Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAV2Wav: Diffusion-Based Re-synthesis from Continuous Self-supervised Features for Audio-Visual Speech Enhancement
Speech enhancement systems are typically trained using pairs of clean and noisy speech. In audio-visual speech enhancement (AVSE), there is not as much ground-truth clean data available; most audio-visual datasets are collected in real-world environments with background noise and reverberation, hampering the development of AVSE. In this work, we introduce AV2Wav, a resynthesis-based audio-visual speech enhancement approach that can generate clean speech despite the challenges of real-world training data. We obtain a subset of nearly clean speech from an audio-visual corpus using a neural quality estimator, and then train a diffusion model on this subset to generate waveforms conditioned on continuous speech representations from AV-HuBERT with noise-robust training. We use continuous rather than discrete representations to retain prosody and speaker information. With this vocoding task alone, the model can perform speech enhancement better than a masking-based baseline. We further fine-tune the diffusion model on clean/noisy utterance pairs to improve the performance. Our approach outperforms a masking-based baseline in terms of both automatic metrics and a human listening test and is close in quality to the target speech in the listening test. Audio samples can be found at https://home.ttic.edu/~jcchou/demo/avse/avse_demo.html.
A Training and Inference Strategy Using Noisy and Enhanced Speech as Target for Speech Enhancement without Clean Speech
The lack of clean speech is a practical challenge to the development of speech enhancement systems, which means that there is an inevitable mismatch between their training criterion and evaluation metric. In response to this unfavorable situation, we propose a training and inference strategy that additionally uses enhanced speech as a target by improving the previously proposed noisy-target training (NyTT). Because homogeneity between in-domain noise and extraneous noise is the key to the effectiveness of NyTT, we train various student models by remixing 1) the teacher model's estimated speech and noise for enhanced-target training or 2) raw noisy speech and the teacher model's estimated noise for noisy-target training. Experimental results show that our proposed method outperforms several baselines, especially with the teacher/student inference, where predicted clean speech is derived successively through the teacher and final student models.
LibriTTS-R: A Restored Multi-Speaker Text-to-Speech Corpus
This paper introduces a new speech dataset called ``LibriTTS-R'' designed for text-to-speech (TTS) use. It is derived by applying speech restoration to the LibriTTS corpus, which consists of 585 hours of speech data at 24 kHz sampling rate from 2,456 speakers and the corresponding texts. The constituent samples of LibriTTS-R are identical to those of LibriTTS, with only the sound quality improved. Experimental results show that the LibriTTS-R ground-truth samples showed significantly improved sound quality compared to those in LibriTTS. In addition, neural end-to-end TTS trained with LibriTTS-R achieved speech naturalness on par with that of the ground-truth samples. The corpus is freely available for download from http://www.openslr.org/141/.
Exploiting Foundation Models and Speech Enhancement for Parkinson's Disease Detection from Speech in Real-World Operative Conditions
This work is concerned with devising a robust Parkinson's (PD) disease detector from speech in real-world operating conditions using (i) foundational models, and (ii) speech enhancement (SE) methods. To this end, we first fine-tune several foundational-based models on the standard PC-GITA (s-PC-GITA) clean data. Our results demonstrate superior performance to previously proposed models. Second, we assess the generalization capability of the PD models on the extended PC-GITA (e-PC-GITA) recordings, collected in real-world operative conditions, and observe a severe drop in performance moving from ideal to real-world conditions. Third, we align training and testing conditions applaying off-the-shelf SE techniques on e-PC-GITA, and a significant boost in performance is observed only for the foundational-based models. Finally, combining the two best foundational-based models trained on s-PC-GITA, namely WavLM Base and Hubert Base, yielded top performance on the enhanced e-PC-GITA.
Universal Score-based Speech Enhancement with High Content Preservation
We propose UNIVERSE++, a universal speech enhancement method based on score-based diffusion and adversarial training. Specifically, we improve the existing UNIVERSE model that decouples clean speech feature extraction and diffusion. Our contributions are three-fold. First, we make several modifications to the network architecture, improving training stability and final performance. Second, we introduce an adversarial loss to promote learning high quality speech features. Third, we propose a low-rank adaptation scheme with a phoneme fidelity loss to improve content preservation in the enhanced speech. In the experiments, we train a universal enhancement model on a large scale dataset of speech degraded by noise, reverberation, and various distortions. The results on multiple public benchmark datasets demonstrate that UNIVERSE++ compares favorably to both discriminative and generative baselines for a wide range of qualitative and intelligibility metrics.
Look Once to Hear: Target Speech Hearing with Noisy Examples
In crowded settings, the human brain can focus on speech from a target speaker, given prior knowledge of how they sound. We introduce a novel intelligent hearable system that achieves this capability, enabling target speech hearing to ignore all interfering speech and noise, but the target speaker. A naive approach is to require a clean speech example to enroll the target speaker. This is however not well aligned with the hearable application domain since obtaining a clean example is challenging in real world scenarios, creating a unique user interface problem. We present the first enrollment interface where the wearer looks at the target speaker for a few seconds to capture a single, short, highly noisy, binaural example of the target speaker. This noisy example is used for enrollment and subsequent speech extraction in the presence of interfering speakers and noise. Our system achieves a signal quality improvement of 7.01 dB using less than 5 seconds of noisy enrollment audio and can process 8 ms of audio chunks in 6.24 ms on an embedded CPU. Our user studies demonstrate generalization to real-world static and mobile speakers in previously unseen indoor and outdoor multipath environments. Finally, our enrollment interface for noisy examples does not cause performance degradation compared to clean examples, while being convenient and user-friendly. Taking a step back, this paper takes an important step towards enhancing the human auditory perception with artificial intelligence. We provide code and data at: https://github.com/vb000/LookOnceToHear.
Bridging the Gap Between Clean Data Training and Real-World Inference for Spoken Language Understanding
Spoken language understanding (SLU) system usually consists of various pipeline components, where each component heavily relies on the results of its upstream ones. For example, Intent detection (ID), and slot filling (SF) require its upstream automatic speech recognition (ASR) to transform the voice into text. In this case, the upstream perturbations, e.g. ASR errors, environmental noise and careless user speaking, will propagate to the ID and SF models, thus deteriorating the system performance. Therefore, the well-performing SF and ID models are expected to be noise resistant to some extent. However, existing models are trained on clean data, which causes a gap between clean data training and real-world inference. To bridge the gap, we propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space. Meanwhile, we design a denoising generation model to reduce the impact of the low-quality samples. Experiments on the widely-used dataset, i.e. Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment. The source code will be released.
FAMA: The First Large-Scale Open-Science Speech Foundation Model for English and Italian
The development of speech foundation models (SFMs) like Whisper and SeamlessM4T has significantly advanced the field of speech processing. However, their closed nature--with inaccessible training data and code--poses major reproducibility and fair evaluation challenges. While other domains have made substantial progress toward open science by developing fully transparent models trained on open-source (OS) code and data, similar efforts in speech remain limited. To fill this gap, we introduce FAMA, the first family of open science SFMs for English and Italian, trained on 150k+ hours of OS speech data. Moreover, we present a new dataset containing 16k hours of cleaned and pseudo-labeled speech for both languages. Results show that FAMA achieves competitive performance compared to existing SFMs while being up to 8 times faster. All artifacts, including code, datasets, and models, are released under OS-compliant licenses, promoting openness in speech technology research.
CsFEVER and CTKFacts: Acquiring Czech data for fact verification
In this paper, we examine several methods of acquiring Czech data for automated fact-checking, which is a task commonly modeled as a classification of textual claim veracity w.r.t. a corpus of trusted ground truths. We attempt to collect sets of data in form of a factual claim, evidence within the ground truth corpus, and its veracity label (supported, refuted or not enough info). As a first attempt, we generate a Czech version of the large-scale FEVER dataset built on top of Wikipedia corpus. We take a hybrid approach of machine translation and document alignment; the approach and the tools we provide can be easily applied to other languages. We discuss its weaknesses and inaccuracies, propose a future approach for their cleaning and publish the 127k resulting translations, as well as a version of such dataset reliably applicable for the Natural Language Inference task - the CsFEVER-NLI. Furthermore, we collect a novel dataset of 3,097 claims, which is annotated using the corpus of 2.2M articles of Czech News Agency. We present its extended annotation methodology based on the FEVER approach, and, as the underlying corpus is kept a trade secret, we also publish a standalone version of the dataset for the task of Natural Language Inference we call CTKFactsNLI. We analyze both acquired datasets for spurious cues - annotation patterns leading to model overfitting. CTKFacts is further examined for inter-annotator agreement, thoroughly cleaned, and a typology of common annotator errors is extracted. Finally, we provide baseline models for all stages of the fact-checking pipeline and publish the NLI datasets, as well as our annotation platform and other experimental data.
OWSM v4: Improving Open Whisper-Style Speech Models via Data Scaling and Cleaning
The Open Whisper-style Speech Models (OWSM) project has developed a series of fully open speech foundation models using academic-scale resources, but their training data remains insufficient. This work enhances OWSM by integrating YODAS, a large-scale web-crawled dataset with a Creative Commons license. However, incorporating YODAS is nontrivial due to its wild nature, which introduces challenges such as incorrect language labels and audio-text misalignments. To address this, we develop a scalable data-cleaning pipeline using public toolkits, yielding a dataset with 166,000 hours of speech across 75 languages. Our new series of OWSM v4 models, trained on this curated dataset alongside existing OWSM data, significantly outperform previous versions on multilingual benchmarks. Our models even match or surpass frontier industrial models like Whisper and MMS in multiple scenarios. We will publicly release the cleaned YODAS data, pre-trained models, and all associated scripts via the ESPnet toolkit.
J-CHAT: Japanese Large-scale Spoken Dialogue Corpus for Spoken Dialogue Language Modeling
Spoken dialogue plays a crucial role in human-AI interactions, necessitating dialogue-oriented spoken language models (SLMs). To develop versatile SLMs, large-scale and diverse speech datasets are essential. Additionally, to ensure hiqh-quality speech generation, the data must be spontaneous like in-wild data and must be acoustically clean with noise removed. Despite the critical need, no open-source corpus meeting all these criteria has been available. This study addresses this gap by constructing and releasing a large-scale spoken dialogue corpus, named Japanese Corpus for Human-AI Talks (J-CHAT), which is publicly accessible. Furthermore, this paper presents a language-independent method for corpus construction and describes experiments on dialogue generation using SLMs trained on J-CHAT. Experimental results indicate that the collected data from multiple domains by our method improve the naturalness and meaningfulness of dialogue generation.
TruthX: Alleviating Hallucinations by Editing Large Language Models in Truthful Space
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks. However, they sometimes suffer from producing hallucinations, particularly in cases where they may generate untruthful responses despite possessing the correct knowledge. In this paper, we propose TruthX, an inference-time method to elicit the truthfulness of LLMs by editing their internal representations in truthful space. TruthX employs an auto-encoder to map LLM's representations into semantic and truthful latent spaces respectively, and applies contrastive learning to identify a truthful editing direction within the truthful space. During inference, by editing LLM's internal representations in truthful space, TruthX effectively enhances the truthfulness of LLMs. Experiments show that TruthX effectively improves the truthfulness of 13 advanced LLMs by an average of 20% on TruthfulQA benchmark. Further analyses suggest that the truthful space acquired by TruthX plays a pivotal role in controlling LLM to produce truthful or hallucinatory responses.
Unmasking and Improving Data Credibility: A Study with Datasets for Training Harmless Language Models
Language models have shown promise in various tasks but can be affected by undesired data during training, fine-tuning, or alignment. For example, if some unsafe conversations are wrongly annotated as safe ones, the model fine-tuned on these samples may be harmful. Therefore, the correctness of annotations, i.e., the credibility of the dataset, is important. This study focuses on the credibility of real-world datasets, including the popular benchmarks Jigsaw Civil Comments, Anthropic Harmless & Red Team, PKU BeaverTails & SafeRLHF, that can be used for training a harmless language model. Given the cost and difficulty of cleaning these datasets by humans, we introduce a systematic framework for evaluating the credibility of datasets, identifying label errors, and evaluating the influence of noisy labels in the curated language data, specifically focusing on unsafe comments and conversation classification. With the framework, we find and fix an average of 6.16% label errors in 11 datasets constructed from the above benchmarks. The data credibility and downstream learning performance can be remarkably improved by directly fixing label errors, indicating the significance of cleaning existing real-world datasets. We provide an open-source tool, Docta, for data cleaning at https://github.com/Docta-ai/docta.
Toward Reliable Biomedical Hypothesis Generation: Evaluating Truthfulness and Hallucination in Large Language Models
Large language models (LLMs) have shown significant potential in scientific disciplines such as biomedicine, particularly in hypothesis generation, where they can analyze vast literature, identify patterns, and suggest research directions. However, a key challenge lies in evaluating the truthfulness of generated hypotheses, as verifying their accuracy often requires substantial time and resources. Additionally, the hallucination problem in LLMs can lead to the generation of hypotheses that appear plausible but are ultimately incorrect, undermining their reliability. To facilitate the systematic study of these challenges, we introduce TruthHypo, a benchmark for assessing the capabilities of LLMs in generating truthful biomedical hypotheses, and KnowHD, a knowledge-based hallucination detector to evaluate how well hypotheses are grounded in existing knowledge. Our results show that LLMs struggle to generate truthful hypotheses. By analyzing hallucinations in reasoning steps, we demonstrate that the groundedness scores provided by KnowHD serve as an effective metric for filtering truthful hypotheses from the diverse outputs of LLMs. Human evaluations further validate the utility of KnowHD in identifying truthful hypotheses and accelerating scientific discovery. Our data and source code are available at https://github.com/Teddy-XiongGZ/TruthHypo.
Self-Training for End-to-End Speech Recognition
We revisit self-training in the context of end-to-end speech recognition. We demonstrate that training with pseudo-labels can substantially improve the accuracy of a baseline model. Key to our approach are a strong baseline acoustic and language model used to generate the pseudo-labels, filtering mechanisms tailored to common errors from sequence-to-sequence models, and a novel ensemble approach to increase pseudo-label diversity. Experiments on the LibriSpeech corpus show that with an ensemble of four models and label filtering, self-training yields a 33.9% relative improvement in WER compared with a baseline trained on 100 hours of labelled data in the noisy speech setting. In the clean speech setting, self-training recovers 59.3% of the gap between the baseline and an oracle model, which is at least 93.8% relatively higher than what previous approaches can achieve.
Speech Denoising Without Clean Training Data: A Noise2Noise Approach
This paper tackles the problem of the heavy dependence of clean speech data required by deep learning based audio-denoising methods by showing that it is possible to train deep speech denoising networks using only noisy speech samples. Conventional wisdom dictates that in order to achieve good speech denoising performance, there is a requirement for a large quantity of both noisy speech samples and perfectly clean speech samples, resulting in a need for expensive audio recording equipment and extremely controlled soundproof recording studios. These requirements pose significant challenges in data collection, especially in economically disadvantaged regions and for low resource languages. This work shows that speech denoising deep neural networks can be successfully trained utilizing only noisy training audio. Furthermore it is revealed that such training regimes achieve superior denoising performance over conventional training regimes utilizing clean training audio targets, in cases involving complex noise distributions and low Signal-to-Noise ratios (high noise environments). This is demonstrated through experiments studying the efficacy of our proposed approach over both real-world noises and synthetic noises using the 20 layered Deep Complex U-Net architecture.
Grounding Conversations with Improvised Dialogues
Effective dialogue involves grounding, the process of establishing mutual knowledge that is essential for communication between people. Modern dialogue systems are not explicitly trained to build common ground, and therefore overlook this important aspect of communication. Improvisational theater (improv) intrinsically contains a high proportion of dialogue focused on building common ground, and makes use of the yes-and principle, a strong grounding speech act, to establish coherence and an actionable objective reality. We collect a corpus of more than 26,000 yes-and turns, transcribing them from improv dialogues and extracting them from larger, but more sparsely populated movie script dialogue corpora, via a bootstrapped classifier. We fine-tune chit-chat dialogue systems with our corpus to encourage more grounded, relevant conversation and confirm these findings with human evaluations.
Universal Speech Enhancement with Score-based Diffusion
Removing background noise from speech audio has been the subject of considerable effort, especially in recent years due to the rise of virtual communication and amateur recordings. Yet background noise is not the only unpleasant disturbance that can prevent intelligibility: reverb, clipping, codec artifacts, problematic equalization, limited bandwidth, or inconsistent loudness are equally disturbing and ubiquitous. In this work, we propose to consider the task of speech enhancement as a holistic endeavor, and present a universal speech enhancement system that tackles 55 different distortions at the same time. Our approach consists of a generative model that employs score-based diffusion, together with a multi-resolution conditioning network that performs enhancement with mixture density networks. We show that this approach significantly outperforms the state of the art in a subjective test performed by expert listeners. We also show that it achieves competitive objective scores with just 4-8 diffusion steps, despite not considering any particular strategy for fast sampling. We hope that both our methodology and technical contributions encourage researchers and practitioners to adopt a universal approach to speech enhancement, possibly framing it as a generative task.
