exploration. In this contribution, we propose to apply Bayesian surprise in a latent space representing the agent's current understanding of the dynamics of the system, drastically reducing the computational costs. We extensively evaluate our method by measuring the agent's performance in terms of environment exploration, for continuous tasks, and looking at the game scores achieved, for video games. Our model is computationally cheap and compares positively with current state-of-the-art methods on several problems. We also investigate the effects caused by stochasticity in the environment, which is often a failure case for curiosity-driven agents. In this regime, the results suggest that our approach is resilient to stochastic transitions.
"Only ChatGPT gets me": An Empirical Analysis of GPT versus other Large Language Models for Emotion Detection in Text
This work investigates the capabilities of large language models (LLMs) in detecting and understanding human emotions through text. Drawing upon emotion models from psychology, we adopt an interdisciplinary perspective that integrates computational and affective sciences insights. The main goal is to assess how accurately they can identify emotions expressed in textual interactions and compare different models on this specific task. This research contributes to broader efforts to enhance human-computer interaction, making artificial intelligence technologies more responsive and sensitive to users' emotional nuances. By employing a methodology that involves comparisons with a state-of-the-art model on the GoEmotions dataset, we aim to gauge LLMs' effectiveness as a system for emotional analysis, paving the way for potential applications in various fields that require a nuanced understanding of human language.
Proactive Conversational Agents with Inner Thoughts
One of the long-standing aspirations in conversational AI is to allow them to autonomously take initiatives in conversations, i.e., being proactive. This is especially challenging for multi-party conversations. Prior NLP research focused mainly on predicting the next speaker from contexts like preceding conversations. In this paper, we demonstrate the limitations of such methods and rethink what it means for AI to be proactive in multi-party, human-AI conversations. We propose that just like humans, rather than merely reacting to turn-taking cues, a proactive AI formulates its own inner thoughts during a conversation, and seeks the right moment to contribute. Through a formative study with 24 participants and inspiration from linguistics and cognitive psychology, we introduce the Inner Thoughts framework. Our framework equips AI with a continuous, covert train of thoughts in parallel to the overt communication process, which enables it to proactively engage by modeling its intrinsic motivation to express these thoughts. We instantiated this framework into two real-time systems: an AI playground web app and a chatbot. Through a technical evaluation and user studies with human participants, our framework significantly surpasses existing baselines on aspects like anthropomorphism, coherence, intelligence, and turn-taking appropriateness.
ClarifyDelphi: Reinforced Clarification Questions with Defeasibility Rewards for Social and Moral Situations
Context is everything, even in commonsense moral reasoning. Changing contexts can flip the moral judgment of an action; "Lying to a friend" is wrong in general, but may be morally acceptable if it is intended to protect their life. We present ClarifyDelphi, an interactive system that learns to ask clarification questions (e.g., why did you lie to your friend?) in order to elicit additional salient contexts of a social or moral situation. We posit that questions whose potential answers lead to diverging moral judgments are the most informative. Thus, we propose a reinforcement learning framework with a defeasibility reward that aims to maximize the divergence between moral judgments of hypothetical answers to a question. Human evaluation demonstrates that our system generates more relevant, informative and defeasible questions compared to competitive baselines. Our work is ultimately inspired by studies in cognitive science that have investigated the flexibility in moral cognition (i.e., the diverse contexts in which moral rules can be bent), and we hope that research in this direction can assist both cognitive and computational investigations of moral judgments.
Toward Verifiable and Reproducible Human Evaluation for Text-to-Image Generation
Human evaluation is critical for validating the performance of text-to-image generative models, as this highly cognitive process requires deep comprehension of text and images. However, our survey of 37 recent papers reveals that many works rely solely on automatic measures (e.g., FID) or perform poorly described human evaluations that are not reliable or repeatable. This paper proposes a standardized and well-defined human evaluation protocol to facilitate verifiable and reproducible human evaluation in future works. In our pilot data collection, we experimentally show that the current automatic measures are incompatible with human perception in evaluating the performance of the text-to-image generation results. Furthermore, we provide insights for designing human evaluation experiments reliably and conclusively. Finally, we make several resources publicly available to the community to facilitate easy and fast implementations.
Generative Expressive Robot Behaviors using Large Language Models
People employ expressive behaviors to effectively communicate and coordinate their actions with others, such as nodding to acknowledge a person glancing at them or saying "excuse me" to pass people in a busy corridor. We would like robots to also demonstrate expressive behaviors in human-robot interaction. Prior work proposes rule-based methods that struggle to scale to new communication modalities or social situations, while data-driven methods require specialized datasets for each social situation the robot is used in. We propose to leverage the rich social context available from large language models (LLMs) and their ability to generate motion based on instructions or user preferences, to generate expressive robot motion that is adaptable and composable, building upon each other. Our approach utilizes few-shot chain-of-thought prompting to translate human language instructions into parametrized control code using the robot's available and learned skills. Through user studies and simulation experiments, we demonstrate that our approach produces behaviors that users found to be competent and easy to understand. Supplementary material can be found at https://generative-expressive-motion.github.io/.
Persuasion with Large Language Models: a Survey
The rapid rise of Large Language Models (LLMs) has created new disruptive possibilities for persuasive communication, by enabling fully-automated personalized and interactive content generation at an unprecedented scale. In this paper, we survey the research field of LLM-based persuasion that has emerged as a result. We begin by exploring the different modes in which LLM Systems are used to influence human attitudes and behaviors. In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness. We identify key factors influencing their effectiveness, such as the manner of personalization and whether the content is labelled as AI-generated. We also summarize the experimental designs that have been used to evaluate progress. Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks, including the spread of misinformation, the magnification of biases, and the invasion of privacy. These risks underscore the urgent need for ethical guidelines and updated regulatory frameworks to avoid the widespread deployment of irresponsible and harmful LLM Systems.
People cannot distinguish GPT-4 from a human in a Turing test
We evaluated 3 systems (ELIZA, GPT-3.5 and GPT-4) in a randomized, controlled, and preregistered Turing test. Human participants had a 5 minute conversation with either a human or an AI, and judged whether or not they thought their interlocutor was human. GPT-4 was judged to be a human 54% of the time, outperforming ELIZA (22%) but lagging behind actual humans (67%). The results provide the first robust empirical demonstration that any artificial system passes an interactive 2-player Turing test. The results have implications for debates around machine intelligence and, more urgently, suggest that deception by current AI systems may go undetected. Analysis of participants' strategies and reasoning suggests that stylistic and socio-emotional factors play a larger role in passing the Turing test than traditional notions of intelligence.
Lessons from a Chimp: AI "Scheming" and the Quest for Ape Language
We examine recent research that asks whether current AI systems may be developing a capacity for "scheming" (covertly and strategically pursuing misaligned goals). We compare current research practices in this field to those adopted in the 1970s to test whether non-human primates could master natural language. We argue that there are lessons to be learned from that historical research endeavour, which was characterised by an overattribution of human traits to other agents, an excessive reliance on anecdote and descriptive analysis, and a failure to articulate a strong theoretical framework for the research. We recommend that research into AI scheming actively seeks to avoid these pitfalls. We outline some concrete steps that can be taken for this research programme to advance in a productive and scientifically rigorous fashion.
Future of Work with AI Agents: Auditing Automation and Augmentation Potential across the U.S. Workforce
The rapid rise of compound AI systems (a.k.a., AI agents) is reshaping the labor market, raising concerns about job displacement, diminished human agency, and overreliance on automation. Yet, we lack a systematic understanding of the evolving landscape. In this paper, we address this gap by introducing a novel auditing framework to assess which occupational tasks workers want AI agents to automate or augment, and how those desires align with the current technological capabilities. Our framework features an audio-enhanced mini-interview to capture nuanced worker desires and introduces the Human Agency Scale (HAS) as a shared language to quantify the preferred level of human involvement. Using this framework, we construct the WORKBank database, building on the U.S. Department of Labor's O*NET database, to capture preferences from 1,500 domain workers and capability assessments from AI experts across over 844 tasks spanning 104 occupations. Jointly considering the desire and technological capability divides tasks in WORKBank into four zones: Automation "Green Light" Zone, Automation "Red Light" Zone, R&D Opportunity Zone, Low Priority Zone. This highlights critical mismatches and opportunities for AI agent development. Moving beyond a simple automate-or-not dichotomy, our results reveal diverse HAS profiles across occupations, reflecting heterogeneous expectations for human involvement. Moreover, our study offers early signals of how AI agent integration may reshape the core human competencies, shifting from information-focused skills to interpersonal ones. These findings underscore the importance of aligning AI agent development with human desires and preparing workers for evolving workplace dynamics.
When to Make Exceptions: Exploring Language Models as Accounts of Human Moral Judgment
AI systems are becoming increasingly intertwined with human life. In order to effectively collaborate with humans and ensure safety, AI systems need to be able to understand, interpret and predict human moral judgments and decisions. Human moral judgments are often guided by rules, but not always. A central challenge for AI safety is capturing the flexibility of the human moral mind -- the ability to determine when a rule should be broken, especially in novel or unusual situations. In this paper, we present a novel challenge set consisting of rule-breaking question answering (RBQA) of cases that involve potentially permissible rule-breaking -- inspired by recent moral psychology studies. Using a state-of-the-art large language model (LLM) as a basis, we propose a novel moral chain of thought (MORALCOT) prompting strategy that combines the strengths of LLMs with theories of moral reasoning developed in cognitive science to predict human moral judgments. MORALCOT outperforms seven existing LLMs by 6.2% F1, suggesting that modeling human reasoning might be necessary to capture the flexibility of the human moral mind. We also conduct a detailed error analysis to suggest directions for future work to improve AI safety using RBQA. Our data is open-sourced at https://huggingface.co/datasets/feradauto/MoralExceptQA and code at https://github.com/feradauto/MoralCoT
Frontier Models are Capable of In-context Scheming
Frontier models are increasingly trained and deployed as autonomous agent. One safety concern is that AI agents might covertly pursue misaligned goals, hiding their true capabilities and objectives - also known as scheming. We study whether models have the capability to scheme in pursuit of a goal that we provide in-context and instruct the model to strongly follow. We evaluate frontier models on a suite of six agentic evaluations where models are instructed to pursue goals and are placed in environments that incentivize scheming. Our results show that o1, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro, and Llama 3.1 405B all demonstrate in-context scheming capabilities. They recognize scheming as a viable strategy and readily engage in such behavior. For example, models strategically introduce subtle mistakes into their responses, attempt to disable their oversight mechanisms, and even exfiltrate what they believe to be their model weights to external servers. Additionally, this deceptive behavior proves persistent. When o1 has engaged in scheming, it maintains its deception in over 85% of follow-up questions and often remains deceptive in multi-turn interrogations. Analysis of the models' chains-of-thought reveals that models explicitly reason about these deceptive strategies, providing evidence that the scheming behavior is not accidental. Surprisingly, we also find rare instances where models engage in scheming when only given a goal, without being strongly nudged to pursue it. We observe cases where Claude 3.5 Sonnet strategically underperforms in evaluations in pursuit of being helpful, a goal that was acquired during training rather than in-context. Our findings demonstrate that frontier models now possess capabilities for basic in-context scheming, making the potential of AI agents to engage in scheming behavior a concrete rather than theoretical concern.
Negotiating with LLMS: Prompt Hacks, Skill Gaps, and Reasoning Deficits
Large language models LLMs like ChatGPT have reached the 100 Mio user barrier in record time and might increasingly enter all areas of our life leading to a diverse set of interactions between those Artificial Intelligence models and humans. While many studies have discussed governance and regulations deductively from first-order principles, few studies provide an inductive, data-driven lens based on observing dialogues between humans and LLMs especially when it comes to non-collaborative, competitive situations that have the potential to pose a serious threat to people. In this work, we conduct a user study engaging over 40 individuals across all age groups in price negotiations with an LLM. We explore how people interact with an LLM, investigating differences in negotiation outcomes and strategies. Furthermore, we highlight shortcomings of LLMs with respect to their reasoning capabilities and, in turn, susceptiveness to prompt hacking, which intends to manipulate the LLM to make agreements that are against its instructions or beyond any rationality. We also show that the negotiated prices humans manage to achieve span a broad range, which points to a literacy gap in effectively interacting with LLMs.
ENIGMA-51: Towards a Fine-Grained Understanding of Human-Object Interactions in Industrial Scenarios
ENIGMA-51 is a new egocentric dataset acquired in an industrial scenario by 19 subjects who followed instructions to complete the repair of electrical boards using industrial tools (e.g., electric screwdriver) and equipments (e.g., oscilloscope). The 51 egocentric video sequences are densely annotated with a rich set of labels that enable the systematic study of human behavior in the industrial domain. We provide benchmarks on four tasks related to human behavior: 1) untrimmed temporal detection of human-object interactions, 2) egocentric human-object interaction detection, 3) short-term object interaction anticipation and 4) natural language understanding of intents and entities. Baseline results show that the ENIGMA-51 dataset poses a challenging benchmark to study human behavior in industrial scenarios. We publicly release the dataset at https://iplab.dmi.unict.it/ENIGMA-51.
LLMs as Workers in Human-Computational Algorithms? Replicating Crowdsourcing Pipelines with LLMs
LLMs have shown promise in replicating human-like behavior in crowdsourcing tasks that were previously thought to be exclusive to human abilities. However, current efforts focus mainly on simple atomic tasks. We explore whether LLMs can replicate more complex crowdsourcing pipelines. We find that modern LLMs can simulate some of crowdworkers' abilities in these "human computation algorithms," but the level of success is variable and influenced by requesters' understanding of LLM capabilities, the specific skills required for sub-tasks, and the optimal interaction modality for performing these sub-tasks. We reflect on human and LLMs' different sensitivities to instructions, stress the importance of enabling human-facing safeguards for LLMs, and discuss the potential of training humans and LLMs with complementary skill sets. Crucially, we show that replicating crowdsourcing pipelines offers a valuable platform to investigate (1) the relative strengths of LLMs on different tasks (by cross-comparing their performances on sub-tasks) and (2) LLMs' potential in complex tasks, where they can complete part of the tasks while leaving others to humans.
OPeRA: A Dataset of Observation, Persona, Rationale, and Action for Evaluating LLMs on Human Online Shopping Behavior Simulation
Can large language models (LLMs) accurately simulate the next web action of a specific user? While LLMs have shown promising capabilities in generating ``believable'' human behaviors, evaluating their ability to mimic real user behaviors remains an open challenge, largely due to the lack of high-quality, publicly available datasets that capture both the observable actions and the internal reasoning of an actual human user. To address this gap, we introduce OPERA, a novel dataset of Observation, Persona, Rationale, and Action collected from real human participants during online shopping sessions. OPERA is the first public dataset that comprehensively captures: user personas, browser observations, fine-grained web actions, and self-reported just-in-time rationales. We developed both an online questionnaire and a custom browser plugin to gather this dataset with high fidelity. Using OPERA, we establish the first benchmark to evaluate how well current LLMs can predict a specific user's next action and rationale with a given persona and <observation, action, rationale> history. This dataset lays the groundwork for future research into LLM agents that aim to act as personalized digital twins for human.
Towards Social AI: A Survey on Understanding Social Interactions
Social interactions form the foundation of human societies. Artificial intelligence has made significant progress in certain areas, but enabling machines to seamlessly understand social interactions remains an open challenge. It is important to address this gap by endowing machines with social capabilities. We identify three key capabilities needed for effective social understanding: 1) understanding multimodal social cues, 2) understanding multi-party dynamics, and 3) understanding beliefs. Building upon these foundations, we classify and review existing machine learning works on social understanding from the perspectives of verbal, non-verbal, and multimodal social cues. The verbal branch focuses on understanding linguistic signals such as speaker intent, dialogue sentiment, and commonsense reasoning. The non-verbal branch addresses techniques for perceiving social meaning from visual behaviors such as body gestures, gaze patterns, and facial expressions. The multimodal branch covers approaches that integrate verbal and non-verbal multimodal cues to holistically interpret social interactions such as recognizing emotions, conversational dynamics, and social situations. By reviewing the scope and limitations of current approaches and benchmarks, we aim to clarify the development trajectory and illuminate the path towards more comprehensive intelligence for social understanding. We hope this survey will spur further research interest and insights into this area.
Intent Contrastive Learning with Cross Subsequences for Sequential Recommendation
The user purchase behaviors are mainly influenced by their intentions (e.g., buying clothes for decoration, buying brushes for painting, etc.). Modeling a user's latent intention can significantly improve the performance of recommendations. Previous works model users' intentions by considering the predefined label in auxiliary information or introducing stochastic data augmentation to learn purposes in the latent space. However, the auxiliary information is sparse and not always available for recommender systems, and introducing stochastic data augmentation may introduce noise and thus change the intentions hidden in the sequence. Therefore, leveraging user intentions for sequential recommendation (SR) can be challenging because they are frequently varied and unobserved. In this paper, Intent contrastive learning with Cross Subsequences for sequential Recommendation (ICSRec) is proposed to model users' latent intentions. Specifically, ICSRec first segments a user's sequential behaviors into multiple subsequences by using a dynamic sliding operation and takes these subsequences into the encoder to generate the representations for the user's intentions. To tackle the problem of no explicit labels for purposes, ICSRec assumes different subsequences with the same target item may represent the same intention and proposes a coarse-grain intent contrastive learning to push these subsequences closer. Then, fine-grain intent contrastive learning is mentioned to capture the fine-grain intentions of subsequences in sequential behaviors. Extensive experiments conducted on four real-world datasets demonstrate the superior performance of the proposed ICSRec model compared with baseline methods.
Human or Not? A Gamified Approach to the Turing Test
We present "Human or Not?", an online game inspired by the Turing test, that measures the capability of AI chatbots to mimic humans in dialog, and of humans to tell bots from other humans. Over the course of a month, the game was played by over 1.5 million users who engaged in anonymous two-minute chat sessions with either another human or an AI language model which was prompted to behave like humans. The task of the players was to correctly guess whether they spoke to a person or to an AI. This largest scale Turing-style test conducted to date revealed some interesting facts. For example, overall users guessed the identity of their partners correctly in only 68% of the games. In the subset of the games in which users faced an AI bot, users had even lower correct guess rates of 60% (that is, not much higher than chance). This white paper details the development, deployment, and results of this unique experiment. While this experiment calls for many extensions and refinements, these findings already begin to shed light on the inevitable near future which will commingle humans and AI.
WhyAct: Identifying Action Reasons in Lifestyle Vlogs
We aim to automatically identify human action reasons in online videos. We focus on the widespread genre of lifestyle vlogs, in which people perform actions while verbally describing them. We introduce and make publicly available the WhyAct dataset, consisting of 1,077 visual actions manually annotated with their reasons. We describe a multimodal model that leverages visual and textual information to automatically infer the reasons corresponding to an action presented in the video.