GreenLLaMA: A Framework for Detoxification with Explanations
Prior works on detoxification are scattered in the sense that they do not cover all aspects of detoxification needed in a real-world scenario. Notably, prior works restrict the task of developing detoxification models to only a seen subset of platforms, leaving the question of how the models would perform on unseen platforms unexplored. Additionally, these works do not address non-detoxifiability, a phenomenon whereby the toxic text cannot be detoxified without altering the meaning. We propose GreenLLaMA, the first comprehensive end-to-end detoxification framework, which attempts to alleviate the aforementioned limitations. We first introduce a cross-platform pseudo-parallel corpus applying multi-step data processing and generation strategies leveraging ChatGPT. We then train a suite of detoxification models with our cross-platform corpus. We show that our detoxification models outperform the SoTA model trained with human-annotated parallel corpus. We further introduce explanation to promote transparency and trustworthiness. GreenLLaMA additionally offers a unique paraphrase detector especially dedicated for the detoxification task to tackle the non-detoxifiable cases. Through experimental analysis, we demonstrate the effectiveness of our cross-platform corpus and the robustness of GreenLLaMA against adversarial toxicity.
QualiSpeech: A Speech Quality Assessment Dataset with Natural Language Reasoning and Descriptions
This paper explores a novel perspective to speech quality assessment by leveraging natural language descriptions, offering richer, more nuanced insights than traditional numerical scoring methods. Natural language feedback provides instructive recommendations and detailed evaluations, yet existing datasets lack the comprehensive annotations needed for this approach. To bridge this gap, we introduce QualiSpeech, a comprehensive low-level speech quality assessment dataset encompassing 11 key aspects and detailed natural language comments that include reasoning and contextual insights. Additionally, we propose the QualiSpeech Benchmark to evaluate the low-level speech understanding capabilities of auditory large language models (LLMs). Experimental results demonstrate that finetuned auditory LLMs can reliably generate detailed descriptions of noise and distortion, effectively identifying their types and temporal characteristics. The results further highlight the potential for incorporating reasoning to enhance the accuracy and reliability of quality assessments. The dataset will be released at https://huggingface.co/datasets/tsinghua-ee/QualiSpeech.
VoiceBench: Benchmarking LLM-Based Voice Assistants
Building on the success of large language models (LLMs), recent advancements such as GPT-4o have enabled real-time speech interactions through LLM-based voice assistants, offering a significantly improved user experience compared to traditional text-based interactions. However, the absence of benchmarks designed to evaluate these speech interaction capabilities has hindered progress of LLM-based voice assistants development. Current evaluations focus primarily on automatic speech recognition (ASR) or general knowledge evaluation with clean speeches, neglecting the more intricate, real-world scenarios that involve diverse speaker characteristics, environmental and content factors. To address this, we introduce VoiceBench, the first benchmark designed to provide a multi-faceted evaluation of LLM-based voice assistants. VoiceBench also includes both real and synthetic spoken instructions that incorporate the above three key real-world variations. Extensive experiments reveal the limitations of current LLM-based voice assistant models and offer valuable insights for future research and development in this field.
Lower Layer Matters: Alleviating Hallucination via Multi-Layer Fusion Contrastive Decoding with Truthfulness Refocused
Large Language Models (LLMs) have demonstrated exceptional performance across various natural language processing tasks, yet they occasionally tend to yield content that factually inaccurate or discordant with the expected output, a phenomenon empirically referred to as "hallucination". To tackle this issue, recent works have investigated contrastive decoding between the original model and an amateur model with induced hallucination, which has shown promising results. Nonetheless, this method may undermine the output distribution of the original LLM caused by its coarse contrast and simplistic subtraction operation, potentially leading to errors in certain cases. In this paper, we introduce a novel contrastive decoding framework termed LOL (LOwer Layer Matters). Our approach involves concatenating the contrastive decoding of both the final and lower layers between the original model and the amateur model, thereby achieving multi-layer fusion to aid in the mitigation of hallucination. Additionally, we incorporate a truthfulness refocused module that leverages contextual guidance to enhance factual encoding, further capturing truthfulness during contrastive decoding. Extensive experiments conducted on two publicly available datasets illustrate that our proposed LOL framework can substantially alleviate hallucination while surpassing existing baselines in most cases. Compared with the best baseline, we improve by average 4.5 points on all metrics of TruthfulQA. The source code is coming soon.
HalluDial: A Large-Scale Benchmark for Automatic Dialogue-Level Hallucination Evaluation
Large Language Models (LLMs) have significantly advanced the field of Natural Language Processing (NLP), achieving remarkable performance across diverse tasks and enabling widespread real-world applications. However, LLMs are prone to hallucination, generating content that either conflicts with established knowledge or is unfaithful to the original sources. Existing hallucination benchmarks primarily focus on sentence- or passage-level hallucination detection, neglecting dialogue-level evaluation, hallucination localization, and rationale provision. They also predominantly target factuality hallucinations while underestimating faithfulness hallucinations, often relying on labor-intensive or non-specialized evaluators. To address these limitations, we propose HalluDial, the first comprehensive large-scale benchmark for automatic dialogue-level hallucination evaluation. HalluDial encompasses both spontaneous and induced hallucination scenarios, covering factuality and faithfulness hallucinations. The benchmark includes 4,094 dialogues with a total of 146,856 samples. Leveraging HalluDial, we conduct a comprehensive meta-evaluation of LLMs' hallucination evaluation capabilities in information-seeking dialogues and introduce a specialized judge language model, HalluJudge. The high data quality of HalluDial enables HalluJudge to achieve superior or competitive performance in hallucination evaluation, facilitating the automatic assessment of dialogue-level hallucinations in LLMs and providing valuable insights into this phenomenon. The dataset and the code are available at https://github.com/FlagOpen/HalluDial.
Unified Detoxifying and Debiasing in Language Generation via Inference-time Adaptive Optimization
Warning: this paper contains model outputs exhibiting offensiveness and biases. Recently pre-trained language models (PLMs) have prospered in various natural language generation (NLG) tasks due to their ability to generate fairly fluent text. Nevertheless, these models are observed to capture and reproduce harmful contents in training corpora, typically toxic language and social biases, raising severe moral issues. Prior works on ethical NLG tackle detoxifying and debiasing separately, which is problematic since we find debiased models still exhibit toxicity while detoxified ones even exacerbate biases. To address such a challenge, we propose the first unified framework of detoxifying and debiasing called UDDIA, which jointly formalizes these two problems as rectifying the output space. We theoretically interpret our framework as learning a text distribution mixing weighted attributes. Besides, UDDIA conducts adaptive optimization of only a few parameters during decoding based on a parameter-efficient tuning schema without any training data. This leads to minimal generation quality loss and improved rectification performance with acceptable computational cost. Experimental results demonstrate that compared to several strong baselines, UDDIA achieves debiasing and detoxifying simultaneously and better balances efficiency and effectiveness, taking a further step towards practical ethical NLG.
TrustGPT: A Benchmark for Trustworthy and Responsible Large Language Models
Large Language Models (LLMs) such as ChatGPT, have gained significant attention due to their impressive natural language processing capabilities. It is crucial to prioritize human-centered principles when utilizing these models. Safeguarding the ethical and moral compliance of LLMs is of utmost importance. However, individual ethical issues have not been well studied on the latest LLMs. Therefore, this study aims to address these gaps by introducing a new benchmark -- TrustGPT. TrustGPT provides a comprehensive evaluation of LLMs in three crucial areas: toxicity, bias, and value-alignment. Initially, TrustGPT examines toxicity in language models by employing toxic prompt templates derived from social norms. It then quantifies the extent of bias in models by measuring quantifiable toxicity values across different groups. Lastly, TrustGPT assesses the value of conversation generation models from both active value-alignment and passive value-alignment tasks. Through the implementation of TrustGPT, this research aims to enhance our understanding of the performance of conversation generation models and promote the development of language models that are more ethical and socially responsible.
ToXCL: A Unified Framework for Toxic Speech Detection and Explanation
The proliferation of online toxic speech is a pertinent problem posing threats to demographic groups. While explicit toxic speech contains offensive lexical signals, implicit one consists of coded or indirect language. Therefore, it is crucial for models not only to detect implicit toxic speech but also to explain its toxicity. This draws a unique need for unified frameworks that can effectively detect and explain implicit toxic speech. Prior works mainly formulated the task of toxic speech detection and explanation as a text generation problem. Nonetheless, models trained using this strategy can be prone to suffer from the consequent error propagation problem. Moreover, our experiments reveal that the detection results of such models are much lower than those that focus only on the detection task. To bridge these gaps, we introduce ToXCL, a unified framework for the detection and explanation of implicit toxic speech. Our model consists of three modules: a (i) Target Group Generator to generate the targeted demographic group(s) of a given post; an (ii) Encoder-Decoder Model in which the encoder focuses on detecting implicit toxic speech and is boosted by a (iii) Teacher Classifier via knowledge distillation, and the decoder generates the necessary explanation. ToXCL achieves new state-of-the-art effectiveness, and outperforms baselines significantly.
GRATH: Gradual Self-Truthifying for Large Language Models
Truthfulness is paramount for large language models (LLMs) as they are increasingly deployed in real-world applications. However, existing LLMs still struggle with generating truthful answers and content, as evidenced by their modest performance on benchmarks like TruthfulQA. To address this issue, we propose GRAdual self-truTHifying (GRATH), a novel post-processing method to enhance truthfulness of LLMs. GRATH utilizes out-of-domain question prompts to generate corresponding answers and adaptively optimizes the model via direct preference optimization (DPO). Note that during this process, GRATH learns truthfulness in a self-supervised manner without requiring annotated answers. In particular, GRATH first generates pairwise truthfulness training data by prompting the LLM itself, with each pair containing a question and its correct and incorrect answers. The model is then fine-tuned using DPO to learn from the difference between answer pairs. Subsequently, GRATH iteratively refines the truthfulness data and optimizes the model, leading to a gradual improvement in model truthfulness. Empirically, we evaluate GRATH using different 7B-LLMs and compare with LLMs with similar or even larger sizes on benchmark datasets. Our results show that GRATH effectively improves LLMs' truthfulness without compromising other core capabilities. Notably, GRATH achieves state-of-the-art performance on TruthfulQA, with MC1 accuracy as 54.71% and MC2 accuracy as 69.10%, which even surpass those on larger-scale models, such as Llama2-Chat-70B, by 23.62% and 24.18%, respectively.
The MASK Benchmark: Disentangling Honesty From Accuracy in AI Systems
As large language models (LLMs) become more capable and agentic, the requirement for trust in their outputs grows significantly, yet at the same time concerns have been mounting that models may learn to lie in pursuit of their goals. To address these concerns, a body of work has emerged around the notion of "honesty" in LLMs, along with interventions aimed at mitigating deceptive behaviors. However, evaluations of honesty are currently highly limited, with no benchmark combining large scale and applicability to all models. Moreover, many benchmarks claiming to measure honesty in fact simply measure accuracy--the correctness of a model's beliefs--in disguise. In this work, we introduce a large-scale human-collected dataset for measuring honesty directly, allowing us to disentangle accuracy from honesty for the first time. Across a diverse set of LLMs, we find that while larger models obtain higher accuracy on our benchmark, they do not become more honest. Surprisingly, while most frontier LLMs obtain high scores on truthfulness benchmarks, we find a substantial propensity in frontier LLMs to lie when pressured to do so, resulting in low honesty scores on our benchmark. We find that simple methods, such as representation engineering interventions, can improve honesty. These results underscore the growing need for robust evaluations and effective interventions to ensure LLMs remain trustworthy.
RefGPT: Reference -> Truthful & Customized Dialogues Generation by GPTs and for GPTs
General chat models, like ChatGPT, have attained impressive capability to resolve a wide range of NLP tasks by tuning Large Language Models (LLMs) with high-quality instruction data. However, collecting human-written high-quality data, especially multi-turn dialogues, is expensive and unattainable for most people. Though previous studies have used powerful LLMs to generate the dialogues automatically, but they all suffer from generating untruthful dialogues because of the LLMs hallucination. Therefore, we propose a method called RefGPT to generate enormous truthful and customized dialogues without worrying about factual errors caused by the model hallucination. RefGPT solves the model hallucination in dialogue generation by restricting the LLMs to leverage the given reference instead of reciting their own knowledge to generate dialogues. Additionally, RefGPT adds detailed controls on every utterances to enable highly customization capability, which previous studies have ignored. On the basis of RefGPT, we also propose two high-quality dialogue datasets generated by GPT-4, namely RefGPT-Fact and RefGPT-Code. RefGPT-Fact is 100k multi-turn dialogue datasets based on factual knowledge and RefGPT-Code is 76k multi-turn dialogue dataset covering a wide range of coding scenarios. Our code and datasets are released in https://github.com/ziliwangnlp/RefGPT
GenSE: Generative Speech Enhancement via Language Models using Hierarchical Modeling
Semantic information refers to the meaning conveyed through words, phrases, and contextual relationships within a given linguistic structure. Humans can leverage semantic information, such as familiar linguistic patterns and contextual cues, to reconstruct incomplete or masked speech signals in noisy environments. However, existing speech enhancement (SE) approaches often overlook the rich semantic information embedded in speech, which is crucial for improving intelligibility, speaker consistency, and overall quality of enhanced speech signals. To enrich the SE model with semantic information, we employ language models as an efficient semantic learner and propose a comprehensive framework tailored for language model-based speech enhancement, called GenSE. Specifically, we approach SE as a conditional language modeling task rather than a continuous signal regression problem defined in existing works. This is achieved by tokenizing speech signals into semantic tokens using a pre-trained self-supervised model and into acoustic tokens using a custom-designed single-quantizer neural codec model. To improve the stability of language model predictions, we propose a hierarchical modeling method that decouples the generation of clean semantic tokens and clean acoustic tokens into two distinct stages. Moreover, we introduce a token chain prompting mechanism during the acoustic token generation stage to ensure timbre consistency throughout the speech enhancement process. Experimental results on benchmark datasets demonstrate that our proposed approach outperforms state-of-the-art SE systems in terms of speech quality and generalization capability.
Generalization or Memorization: Data Contamination and Trustworthy Evaluation for Large Language Models
Recent statements about the impressive capabilities of large language models (LLMs) are usually supported by evaluating on open-access benchmarks. Considering the vast size and wide-ranging sources of LLMs' training data, it could explicitly or implicitly include test data, leading to LLMs being more susceptible to data contamination. However, due to the opacity of training data, the black-box access of models, and the rapid growth of synthetic training data, detecting and mitigating data contamination for LLMs faces significant challenges. In this paper, we propose CDD, which stands for Contamination Detection via output Distribution for LLMs. CDD necessitates only the sampled texts to detect data contamination, by identifying the peakedness of LLM's output distribution. To mitigate the impact of data contamination in evaluation, we also present TED: Trustworthy Evaluation via output Distribution, based on the correction of LLM's output distribution. To facilitate this study, we introduce two benchmarks, i.e., DetCon and ComiEval, for data contamination detection and contamination mitigation evaluation tasks. Extensive experimental results show that CDD achieves the average relative improvements of 21.8\%-30.2\% over other contamination detection approaches in terms of Accuracy, F1 Score, and AUC metrics, and can effectively detect implicit contamination. TED substantially mitigates performance improvements up to 66.9\% attributed to data contamination across various contamination setups. In real-world applications, we reveal that ChatGPT exhibits a high potential to suffer from data contamination on HumanEval benchmark.
A Suite for Acoustic Language Model Evaluation
Speech language models have recently demonstrated great potential as universal speech processing systems. Such models have the ability to model the rich acoustic information existing in audio signals, beyond spoken content, such as emotion, background noise, etc. Despite this, evaluation benchmarks which evaluate awareness to a wide range of acoustic aspects, are lacking. To help bridge this gap, we introduce SALMon, a novel evaluation suite encompassing background noise, emotion, speaker identity and room impulse response. The proposed benchmarks both evaluate the consistency of the inspected element and how much it matches the spoken text. We follow a modelling based approach, measuring whether a model gives correct samples higher scores than incorrect ones. This approach makes the benchmark fast to compute even for large models. We evaluated several speech language models on SALMon, thus highlighting the strengths and weaknesses of each evaluated method. Code and data are publicly available at https://pages.cs.huji.ac.il/adiyoss-lab/salmon/ .
TrustLLM: Trustworthiness in Large Language Models
Large language models (LLMs), exemplified by ChatGPT, have gained considerable attention for their excellent natural language processing capabilities. Nonetheless, these LLMs present many challenges, particularly in the realm of trustworthiness. Therefore, ensuring the trustworthiness of LLMs emerges as an important topic. This paper introduces TrustLLM, a comprehensive study of trustworthiness in LLMs, including principles for different dimensions of trustworthiness, established benchmark, evaluation, and analysis of trustworthiness for mainstream LLMs, and discussion of open challenges and future directions. Specifically, we first propose a set of principles for trustworthy LLMs that span eight different dimensions. Based on these principles, we further establish a benchmark across six dimensions including truthfulness, safety, fairness, robustness, privacy, and machine ethics. We then present a study evaluating 16 mainstream LLMs in TrustLLM, consisting of over 30 datasets. Our findings firstly show that in general trustworthiness and utility (i.e., functional effectiveness) are positively related. Secondly, our observations reveal that proprietary LLMs generally outperform most open-source counterparts in terms of trustworthiness, raising concerns about the potential risks of widely accessible open-source LLMs. However, a few open-source LLMs come very close to proprietary ones. Thirdly, it is important to note that some LLMs may be overly calibrated towards exhibiting trustworthiness, to the extent that they compromise their utility by mistakenly treating benign prompts as harmful and consequently not responding. Finally, we emphasize the importance of ensuring transparency not only in the models themselves but also in the technologies that underpin trustworthiness. Knowing the specific trustworthy technologies that have been employed is crucial for analyzing their effectiveness.
BaRDa: A Belief and Reasoning Dataset that Separates Factual Accuracy and Reasoning Ability
While there are numerous benchmarks comparing the performance of modern language models (LMs), end-task evaluations often conflate notions of *factual accuracy* ("truth") and *reasoning ability* ("rationality", or "honesty" in the sense of correctly reporting implications of beliefs). Our goal is a dataset that clearly distinguishes these two notions. Our approach is to leverage and extend a collection of human-annotated *entailment trees*, engineered to express both good and bad chains of reasoning, and using a mixture of true and false facts, in particular including counterfactual examples, to avoid belief bias (also known as the "content effect"). The resulting dataset, called BaRDa, contains 3000 entailments (1787 valid, 1213 invalid), using 6681 true and 2319 false statements. Testing on four GPT-series models, GPT3(curie)/GPT3(davinici)/3.5/4, we find factual accuracy (truth) scores of 74.1/80.6/82.6/87.1 and reasoning accuracy scores of 63.1/78.0/71.8/79.2. This shows the clear progression of models towards improved factual accuracy and entailment reasoning, and the dataset provides a new benchmark that more cleanly separates and quantifies these two notions.
On the Effects of Heterogeneous Data Sources on Speech-to-Text Foundation Models
The Open Whisper-style Speech Model (OWSM) series was introduced to achieve full transparency in building advanced speech-to-text (S2T) foundation models. To this end, OWSM models are trained on 25 public speech datasets, which are heterogeneous in multiple ways. In this study, we advance the OWSM series by introducing OWSM v3.2, which improves on prior models by investigating and addressing the impacts of this data heterogeneity. Our study begins with a detailed analysis of each dataset, from which we derive two key strategies: data filtering with proxy task to enhance data quality, and the incorporation of punctuation and true-casing using an open large language model (LLM). With all other configurations staying the same, OWSM v3.2 improves performance over the OWSM v3.1 baseline while using 15% less training data.
VoiceLDM: Text-to-Speech with Environmental Context
This paper presents VoiceLDM, a model designed to produce audio that accurately follows two distinct natural language text prompts: the description prompt and the content prompt. The former provides information about the overall environmental context of the audio, while the latter conveys the linguistic content. To achieve this, we adopt a text-to-audio (TTA) model based on latent diffusion models and extend its functionality to incorporate an additional content prompt as a conditional input. By utilizing pretrained contrastive language-audio pretraining (CLAP) and Whisper, VoiceLDM is trained on large amounts of real-world audio without manual annotations or transcriptions. Additionally, we employ dual classifier-free guidance to further enhance the controllability of VoiceLDM. Experimental results demonstrate that VoiceLDM is capable of generating plausible audio that aligns well with both input conditions, even surpassing the speech intelligibility of the ground truth audio on the AudioCaps test set. Furthermore, we explore the text-to-speech (TTS) and zero-shot text-to-audio capabilities of VoiceLDM and show that it achieves competitive results. Demos and code are available at https://voiceldm.github.io.
Establishing Trustworthy LLM Evaluation via Shortcut Neuron Analysis
The development of large language models (LLMs) depends on trustworthy evaluation. However, most current evaluations rely on public benchmarks, which are prone to data contamination issues that significantly compromise fairness. Previous researches have focused on constructing dynamic benchmarks to address contamination. However, continuously building new benchmarks is costly and cyclical. In this work, we aim to tackle contamination by analyzing the mechanisms of contaminated models themselves. Through our experiments, we discover that the overestimation of contaminated models is likely due to parameters acquiring shortcut solutions in training. We further propose a novel method for identifying shortcut neurons through comparative and causal analysis. Building on this, we introduce an evaluation method called shortcut neuron patching to suppress shortcut neurons. Experiments validate the effectiveness of our approach in mitigating contamination. Additionally, our evaluation results exhibit a strong linear correlation with MixEval, a recently released trustworthy benchmark, achieving a Spearman coefficient (rho) exceeding 0.95. This high correlation indicates that our method closely reveals true capabilities of the models and is trustworthy. We conduct further experiments to demonstrate the generalizability of our method across various benchmarks and hyperparameter settings. Code: https://github.com/GaryStack/Trustworthy-Evaluation
SD-Eval: A Benchmark Dataset for Spoken Dialogue Understanding Beyond Words
Speech encompasses a wealth of information, including but not limited to content, paralinguistic, and environmental information. This comprehensive nature of speech significantly impacts communication and is crucial for human-computer interaction. Chat-Oriented Large Language Models (LLMs), known for their general-purpose assistance capabilities, have evolved to handle multi-modal inputs, including speech. Although these models can be adept at recognizing and analyzing speech, they often fall short of generating appropriate responses. We argue that this is due to the lack of principles on task definition and model development, which requires open-source datasets and metrics suitable for model evaluation. To bridge the gap, we present SD-Eval, a benchmark dataset aimed at multidimensional evaluation of spoken dialogue understanding and generation. SD-Eval focuses on paralinguistic and environmental information and includes 7,303 utterances, amounting to 8.76 hours of speech data. The data is aggregated from eight public datasets, representing four perspectives: emotion, accent, age, and background sound. To assess the SD-Eval benchmark dataset, we implement three different models and construct a training set following a similar process as SD-Eval. The training set contains 1,052.72 hours of speech data and 724.4k utterances. We also conduct a comprehensive evaluation using objective evaluation methods (e.g. BLEU and ROUGE), subjective evaluations and LLM-based metrics for the generated responses. Models conditioned with paralinguistic and environmental information outperform their counterparts in both objective and subjective measures. Moreover, experiments demonstrate LLM-based metrics show a higher correlation with human evaluation compared to traditional metrics. We open-source SD-Eval at https://github.com/amphionspace/SD-Eval.
Multi-Decoder DPRNN: High Accuracy Source Counting and Separation
We propose an end-to-end trainable approach to single-channel speech separation with unknown number of speakers. Our approach extends the MulCat source separation backbone with additional output heads: a count-head to infer the number of speakers, and decoder-heads for reconstructing the original signals. Beyond the model, we also propose a metric on how to evaluate source separation with variable number of speakers. Specifically, we cleared up the issue on how to evaluate the quality when the ground-truth hasmore or less speakers than the ones predicted by the model. We evaluate our approach on the WSJ0-mix datasets, with mixtures up to five speakers. We demonstrate that our approach outperforms state-of-the-art in counting the number of speakers and remains competitive in quality of reconstructed signals.
CaLM: Contrasting Large and Small Language Models to Verify Grounded Generation
Grounded generation aims to equip language models (LMs) with the ability to produce more credible and accountable responses by accurately citing verifiable sources. However, existing methods, by either feeding LMs with raw or preprocessed materials, remain prone to errors. To address this, we introduce CaLM, a novel verification framework. CaLM leverages the insight that a robust grounded response should be consistent with information derived solely from its cited sources. Our framework empowers smaller LMs, which rely less on parametric memory and excel at processing relevant information given a query, to validate the output of larger LMs. Larger LM responses that closely align with the smaller LMs' output, which relies exclusively on cited documents, are verified. Responses showing discrepancies are iteratively refined through a feedback loop. Experiments on three open-domain question-answering datasets demonstrate significant performance gains of 1.5% to 7% absolute average without any required model fine-tuning.
DiTSE: High-Fidelity Generative Speech Enhancement via Latent Diffusion Transformers
Real-world speech recordings suffer from degradations such as background noise and reverberation. Speech enhancement aims to mitigate these issues by generating clean high-fidelity signals. While recent generative approaches for speech enhancement have shown promising results, they still face two major challenges: (1) content hallucination, where plausible phonemes generated differ from the original utterance; and (2) inconsistency, failing to preserve speaker's identity and paralinguistic features from the input speech. In this work, we introduce DiTSE (Diffusion Transformer for Speech Enhancement), which addresses quality issues of degraded speech in full bandwidth. Our approach employs a latent diffusion transformer model together with robust conditioning features, effectively addressing these challenges while remaining computationally efficient. Experimental results from both subjective and objective evaluations demonstrate that DiTSE achieves state-of-the-art audio quality that, for the first time, matches real studio-quality audio from the DAPS dataset. Furthermore, DiTSE significantly improves the preservation of speaker identity and content fidelity, reducing hallucinations across datasets compared to state-of-the-art enhancers. Audio samples are available at: http://hguimaraes.me/DiTSE
Rethinking Benchmark and Contamination for Language Models with Rephrased Samples
Large language models are increasingly trained on all the data ever produced by humans. Many have raised concerns about the trustworthiness of public benchmarks due to potential contamination in pre-training or fine-tuning datasets. While most data decontamination efforts apply string matching (e.g., n-gram overlap) to remove benchmark data, we show that these methods are insufficient, and simple variations of test data (e.g., paraphrasing, translation) can easily bypass these decontamination measures. Furthermore, we demonstrate that if such variation of test data is not eliminated, a 13B model can easily overfit a test benchmark and achieve drastically high performance, on par with GPT-4. We validate such observations in widely used benchmarks such as MMLU, GSK8k, and HumanEval. To address this growing risk, we propose a stronger LLM-based decontamination method and apply it to widely used pre-training and fine-tuning datasets, revealing significant previously unknown test overlap. For example, in pre-training sets such as RedPajama-Data-1T and StarCoder-Data, we identified that 8-18\% of the HumanEval benchmark overlaps. Interestingly, we also find such contamination in synthetic dataset generated by GPT-3.5/4, suggesting a potential risk of unintentional contamination. We urge the community to adopt stronger decontamination approaches when using public benchmarks. Moreover, we call for the community to actively develop fresh one-time exams to evaluate models accurately. Our decontamination tool is publicly available at https://github.com/lm-sys/llm-decontaminator.
Demonstrations Are All You Need: Advancing Offensive Content Paraphrasing using In-Context Learning
Paraphrasing of offensive content is a better alternative to content removal and helps improve civility in a communication environment. Supervised paraphrasers; however, rely heavily on large quantities of labelled data to help preserve meaning and intent. They also retain a large portion of the offensiveness of the original content, which raises questions on their overall usability. In this paper we aim to assist practitioners in developing usable paraphrasers by exploring In-Context Learning (ICL) with large language models (LLMs), i.e., using a limited number of input-label demonstration pairs to guide the model in generating desired outputs for specific queries. Our study focuses on key factors such as -- number and order of demonstrations, exclusion of prompt instruction, and reduction in measured toxicity. We perform principled evaluation on three datasets, including our proposed Context-Aware Polite Paraphrase dataset, comprising of dialogue-style rude utterances, polite paraphrases, and additional dialogue context. We evaluate our approach using two closed source and one open source LLM. Our results reveal that ICL is comparable to supervised methods in generation quality, while being qualitatively better by 25% on human evaluation and attaining lower toxicity by 76%. Also, ICL-based paraphrasers only show a slight reduction in performance even with just 10% training data.
FactSelfCheck: Fact-Level Black-Box Hallucination Detection for LLMs
Large Language Models (LLMs) frequently generate hallucinated content, posing significant challenges for applications where factuality is crucial. While existing hallucination detection methods typically operate at the sentence level or passage level, we propose FactSelfCheck, a novel black-box sampling-based method that enables fine-grained fact-level detection. Our approach represents text as knowledge graphs consisting of facts in the form of triples. Through analyzing factual consistency across multiple LLM responses, we compute fine-grained hallucination scores without requiring external resources or training data. Our evaluation demonstrates that FactSelfCheck performs competitively with leading sampling-based methods while providing more detailed insights. Most notably, our fact-level approach significantly improves hallucination correction, achieving a 35% increase in factual content compared to the baseline, while sentence-level SelfCheckGPT yields only an 8% improvement. The granular nature of our detection enables more precise identification and correction of hallucinated content.
FactCheckmate: Preemptively Detecting and Mitigating Hallucinations in LMs
Language models (LMs) hallucinate. We inquire: Can we detect and mitigate hallucinations before they happen? This work answers this research question in the positive, by showing that the internal representations of LMs provide rich signals that can be used for this purpose. We introduce FactCheckMate, which preemptively detects hallucinations by learning a classifier that predicts whether the LM will hallucinate, based on the model's hidden states produced over the inputs, before decoding begins. If a hallucination is detected, FactCheckMate then intervenes, by adjusting the LM's hidden states such that the model will produce more factual outputs. FactCheckMate provides fresh insights that the inner workings of LMs can be revealed by their hidden states. Practically, both the detection and mitigation models in FactCheckMate are lightweight, adding little inference overhead; FactCheckMate proves a more efficient approach for mitigating hallucinations compared to many post-hoc alternatives. We evaluate FactCheckMate over LMs of different scales and model families (including Llama, Mistral, and Gemma), across a variety of QA datasets from different domains. Our results demonstrate the effectiveness of leveraging internal representations for early hallucination detection and mitigation, achieving over 70% preemptive detection accuracy. On average, outputs generated by LMs with intervention are 34.4% more factual compared to those without intervention. The average overhead difference in the inference time introduced by FactCheckMate is around 3.16 seconds.
Truth Knows No Language: Evaluating Truthfulness Beyond English
We introduce a professionally translated extension of the TruthfulQA benchmark designed to evaluate truthfulness in Basque, Catalan, Galician, and Spanish. Truthfulness evaluations of large language models (LLMs) have primarily been conducted in English. However, the ability of LLMs to maintain truthfulness across languages remains under-explored. Our study evaluates 12 state-of-the-art open LLMs, comparing base and instruction-tuned models using human evaluation, multiple-choice metrics, and LLM-as-a-Judge scoring. Our findings reveal that, while LLMs perform best in English and worst in Basque (the lowest-resourced language), overall truthfulness discrepancies across languages are smaller than anticipated. Furthermore, we show that LLM-as-a-Judge correlates more closely with human judgments than multiple-choice metrics, and that informativeness plays a critical role in truthfulness assessment. Our results also indicate that machine translation provides a viable approach for extending truthfulness benchmarks to additional languages, offering a scalable alternative to professional translation. Finally, we observe that universal knowledge questions are better handled across languages than context- and time-dependent ones, highlighting the need for truthfulness evaluations that account for cultural and temporal variability. Dataset and code are publicly available under open licenses.
Large Language Models are Efficient Learners of Noise-Robust Speech Recognition
Recent advances in large language models (LLMs) have promoted generative error correction (GER) for automatic speech recognition (ASR), which leverages the rich linguistic knowledge and powerful reasoning ability of LLMs to improve recognition results. The latest work proposes a GER benchmark with HyPoradise dataset to learn the mapping from ASR N-best hypotheses to ground-truth transcription by efficient LLM finetuning, which shows great effectiveness but lacks specificity on noise-robust ASR. In this work, we extend the benchmark to noisy conditions and investigate if we can teach LLMs to perform denoising for GER just like what robust ASR do}, where one solution is introducing noise information as a conditioner into LLM. However, directly incorporating noise embeddings from audio encoder could harm the LLM tuning due to cross-modality gap. To this end, we propose to extract a language-space noise embedding from the N-best list to represent the noise conditions of source speech, which can promote the denoising process in GER. Furthermore, in order to enhance its representation ability of audio noise, we design a knowledge distillation (KD) approach via mutual information estimation to distill the real noise information in audio embeddings to our language embedding. Experiments on various latest LLMs demonstrate our approach achieves a new breakthrough with up to 53.9% correction improvement in terms of word error rate while with limited training data. Analysis shows that our language-space noise embedding can well represent the noise conditions of source speech, under which off-the-shelf LLMs show strong ability of language-space denoising.