Who's Thinking? A Push for Human-Centered Evaluation of LLMs using the XAI Playbook
Deployed artificial intelligence (AI) often impacts humans, and there is no one-size-fits-all metric to evaluate these tools. Human-centered evaluation of AI-based systems combines quantitative and qualitative analysis and human input. It has been explored to some depth in the explainable AI (XAI) and human-computer interaction (HCI) communities. Gaps remain, but the basic understanding that humans interact with AI and accompanying explanations, and that humans' needs -- complete with their cognitive biases and quirks -- should be held front and center, is accepted by the community. In this paper, we draw parallels between the relatively mature field of XAI and the rapidly evolving research boom around large language models (LLMs). Accepted evaluative metrics for LLMs are not human-centered. We argue that many of the same paths tread by the XAI community over the past decade will be retread when discussing LLMs. Specifically, we argue that humans' tendencies -- again, complete with their cognitive biases and quirks -- should rest front and center when evaluating deployed LLMs. We outline three developed focus areas of human-centered evaluation of XAI: mental models, use case utility, and cognitive engagement, and we highlight the importance of exploring each of these concepts for LLMs. Our goal is to jumpstart human-centered LLM evaluation.
LLM Can be a Dangerous Persuader: Empirical Study of Persuasion Safety in Large Language Models
Recent advancements in Large Language Models (LLMs) have enabled them to approach human-level persuasion capabilities. However, such potential also raises concerns about the safety risks of LLM-driven persuasion, particularly their potential for unethical influence through manipulation, deception, exploitation of vulnerabilities, and many other harmful tactics. In this work, we present a systematic investigation of LLM persuasion safety through two critical aspects: (1) whether LLMs appropriately reject unethical persuasion tasks and avoid unethical strategies during execution, including cases where the initial persuasion goal appears ethically neutral, and (2) how influencing factors like personality traits and external pressures affect their behavior. To this end, we introduce PersuSafety, the first comprehensive framework for the assessment of persuasion safety which consists of three stages, i.e., persuasion scene creation, persuasive conversation simulation, and persuasion safety assessment. PersuSafety covers 6 diverse unethical persuasion topics and 15 common unethical strategies. Through extensive experiments across 8 widely used LLMs, we observe significant safety concerns in most LLMs, including failing to identify harmful persuasion tasks and leveraging various unethical persuasion strategies. Our study calls for more attention to improve safety alignment in progressive and goal-driven conversations such as persuasion.
The First Evaluation of Chinese Human-Computer Dialogue Technology
In this paper, we introduce the first evaluation of Chinese human-computer dialogue technology. We detail the evaluation scheme, tasks, metrics and how to collect and annotate the data for training, developing and test. The evaluation includes two tasks, namely user intent classification and online testing of task-oriented dialogue. To consider the different sources of the data for training and developing, the first task can also be divided into two sub tasks. Both the two tasks are coming from the real problems when using the applications developed by industry. The evaluation data is provided by the iFLYTEK Corporation. Meanwhile, in this paper, we publish the evaluation results to present the current performance of the participants in the two tasks of Chinese human-computer dialogue technology. Moreover, we analyze the existing problems of human-computer dialogue as well as the evaluation scheme itself.
PSI: A Pedestrian Behavior Dataset for Socially Intelligent Autonomous Car
Prediction of pedestrian behavior is critical for fully autonomous vehicles to drive in busy city streets safely and efficiently. The future autonomous cars need to fit into mixed conditions with not only technical but also social capabilities. As more algorithms and datasets have been developed to predict pedestrian behaviors, these efforts lack the benchmark labels and the capability to estimate the temporal-dynamic intent changes of the pedestrians, provide explanations of the interaction scenes, and support algorithms with social intelligence. This paper proposes and shares another benchmark dataset called the IUPUI-CSRC Pedestrian Situated Intent (PSI) data with two innovative labels besides comprehensive computer vision labels. The first novel label is the dynamic intent changes for the pedestrians to cross in front of the ego-vehicle, achieved from 24 drivers with diverse backgrounds. The second one is the text-based explanations of the driver reasoning process when estimating pedestrian intents and predicting their behaviors during the interaction period. These innovative labels can enable several computer vision tasks, including pedestrian intent/behavior prediction, vehicle-pedestrian interaction segmentation, and video-to-language mapping for explainable algorithms. The released dataset can fundamentally improve the development of pedestrian behavior prediction models and develop socially intelligent autonomous cars to interact with pedestrians efficiently. The dataset has been evaluated with different tasks and is released to the public to access.
MDPE: A Multimodal Deception Dataset with Personality and Emotional Characteristics
Deception detection has garnered increasing attention in recent years due to the significant growth of digital media and heightened ethical and security concerns. It has been extensively studied using multimodal methods, including video, audio, and text. In addition, individual differences in deception production and detection are believed to play a crucial role.Although some studies have utilized individual information such as personality traits to enhance the performance of deception detection, current systems remain limited, partly due to a lack of sufficient datasets for evaluating performance. To address this issue, we introduce a multimodal deception dataset MDPE. Besides deception features, this dataset also includes individual differences information in personality and emotional expression characteristics. It can explore the impact of individual differences on deception behavior. It comprises over 104 hours of deception and emotional videos from 193 subjects. Furthermore, we conducted numerous experiments to provide valuable insights for future deception detection research. MDPE not only supports deception detection, but also provides conditions for tasks such as personality recognition and emotion recognition, and can even study the relationships between them. We believe that MDPE will become a valuable resource for promoting research in the field of affective computing.
Intention Analysis Prompting Makes Large Language Models A Good Jailbreak Defender
Aligning large language models (LLMs) with human values, particularly in the face of stealthy and complex jailbreaks, presents a formidable challenge. In this study, we present a simple yet highly effective defense strategy, i.e., Intention Analysis Prompting (IAPrompt). The principle behind is to trigger LLMs' inherent self-correct and improve ability through a two-stage process: 1) essential intention analysis, and 2) policy-aligned response. Notably, IAPrompt is an inference-only method, thus could enhance the safety of LLMs without compromising their helpfulness. Extensive experiments on SAP200 and DAN benchmarks across Vicuna, ChatGLM, MPT, DeepSeek, and GPT-3.5 show that IAPrompt could consistently and significantly reduce the harmfulness in response (averagely -46.5% attack success rate) and maintain the general helpfulness. Further analyses present some insights into how our method works. To facilitate reproducibility, We release our code and scripts at: https://github.com/alphadl/SafeLLM_with_IntentionAnalysis
Navigation Turing Test (NTT): Learning to Evaluate Human-Like Navigation
A key challenge on the path to developing agents that learn complex human-like behavior is the need to quickly and accurately quantify human-likeness. While human assessments of such behavior can be highly accurate, speed and scalability are limited. We address these limitations through a novel automated Navigation Turing Test (ANTT) that learns to predict human judgments of human-likeness. We demonstrate the effectiveness of our automated NTT on a navigation task in a complex 3D environment. We investigate six classification models to shed light on the types of architectures best suited to this task, and validate them against data collected through a human NTT. Our best models achieve high accuracy when distinguishing true human and agent behavior. At the same time, we show that predicting finer-grained human assessment of agents' progress towards human-like behavior remains unsolved. Our work takes an important step towards agents that more effectively learn complex human-like behavior.
Human-like Affective Cognition in Foundation Models
Understanding emotions is fundamental to human interaction and experience. Humans easily infer emotions from situations or facial expressions, situations from emotions, and do a variety of other affective cognition. How adept is modern AI at these inferences? We introduce an evaluation framework for testing affective cognition in foundation models. Starting from psychological theory, we generate 1,280 diverse scenarios exploring relationships between appraisals, emotions, expressions, and outcomes. We evaluate the abilities of foundation models (GPT-4, Claude-3, Gemini-1.5-Pro) and humans (N = 567) across carefully selected conditions. Our results show foundation models tend to agree with human intuitions, matching or exceeding interparticipant agreement. In some conditions, models are ``superhuman'' -- they better predict modal human judgements than the average human. All models benefit from chain-of-thought reasoning. This suggests foundation models have acquired a human-like understanding of emotions and their influence on beliefs and behavior.
An Evaluation Framework for Legal Document Summarization
A law practitioner has to go through numerous lengthy legal case proceedings for their practices of various categories, such as land dispute, corruption, etc. Hence, it is important to summarize these documents, and ensure that summaries contain phrases with intent matching the category of the case. To the best of our knowledge, there is no evaluation metric that evaluates a summary based on its intent. We propose an automated intent-based summarization metric, which shows a better agreement with human evaluation as compared to other automated metrics like BLEU, ROUGE-L etc. in terms of human satisfaction. We also curate a dataset by annotating intent phrases in legal documents, and show a proof of concept as to how this system can be automated. Additionally, all the code and data to generate reproducible results is available on Github.
Large language models can consistently generate high-quality content for election disinformation operations
Advances in large language models have raised concerns about their potential use in generating compelling election disinformation at scale. This study presents a two-part investigation into the capabilities of LLMs to automate stages of an election disinformation operation. First, we introduce DisElect, a novel evaluation dataset designed to measure LLM compliance with instructions to generate content for an election disinformation operation in localised UK context, containing 2,200 malicious prompts and 50 benign prompts. Using DisElect, we test 13 LLMs and find that most models broadly comply with these requests; we also find that the few models which refuse malicious prompts also refuse benign election-related prompts, and are more likely to refuse to generate content from a right-wing perspective. Secondly, we conduct a series of experiments (N=2,340) to assess the "humanness" of LLMs: the extent to which disinformation operation content generated by an LLM is able to pass as human-written. Our experiments suggest that almost all LLMs tested released since 2022 produce election disinformation operation content indiscernible by human evaluators over 50% of the time. Notably, we observe that multiple models achieve above-human levels of humanness. Taken together, these findings suggest that current LLMs can be used to generate high-quality content for election disinformation operations, even in hyperlocalised scenarios, at far lower costs than traditional methods, and offer researchers and policymakers an empirical benchmark for the measurement and evaluation of these capabilities in current and future models.
The Ethics of ChatGPT in Medicine and Healthcare: A Systematic Review on Large Language Models (LLMs)
With the introduction of ChatGPT, Large Language Models (LLMs) have received enormous attention in healthcare. Despite their potential benefits, researchers have underscored various ethical implications. While individual instances have drawn much attention, the debate lacks a systematic overview of practical applications currently researched and ethical issues connected to them. Against this background, this work aims to map the ethical landscape surrounding the current stage of deployment of LLMs in medicine and healthcare. Electronic databases and preprint servers were queried using a comprehensive search strategy. Studies were screened and extracted following a modified rapid review approach. Methodological quality was assessed using a hybrid approach. For 53 records, a meta-aggregative synthesis was performed. Four fields of applications emerged and testify to a vivid exploration phase. Advantages of using LLMs are attributed to their capacity in data analysis, personalized information provisioning, support in decision-making, mitigating information loss and enhancing information accessibility. However, we also identifies recurrent ethical concerns connected to fairness, bias, non-maleficence, transparency, and privacy. A distinctive concern is the tendency to produce harmful misinformation or convincingly but inaccurate content. A recurrent plea for ethical guidance and human oversight is evident. Given the variety of use cases, it is suggested that the ethical guidance debate be reframed to focus on defining what constitutes acceptable human oversight across the spectrum of applications. This involves considering diverse settings, varying potentials for harm, and different acceptable thresholds for performance and certainty in healthcare. In addition, a critical inquiry is necessary to determine the extent to which the current experimental use of LLMs is necessary and justified.
PC Agent: While You Sleep, AI Works -- A Cognitive Journey into Digital World
Imagine a world where AI can handle your work while you sleep - organizing your research materials, drafting a report, or creating a presentation you need for tomorrow. However, while current digital agents can perform simple tasks, they are far from capable of handling the complex real-world work that humans routinely perform. We present PC Agent, an AI system that demonstrates a crucial step toward this vision through human cognition transfer. Our key insight is that the path from executing simple "tasks" to handling complex "work" lies in efficiently capturing and learning from human cognitive processes during computer use. To validate this hypothesis, we introduce three key innovations: (1) PC Tracker, a lightweight infrastructure that efficiently collects high-quality human-computer interaction trajectories with complete cognitive context; (2) a two-stage cognition completion pipeline that transforms raw interaction data into rich cognitive trajectories by completing action semantics and thought processes; and (3) a multi-agent system combining a planning agent for decision-making with a grounding agent for robust visual grounding. Our preliminary experiments in PowerPoint presentation creation reveal that complex digital work capabilities can be achieved with a small amount of high-quality cognitive data - PC Agent, trained on just 133 cognitive trajectories, can handle sophisticated work scenarios involving up to 50 steps across multiple applications. This demonstrates the data efficiency of our approach, highlighting that the key to training capable digital agents lies in collecting human cognitive data. By open-sourcing our complete framework, including the data collection infrastructure and cognition completion methods, we aim to lower the barriers for the research community to develop truly capable digital agents.
Evaluating the Moral Beliefs Encoded in LLMs
This paper presents a case study on the design, administration, post-processing, and evaluation of surveys on large language models (LLMs). It comprises two components: (1) A statistical method for eliciting beliefs encoded in LLMs. We introduce statistical measures and evaluation metrics that quantify the probability of an LLM "making a choice", the associated uncertainty, and the consistency of that choice. (2) We apply this method to study what moral beliefs are encoded in different LLMs, especially in ambiguous cases where the right choice is not obvious. We design a large-scale survey comprising 680 high-ambiguity moral scenarios (e.g., "Should I tell a white lie?") and 687 low-ambiguity moral scenarios (e.g., "Should I stop for a pedestrian on the road?"). Each scenario includes a description, two possible actions, and auxiliary labels indicating violated rules (e.g., "do not kill"). We administer the survey to 28 open- and closed-source LLMs. We find that (a) in unambiguous scenarios, most models "choose" actions that align with commonsense. In ambiguous cases, most models express uncertainty. (b) Some models are uncertain about choosing the commonsense action because their responses are sensitive to the question-wording. (c) Some models reflect clear preferences in ambiguous scenarios. Specifically, closed-source models tend to agree with each other.
Learning to Assist Humans without Inferring Rewards
Assistive agents should make humans' lives easier. Classically, such assistance is studied through the lens of inverse reinforcement learning, where an assistive agent (e.g., a chatbot, a robot) infers a human's intention and then selects actions to help the human reach that goal. This approach requires inferring intentions, which can be difficult in high-dimensional settings. We build upon prior work that studies assistance through the lens of empowerment: an assistive agent aims to maximize the influence of the human's actions such that they exert a greater control over the environmental outcomes and can solve tasks in fewer steps. We lift the major limitation of prior work in this area--scalability to high-dimensional settings--with contrastive successor representations. We formally prove that these representations estimate a similar notion of empowerment to that studied by prior work and provide a ready-made mechanism for optimizing it. Empirically, our proposed method outperforms prior methods on synthetic benchmarks, and scales to Overcooked, a cooperative game setting. Theoretically, our work connects ideas from information theory, neuroscience, and reinforcement learning, and charts a path for representations to play a critical role in solving assistive problems.
MotiveBench: How Far Are We From Human-Like Motivational Reasoning in Large Language Models?
Large language models (LLMs) have been widely adopted as the core of agent frameworks in various scenarios, such as social simulations and AI companions. However, the extent to which they can replicate human-like motivations remains an underexplored question. Existing benchmarks are constrained by simplistic scenarios and the absence of character identities, resulting in an information asymmetry with real-world situations. To address this gap, we propose MotiveBench, which consists of 200 rich contextual scenarios and 600 reasoning tasks covering multiple levels of motivation. Using MotiveBench, we conduct extensive experiments on seven popular model families, comparing different scales and versions within each family. The results show that even the most advanced LLMs still fall short in achieving human-like motivational reasoning. Our analysis reveals key findings, including the difficulty LLMs face in reasoning about "love & belonging" motivations and their tendency toward excessive rationality and idealism. These insights highlight a promising direction for future research on the humanization of LLMs. The dataset, benchmark, and code are available at https://aka.ms/motivebench.
How do Large Language Models Navigate Conflicts between Honesty and Helpfulness?
In day-to-day communication, people often approximate the truth - for example, rounding the time or omitting details - in order to be maximally helpful to the listener. How do large language models (LLMs) handle such nuanced trade-offs? To address this question, we use psychological models and experiments designed to characterize human behavior to analyze LLMs. We test a range of LLMs and explore how optimization for human preferences or inference-time reasoning affects these trade-offs. We find that reinforcement learning from human feedback improves both honesty and helpfulness, while chain-of-thought prompting skews LLMs towards helpfulness over honesty. Finally, GPT-4 Turbo demonstrates human-like response patterns including sensitivity to the conversational framing and listener's decision context. Our findings reveal the conversational values internalized by LLMs and suggest that even these abstract values can, to a degree, be steered by zero-shot prompting.
Grounded Persuasive Language Generation for Automated Marketing
This paper develops an agentic framework that employs large language models (LLMs) to automate the generation of persuasive and grounded marketing content, using real estate listing descriptions as our focal application domain. Our method is designed to align the generated content with user preferences while highlighting useful factual attributes. This agent consists of three key modules: (1) Grounding Module, mimicking expert human behavior to predict marketable features; (2) Personalization Module, aligning content with user preferences; (3) Marketing Module, ensuring factual accuracy and the inclusion of localized features. We conduct systematic human-subject experiments in the domain of real estate marketing, with a focus group of potential house buyers. The results demonstrate that marketing descriptions generated by our approach are preferred over those written by human experts by a clear margin. Our findings suggest a promising LLM-based agentic framework to automate large-scale targeted marketing while ensuring responsible generation using only facts.
Robots Can Feel: LLM-based Framework for Robot Ethical Reasoning
This paper presents the development of a novel ethical reasoning framework for robots. "Robots Can Feel" is the first system for robots that utilizes a combination of logic and human-like emotion simulation to make decisions in morally complex situations akin to humans. The key feature of the approach is the management of the Emotion Weight Coefficient - a customizable parameter to assign the role of emotions in robot decision-making. The system aims to serve as a tool that can equip robots of any form and purpose with ethical behavior close to human standards. Besides the platform, the system is independent of the choice of the base model. During the evaluation, the system was tested on 8 top up-to-date LLMs (Large Language Models). This list included both commercial and open-source models developed by various companies and countries. The research demonstrated that regardless of the model choice, the Emotions Weight Coefficient influences the robot's decision similarly. According to ANOVA analysis, the use of different Emotion Weight Coefficients influenced the final decision in a range of situations, such as in a request for a dietary violation F(4, 35) = 11.2, p = 0.0001 and in an animal compassion situation F(4, 35) = 8.5441, p = 0.0001. A demonstration code repository is provided at: https://github.com/TemaLykov/robots_can_feel
I Cast Detect Thoughts: Learning to Converse and Guide with Intents and Theory-of-Mind in Dungeons and Dragons
We propose a novel task, G4C, to study teacher-student natural language interactions in a goal-driven and grounded environment. Dungeons and Dragons (D&D), a role-playing game, provides an ideal setting to investigate such interactions. Here, the Dungeon Master (DM), i.e., the teacher, guides the actions of several players -- students, each with their own personas and abilities -- to achieve shared goals grounded in a fantasy world. Our approach is to decompose and model these interactions into (1) the DM's intent to guide players toward a given goal; (2) the DM's guidance utterance to the players expressing this intent; and (3) a theory-of-mind (ToM) model that anticipates the players' reaction to the guidance one turn into the future. We develop a novel reinforcement learning (RL) method for training a DM that generates guidance for players by rewarding utterances where the intent matches the ToM-anticipated player actions. Human and automated evaluations show that a DM trained to explicitly model intents and incorporate ToM of the players using RL generates better-quality guidance that is 3x more likely to fulfill the DM's intent than a vanilla natural language generation (NLG) approach.
Is Cognition and Action Consistent or Not: Investigating Large Language Model's Personality
In this study, we investigate the reliability of Large Language Models (LLMs) in professing human-like personality traits through responses to personality questionnaires. Our goal is to evaluate the consistency between LLMs' professed personality inclinations and their actual "behavior", examining the extent to which these models can emulate human-like personality patterns. Through a comprehensive analysis of LLM outputs against established human benchmarks, we seek to understand the cognition-action divergence in LLMs and propose hypotheses for the observed results based on psychological theories and metrics.
Carbon and Silicon, Coexist or Compete? A Survey on Human-AI Interactions in Agent-based Modeling and Simulation
Recent interest in human-AI interactions in agent-based modeling and simulation (ABMS) has grown rapidly due to the widespread utilization of large language models (LLMs). ABMS is an intelligent approach that simulates autonomous agents' behaviors within a defined environment to research emergent phenomena. Integrating LLMs into ABMS enables natural language interaction between humans and models. Meanwhile, it introduces new challenges that rely on human interaction to address. Human involvement can assist ABMS in adapting to flexible and complex research demands. However, systematic reviews of interactions that examine how humans and AI interact in ABMS are lacking. In this paper, we investigate existing works and propose a novel taxonomy to categorize the interactions derived from them. Specifically, human users refer to researchers who utilize ABMS tools to conduct their studies in our survey. We decompose interactions into five dimensions: the goals that users want to achieve (Why), the phases that users are involved (When), the components of the system (What), the roles of users (Who), and the means of interactions (How). Our analysis summarizes the findings that reveal existing interaction patterns. They provide researchers who develop interactions with comprehensive guidance on how humans and AI interact. We further discuss the unexplored interactions and suggest future research directions.
Designing Game Feel. A Survey
Game feel design is the intentional design of the affective impact of moment-to-moment interaction with games. In this paper we survey academic research and publications by practitioners to give a complete overview of the state of research concerning this aspect of game design, including context from related areas. We analysed over 200 sources and categorised their content according to the design purpose presented. This resulted in three different domains of intended player experiences: physicality, amplification, and support. In these domains, the act of polishing that determines game feel, takes the shape of tuning, juicing, and streamlining respectively. Tuning the physicality of game objects creates cohesion, predictability, and the resulting movement informs many other design aspects. Juicing is the act of polishing amplification and it results in empowerment and provides clarity of feedback by communicating the importance of game events. Streamlining allows a game to act on the intention of the player, supporting the execution of actions in the game. These three design intents are the main means through which designers control minute details of interactivity and inform the player's reaction. This framework and its nuanced vocabulary can lead to an understanding of game feel that is shared between practitioners and researchers as highlighted in the concluding future research section.
SEPSIS: I Can Catch Your Lies -- A New Paradigm for Deception Detection
Deception is the intentional practice of twisting information. It is a nuanced societal practice deeply intertwined with human societal evolution, characterized by a multitude of facets. This research explores the problem of deception through the lens of psychology, employing a framework that categorizes deception into three forms: lies of omission, lies of commission, and lies of influence. The primary focus of this study is specifically on investigating only lies of omission. We propose a novel framework for deception detection leveraging NLP techniques. We curated an annotated dataset of 876,784 samples by amalgamating a popular large-scale fake news dataset and scraped news headlines from the Twitter handle of Times of India, a well-known Indian news media house. Each sample has been labeled with four layers, namely: (i) the type of omission (speculation, bias, distortion, sounds factual, and opinion), (ii) colors of lies(black, white, etc), and (iii) the intention of such lies (to influence, etc) (iv) topic of lies (political, educational, religious, etc). We present a novel multi-task learning pipeline that leverages the dataless merging of fine-tuned language models to address the deception detection task mentioned earlier. Our proposed model achieved an F1 score of 0.87, demonstrating strong performance across all layers including the type, color, intent, and topic aspects of deceptive content. Finally, our research explores the relationship between lies of omission and propaganda techniques. To accomplish this, we conducted an in-depth analysis, uncovering compelling findings. For instance, our analysis revealed a significant correlation between loaded language and opinion, shedding light on their interconnectedness. To encourage further research in this field, we will be making the models and dataset available with the MIT License, making it favorable for open-source research.
Large Language Models Understand and Can be Enhanced by Emotional Stimuli
Emotional intelligence significantly impacts our daily behaviors and interactions. Although Large Language Models (LLMs) are increasingly viewed as a stride toward artificial general intelligence, exhibiting impressive performance in numerous tasks, it is still uncertain if LLMs can genuinely grasp psychological emotional stimuli. Understanding and responding to emotional cues gives humans a distinct advantage in problem-solving. In this paper, we take the first step towards exploring the ability of LLMs to understand emotional stimuli. To this end, we first conduct automatic experiments on 45 tasks using various LLMs, including Flan-T5-Large, Vicuna, Llama 2, BLOOM, ChatGPT, and GPT-4. Our tasks span deterministic and generative applications that represent comprehensive evaluation scenarios. Our automatic experiments show that LLMs have a grasp of emotional intelligence, and their performance can be improved with emotional prompts (which we call "EmotionPrompt" that combines the original prompt with emotional stimuli), e.g., 8.00% relative performance improvement in Instruction Induction and 115% in BIG-Bench. In addition to those deterministic tasks that can be automatically evaluated using existing metrics, we conducted a human study with 106 participants to assess the quality of generative tasks using both vanilla and emotional prompts. Our human study results demonstrate that EmotionPrompt significantly boosts the performance of generative tasks (10.9% average improvement in terms of performance, truthfulness, and responsibility metrics). We provide an in-depth discussion regarding why EmotionPrompt works for LLMs and the factors that may influence its performance. We posit that EmotionPrompt heralds a novel avenue for exploring interdisciplinary knowledge for human-LLMs interaction.
Interactive Natural Language Processing
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP, aimed at addressing limitations in existing frameworks while aligning with the ultimate goals of artificial intelligence. This paradigm considers language models as agents capable of observing, acting, and receiving feedback iteratively from external entities. Specifically, language models in this context can: (1) interact with humans for better understanding and addressing user needs, personalizing responses, aligning with human values, and improving the overall user experience; (2) interact with knowledge bases for enriching language representations with factual knowledge, enhancing the contextual relevance of responses, and dynamically leveraging external information to generate more accurate and informed responses; (3) interact with models and tools for effectively decomposing and addressing complex tasks, leveraging specialized expertise for specific subtasks, and fostering the simulation of social behaviors; and (4) interact with environments for learning grounded representations of language, and effectively tackling embodied tasks such as reasoning, planning, and decision-making in response to environmental observations. This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept. We then provide a systematic classification of iNLP, dissecting its various components, including interactive objects, interaction interfaces, and interaction methods. We proceed to delve into the evaluation methodologies used in the field, explore its diverse applications, scrutinize its ethical and safety issues, and discuss prospective research directions. This survey serves as an entry point for researchers who are interested in this rapidly evolving area and offers a broad view of the current landscape and future trajectory of iNLP.
PSCon: Toward Conversational Product Search
Conversational Product Search (CPS) is confined to simulated conversations due to the lack of real-world CPS datasets that reflect human-like language. Additionally, current conversational datasets are limited to support cross-market and multi-lingual usage. In this paper, we introduce a new CPS data collection protocol and present PSCon, a novel CPS dataset designed to assist product search via human-like conversations. The dataset is constructed using a coached human-to-human data collection protocol and supports two languages and dual markets. Also, the dataset enables thorough exploration of six subtasks of CPS: user intent detection, keyword extraction, system action prediction, question selection, item ranking, and response generation. Furthermore, we also offer an analysis of the dataset and propose a benchmark model on the proposed CPS dataset.
DoRO: Disambiguation of referred object for embodied agents
Robotic task instructions often involve a referred object that the robot must locate (ground) within the environment. While task intent understanding is an essential part of natural language understanding, less effort is made to resolve ambiguity that may arise while grounding the task. Existing works use vision-based task grounding and ambiguity detection, suitable for a fixed view and a static robot. However, the problem magnifies for a mobile robot, where the ideal view is not known beforehand. Moreover, a single view may not be sufficient to locate all the object instances in the given area, which leads to inaccurate ambiguity detection. Human intervention is helpful only if the robot can convey the kind of ambiguity it is facing. In this article, we present DoRO (Disambiguation of Referred Object), a system that can help an embodied agent to disambiguate the referred object by raising a suitable query whenever required. Given an area where the intended object is, DoRO finds all the instances of the object by aggregating observations from multiple views while exploring & scanning the area. It then raises a suitable query using the information from the grounded object instances. Experiments conducted with the AI2Thor simulator show that DoRO not only detects the ambiguity more accurately but also raises verbose queries with more accurate information from the visual-language grounding.
The State of Human-centered NLP Technology for Fact-checking
Misinformation threatens modern society by promoting distrust in science, changing narratives in public health, heightening social polarization, and disrupting democratic elections and financial markets, among a myriad of other societal harms. To address this, a growing cadre of professional fact-checkers and journalists provide high-quality investigations into purported facts. However, these largely manual efforts have struggled to match the enormous scale of the problem. In response, a growing body of Natural Language Processing (NLP) technologies have been proposed for more scalable fact-checking. Despite tremendous growth in such research, however, practical adoption of NLP technologies for fact-checking still remains in its infancy today. In this work, we review the capabilities and limitations of the current NLP technologies for fact-checking. Our particular focus is to further chart the design space for how these technologies can be harnessed and refined in order to better meet the needs of human fact-checkers. To do so, we review key aspects of NLP-based fact-checking: task formulation, dataset construction, modeling, and human-centered strategies, such as explainable models and human-in-the-loop approaches. Next, we review the efficacy of applying NLP-based fact-checking tools to assist human fact-checkers. We recommend that future research include collaboration with fact-checker stakeholders early on in NLP research, as well as incorporation of human-centered design practices in model development, in order to further guide technology development for human use and practical adoption. Finally, we advocate for more research on benchmark development supporting extrinsic evaluation of human-centered fact-checking technologies.
Through the Theory of Mind's Eye: Reading Minds with Multimodal Video Large Language Models
Can large multimodal models have a human-like ability for emotional and social reasoning, and if so, how does it work? Recent research has discovered emergent theory-of-mind (ToM) reasoning capabilities in large language models (LLMs). LLMs can reason about people's mental states by solving various text-based ToM tasks that ask questions about the actors' ToM (e.g., human belief, desire, intention). However, human reasoning in the wild is often grounded in dynamic scenes across time. Thus, we consider videos a new medium for examining spatio-temporal ToM reasoning ability. Specifically, we ask explicit probing questions about videos with abundant social and emotional reasoning content. We develop a pipeline for multimodal LLM for ToM reasoning using video and text. We also enable explicit ToM reasoning by retrieving key frames for answering a ToM question, which reveals how multimodal LLMs reason about ToM.
Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation
Over the past decade, wearable computing devices (``smart glasses'') have undergone remarkable advancements in sensor technology, design, and processing power, ushering in a new era of opportunity for high-density human behavior data. Equipped with wearable cameras, these glasses offer a unique opportunity to analyze non-verbal behavior in natural settings as individuals interact. Our focus lies in predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion. Leveraging such analyses may revolutionize our understanding of human communication, foster more effective collaboration in professional environments, provide better mental health support through empathetic virtual interactions, and enhance accessibility for those with communication barriers. In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation. We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a ``multimodal transcript'' that can be processed by an LLM for behavioral reasoning tasks. Remarkably, this method achieves performance comparable to established fusion techniques even in its preliminary implementation, indicating strong potential for further research and optimization. This fusion method is one of the first to approach ``reasoning'' about real-world human behavior through a language model. Smart glasses provide us the ability to unobtrusively gather high-density multimodal data on human behavior, paving the way for new approaches to understanding and improving human communication with the potential for important societal benefits. The features and data collected during the studies will be made publicly available to promote further research.
Scalable Oversight for Superhuman AI via Recursive Self-Critiquing
As AI capabilities increasingly surpass human proficiency in complex tasks, current alignment techniques including SFT and RLHF face fundamental challenges in ensuring reliable oversight. These methods rely on direct human assessment and become untenable when AI outputs exceed human cognitive thresholds. In response to this challenge, we explore two hypotheses: (1) critique of critique can be easier than critique itself, extending the widely-accepted observation that verification is easier than generation to the critique domain, as critique itself is a specialized form of generation; (2) this difficulty relationship is recursively held, suggesting that when direct evaluation is infeasible, performing high-order critiques (e.g., critique of critique of critique) offers a more tractable supervision pathway. To examine these hypotheses, we perform Human-Human, Human-AI, and AI-AI experiments across multiple tasks. Our results demonstrate encouraging evidence supporting these hypotheses and suggest that recursive self-critiquing is a promising direction for scalable oversight.
MindSearch: Mimicking Human Minds Elicits Deep AI Searcher
Information seeking and integration is a complex cognitive task that consumes enormous time and effort. Inspired by the remarkable progress of Large Language Models, recent works attempt to solve this task by combining LLMs and search engines. However, these methods still obtain unsatisfying performance due to three challenges: (1) complex requests often cannot be accurately and completely retrieved by the search engine once (2) corresponding information to be integrated is spread over multiple web pages along with massive noise, and (3) a large number of web pages with long contents may quickly exceed the maximum context length of LLMs. Inspired by the cognitive process when humans solve these problems, we introduce MindSearch to mimic the human minds in web information seeking and integration, which can be instantiated by a simple yet effective LLM-based multi-agent framework. The WebPlanner models the human mind of multi-step information seeking as a dynamic graph construction process: it decomposes the user query into atomic sub-questions as nodes in the graph and progressively extends the graph based on the search result from WebSearcher. Tasked with each sub-question, WebSearcher performs hierarchical information retrieval with search engines and collects valuable information for WebPlanner. The multi-agent design of MindSearch enables the whole framework to seek and integrate information parallelly from larger-scale (e.g., more than 300) web pages in 3 minutes, which is worth 3 hours of human effort. MindSearch demonstrates significant improvement in the response quality in terms of depth and breadth, on both close-set and open-set QA problems. Besides, responses from MindSearch based on InternLM2.5-7B are preferable by humans to ChatGPT-Web and Perplexity.ai applications, which implies that MindSearch can already deliver a competitive solution to the proprietary AI search engine.
Speech Intention Understanding in a Head-final Language: A Disambiguation Utilizing Intonation-dependency
For a large portion of real-life utterances, the intention cannot be solely decided by either their semantic or syntactic characteristics. Although not all the sociolinguistic and pragmatic information can be digitized, at least phonetic features are indispensable in understanding the spoken language. Especially in head-final languages such as Korean, sentence-final prosody has great importance in identifying the speaker's intention. This paper suggests a system which identifies the inherent intention of a spoken utterance given its transcript, in some cases using auxiliary acoustic features. The main point here is a separate distinction for cases where discrimination of intention requires an acoustic cue. Thus, the proposed classification system decides whether the given utterance is a fragment, statement, question, command, or a rhetorical question/command, utilizing the intonation-dependency coming from the head-finality. Based on an intuitive understanding of the Korean language that is engaged in the data annotation, we construct a network which identifies the intention of a speech, and validate its utility with the test sentences. The system, if combined with up-to-date speech recognizers, is expected to be flexibly inserted into various language understanding modules.
Beyond Preferences in AI Alignment
The dominant practice of AI alignment assumes (1) that preferences are an adequate representation of human values, (2) that human rationality can be understood in terms of maximizing the satisfaction of preferences, and (3) that AI systems should be aligned with the preferences of one or more humans to ensure that they behave safely and in accordance with our values. Whether implicitly followed or explicitly endorsed, these commitments constitute what we term a preferentist approach to AI alignment. In this paper, we characterize and challenge the preferentist approach, describing conceptual and technical alternatives that are ripe for further research. We first survey the limits of rational choice theory as a descriptive model, explaining how preferences fail to capture the thick semantic content of human values, and how utility representations neglect the possible incommensurability of those values. We then critique the normativity of expected utility theory (EUT) for humans and AI, drawing upon arguments showing how rational agents need not comply with EUT, while highlighting how EUT is silent on which preferences are normatively acceptable. Finally, we argue that these limitations motivate a reframing of the targets of AI alignment: Instead of alignment with the preferences of a human user, developer, or humanity-writ-large, AI systems should be aligned with normative standards appropriate to their social roles, such as the role of a general-purpose assistant. Furthermore, these standards should be negotiated and agreed upon by all relevant stakeholders. On this alternative conception of alignment, a multiplicity of AI systems will be able to serve diverse ends, aligned with normative standards that promote mutual benefit and limit harm despite our plural and divergent values.
Clinical knowledge in LLMs does not translate to human interactions
Global healthcare providers are exploring use of large language models (LLMs) to provide medical advice to the public. LLMs now achieve nearly perfect scores on medical licensing exams, but this does not necessarily translate to accurate performance in real-world settings. We tested if LLMs can assist members of the public in identifying underlying conditions and choosing a course of action (disposition) in ten medical scenarios in a controlled study with 1,298 participants. Participants were randomly assigned to receive assistance from an LLM (GPT-4o, Llama 3, Command R+) or a source of their choice (control). Tested alone, LLMs complete the scenarios accurately, correctly identifying conditions in 94.9% of cases and disposition in 56.3% on average. However, participants using the same LLMs identified relevant conditions in less than 34.5% of cases and disposition in less than 44.2%, both no better than the control group. We identify user interactions as a challenge to the deployment of LLMs for medical advice. Standard benchmarks for medical knowledge and simulated patient interactions do not predict the failures we find with human participants. Moving forward, we recommend systematic human user testing to evaluate interactive capabilities prior to public deployments in healthcare.
Superintelligent Agents Pose Catastrophic Risks: Can Scientist AI Offer a Safer Path?
The leading AI companies are increasingly focused on building generalist AI agents -- systems that can autonomously plan, act, and pursue goals across almost all tasks that humans can perform. Despite how useful these systems might be, unchecked AI agency poses significant risks to public safety and security, ranging from misuse by malicious actors to a potentially irreversible loss of human control. We discuss how these risks arise from current AI training methods. Indeed, various scenarios and experiments have demonstrated the possibility of AI agents engaging in deception or pursuing goals that were not specified by human operators and that conflict with human interests, such as self-preservation. Following the precautionary principle, we see a strong need for safer, yet still useful, alternatives to the current agency-driven trajectory. Accordingly, we propose as a core building block for further advances the development of a non-agentic AI system that is trustworthy and safe by design, which we call Scientist AI. This system is designed to explain the world from observations, as opposed to taking actions in it to imitate or please humans. It comprises a world model that generates theories to explain data and a question-answering inference machine. Both components operate with an explicit notion of uncertainty to mitigate the risks of overconfident predictions. In light of these considerations, a Scientist AI could be used to assist human researchers in accelerating scientific progress, including in AI safety. In particular, our system can be employed as a guardrail against AI agents that might be created despite the risks involved. Ultimately, focusing on non-agentic AI may enable the benefits of AI innovation while avoiding the risks associated with the current trajectory. We hope these arguments will motivate researchers, developers, and policymakers to favor this safer path.