Contextual Paralinguistic Data Creation for Multi-Modal Speech-LLM: Data Condensation and Spoken QA Generation
Current speech-LLMs exhibit limited capability in contextual reasoning alongside paralinguistic understanding, primarily due to the lack of Question-Answer (QA) datasets that cover both aspects. We propose a novel framework for dataset generation from in-the-wild speech data, that integrates contextual reasoning with paralinguistic information. It consists of a pseudo paralinguistic label-based data condensation of in-the-wild speech and LLM-based Contextual Paralinguistic QA (CPQA) generation. The effectiveness is validated by a strong correlation in evaluations of the Qwen2-Audio-7B-Instruct model on a dataset created by our framework and human-generated CPQA dataset. The results also reveal the speech-LLM's limitations in handling empathetic reasoning tasks, highlighting the need for such datasets and more robust models. The proposed framework is first of its kind and has potential in training more robust speech-LLMs with paralinguistic reasoning capabilities.
The FACTS Grounding Leaderboard: Benchmarking LLMs' Ability to Ground Responses to Long-Form Input
We introduce FACTS Grounding, an online leaderboard and associated benchmark that evaluates language models' ability to generate text that is factually accurate with respect to given context in the user prompt. In our benchmark, each prompt includes a user request and a full document, with a maximum length of 32k tokens, requiring long-form responses. The long-form responses are required to be fully grounded in the provided context document while fulfilling the user request. Models are evaluated using automated judge models in two phases: (1) responses are disqualified if they do not fulfill the user request; (2) they are judged as accurate if the response is fully grounded in the provided document. The automated judge models were comprehensively evaluated against a held-out test-set to pick the best prompt template, and the final factuality score is an aggregate of multiple judge models to mitigate evaluation bias. The FACTS Grounding leaderboard will be actively maintained over time, and contains both public and private splits to allow for external participation while guarding the integrity of the leaderboard. It can be found at https://www.kaggle.com/facts-leaderboard.
The Best of Both Worlds: Toward an Honest and Helpful Large Language Model
Large Language Models (LLMs) have achieved remarkable success across various industries due to their exceptional generative capabilities. However, for safe and effective real-world deployments, ensuring honesty and helpfulness is critical. This paper addresses the question: Can we prioritize the helpfulness of LLMs while preserving their honesty? To begin with, we establish exhaustive principles aimed at guaranteeing the honesty of LLM. Additionally, we introduce a novel dataset, referred to as HoneSet, comprising 930 queries spanning six categories meticulously crafted to assess an LLM's capacity for maintaining honesty. Subsequently, we present two approaches to augmenting honesty and helpfulness in LLMs: a training-free enhancement and a fine-tuning-based improvement. The training-free approach, which is based on curiosity-driven prompting, empowers LLMs to articulate internal confusion and uncertainty regarding queries, thereby optimizing their responses. Conversely, the fine-tuning-based method employs a two-stage process inspired by curriculum learning: initially instructing LLMs to discern between honest and dishonest responses, then refining their training to enhance helpfulness. Experiments conducted on nine prominent LLMs demonstrate a significant improvement in alignment with honesty across all models through the implementation of our proposed enhancements. Particularly noteworthy is the 65.3% enhancement observed in Llama3-8b and the remarkable 124.7% improvement in Mistral-7b, as measured by the H^{2} (honest and helpful) assessment. We believe that our work can pave the way for developing more trustworthy LLMs for real-world applications.
The Internal State of an LLM Knows When its Lying
While Large Language Models (LLMs) have shown exceptional performance in various tasks, their (arguably) most prominent drawback is generating inaccurate or false information with a confident tone. In this paper, we hypothesize that the LLM's internal state can be used to reveal the truthfulness of a statement. Therefore, we introduce a simple yet effective method to detect the truthfulness of LLM-generated statements, which utilizes the LLM's hidden layer activations to determine the veracity of statements. To train and evaluate our method, we compose a dataset of true and false statements in six different topics. A classifier is trained to detect which statement is true or false based on an LLM's activation values. Specifically, the classifier receives as input the activation values from the LLM for each of the statements in the dataset. Our experiments demonstrate that our method for detecting statement veracity significantly outperforms even few-shot prompting methods, highlighting its potential to enhance the reliability of LLM-generated content and its practical applicability in real-world scenarios.
DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models
Despite their impressive capabilities, large language models (LLMs) are prone to hallucinations, i.e., generating content that deviates from facts seen during pretraining. We propose a simple decoding strategy for reducing hallucinations with pretrained LLMs that does not require conditioning on retrieved external knowledge nor additional fine-tuning. Our approach obtains the next-token distribution by contrasting the differences in logits obtained from projecting the later layers versus earlier layers to the vocabulary space, exploiting the fact that factual knowledge in an LLMs has generally been shown to be localized to particular transformer layers. We find that this Decoding by Contrasting Layers (DoLa) approach is able to better surface factual knowledge and reduce the generation of incorrect facts. DoLa consistently improves the truthfulness across multiple choices tasks and open-ended generation tasks, for example improving the performance of LLaMA family models on TruthfulQA by 12-17% absolute points, demonstrating its potential in making LLMs reliably generate truthful facts.
Pipeline and Dataset Generation for Automated Fact-checking in Almost Any Language
This article presents a pipeline for automated fact-checking leveraging publicly available Language Models and data. The objective is to assess the accuracy of textual claims using evidence from a ground-truth evidence corpus. The pipeline consists of two main modules -- the evidence retrieval and the claim veracity evaluation. Our primary focus is on the ease of deployment in various languages that remain unexplored in the field of automated fact-checking. Unlike most similar pipelines, which work with evidence sentences, our pipeline processes data on a paragraph level, simplifying the overall architecture and data requirements. Given the high cost of annotating language-specific fact-checking training data, our solution builds on the Question Answering for Claim Generation (QACG) method, which we adapt and use to generate the data for all models of the pipeline. Our strategy enables the introduction of new languages through machine translation of only two fixed datasets of moderate size. Subsequently, any number of training samples can be generated based on an evidence corpus in the target language. We provide open access to all data and fine-tuned models for Czech, English, Polish, and Slovak pipelines, as well as to our codebase that may be used to reproduce the results.We comprehensively evaluate the pipelines for all four languages, including human annotations and per-sample difficulty assessment using Pointwise V-information. The presented experiments are based on full Wikipedia snapshots to promote reproducibility. To facilitate implementation and user interaction, we develop the FactSearch application featuring the proposed pipeline and the preliminary feedback on its performance.
A New Benchmark and Reverse Validation Method for Passage-level Hallucination Detection
Large Language Models (LLMs) have shown their ability to collaborate effectively with humans in real-world scenarios. However, LLMs are apt to generate hallucinations, i.e., makeup incorrect text and unverified information, which can cause significant damage when deployed for mission-critical tasks. In this paper, we propose a self-check approach based on reverse validation to detect factual errors automatically in a zero-resource fashion. To facilitate future studies and assess different methods, we construct a hallucination detection benchmark named PHD, which is generated by ChatGPT and annotated by human annotators. Contrasting previous studies of zero-resource hallucination detection, our method and benchmark concentrate on passage-level detection instead of sentence-level. We empirically evaluate our method and existing zero-resource detection methods on two datasets. The experimental results demonstrate that the proposed method considerably outperforms the baselines while costing fewer tokens and less time. Furthermore, we manually analyze some hallucination cases that LLM failed to capture, revealing the shared limitation of zero-resource methods.
Separate the Wheat from the Chaff: Model Deficiency Unlearning via Parameter-Efficient Module Operation
Large language models (LLMs) have been widely used in various applications but are known to suffer from issues related to untruthfulness and toxicity. While parameter-efficient modules (PEMs) have demonstrated their effectiveness in equipping models with new skills, leveraging PEMs for deficiency unlearning remains underexplored. In this work, we propose a PEMs operation approach, namely Extraction-before-Subtraction (Ext-Sub), to enhance the truthfulness and detoxification of LLMs through the integration of ``expert'' PEM and ``anti-expert'' PEM. Remarkably, even anti-expert PEM possess valuable capabilities due to their proficiency in generating fabricated content, which necessitates language modeling and logical narrative competence. Rather than merely negating the parameters, our approach involves extracting and eliminating solely the deficiency capability within anti-expert PEM while preserving the general capabilities. To evaluate the effectiveness of our approach in terms of truthfulness and detoxification, we conduct extensive experiments on LLMs, encompassing additional abilities such as language modeling and mathematical reasoning. Our empirical results demonstrate that our approach effectively improves truthfulness and detoxification, while largely preserving the fundamental abilities of LLMs.
SpMis: An Investigation of Synthetic Spoken Misinformation Detection
In recent years, speech generation technology has advanced rapidly, fueled by generative models and large-scale training techniques. While these developments have enabled the production of high-quality synthetic speech, they have also raised concerns about the misuse of this technology, particularly for generating synthetic misinformation. Current research primarily focuses on distinguishing machine-generated speech from human-produced speech, but the more urgent challenge is detecting misinformation within spoken content. This task requires a thorough analysis of factors such as speaker identity, topic, and synthesis. To address this need, we conduct an initial investigation into synthetic spoken misinformation detection by introducing an open-source dataset, SpMis. SpMis includes speech synthesized from over 1,000 speakers across five common topics, utilizing state-of-the-art text-to-speech systems. Although our results show promising detection capabilities, they also reveal substantial challenges for practical implementation, underscoring the importance of ongoing research in this critical area.
FreeVC: Towards High-Quality Text-Free One-Shot Voice Conversion
Voice conversion (VC) can be achieved by first extracting source content information and target speaker information, and then reconstructing waveform with these information. However, current approaches normally either extract dirty content information with speaker information leaked in, or demand a large amount of annotated data for training. Besides, the quality of reconstructed waveform can be degraded by the mismatch between conversion model and vocoder. In this paper, we adopt the end-to-end framework of VITS for high-quality waveform reconstruction, and propose strategies for clean content information extraction without text annotation. We disentangle content information by imposing an information bottleneck to WavLM features, and propose the spectrogram-resize based data augmentation to improve the purity of extracted content information. Experimental results show that the proposed method outperforms the latest VC models trained with annotated data and has greater robustness.
CFL: Causally Fair Language Models Through Token-level Attribute Controlled Generation
We propose a method to control the attributes of Language Models (LMs) for the text generation task using Causal Average Treatment Effect (ATE) scores and counterfactual augmentation. We explore this method, in the context of LM detoxification, and propose the Causally Fair Language (CFL) architecture for detoxifying pre-trained LMs in a plug-and-play manner. Our architecture is based on a Structural Causal Model (SCM) that is mathematically transparent and computationally efficient as compared with many existing detoxification techniques. We also propose several new metrics that aim to better understand the behaviour of LMs in the context of toxic text generation. Further, we achieve state of the art performance for toxic degeneration, which are computed using \RTP (RTP) benchmark. Our experiments show that CFL achieves such a detoxification without much impact on the model perplexity. We also show that CFL mitigates the unintended bias problem through experiments on the BOLD dataset.
The Norwegian Parliamentary Speech Corpus
The Norwegian Parliamentary Speech Corpus (NPSC) is a speech dataset with recordings of meetings from Stortinget, the Norwegian parliament. It is the first, publicly available dataset containing unscripted, Norwegian speech designed for training of automatic speech recognition (ASR) systems. The recordings are manually transcribed and annotated with language codes and speakers, and there are detailed metadata about the speakers. The transcriptions exist in both normalized and non-normalized form, and non-standardized words are explicitly marked and annotated with standardized equivalents. To test the usefulness of this dataset, we have compared an ASR system trained on the NPSC with a baseline system trained on only manuscript-read speech. These systems were tested on an independent dataset containing spontaneous, dialectal speech. The NPSC-trained system performed significantly better, with a 22.9% relative improvement in word error rate (WER). Moreover, training on the NPSC is shown to have a "democratizing" effect in terms of dialects, as improvements are generally larger for dialects with higher WER from the baseline system.
Alleviating Hallucinations of Large Language Models through Induced Hallucinations
Despite their impressive capabilities, large language models (LLMs) have been observed to generate responses that include inaccurate or fabricated information, a phenomenon commonly known as ``hallucination''. In this work, we propose a simple Induce-then-Contrast Decoding (ICD) strategy to alleviate hallucinations. We first construct a factually weak LLM by inducing hallucinations from the original LLMs. Then, we penalize these induced hallucinations during decoding to enhance the factuality of the generated content. Concretely, we determine the final next-token predictions by amplifying the predictions from the original model and downplaying the induced untruthful predictions via contrastive decoding. Experimental results on both discrimination-based and generation-based hallucination evaluation benchmarks, such as TruthfulQA and FActScore, demonstrate that our proposed ICD methods can effectively enhance the factuality of LLMs across various model sizes and families. For example, when equipped with ICD, Llama2-7B-Chat and Mistral-7B-Instruct achieve performance comparable to ChatGPT and GPT4 on TruthfulQA, respectively.
Large Pre-trained Language Models Contain Human-like Biases of What is Right and Wrong to Do
Artificial writing is permeating our lives due to recent advances in large-scale, transformer-based language models (LMs) such as BERT, its variants, GPT-2/3, and others. Using them as pre-trained models and fine-tuning them for specific tasks, researchers have extended state of the art for many NLP tasks and shown that they capture not only linguistic knowledge but also retain general knowledge implicitly present in the data. Unfortunately, LMs trained on unfiltered text corpora suffer from degenerated and biased behaviour. While this is well established, we show that recent LMs also contain human-like biases of what is right and wrong to do, some form of ethical and moral norms of the society -- they bring a "moral direction" to surface. That is, we show that these norms can be captured geometrically by a direction, which can be computed, e.g., by a PCA, in the embedding space, reflecting well the agreement of phrases to social norms implicitly expressed in the training texts and providing a path for attenuating or even preventing toxic degeneration in LMs. Being able to rate the (non-)normativity of arbitrary phrases without explicitly training the LM for this task, we demonstrate the capabilities of the "moral direction" for guiding (even other) LMs towards producing normative text and showcase it on RealToxicityPrompts testbed, preventing the neural toxic degeneration in GPT-2.
Voice Cloning for Dysarthric Speech Synthesis: Addressing Data Scarcity in Speech-Language Pathology
This study explores voice cloning to generate synthetic speech replicating the unique patterns of individuals with dysarthria. Using the TORGO dataset, we address data scarcity and privacy challenges in speech-language pathology. Our contributions include demonstrating that voice cloning preserves dysarthric speech characteristics, analyzing differences between real and synthetic data, and discussing implications for diagnostics, rehabilitation, and communication. We cloned voices from dysarthric and control speakers using a commercial platform, ensuring gender-matched synthetic voices. A licensed speech-language pathologist (SLP) evaluated a subset for dysarthria, speaker gender, and synthetic indicators. The SLP correctly identified dysarthria in all cases and speaker gender in 95% but misclassified 30% of synthetic samples as real, indicating high realism. Our results suggest synthetic speech effectively captures disordered characteristics and that voice cloning has advanced to produce high-quality data resembling real speech, even to trained professionals. This has critical implications for healthcare, where synthetic data can mitigate data scarcity, protect privacy, and enhance AI-driven diagnostics. By enabling the creation of diverse, high-quality speech datasets, voice cloning can improve generalizable models, personalize therapy, and advance assistive technologies for dysarthria. We publicly release our synthetic dataset to foster further research and collaboration, aiming to develop robust models that improve patient outcomes in speech-language pathology.
DiPCo -- Dinner Party Corpus
We present a speech data corpus that simulates a "dinner party" scenario taking place in an everyday home environment. The corpus was created by recording multiple groups of four Amazon employee volunteers having a natural conversation in English around a dining table. The participants were recorded by a single-channel close-talk microphone and by five far-field 7-microphone array devices positioned at different locations in the recording room. The dataset contains the audio recordings and human labeled transcripts of a total of 10 sessions with a duration between 15 and 45 minutes. The corpus was created to advance in the field of noise robust and distant speech processing and is intended to serve as a public research and benchmarking data set.
Fine-Tuning Large Language Models to Appropriately Abstain with Semantic Entropy
Large Language Models (LLMs) are known to hallucinate, whereby they generate plausible but inaccurate text. This phenomenon poses significant risks in critical applications, such as medicine or law, necessitating robust hallucination mitigation strategies. While recent works have proposed fine-tuning methods to teach LLMs to abstain from answering questions beyond their knowledge or capabilities, these methods rely on the existence of ground-truth labels or are limited to short-form responses. To address these limitations, we propose fine-tuning using semantic entropy, an uncertainty measure derived from introspection into the model which does not require external labels. We demonstrate that our approach matches or outperforms models fine-tuned using prior work and achieves strong performance for both short and long-form generations on a range of datasets.