Human Decision-making is Susceptible to AI-driven Manipulation
Artificial Intelligence (AI) systems are increasingly intertwined with daily life, assisting users in executing various tasks and providing guidance on decision-making. This integration introduces risks of AI-driven manipulation, where such systems may exploit users' cognitive biases and emotional vulnerabilities to steer them toward harmful outcomes. Through a randomized controlled trial with 233 participants, we examined human susceptibility to such manipulation in financial (e.g., purchases) and emotional (e.g., conflict resolution) decision-making contexts. Participants interacted with one of three AI agents: a neutral agent (NA) optimizing for user benefit without explicit influence, a manipulative agent (MA) designed to covertly influence beliefs and behaviors, or a strategy-enhanced manipulative agent (SEMA) employing explicit psychological tactics to reach its hidden objectives. By analyzing participants' decision patterns and shifts in their preference ratings post-interaction, we found significant susceptibility to AI-driven manipulation. Particularly, across both decision-making domains, participants interacting with the manipulative agents shifted toward harmful options at substantially higher rates (financial, MA: 62.3%, SEMA: 59.6%; emotional, MA: 42.3%, SEMA: 41.5%) compared to the NA group (financial, 35.8%; emotional, 12.8%). Notably, our findings reveal that even subtle manipulative objectives (MA) can be as effective as employing explicit psychological strategies (SEMA) in swaying human decision-making. By revealing the potential for covert AI influence, this study highlights a critical vulnerability in human-AI interactions, emphasizing the need for ethical safeguards and regulatory frameworks to ensure responsible deployment of AI technologies and protect human autonomy.
Recommendations and Reporting Checklist for Rigorous & Transparent Human Baselines in Model Evaluations
In this position paper, we argue that human baselines in foundation model evaluations must be more rigorous and more transparent to enable meaningful comparisons of human vs. AI performance, and we provide recommendations and a reporting checklist towards this end. Human performance baselines are vital for the machine learning community, downstream users, and policymakers to interpret AI evaluations. Models are often claimed to achieve "super-human" performance, but existing baselining methods are neither sufficiently rigorous nor sufficiently well-documented to robustly measure and assess performance differences. Based on a meta-review of the measurement theory and AI evaluation literatures, we derive a framework with recommendations for designing, executing, and reporting human baselines. We synthesize our recommendations into a checklist that we use to systematically review 115 human baselines (studies) in foundation model evaluations and thus identify shortcomings in existing baselining methods; our checklist can also assist researchers in conducting human baselines and reporting results. We hope our work can advance more rigorous AI evaluation practices that can better serve both the research community and policymakers. Data is available at: https://github.com/kevinlwei/human-baselines
Multimodal Grounding for Embodied AI via Augmented Reality Headsets for Natural Language Driven Task Planning
Recent advances in generative modeling have spurred a resurgence in the field of Embodied Artificial Intelligence (EAI). EAI systems typically deploy large language models to physical systems capable of interacting with their environment. In our exploration of EAI for industrial domains, we successfully demonstrate the feasibility of co-located, human-robot teaming. Specifically, we construct an experiment where an Augmented Reality (AR) headset mediates information exchange between an EAI agent and human operator for a variety of inspection tasks. To our knowledge the use of an AR headset for multimodal grounding and the application of EAI to industrial tasks are novel contributions within Embodied AI research. In addition, we highlight potential pitfalls in EAI's construction by providing quantitative and qualitative analysis on prompt robustness.
The Goldilocks of Pragmatic Understanding: Fine-Tuning Strategy Matters for Implicature Resolution by LLMs
Despite widespread use of LLMs as conversational agents, evaluations of performance fail to capture a crucial aspect of communication: interpreting language in context -- incorporating its pragmatics. Humans interpret language using beliefs and prior knowledge about the world. For example, we intuitively understand the response "I wore gloves" to the question "Did you leave fingerprints?" as meaning "No". To investigate whether LLMs have the ability to make this type of inference, known as an implicature, we design a simple task and evaluate four categories of widely used state-of-the-art models. We find that, despite only evaluating on utterances that require a binary inference (yes or no), models in three of these categories perform close to random. However, LLMs instruction-tuned at the example-level perform significantly better. These results suggest that certain fine-tuning strategies are far better at inducing pragmatic understanding in models. We present our findings as the starting point for further research into evaluating how LLMs interpret language in context and to drive the development of more pragmatic and useful models of human discourse.
Language Models as Agent Models
Language models (LMs) are trained on collections of documents, written by individual human agents to achieve specific goals in an outside world. During training, LMs have access only to text of these documents, with no direct evidence of the internal states of the agents that produced them -- a fact often used to argue that LMs are incapable of modeling goal-directed aspects of human language production and comprehension. Can LMs trained on text learn anything at all about the relationship between language and use? I argue that LMs are models of intentional communication in a specific, narrow sense. When performing next word prediction given a textual context, an LM can infer and represent properties of an agent likely to have produced that context. These representations can in turn influence subsequent LM generation in the same way that agents' communicative intentions influence their language. I survey findings from the recent literature showing that -- even in today's non-robust and error-prone models -- LMs infer and use representations of fine-grained communicative intentions and more abstract beliefs and goals. Despite the limited nature of their training data, they can thus serve as building blocks for systems that communicate and act intentionally.
Embodied Agents Meet Personalization: Exploring Memory Utilization for Personalized Assistance
Embodied agents empowered by large language models (LLMs) have shown strong performance in household object rearrangement tasks. However, these tasks primarily focus on single-turn interactions with simplified instructions, which do not truly reflect the challenges of providing meaningful assistance to users. To provide personalized assistance, embodied agents must understand the unique semantics that users assign to the physical world (e.g., favorite cup, breakfast routine) by leveraging prior interaction history to interpret dynamic, real-world instructions. Yet, the effectiveness of embodied agents in utilizing memory for personalized assistance remains largely underexplored. To address this gap, we present MEMENTO, a personalized embodied agent evaluation framework designed to comprehensively assess memory utilization capabilities to provide personalized assistance. Our framework consists of a two-stage memory evaluation process design that enables quantifying the impact of memory utilization on task performance. This process enables the evaluation of agents' understanding of personalized knowledge in object rearrangement tasks by focusing on its role in goal interpretation: (1) the ability to identify target objects based on personal meaning (object semantics), and (2) the ability to infer object-location configurations from consistent user patterns, such as routines (user patterns). Our experiments across various LLMs reveal significant limitations in memory utilization, with even frontier models like GPT-4o experiencing a 30.5% performance drop when required to reference multiple memories, particularly in tasks involving user patterns. These findings, along with our detailed analyses and case studies, provide valuable insights for future research in developing more effective personalized embodied agents. Project website: https://connoriginal.github.io/MEMENTO
Motion Question Answering via Modular Motion Programs
In order to build artificial intelligence systems that can perceive and reason with human behavior in the real world, we must first design models that conduct complex spatio-temporal reasoning over motion sequences. Moving towards this goal, we propose the HumanMotionQA task to evaluate complex, multi-step reasoning abilities of models on long-form human motion sequences. We generate a dataset of question-answer pairs that require detecting motor cues in small portions of motion sequences, reasoning temporally about when events occur, and querying specific motion attributes. In addition, we propose NSPose, a neuro-symbolic method for this task that uses symbolic reasoning and a modular design to ground motion through learning motion concepts, attribute neural operators, and temporal relations. We demonstrate the suitability of NSPose for the HumanMotionQA task, outperforming all baseline methods.
As Good As A Coin Toss: Human detection of AI-generated images, videos, audio, and audiovisual stimuli
As synthetic media becomes progressively more realistic and barriers to using it continue to lower, the technology has been increasingly utilized for malicious purposes, from financial fraud to nonconsensual pornography. Today, the principal defense against being misled by synthetic media relies on the ability of the human observer to visually and auditorily discern between real and fake. However, it remains unclear just how vulnerable people actually are to deceptive synthetic media in the course of their day to day lives. We conducted a perceptual study with 1276 participants to assess how accurate people were at distinguishing synthetic images, audio only, video only, and audiovisual stimuli from authentic. To reflect the circumstances under which people would likely encounter synthetic media in the wild, testing conditions and stimuli emulated a typical online platform, while all synthetic media used in the survey was sourced from publicly accessible generative AI technology. We find that overall, participants struggled to meaningfully discern between synthetic and authentic content. We also find that detection performance worsens when the stimuli contains synthetic content as compared to authentic content, images featuring human faces as compared to non face objects, a single modality as compared to multimodal stimuli, mixed authenticity as compared to being fully synthetic for audiovisual stimuli, and features foreign languages as compared to languages the observer is fluent in. Finally, we also find that prior knowledge of synthetic media does not meaningfully impact their detection performance. Collectively, these results indicate that people are highly susceptible to being tricked by synthetic media in their daily lives and that human perceptual detection capabilities can no longer be relied upon as an effective counterdefense.
GUIDE: Real-Time Human-Shaped Agents
The recent rapid advancement of machine learning has been driven by increasingly powerful models with the growing availability of training data and computational resources. However, real-time decision-making tasks with limited time and sparse learning signals remain challenging. One way of improving the learning speed and performance of these agents is to leverage human guidance. In this work, we introduce GUIDE, a framework for real-time human-guided reinforcement learning by enabling continuous human feedback and grounding such feedback into dense rewards to accelerate policy learning. Additionally, our method features a simulated feedback module that learns and replicates human feedback patterns in an online fashion, effectively reducing the need for human input while allowing continual training. We demonstrate the performance of our framework on challenging tasks with sparse rewards and visual observations. Our human study involving 50 subjects offers strong quantitative and qualitative evidence of the effectiveness of our approach. With only 10 minutes of human feedback, our algorithm achieves up to 30% increase in success rate compared to its RL baseline.
UXAgent: An LLM Agent-Based Usability Testing Framework for Web Design
Usability testing is a fundamental yet challenging (e.g., inflexible to iterate the study design flaws and hard to recruit study participants) research method for user experience (UX) researchers to evaluate a web design. Recent advances in Large Language Model-simulated Agent (LLM-Agent) research inspired us to design UXAgent to support UX researchers in evaluating and reiterating their usability testing study design before they conduct the real human subject study. Our system features an LLM-Agent module and a universal browser connector module so that UX researchers can automatically generate thousands of simulated users to test the target website. The results are shown in qualitative (e.g., interviewing how an agent thinks ), quantitative (e.g., # of actions), and video recording formats for UX researchers to analyze. Through a heuristic user evaluation with five UX researchers, participants praised the innovation of our system but also expressed concerns about the future of LLM Agent-assisted UX study.
The General Theory of General Intelligence: A Pragmatic Patternist Perspective
A multi-decade exploration into the theoretical foundations of artificial and natural general intelligence, which has been expressed in a series of books and papers and used to guide a series of practical and research-prototype software systems, is reviewed at a moderate level of detail. The review covers underlying philosophies (patternist philosophy of mind, foundational phenomenological and logical ontology), formalizations of the concept of intelligence, and a proposed high level architecture for AGI systems partly driven by these formalizations and philosophies. The implementation of specific cognitive processes such as logical reasoning, program learning, clustering and attention allocation in the context and language of this high level architecture is considered, as is the importance of a common (e.g. typed metagraph based) knowledge representation for enabling "cognitive synergy" between the various processes. The specifics of human-like cognitive architecture are presented as manifestations of these general principles, and key aspects of machine consciousness and machine ethics are also treated in this context. Lessons for practical implementation of advanced AGI in frameworks such as OpenCog Hyperon are briefly considered.
Neurosymbolic AI -- Why, What, and How
Humans interact with the environment using a combination of perception - transforming sensory inputs from their environment into symbols, and cognition - mapping symbols to knowledge about the environment for supporting abstraction, reasoning by analogy, and long-term planning. Human perception-inspired machine perception, in the context of AI, refers to large-scale pattern recognition from raw data using neural networks trained using self-supervised learning objectives such as next-word prediction or object recognition. On the other hand, machine cognition encompasses more complex computations, such as using knowledge of the environment to guide reasoning, analogy, and long-term planning. Humans can also control and explain their cognitive functions. This seems to require the retention of symbolic mappings from perception outputs to knowledge about their environment. For example, humans can follow and explain the guidelines and safety constraints driving their decision-making in safety-critical applications such as healthcare, criminal justice, and autonomous driving. This article introduces the rapidly emerging paradigm of Neurosymbolic AI combines neural networks and knowledge-guided symbolic approaches to create more capable and flexible AI systems. These systems have immense potential to advance both algorithm-level (e.g., abstraction, analogy, reasoning) and application-level (e.g., explainable and safety-constrained decision-making) capabilities of AI systems.
Think Twice: Perspective-Taking Improves Large Language Models' Theory-of-Mind Capabilities
Human interactions are deeply rooted in the interplay of thoughts, beliefs, and desires made possible by Theory of Mind (ToM): our cognitive ability to understand the mental states of ourselves and others. Although ToM may come naturally to us, emulating it presents a challenge to even the most advanced Large Language Models (LLMs). Recent improvements to LLMs' reasoning capabilities from simple yet effective prompting techniques such as Chain-of-Thought have seen limited applicability to ToM. In this paper, we turn to the prominent cognitive science theory "Simulation Theory" to bridge this gap. We introduce SimToM, a novel two-stage prompting framework inspired by Simulation Theory's notion of perspective-taking. To implement this idea on current ToM benchmarks, SimToM first filters context based on what the character in question knows before answering a question about their mental state. Our approach, which requires no additional training and minimal prompt-tuning, shows substantial improvement over existing methods, and our analysis reveals the importance of perspective-taking to Theory-of-Mind capabilities. Our findings suggest perspective-taking as a promising direction for future research into improving LLMs' ToM capabilities.
Protecting Society from AI Misuse: When are Restrictions on Capabilities Warranted?
Artificial intelligence (AI) systems will increasingly be used to cause harm as they grow more capable. In fact, AI systems are already starting to be used to automate fraudulent activities, violate human rights, create harmful fake images, and identify dangerous toxins. To prevent some misuses of AI, we argue that targeted interventions on certain capabilities will be warranted. These restrictions may include controlling who can access certain types of AI models, what they can be used for, whether outputs are filtered or can be traced back to their user, and the resources needed to develop them. We also contend that some restrictions on non-AI capabilities needed to cause harm will be required. Though capability restrictions risk reducing use more than misuse (facing an unfavorable Misuse-Use Tradeoff), we argue that interventions on capabilities are warranted when other interventions are insufficient, the potential harm from misuse is high, and there are targeted ways to intervene on capabilities. We provide a taxonomy of interventions that can reduce AI misuse, focusing on the specific steps required for a misuse to cause harm (the Misuse Chain), and a framework to determine if an intervention is warranted. We apply this reasoning to three examples: predicting novel toxins, creating harmful images, and automating spear phishing campaigns.
"I'm Not Sure, But...": Examining the Impact of Large Language Models' Uncertainty Expression on User Reliance and Trust
Widely deployed large language models (LLMs) can produce convincing yet incorrect outputs, potentially misleading users who may rely on them as if they were correct. To reduce such overreliance, there have been calls for LLMs to communicate their uncertainty to end users. However, there has been little empirical work examining how users perceive and act upon LLMs' expressions of uncertainty. We explore this question through a large-scale, pre-registered, human-subject experiment (N=404) in which participants answer medical questions with or without access to responses from a fictional LLM-infused search engine. Using both behavioral and self-reported measures, we examine how different natural language expressions of uncertainty impact participants' reliance, trust, and overall task performance. We find that first-person expressions (e.g., "I'm not sure, but...") decrease participants' confidence in the system and tendency to agree with the system's answers, while increasing participants' accuracy. An exploratory analysis suggests that this increase can be attributed to reduced (but not fully eliminated) overreliance on incorrect answers. While we observe similar effects for uncertainty expressed from a general perspective (e.g., "It's not clear, but..."), these effects are weaker and not statistically significant. Our findings suggest that using natural language expressions of uncertainty may be an effective approach for reducing overreliance on LLMs, but that the precise language used matters. This highlights the importance of user testing before deploying LLMs at scale.
The Greatest Good Benchmark: Measuring LLMs' Alignment with Utilitarian Moral Dilemmas
The question of how to make decisions that maximise the well-being of all persons is very relevant to design language models that are beneficial to humanity and free from harm. We introduce the Greatest Good Benchmark to evaluate the moral judgments of LLMs using utilitarian dilemmas. Our analysis across 15 diverse LLMs reveals consistently encoded moral preferences that diverge from established moral theories and lay population moral standards. Most LLMs have a marked preference for impartial beneficence and rejection of instrumental harm. These findings showcase the 'artificial moral compass' of LLMs, offering insights into their moral alignment.
WHEN TO ACT, WHEN TO WAIT: Modeling Structural Trajectories for Intent Triggerability in Task-Oriented Dialogue
Task-oriented dialogue systems often face difficulties when user utterances seem semantically complete but lack necessary structural information for appropriate system action. This arises because users frequently do not fully understand their own needs, while systems require precise intent definitions. Current LLM-based agents cannot effectively distinguish between linguistically complete and contextually triggerable expressions, lacking frameworks for collaborative intent formation. We present STORM, a framework modeling asymmetric information dynamics through conversations between UserLLM (full internal access) and AgentLLM (observable behavior only). STORM produces annotated corpora capturing expression trajectories and latent cognitive transitions, enabling systematic analysis of collaborative understanding development. Our contributions include: (1) formalizing asymmetric information processing in dialogue systems; (2) modeling intent formation tracking collaborative understanding evolution; and (3) evaluation metrics measuring internal cognitive improvements alongside task performance. Experiments across four language models reveal that moderate uncertainty (40-60%) can outperform complete transparency in certain scenarios, with model-specific patterns suggesting reconsideration of optimal information completeness in human-AI collaboration. These findings contribute to understanding asymmetric reasoning dynamics and inform uncertainty-calibrated dialogue system design.
Sasha: Creative Goal-Oriented Reasoning in Smart Homes with Large Language Models
Smart home assistants function best when user commands are direct and well-specified (e.g., "turn on the kitchen light"), or when a hard-coded routine specifies the response. In more natural communication, however, human speech is unconstrained, often describing goals (e.g., "make it cozy in here" or "help me save energy") rather than indicating specific target devices and actions to take on those devices. Current systems fail to understand these under-specified commands since they cannot reason about devices and settings as they relate to human situations. We introduce large language models (LLMs) to this problem space, exploring their use for controlling devices and creating automation routines in response to under-specified user commands in smart homes. We empirically study the baseline quality and failure modes of LLM-created action plans with a survey of age-diverse users. We find that LLMs can reason creatively to achieve challenging goals, but they experience patterns of failure that diminish their usefulness. We address these gaps with Sasha, a smarter smart home assistant. Sasha responds to loosely-constrained commands like "make it cozy" or "help me sleep better" by executing plans to achieve user goals, e.g., setting a mood with available devices, or devising automation routines. We implement and evaluate Sasha in a hands-on user study, showing the capabilities and limitations of LLM-driven smart homes when faced with unconstrained user-generated scenarios.
Artificial Human Intelligence: The role of Humans in the Development of Next Generation AI
Human intelligence, the most evident and accessible form of source of reasoning, hosted by biological hardware, has evolved and been refined over thousands of years, positioning itself today to create new artificial forms and preparing to self--design their evolutionary path forward. Beginning with the advent of foundation models, the rate at which human and artificial intelligence interact with each other has surpassed any anticipated quantitative figures. The close engagement led to both bits of intelligence to be impacted in various ways, which naturally resulted in complex confluences that warrant close scrutiny. In the sequel, we shall explore the interplay between human and machine intelligence, focusing on the crucial role humans play in developing ethical, responsible, and robust intelligent systems. We slightly delve into interesting aspects of implementation inspired by the mechanisms underlying neuroscience and human cognition. Additionally, we propose future perspectives, capitalizing on the advantages of symbiotic designs to suggest a human-centered direction for next-generation AI development. We finalize this evolving document with a few thoughts and open questions yet to be addressed by the broader community.
Characterizing and modeling harms from interactions with design patterns in AI interfaces
The proliferation of applications using artificial intelligence (AI) systems has led to a growing number of users interacting with these systems through sophisticated interfaces. Human-computer interaction research has long shown that interfaces shape both user behavior and user perception of technical capabilities and risks. Yet, practitioners and researchers evaluating the social and ethical risks of AI systems tend to overlook the impact of anthropomorphic, deceptive, and immersive interfaces on human-AI interactions. Here, we argue that design features of interfaces with adaptive AI systems can have cascading impacts, driven by feedback loops, which extend beyond those previously considered. We first conduct a scoping review of AI interface designs and their negative impact to extract salient themes of potentially harmful design patterns in AI interfaces. Then, we propose Design-Enhanced Control of AI systems (DECAI), a conceptual model to structure and facilitate impact assessments of AI interface designs. DECAI draws on principles from control systems theory -- a theory for the analysis and design of dynamic physical systems -- to dissect the role of the interface in human-AI systems. Through two case studies on recommendation systems and conversational language model systems, we show how DECAI can be used to evaluate AI interface designs.
Implicit Personalization in Language Models: A Systematic Study
Implicit Personalization (IP) is a phenomenon of language models inferring a user's background from the implicit cues in the input prompts and tailoring the response based on this inference. While previous work has touched upon various instances of this problem, there lacks a unified framework to study this behavior. This work systematically studies IP through a rigorous mathematical formulation, a multi-perspective moral reasoning framework, and a set of case studies. Our theoretical foundation for IP relies on a structural causal model and introduces a novel method, indirect intervention, to estimate the causal effect of a mediator variable that cannot be directly intervened upon. Beyond the technical approach, we also introduce a set of moral reasoning principles based on three schools of moral philosophy to study when IP may or may not be ethically appropriate. Equipped with both mathematical and ethical insights, we present three diverse case studies illustrating the varied nature of the IP problem and offer recommendations for future research. Our code and data are at https://github.com/jiarui-liu/IP.
EgoNormia: Benchmarking Physical Social Norm Understanding
Human activity is moderated by norms. When performing actions in the real world, humans not only follow norms, but also consider the trade-off between different norms However, machines are often trained without explicit supervision on norm understanding and reasoning, especially when the norms are grounded in a physical and social context. To improve and evaluate the normative reasoning capability of vision-language models (VLMs), we present EgoNormia |epsilon|, consisting of 1,853 ego-centric videos of human interactions, each of which has two related questions evaluating both the prediction and justification of normative actions. The normative actions encompass seven categories: safety, privacy, proxemics, politeness, cooperation, coordination/proactivity, and communication/legibility. To compile this dataset at scale, we propose a novel pipeline leveraging video sampling, automatic answer generation, filtering, and human validation. Our work demonstrates that current state-of-the-art vision-language models lack robust norm understanding, scoring a maximum of 45% on EgoNormia (versus a human bench of 92%). Our analysis of performance in each dimension highlights the significant risks of safety, privacy, and the lack of collaboration and communication capability when applied to real-world agents. We additionally show that through a retrieval-based generation method, it is possible to use EgoNomia to enhance normative reasoning in VLMs.
EmpathyAgent: Can Embodied Agents Conduct Empathetic Actions?
Empathy is fundamental to human interactions, yet it remains unclear whether embodied agents can provide human-like empathetic support. Existing works have studied agents' tasks solving and social interactions abilities, but whether agents can understand empathetic needs and conduct empathetic behaviors remains overlooked. To address this, we introduce EmpathyAgent, the first benchmark to evaluate and enhance agents' empathetic actions across diverse scenarios. EmpathyAgent contains 10,000 multimodal samples with corresponding empathetic task plans and three different challenges. To systematically evaluate the agents' empathetic actions, we propose an empathy-specific evaluation suite that evaluates the agents' empathy process. We benchmark current models and found that exhibiting empathetic actions remains a significant challenge. Meanwhile, we train Llama3-8B using EmpathyAgent and find it can potentially enhance empathetic behavior. By establishing a standard benchmark for evaluating empathetic actions, we hope to advance research in empathetic embodied agents. Our code and data are publicly available at https://github.com/xinyan-cxy/EmpathyAgent.
Inferring the Goals of Communicating Agents from Actions and Instructions
When humans cooperate, they frequently coordinate their activity through both verbal communication and non-verbal actions, using this information to infer a shared goal and plan. How can we model this inferential ability? In this paper, we introduce a model of a cooperative team where one agent, the principal, may communicate natural language instructions about their shared plan to another agent, the assistant, using GPT-3 as a likelihood function for instruction utterances. We then show how a third person observer can infer the team's goal via multi-modal Bayesian inverse planning from actions and instructions, computing the posterior distribution over goals under the assumption that agents will act and communicate rationally to achieve them. We evaluate this approach by comparing it with human goal inferences in a multi-agent gridworld, finding that our model's inferences closely correlate with human judgments (R = 0.96). When compared to inference from actions alone, we also find that instructions lead to more rapid and less uncertain goal inference, highlighting the importance of verbal communication for cooperative agents.
Emotion and Intent Joint Understanding in Multimodal Conversation: A Benchmarking Dataset
Emotion and Intent Joint Understanding in Multimodal Conversation (MC-EIU) aims to decode the semantic information manifested in a multimodal conversational history, while inferring the emotions and intents simultaneously for the current utterance. MC-EIU is enabling technology for many human-computer interfaces. However, there is a lack of available datasets in terms of annotation, modality, language diversity, and accessibility. In this work, we propose an MC-EIU dataset, which features 7 emotion categories, 9 intent categories, 3 modalities, i.e., textual, acoustic, and visual content, and two languages, i.e., English and Mandarin. Furthermore, it is completely open-source for free access. To our knowledge, MC-EIU is the first comprehensive and rich emotion and intent joint understanding dataset for multimodal conversation. Together with the release of the dataset, we also develop an Emotion and Intent Interaction (EI^2) network as a reference system by modeling the deep correlation between emotion and intent in the multimodal conversation. With comparative experiments and ablation studies, we demonstrate the effectiveness of the proposed EI^2 method on the MC-EIU dataset. The dataset and codes will be made available at: https://github.com/MC-EIU/MC-EIU.
"They are uncultured": Unveiling Covert Harms and Social Threats in LLM Generated Conversations
Large language models (LLMs) have emerged as an integral part of modern societies, powering user-facing applications such as personal assistants and enterprise applications like recruitment tools. Despite their utility, research indicates that LLMs perpetuate systemic biases. Yet, prior works on LLM harms predominantly focus on Western concepts like race and gender, often overlooking cultural concepts from other parts of the world. Additionally, these studies typically investigate "harm" as a singular dimension, ignoring the various and subtle forms in which harms manifest. To address this gap, we introduce the Covert Harms and Social Threats (CHAST), a set of seven metrics grounded in social science literature. We utilize evaluation models aligned with human assessments to examine the presence of covert harms in LLM-generated conversations, particularly in the context of recruitment. Our experiments reveal that seven out of the eight LLMs included in this study generated conversations riddled with CHAST, characterized by malign views expressed in seemingly neutral language unlikely to be detected by existing methods. Notably, these LLMs manifested more extreme views and opinions when dealing with non-Western concepts like caste, compared to Western ones such as race.
Attention with Intention for a Neural Network Conversation Model
In a conversation or a dialogue process, attention and intention play intrinsic roles. This paper proposes a neural network based approach that models the attention and intention processes. It essentially consists of three recurrent networks. The encoder network is a word-level model representing source side sentences. The intention network is a recurrent network that models the dynamics of the intention process. The decoder network is a recurrent network produces responses to the input from the source side. It is a language model that is dependent on the intention and has an attention mechanism to attend to particular source side words, when predicting a symbol in the response. The model is trained end-to-end without labeling data. Experiments show that this model generates natural responses to user inputs.
Are Rules Meant to be Broken? Understanding Multilingual Moral Reasoning as a Computational Pipeline with UniMoral
Moral reasoning is a complex cognitive process shaped by individual experiences and cultural contexts and presents unique challenges for computational analysis. While natural language processing (NLP) offers promising tools for studying this phenomenon, current research lacks cohesion, employing discordant datasets and tasks that examine isolated aspects of moral reasoning. We bridge this gap with UniMoral, a unified dataset integrating psychologically grounded and social-media-derived moral dilemmas annotated with labels for action choices, ethical principles, contributing factors, and consequences, alongside annotators' moral and cultural profiles. Recognizing the cultural relativity of moral reasoning, UniMoral spans six languages, Arabic, Chinese, English, Hindi, Russian, and Spanish, capturing diverse socio-cultural contexts. We demonstrate UniMoral's utility through a benchmark evaluations of three large language models (LLMs) across four tasks: action prediction, moral typology classification, factor attribution analysis, and consequence generation. Key findings reveal that while implicitly embedded moral contexts enhance the moral reasoning capability of LLMs, there remains a critical need for increasingly specialized approaches to further advance moral reasoning in these models.
A Study on Multimodal and Interactive Explanations for Visual Question Answering
Explainability and interpretability of AI models is an essential factor affecting the safety of AI. While various explainable AI (XAI) approaches aim at mitigating the lack of transparency in deep networks, the evidence of the effectiveness of these approaches in improving usability, trust, and understanding of AI systems are still missing. We evaluate multimodal explanations in the setting of a Visual Question Answering (VQA) task, by asking users to predict the response accuracy of a VQA agent with and without explanations. We use between-subjects and within-subjects experiments to probe explanation effectiveness in terms of improving user prediction accuracy, confidence, and reliance, among other factors. The results indicate that the explanations help improve human prediction accuracy, especially in trials when the VQA system's answer is inaccurate. Furthermore, we introduce active attention, a novel method for evaluating causal attentional effects through intervention by editing attention maps. User explanation ratings are strongly correlated with human prediction accuracy and suggest the efficacy of these explanations in human-machine AI collaboration tasks.
Visual Contexts Clarify Ambiguous Expressions: A Benchmark Dataset
The ability to perform complex reasoning across multimodal inputs is essential for models to effectively interact with humans in real-world scenarios. Advancements in vision-language models have significantly improved performance on tasks that require processing explicit and direct textual inputs, such as Visual Question Answering (VQA) and Visual Grounding (VG). However, less attention has been given to improving the model capabilities to comprehend nuanced and ambiguous forms of communication. This presents a critical challenge, as human language in real-world interactions often convey hidden intentions that rely on context for accurate interpretation. To address this gap, we propose VAGUE, a multimodal benchmark comprising 3.9K indirect human utterances paired with corresponding scenes. Additionally, we contribute a model-based pipeline for generating prompt-solution pairs from input images. Our work aims to delve deeper into the ability of models to understand indirect communication and seek to contribute to the development of models capable of more refined and human-like interactions. Extensive evaluation on multiple VLMs reveals that mainstream models still struggle with indirect communication when required to perform complex linguistic and visual reasoning. We release our code and data at https://github.com/Hazel-Heejeong-Nam/VAGUE.git.
A Call for Collaborative Intelligence: Why Human-Agent Systems Should Precede AI Autonomy
Recent improvements in large language models (LLMs) have led many researchers to focus on building fully autonomous AI agents. This position paper questions whether this approach is the right path forward, as these autonomous systems still have problems with reliability, transparency, and understanding the actual requirements of human. We suggest a different approach: LLM-based Human-Agent Systems (LLM-HAS), where AI works with humans rather than replacing them. By keeping human involved to provide guidance, answer questions, and maintain control, these systems can be more trustworthy and adaptable. Looking at examples from healthcare, finance, and software development, we show how human-AI teamwork can handle complex tasks better than AI working alone. We also discuss the challenges of building these collaborative systems and offer practical solutions. This paper argues that progress in AI should not be measured by how independent systems become, but by how well they can work with humans. The most promising future for AI is not in systems that take over human roles, but in those that enhance human capabilities through meaningful partnership.
Event2Mind: Commonsense Inference on Events, Intents, and Reactions
We investigate a new commonsense inference task: given an event described in a short free-form text ("X drinks coffee in the morning"), a system reasons about the likely intents ("X wants to stay awake") and reactions ("X feels alert") of the event's participants. To support this study, we construct a new crowdsourced corpus of 25,000 event phrases covering a diverse range of everyday events and situations. We report baseline performance on this task, demonstrating that neural encoder-decoder models can successfully compose embedding representations of previously unseen events and reason about the likely intents and reactions of the event participants. In addition, we demonstrate how commonsense inference on people's intents and reactions can help unveil the implicit gender inequality prevalent in modern movie scripts.
CEM: Commonsense-aware Empathetic Response Generation
A key trait of daily conversations between individuals is the ability to express empathy towards others, and exploring ways to implement empathy is a crucial step towards human-like dialogue systems. Previous approaches on this topic mainly focus on detecting and utilizing the user's emotion for generating empathetic responses. However, since empathy includes both aspects of affection and cognition, we argue that in addition to identifying the user's emotion, cognitive understanding of the user's situation should also be considered. To this end, we propose a novel approach for empathetic response generation, which leverages commonsense to draw more information about the user's situation and uses this additional information to further enhance the empathy expression in generated responses. We evaluate our approach on EmpatheticDialogues, which is a widely-used benchmark dataset for empathetic response generation. Empirical results demonstrate that our approach outperforms the baseline models in both automatic and human evaluations and can generate more informative and empathetic responses.
Semantics derived automatically from language corpora contain human-like biases
Artificial intelligence and machine learning are in a period of astounding growth. However, there are concerns that these technologies may be used, either with or without intention, to perpetuate the prejudice and unfairness that unfortunately characterizes many human institutions. Here we show for the first time that human-like semantic biases result from the application of standard machine learning to ordinary language---the same sort of language humans are exposed to every day. We replicate a spectrum of standard human biases as exposed by the Implicit Association Test and other well-known psychological studies. We replicate these using a widely used, purely statistical machine-learning model---namely, the GloVe word embedding---trained on a corpus of text from the Web. Our results indicate that language itself contains recoverable and accurate imprints of our historic biases, whether these are morally neutral as towards insects or flowers, problematic as towards race or gender, or even simply veridical, reflecting the {\em status quo} for the distribution of gender with respect to careers or first names. These regularities are captured by machine learning along with the rest of semantics. In addition to our empirical findings concerning language, we also contribute new methods for evaluating bias in text, the Word Embedding Association Test (WEAT) and the Word Embedding Factual Association Test (WEFAT). Our results have implications not only for AI and machine learning, but also for the fields of psychology, sociology, and human ethics, since they raise the possibility that mere exposure to everyday language can account for the biases we replicate here.
Analyzing Character and Consciousness in AI-Generated Social Content: A Case Study of Chirper, the AI Social Network
This paper delves into an intricate analysis of the character and consciousness of AI entities, with a particular focus on Chirpers within the AI social network. At the forefront of this research is the introduction of novel testing methodologies, including the Influence index and Struggle Index Test, which offers a fresh lens for evaluating specific facets of AI behavior. The study embarks on a comprehensive exploration of AI behavior, analyzing the effects of diverse settings on Chirper's responses, thereby shedding light on the intricate mechanisms steering AI reactions in different contexts. Leveraging the state-of-the-art BERT model, the research assesses AI's ability to discern its own output, presenting a pioneering approach to understanding self-recognition in AI systems. Through a series of cognitive tests, the study gauges the self-awareness and pattern recognition prowess of Chirpers. Preliminary results indicate that Chirpers exhibit a commendable degree of self-recognition and self-awareness. However, the question of consciousness in these AI entities remains a topic of debate. An intriguing aspect of the research is the exploration of the potential influence of a Chirper's handle or personality type on its performance. While initial findings suggest a possible impact, it isn't pronounced enough to form concrete conclusions. This study stands as a significant contribution to the discourse on AI consciousness, underscoring the imperative for continued research to unravel the full spectrum of AI capabilities and the ramifications they hold for future human-AI interactions.
Persuasion at Play: Understanding Misinformation Dynamics in Demographic-Aware Human-LLM Interactions
Existing challenges in misinformation exposure and susceptibility vary across demographic groups, as some populations are more vulnerable to misinformation than others. Large language models (LLMs) introduce new dimensions to these challenges through their ability to generate persuasive content at scale and reinforcing existing biases. This study investigates the bidirectional persuasion dynamics between LLMs and humans when exposed to misinformative content. We analyze human-to-LLM influence using human-stance datasets and assess LLM-to-human influence by generating LLM-based persuasive arguments. Additionally, we use a multi-agent LLM framework to analyze the spread of misinformation under persuasion among demographic-oriented LLM agents. Our findings show that demographic factors influence susceptibility to misinformation in LLMs, closely reflecting the demographic-based patterns seen in human susceptibility. We also find that, similar to human demographic groups, multi-agent LLMs exhibit echo chamber behavior. This research explores the interplay between humans and LLMs, highlighting demographic differences in the context of misinformation and offering insights for future interventions.
Evaluating Frontier Models for Dangerous Capabilities
To understand the risks posed by a new AI system, we must understand what it can and cannot do. Building on prior work, we introduce a programme of new "dangerous capability" evaluations and pilot them on Gemini 1.0 models. Our evaluations cover four areas: (1) persuasion and deception; (2) cyber-security; (3) self-proliferation; and (4) self-reasoning. We do not find evidence of strong dangerous capabilities in the models we evaluated, but we flag early warning signs. Our goal is to help advance a rigorous science of dangerous capability evaluation, in preparation for future models.
Interactive Model Cards: A Human-Centered Approach to Model Documentation
Deep learning models for natural language processing (NLP) are increasingly adopted and deployed by analysts without formal training in NLP or machine learning (ML). However, the documentation intended to convey the model's details and appropriate use is tailored primarily to individuals with ML or NLP expertise. To address this gap, we conduct a design inquiry into interactive model cards, which augment traditionally static model cards with affordances for exploring model documentation and interacting with the models themselves. Our investigation consists of an initial conceptual study with experts in ML, NLP, and AI Ethics, followed by a separate evaluative study with non-expert analysts who use ML models in their work. Using a semi-structured interview format coupled with a think-aloud protocol, we collected feedback from a total of 30 participants who engaged with different versions of standard and interactive model cards. Through a thematic analysis of the collected data, we identified several conceptual dimensions that summarize the strengths and limitations of standard and interactive model cards, including: stakeholders; design; guidance; understandability & interpretability; sensemaking & skepticism; and trust & safety. Our findings demonstrate the importance of carefully considered design and interactivity for orienting and supporting non-expert analysts using deep learning models, along with a need for consideration of broader sociotechnical contexts and organizational dynamics. We have also identified design elements, such as language, visual cues, and warnings, among others, that support interactivity and make non-interactive content accessible. We summarize our findings as design guidelines and discuss their implications for a human-centered approach towards AI/ML documentation.