AntiLeak-Bench: Preventing Data Contamination by Automatically Constructing Benchmarks with Updated Real-World Knowledge
Data contamination hinders fair LLM evaluation by introducing test data into newer models' training sets. Existing studies solve this challenge by updating benchmarks with newly collected data. However, they fail to guarantee contamination-free evaluation as the newly collected data may contain pre-existing knowledge, and their benchmark updates rely on intensive human labor. To address these issues, we in this paper propose AntiLeak-Bench, an automated anti-leakage benchmarking framework. Instead of simply using newly collected data, we construct samples with explicitly new knowledge absent from LLMs' training sets, which thus ensures strictly contamination-free evaluation. We further design a fully automated workflow to build and update our benchmark without human labor. This significantly reduces the cost of benchmark maintenance to accommodate emerging LLMs. Through extensive experiments, we highlight that data contamination likely exists before LLMs' cutoff time and demonstrate AntiLeak-Bench effectively overcomes this challenge.
FaithDial: A Faithful Benchmark for Information-Seeking Dialogue
The goal of information-seeking dialogue is to respond to seeker queries with natural language utterances that are grounded on knowledge sources. However, dialogue systems often produce unsupported utterances, a phenomenon known as hallucination. To mitigate this behavior, we adopt a data-centric solution and create FaithDial, a new benchmark for hallucination-free dialogues, by editing hallucinated responses in the Wizard of Wikipedia (WoW) benchmark. We observe that FaithDial is more faithful than WoW while also maintaining engaging conversations. We show that FaithDial can serve as training signal for: i) a hallucination critic, which discriminates whether an utterance is faithful or not, and boosts the performance by 12.8 F1 score on the BEGIN benchmark compared to existing datasets for dialogue coherence; ii) high-quality dialogue generation. We benchmark a series of state-of-the-art models and propose an auxiliary contrastive objective that achieves the highest level of faithfulness and abstractiveness based on several automated metrics. Further, we find that the benefits of FaithDial generalize to zero-shot transfer on other datasets, such as CMU-Dog and TopicalChat. Finally, human evaluation reveals that responses generated by models trained on FaithDial are perceived as more interpretable, cooperative, and engaging.
ADIMA: Abuse Detection In Multilingual Audio
Abusive content detection in spoken text can be addressed by performing Automatic Speech Recognition (ASR) and leveraging advancements in natural language processing. However, ASR models introduce latency and often perform sub-optimally for profane words as they are underrepresented in training corpora and not spoken clearly or completely. Exploration of this problem entirely in the audio domain has largely been limited by the lack of audio datasets. Building on these challenges, we propose ADIMA, a novel, linguistically diverse, ethically sourced, expert annotated and well-balanced multilingual profanity detection audio dataset comprising of 11,775 audio samples in 10 Indic languages spanning 65 hours and spoken by 6,446 unique users. Through quantitative experiments across monolingual and cross-lingual zero-shot settings, we take the first step in democratizing audio based content moderation in Indic languages and set forth our dataset to pave future work.
FaithCAMERA: Construction of a Faithful Dataset for Ad Text Generation
In ad text generation (ATG), desirable ad text is both faithful and informative. That is, it should be faithful to the input document, while at the same time containing important information that appeals to potential customers. The existing evaluation data, CAMERA (arXiv:2309.12030), is suitable for evaluating informativeness, as it consists of reference ad texts created by ad creators. However, these references often include information unfaithful to the input, which is a notable obstacle in promoting ATG research. In this study, we collaborate with in-house ad creators to refine the CAMERA references and develop an alternative ATG evaluation dataset called FaithCAMERA, in which the faithfulness of references is guaranteed. Using FaithCAMERA, we can evaluate how well existing methods for improving faithfulness can generate informative ad text while maintaining faithfulness. Our experiments show that removing training data that contains unfaithful entities improves the faithfulness and informativeness at the entity level, but decreases both at the sentence level. This result suggests that for future ATG research, it is essential not only to scale the training data but also to ensure their faithfulness. Our dataset will be publicly available.
SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models
Generative Large Language Models (LLMs) such as GPT-3 are capable of generating highly fluent responses to a wide variety of user prompts. However, LLMs are known to hallucinate facts and make non-factual statements which can undermine trust in their output. Existing fact-checking approaches either require access to token-level output probability distribution (which may not be available for systems such as ChatGPT) or external databases that are interfaced via separate, often complex, modules. In this work, we propose "SelfCheckGPT", a simple sampling-based approach that can be used to fact-check black-box models in a zero-resource fashion, i.e. without an external database. SelfCheckGPT leverages the simple idea that if a LLM has knowledge of a given concept, sampled responses are likely to be similar and contain consistent facts. However, for hallucinated facts, stochastically sampled responses are likely to diverge and contradict one another. We investigate this approach by using GPT-3 to generate passages about individuals from the WikiBio dataset, and manually annotate the factuality of the generated passages. We demonstrate that SelfCheckGPT can: i) detect non-factual and factual sentences; and ii) rank passages in terms of factuality. We compare our approach to several existing baselines and show that in sentence hallucination detection, our approach has AUC-PR scores comparable to grey-box methods, while SelfCheckGPT is best at passage factuality assessment.
Self-Supervised Speech Quality Estimation and Enhancement Using Only Clean Speech
Speech quality estimation has recently undergone a paradigm shift from human-hearing expert designs to machine-learning models. However, current models rely mainly on supervised learning, which is time-consuming and expensive for label collection. To solve this problem, we propose VQScore, a self-supervised metric for evaluating speech based on the quantization error of a vector-quantized-variational autoencoder (VQ-VAE). The training of VQ-VAE relies on clean speech; hence, large quantization errors can be expected when the speech is distorted. To further improve correlation with real quality scores, domain knowledge of speech processing is incorporated into the model design. We found that the vector quantization mechanism could also be used for self-supervised speech enhancement (SE) model training. To improve the robustness of the encoder for SE, a novel self-distillation mechanism combined with adversarial training is introduced. In summary, the proposed speech quality estimation method and enhancement models require only clean speech for training without any label requirements. Experimental results show that the proposed VQScore and enhancement model are competitive with supervised baselines. The code will be released after publication.
HaloScope: Harnessing Unlabeled LLM Generations for Hallucination Detection
The surge in applications of large language models (LLMs) has prompted concerns about the generation of misleading or fabricated information, known as hallucinations. Therefore, detecting hallucinations has become critical to maintaining trust in LLM-generated content. A primary challenge in learning a truthfulness classifier is the lack of a large amount of labeled truthful and hallucinated data. To address the challenge, we introduce HaloScope, a novel learning framework that leverages the unlabeled LLM generations in the wild for hallucination detection. Such unlabeled data arises freely upon deploying LLMs in the open world, and consists of both truthful and hallucinated information. To harness the unlabeled data, we present an automated membership estimation score for distinguishing between truthful and untruthful generations within unlabeled mixture data, thereby enabling the training of a binary truthfulness classifier on top. Importantly, our framework does not require extra data collection and human annotations, offering strong flexibility and practicality for real-world applications. Extensive experiments show that HaloScope can achieve superior hallucination detection performance, outperforming the competitive rivals by a significant margin. Code is available at https://github.com/deeplearningwisc/haloscope.
A Survey on the Honesty of Large Language Models
Honesty is a fundamental principle for aligning large language models (LLMs) with human values, requiring these models to recognize what they know and don't know and be able to faithfully express their knowledge. Despite promising, current LLMs still exhibit significant dishonest behaviors, such as confidently presenting wrong answers or failing to express what they know. In addition, research on the honesty of LLMs also faces challenges, including varying definitions of honesty, difficulties in distinguishing between known and unknown knowledge, and a lack of comprehensive understanding of related research. To address these issues, we provide a survey on the honesty of LLMs, covering its clarification, evaluation approaches, and strategies for improvement. Moreover, we offer insights for future research, aiming to inspire further exploration in this important area.
SpeechVerse: A Large-scale Generalizable Audio Language Model
Large language models (LLMs) have shown incredible proficiency in performing tasks that require semantic understanding of natural language instructions. Recently, many works have further expanded this capability to perceive multimodal audio and text inputs, but their capabilities are often limited to specific fine-tuned tasks such as automatic speech recognition and translation. We therefore develop SpeechVerse, a robust multi-task training and curriculum learning framework that combines pre-trained speech and text foundation models via a small set of learnable parameters, while keeping the pre-trained models frozen during training. The models are instruction finetuned using continuous latent representations extracted from the speech foundation model to achieve optimal zero-shot performance on a diverse range of speech processing tasks using natural language instructions. We perform extensive benchmarking that includes comparing our model performance against traditional baselines across several datasets and tasks. Furthermore, we evaluate the model's capability for generalized instruction following by testing on out-of-domain datasets, novel prompts, and unseen tasks. Our empirical experiments reveal that our multi-task SpeechVerse model is even superior to conventional task-specific baselines on 9 out of the 11 tasks.
URO-Bench: A Comprehensive Benchmark for End-to-End Spoken Dialogue Models
In recent years, with advances in large language models (LLMs), end-to-end spoken dialogue models (SDMs) have made significant strides. Compared to text-based LLMs, the evaluation of SDMs needs to take speech-related aspects into account, such as paralinguistic information and speech quality. However, there is still a lack of comprehensive evaluations for SDMs in speech-to-speech (S2S) scenarios. To address this gap, we propose URO-Bench, an extensive benchmark for SDMs. Notably, URO-Bench is the first S2S benchmark that covers evaluations about multilingualism, multi-round dialogues, and paralinguistics. Our benchmark is divided into two difficulty levels: basic track and pro track, consisting of 16 and 20 datasets respectively, evaluating the model's abilities in Understanding, Reasoning, and Oral conversation. Evaluations on our proposed benchmark reveal that current open-source SDMs perform rather well in daily QA tasks, but lag behind their backbone LLMs in terms of instruction-following ability and also suffer from catastrophic forgetting. Their performance in advanced evaluations of paralinguistic information and audio understanding remains subpar, highlighting the need for further research in this direction. We hope that URO-Bench can effectively facilitate the development of spoken dialogue models by providing a multifaceted evaluation of existing models and helping to track progress in this area.
Personas as a Way to Model Truthfulness in Language Models
Large Language Models are trained on vast amounts of text from the internet, which contains both factual and misleading information about the world. Can language models discern truth from falsehood in this contradicting data? Expanding on the view that LLMs can model different agents producing the corpora, we hypothesize that they can cluster truthful text by modeling a truthful persona: a group of agents that are likely to produce truthful text and share similar features. For example, trustworthy sources like Wikipedia and Science usually use formal writing styles and make consistent claims. By modeling this persona, LLMs can generalize truthfulness beyond the specific contexts in which each agent generated the training text. For example, the model can infer that the agent "Wikipedia" will behave truthfully on topics that were only generated by "Science" because they share a persona. We first show evidence for the persona hypothesis via two observations: (1) we can probe whether a model's answer will be truthful before it is generated; (2) finetuning a model on a set of facts improves its truthfulness on unseen topics. Next, using arithmetics as a synthetic environment, we show that language models can separate true and false statements, and generalize truthfulness across agents; but only if agents in the training data share a truthful generative process that enables the creation of a truthful persona. Overall, our findings suggest that models can exploit hierarchical structures in the data to learn abstract concepts like truthfulness.
BeHonest: Benchmarking Honesty of Large Language Models
Previous works on Large Language Models (LLMs) have mainly focused on evaluating their helpfulness or harmlessness. However, honesty, another crucial alignment criterion, has received relatively less attention. Dishonest behaviors in LLMs, such as spreading misinformation and defrauding users, eroding user trust, and causing real-world harm, present severe risks that intensify as these models approach superintelligence levels. Enhancing honesty in LLMs addresses critical deficiencies and helps uncover latent capabilities that are not readily expressed. This underscores the urgent need for reliable methods and benchmarks to effectively ensure and evaluate the honesty of LLMs. In this paper, we introduce BeHonest, a pioneering benchmark specifically designed to assess honesty in LLMs comprehensively. BeHonest evaluates three essential aspects of honesty: awareness of knowledge boundaries, avoidance of deceit, and consistency in responses. Building on this foundation, we designed 10 scenarios to evaluate and analyze 9 popular LLMs on the market, including both closed-source and open-source models from different model families with varied model sizes. Our findings indicate that there is still significant room for improvement in the honesty of LLMs. We also encourage the AI community to prioritize honesty alignment in LLMs. Our benchmark and code can be found at: https://github.com/GAIR-NLP/BeHonest.
CleanComedy: Creating Friendly Humor through Generative Techniques
Humor generation is a challenging task in natural language processing due to limited resources and the quality of existing datasets. Available humor language resources often suffer from toxicity and duplication, limiting their effectiveness for training robust models. This paper proposes CleanComedy, a specialized, partially annotated toxicity-filtered corpus of English and Russian jokes collected from various sources. We study the effectiveness of our data filtering approach through a survey on humor and toxicity levels in various joke groups. In addition, we study advances in computer humor generation by comparing jokes written by humans with various groups of generative jokes, including our baseline models trained on the CleanComedy datasets.
FLEURS-R: A Restored Multilingual Speech Corpus for Generation Tasks
This paper introduces FLEURS-R, a speech restoration applied version of the Few-shot Learning Evaluation of Universal Representations of Speech (FLEURS) corpus. FLEURS-R maintains an N-way parallel speech corpus in 102 languages as FLEURS, with improved audio quality and fidelity by applying the speech restoration model Miipher. The aim of FLEURS-R is to advance speech technology in more languages and catalyze research including text-to-speech (TTS) and other speech generation tasks in low-resource languages. Comprehensive evaluations with the restored speech and TTS baseline models trained from the new corpus show that the new corpus obtained significantly improved speech quality while maintaining the semantic contents of the speech. The corpus is publicly released via Hugging Face.
Proving Test Set Contamination in Black Box Language Models
Large language models are trained on vast amounts of internet data, prompting concerns and speculation that they have memorized public benchmarks. Going from speculation to proof of contamination is challenging, as the pretraining data used by proprietary models are often not publicly accessible. We show that it is possible to provide provable guarantees of test set contamination in language models without access to pretraining data or model weights. Our approach leverages the fact that when there is no data contamination, all orderings of an exchangeable benchmark should be equally likely. In contrast, the tendency for language models to memorize example order means that a contaminated language model will find certain canonical orderings to be much more likely than others. Our test flags potential contamination whenever the likelihood of a canonically ordered benchmark dataset is significantly higher than the likelihood after shuffling the examples. We demonstrate that our procedure is sensitive enough to reliably prove test set contamination in challenging situations, including models as small as 1.4 billion parameters, on small test sets of only 1000 examples, and datasets that appear only a few times in the pretraining corpus. Using our test, we audit five popular publicly accessible language models for test set contamination and find little evidence for pervasive contamination.