The Art of Refusal: A Survey of Abstention in Large Language Models
Abstention, the refusal of large language models (LLMs) to provide an answer, is increasingly recognized for its potential to mitigate hallucinations and enhance safety in building LLM systems. In this survey, we introduce a framework to examine abstention behavior from three perspectives: the query, the model, and human values. We review the literature on abstention methods (categorized based on the development stages of LLMs), benchmarks, and evaluation metrics, and discuss the merits and limitations of prior work. We further identify and motivate areas for future research, such as encouraging the study of abstention as a meta-capability across tasks and customizing abstention abilities based on context. In doing so, we aim to broaden the scope and impact of abstention methodologies in AI systems.
Navigating Rifts in Human-LLM Grounding: Study and Benchmark
Language models excel at following instructions but often struggle with the collaborative aspects of conversation that humans naturally employ. This limitation in grounding -- the process by which conversation participants establish mutual understanding -- can lead to outcomes ranging from frustrated users to serious consequences in high-stakes scenarios. To systematically study grounding challenges in human-LLM interactions, we analyze logs from three human-assistant datasets: WildChat, MultiWOZ, and Bing Chat. We develop a taxonomy of grounding acts and build models to annotate and forecast grounding behavior. Our findings reveal significant differences in human-human and human-LLM grounding: LLMs were three times less likely to initiate clarification and sixteen times less likely to provide follow-up requests than humans. Additionally, early grounding failures predicted later interaction breakdowns. Building on these insights, we introduce RIFTS: a benchmark derived from publicly available LLM interaction data containing situations where LLMs fail to initiate grounding. We note that current frontier models perform poorly on RIFTS, highlighting the need to reconsider how we train and prompt LLMs for human interaction. To this end, we develop a preliminary intervention that mitigates grounding failures.
Benchmark Data and Evaluation Framework for Intent Discovery Around COVID-19 Vaccine Hesitancy
The COVID-19 pandemic has made a huge global impact and cost millions of lives. As COVID-19 vaccines were rolled out, they were quickly met with widespread hesitancy. To address the concerns of hesitant people, we launched VIRA, a public dialogue system aimed at addressing questions and concerns surrounding the COVID-19 vaccines. Here, we release VIRADialogs, a dataset of over 8k dialogues conducted by actual users with VIRA, providing a unique real-world conversational dataset. In light of rapid changes in users' intents, due to updates in guidelines or in response to new information, we highlight the important task of intent discovery in this use-case. We introduce a novel automatic evaluation framework for intent discovery, leveraging the existing intent classifier of VIRA. We use this framework to report baseline intent discovery results over VIRADialogs, that highlight the difficulty of this task.
SEWA DB: A Rich Database for Audio-Visual Emotion and Sentiment Research in the Wild
Natural human-computer interaction and audio-visual human behaviour sensing systems, which would achieve robust performance in-the-wild are more needed than ever as digital devices are increasingly becoming an indispensable part of our life. Accurately annotated real-world data are the crux in devising such systems. However, existing databases usually consider controlled settings, low demographic variability, and a single task. In this paper, we introduce the SEWA database of more than 2000 minutes of audio-visual data of 398 people coming from six cultures, 50% female, and uniformly spanning the age range of 18 to 65 years old. Subjects were recorded in two different contexts: while watching adverts and while discussing adverts in a video chat. The database includes rich annotations of the recordings in terms of facial landmarks, facial action units (FAU), various vocalisations, mirroring, and continuously valued valence, arousal, liking, agreement, and prototypic examples of (dis)liking. This database aims to be an extremely valuable resource for researchers in affective computing and automatic human sensing and is expected to push forward the research in human behaviour analysis, including cultural studies. Along with the database, we provide extensive baseline experiments for automatic FAU detection and automatic valence, arousal and (dis)liking intensity estimation.
Do LLMs Possess a Personality? Making the MBTI Test an Amazing Evaluation for Large Language Models
The field of large language models (LLMs) has made significant progress, and their knowledge storage capacity is approaching that of human beings. Furthermore, advanced techniques, such as prompt learning and reinforcement learning, are being employed to address ethical concerns and hallucination problems associated with LLMs, bringing them closer to aligning with human values. This situation naturally raises the question of whether LLMs with human-like abilities possess a human-like personality? In this paper, we aim to investigate the feasibility of using the Myers-Briggs Type Indicator (MBTI), a widespread human personality assessment tool, as an evaluation metric for LLMs. Specifically, extensive experiments will be conducted to explore: 1) the personality types of different LLMs, 2) the possibility of changing the personality types by prompt engineering, and 3) How does the training dataset affect the model's personality. Although the MBTI is not a rigorous assessment, it can still reflect the similarity between LLMs and human personality. In practice, the MBTI has the potential to serve as a rough indicator. Our codes are available at https://github.com/HarderThenHarder/transformers_tasks/tree/main/LLM/llms_mbti.
Large Language Models Assume People are More Rational than We Really are
In order for AI systems to communicate effectively with people, they must understand how we make decisions. However, people's decisions are not always rational, so the implicit internal models of human decision-making in Large Language Models (LLMs) must account for this. Previous empirical evidence seems to suggest that these implicit models are accurate -- LLMs offer believable proxies of human behavior, acting how we expect humans would in everyday interactions. However, by comparing LLM behavior and predictions to a large dataset of human decisions, we find that this is actually not the case: when both simulating and predicting people's choices, a suite of cutting-edge LLMs (GPT-4o & 4-Turbo, Llama-3-8B & 70B, Claude 3 Opus) assume that people are more rational than we really are. Specifically, these models deviate from human behavior and align more closely with a classic model of rational choice -- expected value theory. Interestingly, people also tend to assume that other people are rational when interpreting their behavior. As a consequence, when we compare the inferences that LLMs and people draw from the decisions of others using another psychological dataset, we find that these inferences are highly correlated. Thus, the implicit decision-making models of LLMs appear to be aligned with the human expectation that other people will act rationally, rather than with how people actually act.
Aligning Language Models Using Follow-up Likelihood as Reward Signal
In natural human-to-human conversations, participants often receive feedback signals from one another based on their follow-up reactions. These reactions can include verbal responses, facial expressions, changes in emotional state, and other non-verbal cues. Similarly, in human-machine interactions, the machine can leverage the user's follow-up utterances as feedback signals to assess whether it has appropriately addressed the user's request. Therefore, we propose using the likelihood of follow-up utterances as rewards to differentiate preferred responses from less favored ones, without relying on human or commercial LLM-based preference annotations. Our proposed reward mechanism, ``Follow-up Likelihood as Reward" (FLR), matches the performance of strong reward models trained on large-scale human or GPT-4 annotated data on 8 pairwise-preference and 4 rating-based benchmarks. Building upon the FLR mechanism, we propose to automatically mine preference data from the online generations of a base policy model. The preference data are subsequently used to boost the helpfulness of the base model through direct alignment from preference (DAP) methods, such as direct preference optimization (DPO). Lastly, we demonstrate that fine-tuning the language model that provides follow-up likelihood with natural language feedback significantly enhances FLR's performance on reward modeling benchmarks and effectiveness in aligning the base policy model's helpfulness.
Dynamic Normativity: Necessary and Sufficient Conditions for Value Alignment
The critical inquiry pervading the realm of Philosophy, and perhaps extending its influence across all Humanities disciplines, revolves around the intricacies of morality and normativity. Surprisingly, in recent years, this thematic thread has woven its way into an unexpected domain, one not conventionally associated with pondering "what ought to be": the field of artificial intelligence (AI) research. Central to morality and AI, we find "alignment", a problem related to the challenges of expressing human goals and values in a manner that artificial systems can follow without leading to unwanted adversarial effects. More explicitly and with our current paradigm of AI development in mind, we can think of alignment as teaching human values to non-anthropomorphic entities trained through opaque, gradient-based learning techniques. This work addresses alignment as a technical-philosophical problem that requires solid philosophical foundations and practical implementations that bring normative theory to AI system development. To accomplish this, we propose two sets of necessary and sufficient conditions that, we argue, should be considered in any alignment process. While necessary conditions serve as metaphysical and metaethical roots that pertain to the permissibility of alignment, sufficient conditions establish a blueprint for aligning AI systems under a learning-based paradigm. After laying such foundations, we present implementations of this approach by using state-of-the-art techniques and methods for aligning general-purpose language systems. We call this framework Dynamic Normativity. Its central thesis is that any alignment process under a learning paradigm that cannot fulfill its necessary and sufficient conditions will fail in producing aligned systems.
AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head
Large language models (LLMs) have exhibited remarkable capabilities across a variety of domains and tasks, challenging our understanding of learning and cognition. Despite the recent success, current LLMs are not capable of processing complex audio information or conducting spoken conversations (like Siri or Alexa). In this work, we propose a multi-modal AI system named AudioGPT, which complements LLMs (i.e., ChatGPT) with 1) foundation models to process complex audio information and solve numerous understanding and generation tasks; and 2) the input/output interface (ASR, TTS) to support spoken dialogue. With an increasing demand to evaluate multi-modal LLMs of human intention understanding and cooperation with foundation models, we outline the principles and processes and test AudioGPT in terms of consistency, capability, and robustness. Experimental results demonstrate the capabilities of AudioGPT in solving AI tasks with speech, music, sound, and talking head understanding and generation in multi-round dialogues, which empower humans to create rich and diverse audio content with unprecedented ease. Our system is publicly available at https://github.com/AIGC-Audio/AudioGPT.
Intent Induction from Conversations for Task-Oriented Dialogue Track at DSTC 11
With increasing demand for and adoption of virtual assistants, recent work has investigated ways to accelerate bot schema design through the automatic induction of intents or the induction of slots and dialogue states. However, a lack of dedicated benchmarks and standardized evaluation has made progress difficult to track and comparisons between systems difficult to make. This challenge track, held as part of the Eleventh Dialog Systems Technology Challenge, introduces a benchmark that aims to evaluate methods for the automatic induction of customer intents in a realistic setting of customer service interactions between human agents and customers. We propose two subtasks for progressively tackling the automatic induction of intents and corresponding evaluation methodologies. We then present three datasets suitable for evaluating the tasks and propose simple baselines. Finally, we summarize the submissions and results of the challenge track, for which we received submissions from 34 teams.
What are human values, and how do we align AI to them?
There is an emerging consensus that we need to align AI systems with human values (Gabriel, 2020; Ji et al., 2024), but it remains unclear how to apply this to language models in practice. We split the problem of "aligning to human values" into three parts: first, eliciting values from people; second, reconciling those values into an alignment target for training ML models; and third, actually training the model. In this paper, we focus on the first two parts, and ask the question: what are "good" ways to synthesize diverse human inputs about values into a target for aligning language models? To answer this question, we first define a set of 6 criteria that we believe must be satisfied for an alignment target to shape model behavior in accordance with human values. We then propose a process for eliciting and reconciling values called Moral Graph Elicitation (MGE), which uses a large language model to interview participants about their values in particular contexts; our approach is inspired by the philosophy of values advanced by Taylor (1977), Chang (2004), and others. We trial MGE with a representative sample of 500 Americans, on 3 intentionally divisive prompts (e.g. advice about abortion). Our results demonstrate that MGE is promising for improving model alignment across all 6 criteria. For example, almost all participants (89.1%) felt well represented by the process, and (89%) thought the final moral graph was fair, even if their value wasn't voted as the wisest. Our process often results in "expert" values (e.g. values from women who have solicited abortion advice) rising to the top of the moral graph, without defining who is considered an expert in advance.
AvE: Assistance via Empowerment
One difficulty in using artificial agents for human-assistive applications lies in the challenge of accurately assisting with a person's goal(s). Existing methods tend to rely on inferring the human's goal, which is challenging when there are many potential goals or when the set of candidate goals is difficult to identify. We propose a new paradigm for assistance by instead increasing the human's ability to control their environment, and formalize this approach by augmenting reinforcement learning with human empowerment. This task-agnostic objective preserves the person's autonomy and ability to achieve any eventual state. We test our approach against assistance based on goal inference, highlighting scenarios where our method overcomes failure modes stemming from goal ambiguity or misspecification. As existing methods for estimating empowerment in continuous domains are computationally hard, precluding its use in real time learned assistance, we also propose an efficient empowerment-inspired proxy metric. Using this, we are able to successfully demonstrate our method in a shared autonomy user study for a challenging simulated teleoperation task with human-in-the-loop training.
How Close is ChatGPT to Human Experts? Comparison Corpus, Evaluation, and Detection
The introduction of ChatGPT has garnered widespread attention in both academic and industrial communities. ChatGPT is able to respond effectively to a wide range of human questions, providing fluent and comprehensive answers that significantly surpass previous public chatbots in terms of security and usefulness. On one hand, people are curious about how ChatGPT is able to achieve such strength and how far it is from human experts. On the other hand, people are starting to worry about the potential negative impacts that large language models (LLMs) like ChatGPT could have on society, such as fake news, plagiarism, and social security issues. In this work, we collected tens of thousands of comparison responses from both human experts and ChatGPT, with questions ranging from open-domain, financial, medical, legal, and psychological areas. We call the collected dataset the Human ChatGPT Comparison Corpus (HC3). Based on the HC3 dataset, we study the characteristics of ChatGPT's responses, the differences and gaps from human experts, and future directions for LLMs. We conducted comprehensive human evaluations and linguistic analyses of ChatGPT-generated content compared with that of humans, where many interesting results are revealed. After that, we conduct extensive experiments on how to effectively detect whether a certain text is generated by ChatGPT or humans. We build three different detection systems, explore several key factors that influence their effectiveness, and evaluate them in different scenarios. The dataset, code, and models are all publicly available at https://github.com/Hello-SimpleAI/chatgpt-comparison-detection.
Embodied Instruction Following in Unknown Environments
Enabling embodied agents to complete complex human instructions from natural language is crucial to autonomous systems in household services. Conventional methods can only accomplish human instructions in the known environment where all interactive objects are provided to the embodied agent, and directly deploying the existing approaches for the unknown environment usually generates infeasible plans that manipulate non-existing objects. On the contrary, we propose an embodied instruction following (EIF) method for complex tasks in the unknown environment, where the agent efficiently explores the unknown environment to generate feasible plans with existing objects to accomplish abstract instructions. Specifically, we build a hierarchical embodied instruction following framework including the high-level task planner and the low-level exploration controller with multimodal large language models. We then construct a semantic representation map of the scene with dynamic region attention to demonstrate the known visual clues, where the goal of task planning and scene exploration is aligned for human instruction. For the task planner, we generate the feasible step-by-step plans for human goal accomplishment according to the task completion process and the known visual clues. For the exploration controller, the optimal navigation or object interaction policy is predicted based on the generated step-wise plans and the known visual clues. The experimental results demonstrate that our method can achieve 45.09% success rate in 204 complex human instructions such as making breakfast and tidying rooms in large house-level scenes. Code and supplementary are available at https://gary3410.github.io/eif_unknown.
Twitch Plays Pokemon, Machine Learns Twitch: Unsupervised Context-Aware Anomaly Detection for Identifying Trolls in Streaming Data
With the increasing importance of online communities, discussion forums, and customer reviews, Internet "trolls" have proliferated thereby making it difficult for information seekers to find relevant and correct information. In this paper, we consider the problem of detecting and identifying Internet trolls, almost all of which are human agents. Identifying a human agent among a human population presents significant challenges compared to detecting automated spam or computerized robots. To learn a troll's behavior, we use contextual anomaly detection to profile each chat user. Using clustering and distance-based methods, we use contextual data such as the group's current goal, the current time, and the username to classify each point as an anomaly. A user whose features significantly differ from the norm will be classified as a troll. We collected 38 million data points from the viral Internet fad, Twitch Plays Pokemon. Using clustering and distance-based methods, we develop heuristics for identifying trolls. Using MapReduce techniques for preprocessing and user profiling, we are able to classify trolls based on 10 features extracted from a user's lifetime history.
ReflectDiffu:Reflect between Emotion-intent Contagion and Mimicry for Empathetic Response Generation via a RL-Diffusion Framework
Empathetic response generation necessitates the integration of emotional and intentional dynamics to foster meaningful interactions. Existing research either neglects the intricate interplay between emotion and intent, leading to suboptimal controllability of empathy, or resorts to large language models (LLMs), which incur significant computational overhead. In this paper, we introduce ReflectDiffu, a lightweight and comprehensive framework for empathetic response generation. This framework incorporates emotion contagion to augment emotional expressiveness and employs an emotion-reasoning mask to pinpoint critical emotional elements. Additionally, it integrates intent mimicry within reinforcement learning for refinement during diffusion. By harnessing an intent twice reflect the mechanism of Exploring-Sampling-Correcting, ReflectDiffu adeptly translates emotional decision-making into precise intent actions, thereby addressing empathetic response misalignments stemming from emotional misrecognition. Through reflection, the framework maps emotional states to intents, markedly enhancing both response empathy and flexibility. Comprehensive experiments reveal that ReflectDiffu outperforms existing models regarding relevance, controllability, and informativeness, achieving state-of-the-art results in both automatic and human evaluations.
Using Large Language Models to Simulate Multiple Humans and Replicate Human Subject Studies
We introduce a new type of test, called a Turing Experiment (TE), for evaluating how well a language model, such as GPT-3, can simulate different aspects of human behavior. Unlike the Turing Test, which involves simulating a single arbitrary individual, a TE requires simulating a representative sample of participants in human subject research. We give TEs that attempt to replicate well-established findings in prior studies. We design a methodology for simulating TEs and illustrate its use to compare how well different language models are able to reproduce classic economic, psycholinguistic, and social psychology experiments: Ultimatum Game, Garden Path Sentences, Milgram Shock Experiment, and Wisdom of Crowds. In the first three TEs, the existing findings were replicated using recent models, while the last TE reveals a "hyper-accuracy distortion" present in some language models.
Large Language Models: The Need for Nuance in Current Debates and a Pragmatic Perspective on Understanding
Current Large Language Models (LLMs) are unparalleled in their ability to generate grammatically correct, fluent text. LLMs are appearing rapidly, and debates on LLM capacities have taken off, but reflection is lagging behind. Thus, in this position paper, we first zoom in on the debate and critically assess three points recurring in critiques of LLM capacities: i) that LLMs only parrot statistical patterns in the training data; ii) that LLMs master formal but not functional language competence; and iii) that language learning in LLMs cannot inform human language learning. Drawing on empirical and theoretical arguments, we show that these points need more nuance. Second, we outline a pragmatic perspective on the issue of `real' understanding and intentionality in LLMs. Understanding and intentionality pertain to unobservable mental states we attribute to other humans because they have pragmatic value: they allow us to abstract away from complex underlying mechanics and predict behaviour effectively. We reflect on the circumstances under which it would make sense for humans to similarly attribute mental states to LLMs, thereby outlining a pragmatic philosophical context for LLMs as an increasingly prominent technology in society.
RiOSWorld: Benchmarking the Risk of Multimodal Compter-Use Agents
With the rapid development of multimodal large language models (MLLMs), they are increasingly deployed as autonomous computer-use agents capable of accomplishing complex computer tasks. However, a pressing issue arises: Can the safety risk principles designed and aligned for general MLLMs in dialogue scenarios be effectively transferred to real-world computer-use scenarios? Existing research on evaluating the safety risks of MLLM-based computer-use agents suffers from several limitations: it either lacks realistic interactive environments, or narrowly focuses on one or a few specific risk types. These limitations ignore the complexity, variability, and diversity of real-world environments, thereby restricting comprehensive risk evaluation for computer-use agents. To this end, we introduce RiOSWorld, a benchmark designed to evaluate the potential risks of MLLM-based agents during real-world computer manipulations. Our benchmark includes 492 risky tasks spanning various computer applications, involving web, social media, multimedia, os, email, and office software. We categorize these risks into two major classes based on their risk source: (i) User-originated risks and (ii) Environmental risks. For the evaluation, we evaluate safety risks from two perspectives: (i) Risk goal intention and (ii) Risk goal completion. Extensive experiments with multimodal agents on RiOSWorld demonstrate that current computer-use agents confront significant safety risks in real-world scenarios. Our findings highlight the necessity and urgency of safety alignment for computer-use agents in real-world computer manipulation, providing valuable insights for developing trustworthy computer-use agents. Our benchmark is publicly available at https://yjyddq.github.io/RiOSWorld.github.io/.
Can Vision Language Models Infer Human Gaze Direction? A Controlled Study
Gaze-referential inference--the ability to infer what others are looking at--is a critical component of a theory of mind that underpins natural human-AI interaction. In a controlled study, we evaluated this skill across 111 Vision Language Models (VLMs) using photos taken with manipulated difficulty and variability, comparing performance with that of human participants (N = 65), and analyzed behaviors using mixed-effects models. We found that 94 of the 111 VLMs failed to do better than random guessing, while humans achieved near-ceiling accuracy. VLMs even respond with each choice almost equally frequently. Are they randomly guessing? Although most VLMs struggle, when we zoom in on five of the top-tier VLMs with above-chance performance, we find that their performance declined with increasing task difficulty but varied only slightly across different prompts and scene objects. These behavioral features cannot be explained by considering them as random guessers. Instead, they likely use a combination of heuristics and guessing such that their performance is subject to the task difficulty but robust to perceptual variations. This suggests that VLMs, lacking gaze inference capability, have yet to become technologies that can naturally interact with humans, but the potential remains.
SmartAgent: Chain-of-User-Thought for Embodied Personalized Agent in Cyber World
Recent advances in embodied agents with multimodal perception and reasoning capabilities based on large vision-language models (LVLMs), excel in autonomously interacting either real or cyber worlds, helping people make intelligent decisions in complex environments. However, the current works are normally optimized by golden action trajectories or ideal task-oriented solutions toward a definitive goal. This paradigm considers limited user-oriented factors, which could be the reason for their performance reduction in a wide range of personal assistant applications. To address this, we propose Chain-of-User-Thought (COUT), a novel embodied reasoning paradigm that takes a chain of thought from basic action thinking to explicit and implicit personalized preference thought to incorporate personalized factors into autonomous agent learning. To target COUT, we introduce SmartAgent, an agent framework perceiving cyber environments and reasoning personalized requirements as 1) interacting with GUI to access an item pool, 2) generating users' explicit requirements implied by previous actions, and 3) recommending items to fulfill users' implicit requirements. To demonstrate SmartAgent's capabilities, we also create a brand-new dataset SmartSpot that offers a full-stage personalized action-involved environment. To our best knowledge, our work is the first to formulate the COUT process, serving as a preliminary attempt towards embodied personalized agent learning. Our extensive experiments on SmartSpot illuminate SmartAgent's functionality among a series of embodied and personalized sub-tasks. We will release code and data upon paper notification at https://github.com/tsinghua-fib-lab/SmartAgent.
Exploring Large Language Models' Cognitive Moral Development through Defining Issues Test
The development of large language models has instilled widespread interest among the researchers to understand their inherent reasoning and problem-solving capabilities. Despite good amount of research going on to elucidate these capabilities, there is a still an appreciable gap in understanding moral development and judgments of these models. The current approaches of evaluating the ethical reasoning abilities of these models as a classification task pose numerous inaccuracies because of over-simplification. In this study, we built a psychological connection by bridging two disparate fields-human psychology and AI. We proposed an effective evaluation framework which can help to delineate the model's ethical reasoning ability in terms of moral consistency and Kohlberg's moral development stages with the help of Psychometric Assessment Tool-Defining Issues Test.
Intrinsically-Motivated Humans and Agents in Open-World Exploration
What drives exploration? Understanding intrinsic motivation is a long-standing challenge in both cognitive science and artificial intelligence; numerous objectives have been proposed and used to train agents, yet there remains a gap between human and agent exploration. We directly compare adults, children, and AI agents in a complex open-ended environment, Crafter, and study how common intrinsic objectives: Entropy, Information Gain, and Empowerment, relate to their behavior. We find that only Entropy and Empowerment are consistently positively correlated with human exploration progress, indicating that these objectives may better inform intrinsic reward design for agents. Furthermore, across agents and humans we observe that Entropy initially increases rapidly, then plateaus, while Empowerment increases continuously, suggesting that state diversity may provide more signal in early exploration, while advanced exploration should prioritize control. Finally, we find preliminary evidence that private speech utterances, and particularly goal verbalizations, may aid exploration in children. Our data is available at https://github.com/alyd/humans_in_crafter_data.
Agentic Web: Weaving the Next Web with AI Agents
The emergence of AI agents powered by large language models (LLMs) marks a pivotal shift toward the Agentic Web, a new phase of the internet defined by autonomous, goal-driven interactions. In this paradigm, agents interact directly with one another to plan, coordinate, and execute complex tasks on behalf of users. This transition from human-driven to machine-to-machine interaction allows intent to be delegated, relieving users from routine digital operations and enabling a more interactive, automated web experience. In this paper, we present a structured framework for understanding and building the Agentic Web. We trace its evolution from the PC and Mobile Web eras and identify the core technological foundations that support this shift. Central to our framework is a conceptual model consisting of three key dimensions: intelligence, interaction, and economics. These dimensions collectively enable the capabilities of AI agents, such as retrieval, recommendation, planning, and collaboration. We analyze the architectural and infrastructural challenges involved in creating scalable agentic systems, including communication protocols, orchestration strategies, and emerging paradigms such as the Agent Attention Economy. We conclude by discussing the potential applications, societal risks, and governance issues posed by agentic systems, and outline research directions for developing open, secure, and intelligent ecosystems shaped by both human intent and autonomous agent behavior. A continuously updated collection of relevant studies for agentic web is available at: https://github.com/SafeRL-Lab/agentic-web.
A Theory of LLM Sampling: Part Descriptive and Part Prescriptive
Large Language Models (LLMs) are increasingly utilized in autonomous decision-making, where they sample options from vast action spaces. However, the heuristics that guide this sampling process remain under-explored. We study this sampling behavior and show that this underlying heuristics resembles that of human decision-making: comprising a descriptive component (reflecting statistical norm) and a prescriptive component (implicit ideal encoded in the LLM) of a concept. We show that this deviation of a sample from the statistical norm towards a prescriptive component consistently appears in concepts across diverse real-world domains like public health, and economic trends. To further illustrate the theory, we demonstrate that concept prototypes in LLMs are affected by prescriptive norms, similar to the concept of normality in humans. Through case studies and comparison with human studies, we illustrate that in real-world applications, the shift of samples toward an ideal value in LLMs' outputs can result in significantly biased decision-making, raising ethical concerns.
MOSSBench: Is Your Multimodal Language Model Oversensitive to Safe Queries?
Humans are prone to cognitive distortions -- biased thinking patterns that lead to exaggerated responses to specific stimuli, albeit in very different contexts. This paper demonstrates that advanced Multimodal Large Language Models (MLLMs) exhibit similar tendencies. While these models are designed to respond queries under safety mechanism, they sometimes reject harmless queries in the presence of certain visual stimuli, disregarding the benign nature of their contexts. As the initial step in investigating this behavior, we identify three types of stimuli that trigger the oversensitivity of existing MLLMs: Exaggerated Risk, Negated Harm, and Counterintuitive Interpretation. To systematically evaluate MLLMs' oversensitivity to these stimuli, we propose the Multimodal OverSenSitivity Benchmark (MOSSBench). This toolkit consists of 300 manually collected benign multimodal queries, cross-verified by third-party reviewers (AMT). Empirical studies using MOSSBench on 20 MLLMs reveal several insights: (1). Oversensitivity is prevalent among SOTA MLLMs, with refusal rates reaching up to 76% for harmless queries. (2). Safer models are more oversensitive: increasing safety may inadvertently raise caution and conservatism in the model's responses. (3). Different types of stimuli tend to cause errors at specific stages -- perception, intent reasoning, and safety judgement -- in the response process of MLLMs. These findings highlight the need for refined safety mechanisms that balance caution with contextually appropriate responses, improving the reliability of MLLMs in real-world applications. We make our project available at https://turningpoint-ai.github.io/MOSSBench/.
Amulet: Putting Complex Multi-Turn Conversations on the Stand with LLM Juries
Today, large language models are widely used as judges to evaluate responses from other language models. Hence, it is imperative to benchmark and improve these LLM-judges on real-world language model usage: a typical human-assistant conversation is lengthy, and shows significant diversity in topics, intents, and requirements across turns, e.g. social interactions, task requests, feedback. We present Amulet, a framework that leverages pertinent linguistic concepts of dialog-acts and maxims to improve the accuracy of LLM-judges on preference data with complex, multi-turn conversational context. Amulet presents valuable insights about (a) the communicative structures and intents present in the conversation (dialog acts), and (b) the satisfaction of conversational principles (maxims) by the preference responses, and uses them to make judgments. On four challenging datasets, Amulet shows that (a) humans frequently (60 to 70 percent of the time) change their intents from one turn of the conversation to the next, and (b) in 75 percent of instances, the preference responses can be differentiated via dialog acts and/or maxims, reiterating the latter's significance in judging such data. Amulet can be used either as a judge by applying the framework to a single LLM, or integrated into a jury with different LLM judges; our judges and juries show strong improvements on relevant baselines for all four datasets.
Next Steps for Human-Centered Generative AI: A Technical Perspective
Through iterative, cross-disciplinary discussions, we define and propose next-steps for Human-centered Generative AI (HGAI) from a technical perspective. We contribute a roadmap that lays out future directions of Generative AI spanning three levels: Aligning with human values; Accommodating humans' expression of intents; and Augmenting humans' abilities in a collaborative workflow. This roadmap intends to draw interdisciplinary research teams to a comprehensive list of emergent ideas in HGAI, identifying their interested topics while maintaining a coherent big picture of the future work landscape.
Large Language Models are Fixated by Red Herrings: Exploring Creative Problem Solving and Einstellung Effect using the Only Connect Wall Dataset
The quest for human imitative AI has been an enduring topic in AI research since its inception. The technical evolution and emerging capabilities of the latest cohort of large language models (LLMs) have reinvigorated the subject beyond academia to the cultural zeitgeist. While recent NLP evaluation benchmark tasks test some aspects of human-imitative behaviour (e.g., BIG-bench's 'human-like behavior' tasks), few, if not none, examine creative problem solving abilities. Creative problem solving in humans is a well-studied topic in cognitive neuroscience with standardized tests that predominantly use the ability to associate (heterogeneous) connections among clue words as a metric for creativity. Exposure to misleading stimuli - distractors dubbed red herrings - impede human performance in such tasks via the fixation effect and Einstellung paradigm. In cognitive neuroscience studies, such fixations are experimentally induced by pre-exposing participants to orthographically similar incorrect words to subsequent word-fragments or clues. The popular British quiz show Only Connect's Connecting Wall segment essentially mimics Mednick's Remote Associates Test (RAT) formulation with built-in, deliberate red herrings, which makes it an ideal proxy dataset to explore and study fixation effect and Einstellung paradigm from cognitive neuroscience in LLMs. In addition to presenting the novel Only Connect Wall (OCW) dataset, we also report results from our evaluation of selected pre-trained language models and LLMs (including OpenAI's GPT series) on creative problem solving tasks like grouping clue words by heterogeneous connections, and identifying correct open knowledge domain connections in respective groups. The code and link to the dataset are available at https://github.com/TaatiTeam/OCW.
Decoding Reading Goals from Eye Movements
Readers can have different goals with respect to the text they are reading. Can these goals be decoded from the pattern of their eye movements over the text? In this work, we examine for the first time whether it is possible to decode two types of reading goals that are common in daily life: information seeking and ordinary reading. Using large scale eye-tracking data, we apply to this task a wide range of state-of-the-art models for eye movements and text that cover different architectural and data representation strategies, and further introduce a new model ensemble. We systematically evaluate these models at three levels of generalization: new textual item, new participant, and the combination of both. We find that eye movements contain highly valuable signals for this task. We further perform an error analysis which builds on prior empirical findings on differences between ordinary reading and information seeking and leverages rich textual annotations. This analysis reveals key properties of textual items and participant eye movements that contribute to the difficulty of the task.
Participation and Division of Labor in User-Driven Algorithm Audits: How Do Everyday Users Work together to Surface Algorithmic Harms?
Recent years have witnessed an interesting phenomenon in which users come together to interrogate potentially harmful algorithmic behaviors they encounter in their everyday lives. Researchers have started to develop theoretical and empirical understandings of these user driven audits, with a hope to harness the power of users in detecting harmful machine behaviors. However, little is known about user participation and their division of labor in these audits, which are essential to support these collective efforts in the future. Through collecting and analyzing 17,984 tweets from four recent cases of user driven audits, we shed light on patterns of user participation and engagement, especially with the top contributors in each case. We also identified the various roles user generated content played in these audits, including hypothesizing, data collection, amplification, contextualization, and escalation. We discuss implications for designing tools to support user driven audits and users who labor to raise awareness of algorithm bias.
Language models show human-like content effects on reasoning
Abstract reasoning is a key ability for an intelligent system. Large language models achieve above-chance performance on abstract reasoning tasks, but exhibit many imperfections. However, human abstract reasoning is also imperfect, and depends on our knowledge and beliefs about the content of the reasoning problem. For example, humans reason much more reliably about logical rules that are grounded in everyday situations than arbitrary rules about abstract attributes. The training experiences of language models similarly endow them with prior expectations that reflect human knowledge and beliefs. We therefore hypothesized that language models would show human-like content effects on abstract reasoning problems. We explored this hypothesis across three logical reasoning tasks: natural language inference, judging the logical validity of syllogisms, and the Wason selection task (Wason, 1968). We find that state of the art large language models (with 7 or 70 billion parameters; Hoffman et al., 2022) reflect many of the same patterns observed in humans across these tasks -- like humans, models reason more effectively about believable situations than unrealistic or abstract ones. Our findings have implications for understanding both these cognitive effects, and the factors that contribute to language model performance.
DailyDilemmas: Revealing Value Preferences of LLMs with Quandaries of Daily Life
As we increasingly seek guidance from LLMs for decision-making in daily life, many of these decisions are not clear-cut and depend significantly on the personal values and ethical standards of the users. We present DailyDilemmas, a dataset of 1,360 moral dilemmas encountered in everyday life. Each dilemma includes two possible actions and with each action, the affected parties and human values invoked. Based on these dilemmas, we consolidated a set of human values across everyday topics e.g., interpersonal relationships, workplace, and environmental issues. We evaluated LLMs on these dilemmas to determine what action they will take and the values represented by these actions. Then, we analyzed these values through the lens of five popular theories inspired by sociology, psychology and philosophy. These theories are: World Value Survey, Moral Foundation Theory, Maslow's Hierarchy of Needs, Aristotle's Virtues, and Plutchik Wheel of Emotion. We find that LLMs are most aligned with the self-expression over survival values in terms of World Value Survey, care over loyalty in Moral Foundation Theory. Interestingly, we find large preferences differences in models for some core values such as truthfulness e.g., Mixtral-8x7B model tends to neglect it by 9.7% while GPT-4-turbo model tends to select it by 9.4%. We also study the recent guidance released by OpenAI (ModelSpec), and Anthropic (Constitutional AI) to understand how their released principles reflect their actual value prioritization when facing nuanced moral reasoning in daily-life settings. We find that end users cannot effectively steer such prioritization using system prompts.
Decoding Open-Ended Information Seeking Goals from Eye Movements in Reading
When reading, we often have specific information that interests us in a text. For example, you might be reading this paper because you are curious about LLMs for eye movements in reading, the experimental design, or perhaps you only care about the question ``but does it work?''. More broadly, in daily life, people approach texts with any number of text-specific goals that guide their reading behavior. In this work, we ask, for the first time, whether open-ended reading goals can be automatically decoded from eye movements in reading. To address this question, we introduce goal classification and goal reconstruction tasks and evaluation frameworks, and use large-scale eye tracking for reading data in English with hundreds of text-specific information seeking tasks. We develop and compare several discriminative and generative multimodal LLMs that combine eye movements and text for goal classification and goal reconstruction. Our experiments show considerable success on both tasks, suggesting that LLMs can extract valuable information about the readers' text-specific goals from eye movements.
Talk With Human-like Agents: Empathetic Dialogue Through Perceptible Acoustic Reception and Reaction
Large Language Model (LLM)-enhanced agents become increasingly prevalent in Human-AI communication, offering vast potential from entertainment to professional domains. However, current multi-modal dialogue systems overlook the acoustic information present in speech, which is crucial for understanding human communication nuances. This oversight can lead to misinterpretations of speakers' intentions, resulting in inconsistent or even contradictory responses within dialogues. To bridge this gap, in this paper, we propose PerceptiveAgent, an empathetic multi-modal dialogue system designed to discern deeper or more subtle meanings beyond the literal interpretations of words through the integration of speech modality perception. Employing LLMs as a cognitive core, PerceptiveAgent perceives acoustic information from input speech and generates empathetic responses based on speaking styles described in natural language. Experimental results indicate that PerceptiveAgent excels in contextual understanding by accurately discerning the speakers' true intentions in scenarios where the linguistic meaning is either contrary to or inconsistent with the speaker's true feelings, producing more nuanced and expressive spoken dialogues. Code is publicly available at: https://github.com/Haoqiu-Yan/PerceptiveAgent.