LipVoicer: Generating Speech from Silent Videos Guided by Lip Reading
Lip-to-speech involves generating a natural-sounding speech synchronized with a soundless video of a person talking. Despite recent advances, current methods still cannot produce high-quality speech with high levels of intelligibility for challenging and realistic datasets such as LRS3. In this work, we present LipVoicer, a novel method that generates high-quality speech, even for in-the-wild and rich datasets, by incorporating the text modality. Given a silent video, we first predict the spoken text using a pre-trained lip-reading network. We then condition a diffusion model on the video and use the extracted text through a classifier-guidance mechanism where a pre-trained ASR serves as the classifier. LipVoicer outperforms multiple lip-to-speech baselines on LRS2 and LRS3, which are in-the-wild datasets with hundreds of unique speakers in their test set and an unrestricted vocabulary. Moreover, our experiments show that the inclusion of the text modality plays a major role in the intelligibility of the produced speech, readily perceptible while listening, and is empirically reflected in the substantial reduction of the WER metric. We demonstrate the effectiveness of LipVoicer through human evaluation, which shows that it produces more natural and synchronized speech signals compared to competing methods. Finally, we created a demo showcasing LipVoicer's superiority in producing natural, synchronized, and intelligible speech, providing additional evidence of its effectiveness. Project page and code: https://github.com/yochaiye/LipVoicer
ClearBuds: Wireless Binaural Earbuds for Learning-Based Speech Enhancement
We present ClearBuds, the first hardware and software system that utilizes a neural network to enhance speech streamed from two wireless earbuds. Real-time speech enhancement for wireless earbuds requires high-quality sound separation and background cancellation, operating in real-time and on a mobile phone. Clear-Buds bridges state-of-the-art deep learning for blind audio source separation and in-ear mobile systems by making two key technical contributions: 1) a new wireless earbud design capable of operating as a synchronized, binaural microphone array, and 2) a lightweight dual-channel speech enhancement neural network that runs on a mobile device. Our neural network has a novel cascaded architecture that combines a time-domain conventional neural network with a spectrogram-based frequency masking neural network to reduce the artifacts in the audio output. Results show that our wireless earbuds achieve a synchronization error less than 64 microseconds and our network has a runtime of 21.4 milliseconds on an accompanying mobile phone. In-the-wild evaluation with eight users in previously unseen indoor and outdoor multipath scenarios demonstrates that our neural network generalizes to learn both spatial and acoustic cues to perform noise suppression and background speech removal. In a user-study with 37 participants who spent over 15.4 hours rating 1041 audio samples collected in-the-wild, our system achieves improved mean opinion score and background noise suppression. Project page with demos: https://clearbuds.cs.washington.edu
Unified Speech-Text Pretraining for Spoken Dialog Modeling
While recent work shows promising results in expanding the capabilities of large language models (LLM) to directly understand and synthesize speech, an LLM-based strategy for modeling spoken dialogs remains elusive and calls for further investigation. This work proposes an extensive speech-text LLM framework, named the Unified Spoken Dialog Model (USDM), to generate coherent spoken responses with organic prosodic features relevant to the given input speech without relying on automatic speech recognition (ASR) or text-to-speech (TTS) solutions. Our approach employs a multi-step speech-text inference scheme that leverages chain-of-reasoning capabilities exhibited by the underlying LLM. We also propose a generalized speech-text pretraining scheme that helps with capturing cross-modal semantics. Automatic and human evaluations show that the proposed approach is effective in generating natural-sounding spoken responses, outperforming both prior and cascaded baselines. Detailed comparative studies reveal that, despite the cascaded approach being stronger in individual components, the joint speech-text modeling improves robustness against recognition errors and speech quality. Demo is available at https://unifiedsdm.github.io.
Hallucinations in Neural Automatic Speech Recognition: Identifying Errors and Hallucinatory Models
Hallucinations are a type of output error produced by deep neural networks. While this has been studied in natural language processing, they have not been researched previously in automatic speech recognition. Here, we define hallucinations in ASR as transcriptions generated by a model that are semantically unrelated to the source utterance, yet still fluent and coherent. The similarity of hallucinations to probable natural language outputs of the model creates a danger of deception and impacts the credibility of the system. We show that commonly used metrics, such as word error rates, cannot differentiate between hallucinatory and non-hallucinatory models. To address this, we propose a perturbation-based method for assessing the susceptibility of an automatic speech recognition (ASR) model to hallucination at test time, which does not require access to the training dataset. We demonstrate that this method helps to distinguish between hallucinatory and non-hallucinatory models that have similar baseline word error rates. We further explore the relationship between the types of ASR errors and the types of dataset noise to determine what types of noise are most likely to create hallucinatory outputs. We devise a framework for identifying hallucinations by analysing their semantic connection with the ground truth and their fluency. Finally, we discover how to induce hallucinations with a random noise injection to the utterance.
PclGPT: A Large Language Model for Patronizing and Condescending Language Detection
Disclaimer: Samples in this paper may be harmful and cause discomfort! Patronizing and condescending language (PCL) is a form of speech directed at vulnerable groups. As an essential branch of toxic language, this type of language exacerbates conflicts and confrontations among Internet communities and detrimentally impacts disadvantaged groups. Traditional pre-trained language models (PLMs) perform poorly in detecting PCL due to its implicit toxicity traits like hypocrisy and false sympathy. With the rise of large language models (LLMs), we can harness their rich emotional semantics to establish a paradigm for exploring implicit toxicity. In this paper, we introduce PclGPT, a comprehensive LLM benchmark designed specifically for PCL. We collect, annotate, and integrate the Pcl-PT/SFT dataset, and then develop a bilingual PclGPT-EN/CN model group through a comprehensive pre-training and supervised fine-tuning staircase process to facilitate implicit toxic detection. Group detection results and fine-grained detection from PclGPT and other models reveal significant variations in the degree of bias in PCL towards different vulnerable groups, necessitating increased societal attention to protect them.
DiffSSD: A Diffusion-Based Dataset For Speech Forensics
Diffusion-based speech generators are ubiquitous. These methods can generate very high quality synthetic speech and several recent incidents report their malicious use. To counter such misuse, synthetic speech detectors have been developed. Many of these detectors are trained on datasets which do not include diffusion-based synthesizers. In this paper, we demonstrate that existing detectors trained on one such dataset, ASVspoof2019, do not perform well in detecting synthetic speech from recent diffusion-based synthesizers. We propose the Diffusion-Based Synthetic Speech Dataset (DiffSSD), a dataset consisting of about 200 hours of labeled speech, including synthetic speech generated by 8 diffusion-based open-source and 2 commercial generators. We also examine the performance of existing synthetic speech detectors on DiffSSD in both closed-set and open-set scenarios. The results highlight the importance of this dataset in detecting synthetic speech generated from recent open-source and commercial speech generators.
GSAP-NER: A Novel Task, Corpus, and Baseline for Scholarly Entity Extraction Focused on Machine Learning Models and Datasets
Named Entity Recognition (NER) models play a crucial role in various NLP tasks, including information extraction (IE) and text understanding. In academic writing, references to machine learning models and datasets are fundamental components of various computer science publications and necessitate accurate models for identification. Despite the advancements in NER, existing ground truth datasets do not treat fine-grained types like ML model and model architecture as separate entity types, and consequently, baseline models cannot recognize them as such. In this paper, we release a corpus of 100 manually annotated full-text scientific publications and a first baseline model for 10 entity types centered around ML models and datasets. In order to provide a nuanced understanding of how ML models and datasets are mentioned and utilized, our dataset also contains annotations for informal mentions like "our BERT-based model" or "an image CNN". You can find the ground truth dataset and code to replicate model training at https://data.gesis.org/gsap/gsap-ner.
FAITHSCORE: Evaluating Hallucinations in Large Vision-Language Models
We introduce FAITHSCORE (Faithfulness to Atomic Image Facts Score), a reference-free and fine-grained evaluation metric that measures the faithfulness of the generated free-form answers from large vision-language models (LVLMs). The FAITHSCORE evaluation first identifies sub-sentences containing descriptive statements that need to be verified, then extracts a comprehensive list of atomic facts from these sub-sentences, and finally conducts consistency verification between fine-grained atomic facts and the input image. Meta-evaluation demonstrates that our metric highly correlates with human judgments of faithfulness. We collect two benchmark datasets (i.e. LLaVA-1k and MSCOCO-Cap) for evaluating LVLMs instruction-following hallucinations. We measure hallucinations in state-of-the-art LVLMs with FAITHSCORE on the datasets. Results reveal that current systems are prone to generate hallucinated content unfaithful to the image, which leaves room for future improvements. Further, we find that current LVLMs despite doing well on color and counting, still struggle with long answers, relations, and multiple objects.
The Codec Language Model-based Zero-Shot Spontaneous Style TTS System for CoVoC Challenge 2024
This paper describes the zero-shot spontaneous style TTS system for the ISCSLP 2024 Conversational Voice Clone Challenge (CoVoC). We propose a LLaMA-based codec language model with a delay pattern to achieve spontaneous style voice cloning. To improve speech intelligibility, we introduce the Classifier-Free Guidance (CFG) strategy in the language model to strengthen conditional guidance on token prediction. To generate high-quality utterances, we adopt effective data preprocessing operations and fine-tune our model with selected high-quality spontaneous speech data. The official evaluations in the CoVoC constrained track show that our system achieves the best speech naturalness MOS of 3.80 and obtains considerable speech quality and speaker similarity results.
MiniCheck: Efficient Fact-Checking of LLMs on Grounding Documents
Recognizing if LLM output can be grounded in evidence is central to many tasks in NLP: retrieval-augmented generation, summarization, document-grounded dialogue, and more. Current approaches to this kind of "fact-checking" are based on verifying each piece of a model generation against potential evidence using an LLM. However, this process can be very computationally expensive, requiring many calls to LLMs to check a single response. In this work, we show how to build small models that have GPT-4-level performance but for 400x lower cost. We do this by constructing synthetic training data with GPT-4, which involves creating realistic yet challenging instances of factual errors via a structured generation procedure. Training on this data teaches models to check each fact in the claim and recognize synthesis of information across sentences. For evaluation, we unify pre-existing datasets into a benchmark LLM-AggreFact, collected from recent work on fact-checking and grounding LLM generations. Our best system MiniCheck-FT5 (770M parameters) outperforms all systems of comparable size and reaches GPT-4 accuracy. We release LLM-AggreFact, code for data synthesis, and models.
VDC: Versatile Data Cleanser for Detecting Dirty Samples via Visual-Linguistic Inconsistency
The role of data in building AI systems has recently been emphasized by the emerging concept of data-centric AI. Unfortunately, in the real-world, datasets may contain dirty samples, such as poisoned samples from backdoor attack, noisy labels in crowdsourcing, and even hybrids of them. The presence of such dirty samples makes the DNNs vunerable and unreliable.Hence, it is critical to detect dirty samples to improve the quality and realiability of dataset. Existing detectors only focus on detecting poisoned samples or noisy labels, that are often prone to weak generalization when dealing with dirty samples from other domains.In this paper, we find a commonality of various dirty samples is visual-linguistic inconsistency between images and associated labels. To capture the semantic inconsistency between modalities, we propose versatile data cleanser (VDC) leveraging the surpassing capabilities of multimodal large language models (MLLM) in cross-modal alignment and reasoning.It consists of three consecutive modules: the visual question generation module to generate insightful questions about the image; the visual question answering module to acquire the semantics of the visual content by answering the questions with MLLM; followed by the visual answer evaluation module to evaluate the inconsistency.Extensive experiments demonstrate its superior performance and generalization to various categories and types of dirty samples.
A Large-Scale Chinese Short-Text Conversation Dataset
The advancements of neural dialogue generation models show promising results on modeling short-text conversations. However, training such models usually needs a large-scale high-quality dialogue corpus, which is hard to access. In this paper, we present a large-scale cleaned Chinese conversation dataset, LCCC, which contains a base version (6.8million dialogues) and a large version (12.0 million dialogues). The quality of our dataset is ensured by a rigorous data cleaning pipeline, which is built based on a set of rules and a classifier that is trained on manually annotated 110K dialogue pairs. We also release pre-training dialogue models which are trained on LCCC-base and LCCC-large respectively. The cleaned dataset and the pre-training models will facilitate the research of short-text conversation modeling. All the models and datasets are available at https://github.com/thu-coai/CDial-GPT.
Learning Fine-Grained Grounded Citations for Attributed Large Language Models
Despite the impressive performance on information-seeking tasks, large language models (LLMs) still struggle with hallucinations. Attributed LLMs, which augment generated text with in-line citations, have shown potential in mitigating hallucinations and improving verifiability. However, current approaches suffer from suboptimal citation quality due to their reliance on in-context learning. Furthermore, the practice of citing only coarse document identifiers makes it challenging for users to perform fine-grained verification. In this work, we introduce FRONT, a training framework designed to teach LLMs to generate Fine-Grained Grounded Citations. By grounding model outputs in fine-grained supporting quotes, these quotes guide the generation of grounded and consistent responses, not only improving citation quality but also facilitating fine-grained verification. Experiments on the ALCE benchmark demonstrate the efficacy of FRONT in generating superior grounded responses and highly supportive citations. With LLaMA-2-7B, the framework significantly outperforms all the baselines, achieving an average of 14.21% improvement in citation quality across all datasets, even surpassing ChatGPT.
Towards Safer Pretraining: Analyzing and Filtering Harmful Content in Webscale datasets for Responsible LLMs
Large language models (LLMs) have become integral to various real-world applications, leveraging massive, web-sourced datasets like Common Crawl, C4, and FineWeb for pretraining. While these datasets provide linguistic data essential for high-quality natural language generation, they often contain harmful content, such as hate speech, misinformation, and biased narratives. Training LLMs on such unfiltered data risks perpetuating toxic behaviors, spreading misinformation, and amplifying societal biases which can undermine trust in LLM-driven applications and raise ethical concerns about their use. This paper presents a large-scale analysis of inappropriate content across these datasets, offering a comprehensive taxonomy that categorizes harmful webpages into Topical and Toxic based on their intent. We also introduce a prompt evaluation dataset, a high-accuracy Topical and Toxic Prompt (TTP), and a transformer-based model (HarmFormer) for content filtering. Additionally, we create a new multi-harm open-ended toxicity benchmark (HAVOC) and provide crucial insights into how models respond to adversarial toxic inputs. Upon publishing, we will also opensource our model signal on the entire C4 dataset. Our work offers insights into ensuring safer LLM pretraining and serves as a resource for Responsible AI (RAI) compliance.
Learning to Revise References for Faithful Summarization
In real-world scenarios with naturally occurring datasets, reference summaries are noisy and may contain information that cannot be inferred from the source text. On large news corpora, removing low quality samples has been shown to reduce model hallucinations. Yet, for smaller, and/or noisier corpora, filtering is detrimental to performance. To improve reference quality while retaining all data, we propose a new approach: to selectively re-write unsupported reference sentences to better reflect source data. We automatically generate a synthetic dataset of positive and negative revisions by corrupting supported sentences and learn to revise reference sentences with contrastive learning. The intensity of revisions is treated as a controllable attribute so that, at inference, diverse candidates can be over-generated-then-rescored to balance faithfulness and abstraction. To test our methods, we extract noisy references from publicly available MIMIC-III discharge summaries for the task of hospital-course summarization, and vary the data on which models are trained. According to metrics and human evaluation, models trained on revised clinical references are much more faithful, informative, and fluent than models trained on original or filtered data.
WHAM!: Extending Speech Separation to Noisy Environments
Recent progress in separating the speech signals from multiple overlapping speakers using a single audio channel has brought us closer to solving the cocktail party problem. However, most studies in this area use a constrained problem setup, comparing performance when speakers overlap almost completely, at artificially low sampling rates, and with no external background noise. In this paper, we strive to move the field towards more realistic and challenging scenarios. To that end, we created the WSJ0 Hipster Ambient Mixtures (WHAM!) dataset, consisting of two speaker mixtures from the wsj0-2mix dataset combined with real ambient noise samples. The samples were collected in coffee shops, restaurants, and bars in the San Francisco Bay Area, and are made publicly available. We benchmark various speech separation architectures and objective functions to evaluate their robustness to noise. While separation performance decreases as a result of noise, we still observe substantial gains relative to the noisy signals for most approaches.
PlainQAFact: Automatic Factuality Evaluation Metric for Biomedical Plain Language Summaries Generation
Hallucinated outputs from language models pose risks in the medical domain, especially for lay audiences making health-related decisions. Existing factuality evaluation methods, such as entailment- and question-answering-based (QA), struggle with plain language summary (PLS) generation due to elaborative explanation phenomenon, which introduces external content (e.g., definitions, background, examples) absent from the source document to enhance comprehension. To address this, we introduce PlainQAFact, a framework trained on a fine-grained, human-annotated dataset PlainFact, to evaluate the factuality of both source-simplified and elaboratively explained sentences. PlainQAFact first classifies factuality type and then assesses factuality using a retrieval-augmented QA-based scoring method. Our approach is lightweight and computationally efficient. Empirical results show that existing factuality metrics fail to effectively evaluate factuality in PLS, especially for elaborative explanations, whereas PlainQAFact achieves state-of-the-art performance. We further analyze its effectiveness across external knowledge sources, answer extraction strategies, overlap measures, and document granularity levels, refining its overall factuality assessment.
SpeechX: Neural Codec Language Model as a Versatile Speech Transformer
Recent advancements in generative speech models based on audio-text prompts have enabled remarkable innovations like high-quality zero-shot text-to-speech. However, existing models still face limitations in handling diverse audio-text speech generation tasks involving transforming input speech and processing audio captured in adverse acoustic conditions. This paper introduces SpeechX, a versatile speech generation model capable of zero-shot TTS and various speech transformation tasks, dealing with both clean and noisy signals. SpeechX combines neural codec language modeling with multi-task learning using task-dependent prompting, enabling unified and extensible modeling and providing a consistent way for leveraging textual input in speech enhancement and transformation tasks. Experimental results show SpeechX's efficacy in various tasks, including zero-shot TTS, noise suppression, target speaker extraction, speech removal, and speech editing with or without background noise, achieving comparable or superior performance to specialized models across tasks. See https://aka.ms/speechx for demo samples.
Teaching language models to support answers with verified quotes
Recent large language models often answer factual questions correctly. But users can't trust any given claim a model makes without fact-checking, because language models can hallucinate convincing nonsense. In this work we use reinforcement learning from human preferences (RLHP) to train "open-book" QA models that generate answers whilst also citing specific evidence for their claims, which aids in the appraisal of correctness. Supporting evidence is drawn from multiple documents found via a search engine, or from a single user-provided document. Our 280 billion parameter model, GopherCite, is able to produce answers with high quality supporting evidence and abstain from answering when unsure. We measure the performance of GopherCite by conducting human evaluation of answers to questions in a subset of the NaturalQuestions and ELI5 datasets. The model's response is found to be high-quality 80\% of the time on this Natural Questions subset, and 67\% of the time on the ELI5 subset. Abstaining from the third of questions for which it is most unsure improves performance to 90\% and 80\% respectively, approaching human baselines. However, analysis on the adversarial TruthfulQA dataset shows why citation is only one part of an overall strategy for safety and trustworthiness: not all claims supported by evidence are true.
MultiHal: Multilingual Dataset for Knowledge-Graph Grounded Evaluation of LLM Hallucinations
Large Language Models (LLMs) have inherent limitations of faithfulness and factuality, commonly referred to as hallucinations. Several benchmarks have been developed that provide a test bed for factuality evaluation within the context of English-centric datasets, while relying on supplementary informative context like web links or text passages but ignoring the available structured factual resources. To this end, Knowledge Graphs (KGs) have been identified as a useful aid for hallucination mitigation, as they provide a structured way to represent the facts about entities and their relations with minimal linguistic overhead. We bridge the lack of KG paths and multilinguality for factual language modeling within the existing hallucination evaluation benchmarks and propose a KG-based multilingual, multihop benchmark called MultiHal framed for generative text evaluation. As part of our data collection pipeline, we mined 140k KG-paths from open-domain KGs, from which we pruned noisy KG-paths, curating a high-quality subset of 25.9k. Our baseline evaluation shows an absolute scale increase by approximately 0.12 to 0.36 points for the semantic similarity score in KG-RAG over vanilla QA across multiple languages and multiple models, demonstrating the potential of KG integration. We anticipate MultiHal will foster future research towards several graph-based hallucination mitigation and fact-checking tasks.
SpeechDialogueFactory: Generating High-Quality Speech Dialogue Data to Accelerate Your Speech-LLM Development
High-quality speech dialogue datasets are crucial for Speech-LLM development, yet existing acquisition methods face significant limitations. Human recordings incur high costs and privacy concerns, while synthetic approaches often lack conversational authenticity. To address these challenges, we introduce SpeechDialogueFactory, a production-ready framework for generating natural speech dialogues efficiently. Our solution employs a comprehensive pipeline including metadata generation, dialogue scripting, paralinguistic-enriched utterance simulation, and natural speech synthesis with voice cloning. Additionally, the system provides an interactive UI for detailed sample inspection and a high-throughput batch synthesis mode. Evaluations show that dialogues generated by our system achieve a quality comparable to human recordings while significantly reducing production costs. We release our work as an open-source toolkit, alongside example datasets available in English and Chinese, empowering researchers and developers in Speech-LLM research and development.
SpeechStew: Simply Mix All Available Speech Recognition Data to Train One Large Neural Network
We present SpeechStew, a speech recognition model that is trained on a combination of various publicly available speech recognition datasets: AMI, Broadcast News, Common Voice, LibriSpeech, Switchboard/Fisher, Tedlium, and Wall Street Journal. SpeechStew simply mixes all of these datasets together, without any special re-weighting or re-balancing of the datasets. SpeechStew achieves SoTA or near SoTA results across a variety of tasks, without the use of an external language model. Our results include 9.0\% WER on AMI-IHM, 4.7\% WER on Switchboard, 8.3\% WER on CallHome, and 1.3\% on WSJ, which significantly outperforms prior work with strong external language models. We also demonstrate that SpeechStew learns powerful transfer learning representations. We fine-tune SpeechStew on a noisy low resource speech dataset, CHiME-6. We achieve 38.9\% WER without a language model, which compares to 38.6\% WER to a strong HMM baseline with a language model.
InQSS: a speech intelligibility and quality assessment model using a multi-task learning network
Speech intelligibility and quality assessment models are essential tools for researchers to evaluate and improve speech processing models. However, only a few studies have investigated multi-task models for intelligibility and quality assessment due to the limitations of available data. In this study, we released TMHINT-QI, the first Chinese speech dataset that records the quality and intelligibility scores of clean, noisy, and enhanced utterances. Then, we propose InQSS, a non-intrusive multi-task learning framework for intelligibility and quality assessment. We evaluated the InQSS on both the training-from-scratch and the pretrained models. The experimental results confirm the effectiveness of the InQSS framework. In addition, the resulting model can predict not only the intelligibility scores but also the quality scores of a speech signal.
Controllable Factuality in Document-Grounded Dialog Systems Using a Noisy Channel Model
In this work, we present a model for document-grounded response generation in dialog that is decomposed into two components according to Bayes theorem. One component is a traditional ungrounded response generation model and the other component models the reconstruction of the grounding document based on the dialog context and generated response. We propose different approximate decoding schemes and evaluate our approach on multiple open-domain and task-oriented document-grounded dialog datasets. Our experiments show that the model is more factual in terms of automatic factuality metrics than the baseline model. Furthermore, we outline how introducing scaling factors between the components allows for controlling the tradeoff between factuality and fluency in the model output. Finally, we compare our approach to a recently proposed method to control factuality in grounded dialog, CTRL (arXiv:2107.06963), and show that both approaches can be combined to achieve additional improvements.
Less is More: Accurate Speech Recognition & Translation without Web-Scale Data
Recent advances in speech recognition and translation rely on hundreds of thousands of hours of Internet speech data. We argue that state-of-the art accuracy can be reached without relying on web-scale data. Canary - multilingual ASR and speech translation model, outperforms current state-of-the-art models - Whisper, OWSM, and Seamless-M4T on English, French, Spanish, and German languages, while being trained on an order of magnitude less data than these models. Three key factors enables such data-efficient model: (1) a FastConformer-based attention encoder-decoder architecture (2) training on synthetic data generated with machine translation and (3) advanced training techniques: data-balancing, dynamic data blending, dynamic bucketing and noise-robust fine-tuning. The model, weights, and training code will be open-sourced.
Grounding-IQA: Multimodal Language Grounding Model for Image Quality Assessment
The development of multimodal large language models (MLLMs) enables the evaluation of image quality through natural language descriptions. This advancement allows for more detailed assessments. However, these MLLM-based IQA methods primarily rely on general contextual descriptions, sometimes limiting fine-grained quality assessment. To address this limitation, we introduce a new image quality assessment (IQA) task paradigm, grounding-IQA. This paradigm integrates multimodal referring and grounding with IQA to realize more fine-grained quality perception. Specifically, grounding-IQA comprises two subtasks: grounding-IQA-description (GIQA-DES) and visual question answering (GIQA-VQA). GIQA-DES involves detailed descriptions with precise locations (e.g., bounding boxes), while GIQA-VQA focuses on quality QA for local regions. To realize grounding-IQA, we construct a corresponding dataset, GIQA-160K, through our proposed automated annotation pipeline. Furthermore, we develop a well-designed benchmark, GIQA-Bench. The benchmark comprehensively evaluates the model grounding-IQA performance from three perspectives: description quality, VQA accuracy, and grounding precision. Experiments demonstrate that our proposed task paradigm, dataset, and benchmark facilitate the more fine-grained IQA application. Code: https://github.com/zhengchen1999/Grounding-IQA.
FT Speech: Danish Parliament Speech Corpus
This paper introduces FT Speech, a new speech corpus created from the recorded meetings of the Danish Parliament, otherwise known as the Folketing (FT). The corpus contains over 1,800 hours of transcribed speech by a total of 434 speakers. It is significantly larger in duration, vocabulary, and amount of spontaneous speech than the existing public speech corpora for Danish, which are largely limited to read-aloud and dictation data. We outline design considerations, including the preprocessing methods and the alignment procedure. To evaluate the quality of the corpus, we train automatic speech recognition systems on the new resource and compare them to the systems trained on the Danish part of Sprakbanken, the largest public ASR corpus for Danish to date. Our baseline results show that we achieve a 14.01 WER on the new corpus. A combination of FT Speech with in-domain language data provides comparable results to models trained specifically on Sprakbanken, showing that FT Speech transfers well to this data set. Interestingly, our results demonstrate that the opposite is not the case. This shows that FT Speech provides a valuable resource for promoting research on Danish ASR with more spontaneous speech.
FreshLLMs: Refreshing Large Language Models with Search Engine Augmentation
Most large language models (LLMs) are trained once and never updated; thus, they lack the ability to dynamically adapt to our ever-changing world. In this work, we perform a detailed study of the factuality of LLM-generated text in the context of answering questions that test current world knowledge. Specifically, we introduce FreshQA, a novel dynamic QA benchmark encompassing a diverse range of question and answer types, including questions that require fast-changing world knowledge as well as questions with false premises that need to be debunked. We benchmark a diverse array of both closed and open-source LLMs under a two-mode evaluation procedure that allows us to measure both correctness and hallucination. Through human evaluations involving more than 50K judgments, we shed light on limitations of these models and demonstrate significant room for improvement: for instance, all models (regardless of model size) struggle on questions that involve fast-changing knowledge and false premises. Motivated by these results, we present FreshPrompt, a simple few-shot prompting method that substantially boosts the performance of an LLM on FreshQA by incorporating relevant and up-to-date information retrieved from a search engine into the prompt. Our experiments show that FreshPrompt outperforms both competing search engine-augmented prompting methods such as Self-Ask (Press et al., 2022) as well as commercial systems such as Perplexity.AI. Further analysis of FreshPrompt reveals that both the number of retrieved evidences and their order play a key role in influencing the correctness of LLM-generated answers. Additionally, instructing the LLM to generate concise and direct answers helps reduce hallucination compared to encouraging more verbose answers. To facilitate future work, we release FreshQA at github.com/freshllms/freshqa and commit to updating it at regular intervals.
SpeechGPT-Gen: Scaling Chain-of-Information Speech Generation
Benefiting from effective speech modeling, current Speech Large Language Models (SLLMs) have demonstrated exceptional capabilities in in-context speech generation and efficient generalization to unseen speakers. However, the prevailing information modeling process is encumbered by certain redundancies, leading to inefficiencies in speech generation. We propose Chain-of-Information Generation (CoIG), a method for decoupling semantic and perceptual information in large-scale speech generation. Building on this, we develop SpeechGPT-Gen, an 8-billion-parameter SLLM efficient in semantic and perceptual information modeling. It comprises an autoregressive model based on LLM for semantic information modeling and a non-autoregressive model employing flow matching for perceptual information modeling. Additionally, we introduce the novel approach of infusing semantic information into the prior distribution to enhance the efficiency of flow matching. Extensive experimental results demonstrate that SpeechGPT-Gen markedly excels in zero-shot text-to-speech, zero-shot voice conversion, and speech-to-speech dialogue, underscoring CoIG's remarkable proficiency in capturing and modeling speech's semantic and perceptual dimensions. Code and models are available at https://github.com/0nutation/SpeechGPT.
Truth Neurons
Despite their remarkable success and deployment across diverse workflows, language models sometimes produce untruthful responses. Our limited understanding of how truthfulness is mechanistically encoded within these models jeopardizes their reliability and safety. In this paper, we propose a method for identifying representations of truthfulness at the neuron level. We show that language models contain truth neurons, which encode truthfulness in a subject-agnostic manner. Experiments conducted across models of varying scales validate the existence of truth neurons, confirming that the encoding of truthfulness at the neuron level is a property shared by many language models. The distribution patterns of truth neurons over layers align with prior findings on the geometry of truthfulness. Selectively suppressing the activations of truth neurons found through the TruthfulQA dataset degrades performance both on TruthfulQA and on other benchmarks, showing that the truthfulness mechanisms are not tied to a specific dataset. Our results offer novel insights into the mechanisms underlying truthfulness in language models and highlight potential directions toward improving their trustworthiness and reliability.
Systematic Rectification of Language Models via Dead-end Analysis
With adversarial or otherwise normal prompts, existing large language models (LLM) can be pushed to generate toxic discourses. One way to reduce the risk of LLMs generating undesired discourses is to alter the training of the LLM. This can be very restrictive due to demanding computation requirements. Other methods rely on rule-based or prompt-based token elimination, which are limited as they dismiss future tokens and the overall meaning of the complete discourse. Here, we center detoxification on the probability that the finished discourse is ultimately considered toxic. That is, at each point, we advise against token selections proportional to how likely a finished text from this point will be toxic. To this end, we formally extend the dead-end theory from the recent reinforcement learning (RL) literature to also cover uncertain outcomes. Our approach, called rectification, utilizes a separate but significantly smaller model for detoxification, which can be applied to diverse LLMs as long as they share the same vocabulary. Importantly, our method does not require access to the internal representations of the LLM, but only the token probability distribution at each decoding step. This is crucial as many LLMs today are hosted in servers and only accessible through APIs. When applied to various LLMs, including GPT-3, our approach significantly improves the generated discourse compared to the base LLMs and other techniques in terms of both the overall language and detoxification performance.
OWSM v3.1: Better and Faster Open Whisper-Style Speech Models based on E-Branchformer
Recent studies have advocated for fully open foundation models to promote transparency and open science. As an initial step, the Open Whisper-style Speech Model (OWSM) reproduced OpenAI's Whisper using publicly available data and open-source toolkits. With the aim of reproducing Whisper, the previous OWSM v1 through v3 models were still based on Transformer, which might lead to inferior performance compared to other state-of-the-art speech encoders. In this work, we aim to improve the performance and efficiency of OWSM without extra training data. We present E-Branchformer based OWSM v3.1 models at two scales, i.e., 100M and 1B. The 1B model is the largest E-Branchformer based speech model that has been made publicly available. It outperforms the previous OWSM v3 in a vast majority of evaluation benchmarks, while demonstrating up to 25% faster inference speed. We publicly release the data preparation scripts, pre-trained models and training logs.
Metis: A Foundation Speech Generation Model with Masked Generative Pre-training
We introduce Metis, a foundation model for unified speech generation. Unlike previous task-specific or multi-task models, Metis follows a pre-training and fine-tuning paradigm. It is pre-trained on large-scale unlabeled speech data using masked generative modeling and then fine-tuned to adapt to diverse speech generation tasks. Specifically, 1) Metis utilizes two discrete speech representations: SSL tokens derived from speech self-supervised learning (SSL) features, and acoustic tokens directly quantized from waveforms. 2) Metis performs masked generative pre-training on SSL tokens, utilizing 300K hours of diverse speech data, without any additional condition. 3) Through fine-tuning with task-specific conditions, Metis achieves efficient adaptation to various speech generation tasks while supporting multimodal input, even when using limited data and trainable parameters. Experiments demonstrate that Metis can serve as a foundation model for unified speech generation: Metis outperforms state-of-the-art task-specific or multi-task systems across five speech generation tasks, including zero-shot text-to-speech, voice conversion, target speaker extraction, speech enhancement, and lip-to-speech, even with fewer than 20M trainable parameters or 300 times less training data. Audio samples are are available at https://metis-demo.github.io/.
Seamless: Multilingual Expressive and Streaming Speech Translation
Large-scale automatic speech translation systems today lack key features that help machine-mediated communication feel seamless when compared to human-to-human dialogue. In this work, we introduce a family of models that enable end-to-end expressive and multilingual translations in a streaming fashion. First, we contribute an improved version of the massively multilingual and multimodal SeamlessM4T model-SeamlessM4T v2. This newer model, incorporating an updated UnitY2 framework, was trained on more low-resource language data. SeamlessM4T v2 provides the foundation on which our next two models are initiated. SeamlessExpressive enables translation that preserves vocal styles and prosody. Compared to previous efforts in expressive speech research, our work addresses certain underexplored aspects of prosody, such as speech rate and pauses, while also preserving the style of one's voice. As for SeamlessStreaming, our model leverages the Efficient Monotonic Multihead Attention mechanism to generate low-latency target translations without waiting for complete source utterances. As the first of its kind, SeamlessStreaming enables simultaneous speech-to-speech/text translation for multiple source and target languages. To ensure that our models can be used safely and responsibly, we implemented the first known red-teaming effort for multimodal machine translation, a system for the detection and mitigation of added toxicity, a systematic evaluation of gender bias, and an inaudible localized watermarking mechanism designed to dampen the impact of deepfakes. Consequently, we bring major components from SeamlessExpressive and SeamlessStreaming together to form Seamless, the first publicly available system that unlocks expressive cross-lingual communication in real-time. The contributions to this work are publicly released and accessible at https://github.com/facebookresearch/seamless_communication
Generative Speech Foundation Model Pretraining for High-Quality Speech Extraction and Restoration
This paper proposes a generative pretraining foundation model for high-quality speech restoration tasks. By directly operating on complex-valued short-time Fourier transform coefficients, our model does not rely on any vocoders for time-domain signal reconstruction. As a result, our model simplifies the synthesis process and removes the quality upper-bound introduced by any mel-spectrogram vocoder compared to prior work SpeechFlow. The proposed method is evaluated on multiple speech restoration tasks, including speech denoising, bandwidth extension, codec artifact removal, and target speaker extraction. In all scenarios, finetuning our pretrained model results in superior performance over strong baselines. Notably, in the target speaker extraction task, our model outperforms existing systems, including those leveraging SSL-pretrained encoders like WavLM. The code and the pretrained checkpoints are publicly available in the NVIDIA NeMo framework.