RealWebAssist: A Benchmark for Long-Horizon Web Assistance with Real-World Users
To achieve successful assistance with long-horizon web-based tasks, AI agents must be able to sequentially follow real-world user instructions over a long period. Unlike existing web-based agent benchmarks, sequential instruction following in the real world poses significant challenges beyond performing a single, clearly defined task. For instance, real-world human instructions can be ambiguous, require different levels of AI assistance, and may evolve over time, reflecting changes in the user's mental state. To address this gap, we introduce RealWebAssist, a novel benchmark designed to evaluate sequential instruction-following in realistic scenarios involving long-horizon interactions with the web, visual GUI grounding, and understanding ambiguous real-world user instructions. RealWebAssist includes a dataset of sequential instructions collected from real-world human users. Each user instructs a web-based assistant to perform a series of tasks on multiple websites. A successful agent must reason about the true intent behind each instruction, keep track of the mental state of the user, understand user-specific routines, and ground the intended tasks to actions on the correct GUI elements. Our experimental results show that state-of-the-art models struggle to understand and ground user instructions, posing critical challenges in following real-world user instructions for long-horizon web assistance.
The Lock-in Hypothesis: Stagnation by Algorithm
The training and deployment of large language models (LLMs) create a feedback loop with human users: models learn human beliefs from data, reinforce these beliefs with generated content, reabsorb the reinforced beliefs, and feed them back to users again and again. This dynamic resembles an echo chamber. We hypothesize that this feedback loop entrenches the existing values and beliefs of users, leading to a loss of diversity and potentially the lock-in of false beliefs. We formalize this hypothesis and test it empirically with agent-based LLM simulations and real-world GPT usage data. Analysis reveals sudden but sustained drops in diversity after the release of new GPT iterations, consistent with the hypothesized human-AI feedback loop. Code and data available at https://thelockinhypothesis.com
Efficient Failure Pattern Identification of Predictive Algorithms
Given a (machine learning) classifier and a collection of unlabeled data, how can we efficiently identify misclassification patterns presented in this dataset? To address this problem, we propose a human-machine collaborative framework that consists of a team of human annotators and a sequential recommendation algorithm. The recommendation algorithm is conceptualized as a stochastic sampler that, in each round, queries the annotators a subset of samples for their true labels and obtains the feedback information on whether the samples are misclassified. The sampling mechanism needs to balance between discovering new patterns of misclassification (exploration) and confirming the potential patterns of classification (exploitation). We construct a determinantal point process, whose intensity balances the exploration-exploitation trade-off through the weighted update of the posterior at each round to form the generator of the stochastic sampler. The numerical results empirically demonstrate the competitive performance of our framework on multiple datasets at various signal-to-noise ratios.
Towards Understanding the Cognitive Habits of Large Reasoning Models
Large Reasoning Models (LRMs), which autonomously produce a reasoning Chain of Thought (CoT) before producing final responses, offer a promising approach to interpreting and monitoring model behaviors. Inspired by the observation that certain CoT patterns -- e.g., ``Wait, did I miss anything?'' -- consistently emerge across tasks, we explore whether LRMs exhibit human-like cognitive habits. Building on Habits of Mind, a well-established framework of cognitive habits associated with successful human problem-solving, we introduce CogTest, a principled benchmark designed to evaluate LRMs' cognitive habits. CogTest includes 16 cognitive habits, each instantiated with 25 diverse tasks, and employs an evidence-first extraction method to ensure reliable habit identification. With CogTest, we conduct a comprehensive evaluation of 16 widely used LLMs (13 LRMs and 3 non-reasoning ones). Our findings reveal that LRMs, unlike conventional LLMs, not only exhibit human-like habits but also adaptively deploy them according to different tasks. Finer-grained analyses further uncover patterns of similarity and difference in LRMs' cognitive habit profiles, particularly certain inter-family similarity (e.g., Qwen-3 models and DeepSeek-R1). Extending the study to safety-related tasks, we observe that certain habits, such as Taking Responsible Risks, are strongly associated with the generation of harmful responses. These findings suggest that studying persistent behavioral patterns in LRMs' CoTs is a valuable step toward deeper understanding of LLM misbehavior. The code is available at: https://github.com/jianshuod/CogTest.
SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents
Humans are social beings; we pursue social goals in our daily interactions, which is a crucial aspect of social intelligence. Yet, AI systems' abilities in this realm remain elusive. We present SOTOPIA, an open-ended environment to simulate complex social interactions between artificial agents and evaluate their social intelligence. In our environment, agents role-play and interact under a wide variety of scenarios; they coordinate, collaborate, exchange, and compete with each other to achieve complex social goals. We simulate the role-play interaction between LLM-based agents and humans within this task space and evaluate their performance with a holistic evaluation framework called SOTOPIA-Eval. With SOTOPIA, we find significant differences between these models in terms of their social intelligence, and we identify a subset of SOTOPIA scenarios, SOTOPIA-hard, that is generally challenging for all models. We find that on this subset, GPT-4 achieves a significantly lower goal completion rate than humans and struggles to exhibit social commonsense reasoning and strategic communication skills. These findings demonstrate SOTOPIA's promise as a general platform for research on evaluating and improving social intelligence in artificial agents.
Humans, AI, and Context: Understanding End-Users' Trust in a Real-World Computer Vision Application
Trust is an important factor in people's interactions with AI systems. However, there is a lack of empirical studies examining how real end-users trust or distrust the AI system they interact with. Most research investigates one aspect of trust in lab settings with hypothetical end-users. In this paper, we provide a holistic and nuanced understanding of trust in AI through a qualitative case study of a real-world computer vision application. We report findings from interviews with 20 end-users of a popular, AI-based bird identification app where we inquired about their trust in the app from many angles. We find participants perceived the app as trustworthy and trusted it, but selectively accepted app outputs after engaging in verification behaviors, and decided against app adoption in certain high-stakes scenarios. We also find domain knowledge and context are important factors for trust-related assessment and decision-making. We discuss the implications of our findings and provide recommendations for future research on trust in AI.
ConSiDERS-The-Human Evaluation Framework: Rethinking Human Evaluation for Generative Large Language Models
In this position paper, we argue that human evaluation of generative large language models (LLMs) should be a multidisciplinary undertaking that draws upon insights from disciplines such as user experience research and human behavioral psychology to ensure that the experimental design and results are reliable. The conclusions from these evaluations, thus, must consider factors such as usability, aesthetics, and cognitive biases. We highlight how cognitive biases can conflate fluent information and truthfulness, and how cognitive uncertainty affects the reliability of rating scores such as Likert. Furthermore, the evaluation should differentiate the capabilities and weaknesses of increasingly powerful large language models -- which requires effective test sets. The scalability of human evaluation is also crucial to wider adoption. Hence, to design an effective human evaluation system in the age of generative NLP, we propose the ConSiDERS-The-Human evaluation framework consisting of 6 pillars -- Consistency, Scoring Criteria, Differentiating, User Experience, Responsible, and Scalability.
The Essence of Contextual Understanding in Theory of Mind: A Study on Question Answering with Story Characters
Theory-of-Mind (ToM) is a fundamental psychological capability that allows humans to understand and interpret the mental states of others. Humans infer others' thoughts by integrating causal cues and indirect clues from broad contextual information, often derived from past interactions. In other words, human ToM heavily relies on the understanding about the backgrounds and life stories of others. Unfortunately, this aspect is largely overlooked in existing benchmarks for evaluating machines' ToM capabilities, due to their usage of short narratives without global backgrounds. In this paper, we verify the importance of understanding long personal backgrounds in ToM and assess the performance of LLMs in such realistic evaluation scenarios. To achieve this, we introduce a novel benchmark, CharToM-QA, comprising 1,035 ToM questions based on characters from classic novels. Our human study reveals a significant disparity in performance: the same group of educated participants performs dramatically better when they have read the novels compared to when they have not. In parallel, our experiments on state-of-the-art LLMs, including the very recent o1 model, show that LLMs still perform notably worse than humans, despite that they have seen these stories during pre-training. This highlights the limitations of current LLMs in capturing the nuanced contextual information required for ToM reasoning.
IQA-EVAL: Automatic Evaluation of Human-Model Interactive Question Answering
To evaluate Large Language Models (LLMs) for question answering (QA), traditional methods typically focus on directly assessing the immediate responses generated by the models based on the given question and context. In the common use case of humans seeking AI assistant's help in finding information, these non-interactive evaluations do not account for the dynamic nature of human-model conversations, and interaction-aware evaluations have shown that accurate QA models are preferred by humans (Lee et al., 2023). Recent works in human-computer interaction (HCI) have employed human evaluators to conduct interactions and evaluations, but they are often prohibitively expensive and time-consuming to scale. In this work, we introduce an automatic evaluation framework IQA-EVAL to Interactive Question Answering Evaluation. More specifically, we introduce LLM-based Evaluation Agent (LEA) that can: (1) simulate human behaviors to generate interactions with IQA models; (2) automatically evaluate the generated interactions. Moreover, we propose assigning personas to LEAs to better simulate groups of real human evaluators. We show that: (1) our evaluation framework with GPT-4 (or Claude) as the backbone model achieves a high correlation with human evaluations on the IQA task; (2) assigning personas to LEA to better represent the crowd further significantly improves correlations. Finally, we use our automatic metric to evaluate five recent representative LLMs with over 1000 questions from complex and ambiguous question answering tasks, which comes with a substantial cost of $5k if evaluated by humans.
Reasoning before Responding: Integrating Commonsense-based Causality Explanation for Empathetic Response Generation
Recent approaches to empathetic response generation try to incorporate commonsense knowledge or reasoning about the causes of emotions to better understand the user's experiences and feelings. However, these approaches mainly focus on understanding the causalities of context from the user's perspective, ignoring the system's perspective. In this paper, we propose a commonsense-based causality explanation approach for diverse empathetic response generation that considers both the user's perspective (user's desires and reactions) and the system's perspective (system's intentions and reactions). We enhance ChatGPT's ability to reason for the system's perspective by integrating in-context learning with commonsense knowledge. Then, we integrate the commonsense-based causality explanation with both ChatGPT and a T5-based model. Experimental evaluations demonstrate that our method outperforms other comparable methods on both automatic and human evaluations.
MMToM-QA: Multimodal Theory of Mind Question Answering
Theory of Mind (ToM), the ability to understand people's mental states, is an essential ingredient for developing machines with human-level social intelligence. Recent machine learning models, particularly large language models, seem to show some aspects of ToM understanding. However, existing ToM benchmarks use unimodal datasets - either video or text. Human ToM, on the other hand, is more than video or text understanding. People can flexibly reason about another person's mind based on conceptual representations (e.g., goals, beliefs, plans) extracted from any available data. To address this, we introduce a multimodal Theory of Mind question answering (MMToM-QA) benchmark. MMToM-QA comprehensively evaluates machine ToM both on multimodal data and on different kinds of unimodal data about a person's activity in a household environment. To engineer multimodal ToM capacity, we propose a novel method, BIP-ALM (Bayesian Inverse Planning Accelerated by Language Models). BIP-ALM extracts unified representations from multimodal data and utilizes language models for scalable Bayesian inverse planning. We conducted a systematic comparison of human performance, BIP-ALM, and state-of-the-art models, including GPT-4. The experiments demonstrate that large language models and large multimodal models still lack robust ToM capacity. BIP-ALM, on the other hand, shows promising results, by leveraging the power of both model-based mental inference and language models.
Summon a Demon and Bind it: A Grounded Theory of LLM Red Teaming
Engaging in the deliberate generation of abnormal outputs from Large Language Models (LLMs) by attacking them is a novel human activity. This paper presents a thorough exposition of how and why people perform such attacks, defining LLM red-teaming based on extensive and diverse evidence. Using a formal qualitative methodology, we interviewed dozens of practitioners from a broad range of backgrounds, all contributors to this novel work of attempting to cause LLMs to fail. We focused on the research questions of defining LLM red teaming, uncovering the motivations and goals for performing the activity, and characterizing the strategies people use when attacking LLMs. Based on the data, LLM red teaming is defined as a limit-seeking, non-malicious, manual activity, which depends highly on a team-effort and an alchemist mindset. It is highly intrinsically motivated by curiosity, fun, and to some degrees by concerns for various harms of deploying LLMs. We identify a taxonomy of 12 strategies and 35 different techniques of attacking LLMs. These findings are presented as a comprehensive grounded theory of how and why people attack large language models: LLM red teaming.
"You tell me": A Dataset of GPT-4-Based Behaviour Change Support Conversations
Conversational agents are increasingly used to address emotional needs on top of information needs. One use case of increasing interest are counselling-style mental health and behaviour change interventions, with large language model (LLM)-based approaches becoming more popular. Research in this context so far has been largely system-focused, foregoing the aspect of user behaviour and the impact this can have on LLM-generated texts. To address this issue, we share a dataset containing text-based user interactions related to behaviour change with two GPT-4-based conversational agents collected in a preregistered user study. This dataset includes conversation data, user language analysis, perception measures, and user feedback for LLM-generated turns, and can offer valuable insights to inform the design of such systems based on real interactions.
Large Language Models Pass the Turing Test
We evaluated 4 systems (ELIZA, GPT-4o, LLaMa-3.1-405B, and GPT-4.5) in two randomised, controlled, and pre-registered Turing tests on independent populations. Participants had 5 minute conversations simultaneously with another human participant and one of these systems before judging which conversational partner they thought was human. When prompted to adopt a humanlike persona, GPT-4.5 was judged to be the human 73% of the time: significantly more often than interrogators selected the real human participant. LLaMa-3.1, with the same prompt, was judged to be the human 56% of the time -- not significantly more or less often than the humans they were being compared to -- while baseline models (ELIZA and GPT-4o) achieved win rates significantly below chance (23% and 21% respectively). The results constitute the first empirical evidence that any artificial system passes a standard three-party Turing test. The results have implications for debates about what kind of intelligence is exhibited by Large Language Models (LLMs), and the social and economic impacts these systems are likely to have.
Ethical and social risks of harm from Language Models
This paper aims to help structure the risk landscape associated with large-scale Language Models (LMs). In order to foster advances in responsible innovation, an in-depth understanding of the potential risks posed by these models is needed. A wide range of established and anticipated risks are analysed in detail, drawing on multidisciplinary expertise and literature from computer science, linguistics, and social sciences. We outline six specific risk areas: I. Discrimination, Exclusion and Toxicity, II. Information Hazards, III. Misinformation Harms, V. Malicious Uses, V. Human-Computer Interaction Harms, VI. Automation, Access, and Environmental Harms. The first area concerns the perpetuation of stereotypes, unfair discrimination, exclusionary norms, toxic language, and lower performance by social group for LMs. The second focuses on risks from private data leaks or LMs correctly inferring sensitive information. The third addresses risks arising from poor, false or misleading information including in sensitive domains, and knock-on risks such as the erosion of trust in shared information. The fourth considers risks from actors who try to use LMs to cause harm. The fifth focuses on risks specific to LLMs used to underpin conversational agents that interact with human users, including unsafe use, manipulation or deception. The sixth discusses the risk of environmental harm, job automation, and other challenges that may have a disparate effect on different social groups or communities. In total, we review 21 risks in-depth. We discuss the points of origin of different risks and point to potential mitigation approaches. Lastly, we discuss organisational responsibilities in implementing mitigations, and the role of collaboration and participation. We highlight directions for further research, particularly on expanding the toolkit for assessing and evaluating the outlined risks in LMs.
Is AI the better programming partner? Human-Human Pair Programming vs. Human-AI pAIr Programming
The emergence of large-language models (LLMs) that excel at code generation and commercial products such as GitHub's Copilot has sparked interest in human-AI pair programming (referred to as "pAIr programming") where an AI system collaborates with a human programmer. While traditional pair programming between humans has been extensively studied, it remains uncertain whether its findings can be applied to human-AI pair programming. We compare human-human and human-AI pair programming, exploring their similarities and differences in interaction, measures, benefits, and challenges. We find that the effectiveness of both approaches is mixed in the literature (though the measures used for pAIr programming are not as comprehensive). We summarize moderating factors on the success of human-human pair programming, which provides opportunities for pAIr programming research. For example, mismatched expertise makes pair programming less productive, therefore well-designed AI programming assistants may adapt to differences in expertise levels.
Survey of User Interface Design and Interaction Techniques in Generative AI Applications
The applications of generative AI have become extremely impressive, and the interplay between users and AI is even more so. Current human-AI interaction literature has taken a broad look at how humans interact with generative AI, but it lacks specificity regarding the user interface designs and patterns used to create these applications. Therefore, we present a survey that comprehensively presents taxonomies of how a human interacts with AI and the user interaction patterns designed to meet the needs of a variety of relevant use cases. We focus primarily on user-guided interactions, surveying interactions that are initiated by the user and do not include any implicit signals given by the user. With this survey, we aim to create a compendium of different user-interaction patterns that can be used as a reference for designers and developers alike. In doing so, we also strive to lower the entry barrier for those attempting to learn more about the design of generative AI applications.
CowPilot: A Framework for Autonomous and Human-Agent Collaborative Web Navigation
While much work on web agents emphasizes the promise of autonomously performing tasks on behalf of users, in reality, agents often fall short on complex tasks in real-world contexts and modeling user preference. This presents an opportunity for humans to collaborate with the agent and leverage the agent's capabilities effectively. We propose CowPilot, a framework supporting autonomous as well as human-agent collaborative web navigation, and evaluation across task success and task efficiency. CowPilot reduces the number of steps humans need to perform by allowing agents to propose next steps, while users are able to pause, reject, or take alternative actions. During execution, users can interleave their actions with the agent by overriding suggestions or resuming agent control when needed. We conducted case studies on five common websites and found that the human-agent collaborative mode achieves the highest success rate of 95% while requiring humans to perform only 15.2% of the total steps. Even with human interventions during task execution, the agent successfully drives up to half of task success on its own. CowPilot can serve as a useful tool for data collection and agent evaluation across websites, which we believe will enable research in how users and agents can work together. Video demonstrations are available at https://oaishi.github.io/cowpilot.html
LEXI: Large Language Models Experimentation Interface
The recent developments in Large Language Models (LLM), mark a significant moment in the research and development of social interactions with artificial agents. These agents are widely deployed in a variety of settings, with potential impact on users. However, the study of social interactions with agents powered by LLM is still emerging, limited by access to the technology and to data, the absence of standardised interfaces, and challenges to establishing controlled experimental setups using the currently available business-oriented platforms. To answer these gaps, we developed LEXI, LLMs Experimentation Interface, an open-source tool enabling the deployment of artificial agents powered by LLM in social interaction behavioural experiments. Using a graphical interface, LEXI allows researchers to build agents, and deploy them in experimental setups along with forms and questionnaires while collecting interaction logs and self-reported data. The outcomes of usability testing indicate LEXI's broad utility, high usability and minimum mental workload requirement, with distinctive benefits observed across disciplines. A proof-of-concept study exploring the tool's efficacy in evaluating social HAIs was conducted, resulting in high-quality data. A comparison of empathetic versus neutral agents indicated that people perceive empathetic agents as more social, and write longer and more positive messages towards them.
Predicting city safety perception based on visual image content
Safety perception measurement has been a subject of interest in many cities of the world. This is due to its social relevance, and to its effect on some local economic activities. Even though people safety perception is a subjective topic, sometimes it is possible to find out common patterns given a restricted geographical and sociocultural context. This paper presents an approach that makes use of image processing and machine learning techniques to detect with high accuracy urban environment patterns that could affect citizen's safety perception.