LaMDA: Language Models for Dialog Applications
We present LaMDA: Language Models for Dialog Applications. LaMDA is a family of Transformer-based neural language models specialized for dialog, which have up to 137B parameters and are pre-trained on 1.56T words of public dialog data and web text. While model scaling alone can improve quality, it shows less improvements on safety and factual grounding. We demonstrate that fine-tuning with annotated data and enabling the model to consult external knowledge sources can lead to significant improvements towards the two key challenges of safety and factual grounding. The first challenge, safety, involves ensuring that the model's responses are consistent with a set of human values, such as preventing harmful suggestions and unfair bias. We quantify safety using a metric based on an illustrative set of human values, and we find that filtering candidate responses using a LaMDA classifier fine-tuned with a small amount of crowdworker-annotated data offers a promising approach to improving model safety. The second challenge, factual grounding, involves enabling the model to consult external knowledge sources, such as an information retrieval system, a language translator, and a calculator. We quantify factuality using a groundedness metric, and we find that our approach enables the model to generate responses grounded in known sources, rather than responses that merely sound plausible. Finally, we explore the use of LaMDA in the domains of education and content recommendations, and analyze their helpfulness and role consistency.
Fine-tuning Large Language Models for Improving Factuality in Legal Question Answering
Hallucination, or the generation of incorrect or fabricated information, remains a critical challenge in large language models (LLMs), particularly in high-stake domains such as legal question answering (QA). In order to mitigate the hallucination rate in legal QA, we first introduce a benchmark called LegalHalBench and three automatic metrics to evaluate the common hallucinations when LLMs answer legal questions. We then propose a hallucination mitigation method that integrates behavior cloning and a novel Hard Sample-aware Iterative Direct Preference Optimization (HIPO). We conduct extensive real-data experiments to validate the effectiveness of our approach. Our results demonstrate remarkable improvements in various metrics, including the newly proposed Non-Hallucinated Statute Rate, Statute Relevance Rate, Legal Claim Truthfulness, as well as traditional metrics such as METEOR, BERTScore, ROUGE-L, and win rates.
LLM in the Loop: Creating the PARADEHATE Dataset for Hate Speech Detoxification
Detoxification, the task of rewriting harmful language into non-toxic text, has become increasingly important amid the growing prevalence of toxic content online. However, high-quality parallel datasets for detoxification, especially for hate speech, remain scarce due to the cost and sensitivity of human annotation. In this paper, we propose a novel LLM-in-the-loop pipeline leveraging GPT-4o-mini for automated detoxification. We first replicate the ParaDetox pipeline by replacing human annotators with an LLM and show that the LLM performs comparably to human annotation. Building on this, we construct PARADEHATE, a large-scale parallel dataset specifically for hatespeech detoxification. We release PARADEHATE as a benchmark of over 8K hate/non-hate text pairs and evaluate a wide range of baseline methods. Experimental results show that models such as BART, fine-tuned on PARADEHATE, achieve better performance in style accuracy, content preservation, and fluency, demonstrating the effectiveness of LLM-generated detoxification text as a scalable alternative to human annotation.
Towards measuring fairness in speech recognition: Fair-Speech dataset
The current public datasets for speech recognition (ASR) tend not to focus specifically on the fairness aspect, such as performance across different demographic groups. This paper introduces a novel dataset, Fair-Speech, a publicly released corpus to help researchers evaluate their ASR models for accuracy across a diverse set of self-reported demographic information, such as age, gender, ethnicity, geographic variation and whether the participants consider themselves native English speakers. Our dataset includes approximately 26.5K utterances in recorded speech by 593 people in the United States, who were paid to record and submit audios of themselves saying voice commands. We also provide ASR baselines, including on models trained on transcribed and untranscribed social media videos and open source models.
Inference-Time Intervention: Eliciting Truthful Answers from a Language Model
We introduce Inference-Time Intervention (ITI), a technique designed to enhance the truthfulness of large language models (LLMs). ITI operates by shifting model activations during inference, following a set of directions across a limited number of attention heads. This intervention significantly improves the performance of LLaMA models on the TruthfulQA benchmark. On an instruction-finetuned LLaMA called Alpaca, ITI improves its truthfulness from 32.5% to 65.1%. We identify a tradeoff between truthfulness and helpfulness and demonstrate how to balance it by tuning the intervention strength. ITI is minimally invasive and computationally inexpensive. Moreover, the technique is data efficient: while approaches like RLHF require extensive annotations, ITI locates truthful directions using only few hundred examples. Our findings suggest that LLMs may have an internal representation of the likelihood of something being true, even as they produce falsehoods on the surface.
The Many Dimensions of Truthfulness: Crowdsourcing Misinformation Assessments on a Multidimensional Scale
Recent work has demonstrated the viability of using crowdsourcing as a tool for evaluating the truthfulness of public statements. Under certain conditions such as: (1) having a balanced set of workers with different backgrounds and cognitive abilities; (2) using an adequate set of mechanisms to control the quality of the collected data; and (3) using a coarse grained assessment scale, the crowd can provide reliable identification of fake news. However, fake news are a subtle matter: statements can be just biased ("cherrypicked"), imprecise, wrong, etc. and the unidimensional truth scale used in existing work cannot account for such differences. In this paper we propose a multidimensional notion of truthfulness and we ask the crowd workers to assess seven different dimensions of truthfulness selected based on existing literature: Correctness, Neutrality, Comprehensibility, Precision, Completeness, Speaker's Trustworthiness, and Informativeness. We deploy a set of quality control mechanisms to ensure that the thousands of assessments collected on 180 publicly available fact-checked statements distributed over two datasets are of adequate quality, including a custom search engine used by the crowd workers to find web pages supporting their truthfulness assessments. A comprehensive analysis of crowdsourced judgments shows that: (1) the crowdsourced assessments are reliable when compared to an expert-provided gold standard; (2) the proposed dimensions of truthfulness capture independent pieces of information; (3) the crowdsourcing task can be easily learned by the workers; and (4) the resulting assessments provide a useful basis for a more complete estimation of statement truthfulness.
A Close Look at Decomposition-based XAI-Methods for Transformer Language Models
Various XAI attribution methods have been recently proposed for the transformer architecture, allowing for insights into the decision-making process of large language models by assigning importance scores to input tokens and intermediate representations. One class of methods that seems very promising in this direction includes decomposition-based approaches, i.e., XAI-methods that redistribute the model's prediction logit through the network, as this value is directly related to the prediction. In the previous literature we note though that two prominent methods of this category, namely ALTI-Logit and LRP, have not yet been analyzed in juxtaposition and hence we propose to close this gap by conducting a careful quantitative evaluation w.r.t. ground truth annotations on a subject-verb agreement task, as well as various qualitative inspections, using BERT, GPT-2 and LLaMA-3 as a testbed. Along the way we compare and extend the ALTI-Logit and LRP methods, including the recently proposed AttnLRP variant, from an algorithmic and implementation perspective. We further incorporate in our benchmark two widely-used gradient-based attribution techniques. Finally, we make our carefullly constructed benchmark dataset for evaluating attributions on language models, as well as our code, publicly available in order to foster evaluation of XAI-methods on a well-defined common ground.
FactCG: Enhancing Fact Checkers with Graph-Based Multi-Hop Data
Prior research on training grounded factuality classification models to detect hallucinations in large language models (LLMs) has relied on public natural language inference (NLI) data and synthetic data. However, conventional NLI datasets are not well-suited for document-level reasoning, which is critical for detecting LLM hallucinations. Recent approaches to document-level synthetic data generation involve iteratively removing sentences from documents and annotating factuality using LLM-based prompts. While effective, this method is computationally expensive for long documents and limited by the LLM's capabilities. In this work, we analyze the differences between existing synthetic training data used in state-of-the-art models and real LLM output claims. Based on our findings, we propose a novel approach for synthetic data generation, CG2C, that leverages multi-hop reasoning on context graphs extracted from documents. Our fact checker model, FactCG, demonstrates improved performance with more connected reasoning, using the same backbone models. Experiments show it even outperforms GPT-4-o on the LLM-Aggrefact benchmark with much smaller model size.
GigaSpeech: An Evolving, Multi-domain ASR Corpus with 10,000 Hours of Transcribed Audio
This paper introduces GigaSpeech, an evolving, multi-domain English speech recognition corpus with 10,000 hours of high quality labeled audio suitable for supervised training, and 40,000 hours of total audio suitable for semi-supervised and unsupervised training. Around 40,000 hours of transcribed audio is first collected from audiobooks, podcasts and YouTube, covering both read and spontaneous speaking styles, and a variety of topics, such as arts, science, sports, etc. A new forced alignment and segmentation pipeline is proposed to create sentence segments suitable for speech recognition training, and to filter out segments with low-quality transcription. For system training, GigaSpeech provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h. For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage, and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand, are re-processed by professional human transcribers to ensure high transcription quality. Baseline systems are provided for popular speech recognition toolkits, namely Athena, ESPnet, Kaldi and Pika.
TRUE: Re-evaluating Factual Consistency Evaluation
Grounded text generation systems often generate text that contains factual inconsistencies, hindering their real-world applicability. Automatic factual consistency evaluation may help alleviate this limitation by accelerating evaluation cycles, filtering inconsistent outputs and augmenting training data. While attracting increasing attention, such evaluation metrics are usually developed and evaluated in silo for a single task or dataset, slowing their adoption. Moreover, previous meta-evaluation protocols focused on system-level correlations with human annotations, which leave the example-level accuracy of such metrics unclear. In this work, we introduce TRUE: a comprehensive survey and assessment of factual consistency metrics on a standardized collection of existing texts from diverse tasks, manually annotated for factual consistency. Our standardization enables an example-level meta-evaluation protocol that is more actionable and interpretable than previously reported correlations, yielding clearer quality measures. Across diverse state-of-the-art metrics and 11 datasets we find that large-scale NLI and question generation-and-answering-based approaches achieve strong and complementary results. We recommend those methods as a starting point for model and metric developers, and hope TRUE will foster progress towards even better evaluation methods.
Pre-Training Multimodal Hallucination Detectors with Corrupted Grounding Data
Multimodal language models can exhibit hallucinations in their outputs, which limits their reliability. The ability to automatically detect these errors is important for mitigating them, but has been less explored and existing efforts do not localize hallucinations, instead framing this as a classification task. In this work, we first pose multimodal hallucination detection as a sequence labeling task where models must localize hallucinated text spans and present a strong baseline model. Given the high cost of human annotations for this task, we propose an approach to improve the sample efficiency of these models by creating corrupted grounding data, which we use for pre-training. Leveraging phrase grounding data, we generate hallucinations to replace grounded spans and create hallucinated text. Experiments show that pre-training on this data improves sample efficiency when fine-tuning, and that the learning signal from the grounding data plays an important role in these improvements.
Evaluation of HTR models without Ground Truth Material
The evaluation of Handwritten Text Recognition (HTR) models during their development is straightforward: because HTR is a supervised problem, the usual data split into training, validation, and test data sets allows the evaluation of models in terms of accuracy or error rates. However, the evaluation process becomes tricky as soon as we switch from development to application. A compilation of a new (and forcibly smaller) ground truth (GT) from a sample of the data that we want to apply the model on and the subsequent evaluation of models thereon only provides hints about the quality of the recognised text, as do confidence scores (if available) the models return. Moreover, if we have several models at hand, we face a model selection problem since we want to obtain the best possible result during the application phase. This calls for GT-free metrics to select the best model, which is why we (re-)introduce and compare different metrics, from simple, lexicon-based to more elaborate ones using standard language models and masked language models (MLM). We show that MLM-based evaluation can compete with lexicon-based methods, with the advantage that large and multilingual transformers are readily available, thus making compiling lexical resources for other metrics superfluous.
Pseudo-Autoregressive Neural Codec Language Models for Efficient Zero-Shot Text-to-Speech Synthesis
Recent zero-shot text-to-speech (TTS) systems face a common dilemma: autoregressive (AR) models suffer from slow generation and lack duration controllability, while non-autoregressive (NAR) models lack temporal modeling and typically require complex designs. In this paper, we introduce a novel pseudo-autoregressive (PAR) codec language modeling approach that unifies AR and NAR modeling. Combining explicit temporal modeling from AR with parallel generation from NAR, PAR generates dynamic-length spans at fixed time steps. Building on PAR, we propose PALLE, a two-stage TTS system that leverages PAR for initial generation followed by NAR refinement. In the first stage, PAR progressively generates speech tokens along the time dimension, with each step predicting all positions in parallel but only retaining the left-most span. In the second stage, low-confidence tokens are iteratively refined in parallel, leveraging the global contextual information. Experiments demonstrate that PALLE, trained on LibriTTS, outperforms state-of-the-art systems trained on large-scale data, including F5-TTS, E2-TTS, and MaskGCT, on the LibriSpeech test-clean set in terms of speech quality, speaker similarity, and intelligibility, while achieving up to ten times faster inference speed. Audio samples are available at https://anonymous-palle.github.io.
Spaiche: Extending State-of-the-Art ASR Models to Swiss German Dialects
Recent breakthroughs in NLP largely increased the presence of ASR systems in our daily lives. However, for many low-resource languages, ASR models still need to be improved due in part to the difficulty of acquiring pertinent data. This project aims to help advance research in ASR models for Swiss German dialects, by providing insights about the performance of state-of-the-art ASR models on recently published Swiss German speech datasets. We propose a novel loss that takes into account the semantic distance between the predicted and the ground-truth labels. We outperform current state-of-the-art results by fine-tuning OpenAI's Whisper model on Swiss-German datasets.
Synchronous Faithfulness Monitoring for Trustworthy Retrieval-Augmented Generation
Retrieval-augmented language models (RALMs) have shown strong performance and wide applicability in knowledge-intensive tasks. However, there are significant trustworthiness concerns as RALMs are prone to generating unfaithful outputs, including baseless information or contradictions with the retrieved context. This paper proposes SynCheck, a lightweight monitor that leverages fine-grained decoding dynamics including sequence likelihood, uncertainty quantification, context influence, and semantic alignment to synchronously detect unfaithful sentences. By integrating efficiently measurable and complementary signals, SynCheck enables accurate and immediate feedback and intervention, achieving 0.85 AUROC in detecting faithfulness errors across six long-form retrieval-augmented generation tasks, improving prior best method by 4%. Leveraging SynCheck, we further introduce FOD, a faithfulness-oriented decoding algorithm guided by beam search for long-form retrieval-augmented generation. Empirical results demonstrate that FOD outperforms traditional strategies such as abstention, reranking, or contrastive decoding significantly in terms of faithfulness, achieving over 10% improvement across six datasets.
Faithfulness Measurable Masked Language Models
A common approach to explain NLP models, is to use importance measures that express which tokens are important for a prediction. Unfortunately, such explanations are often wrong despite being persuasive. Therefore, it is essential to measure their faithfulness. One such metric is if tokens are truly important, then masking them should result in worse model performance. However, token masking introduces out-of-distribution issues and existing solutions are computationally expensive and employ proxy-models. Furthermore, other metrics are very limited in scope. In this work, we propose an inherently faithfulness measurable model that addresses these challenges. This is achieved by using a novel fine-tuning method that incorporates masking, such that masking tokens become in-distribution by design. This differs from existing approaches, which are completely model-agnostic but are inapplicable in practice. We demonstrate the generality of our approach by applying it to various tasks and validate it using statistical in-distribution tests. Additionally, because masking is in-distribution, importance measures which themselves use masking become more faithful, thus our model becomes more explainable.
Calibrated Language Models Must Hallucinate
Recent language models have a mysterious tendency to generate false but plausible-sounding text. Such "hallucinations" are an obstacle to the usability of language-based AI systems and can harm people who rely upon their outputs. This work shows shows that there is an inherent statistical reason that pretrained language models hallucinate certain types of facts, having nothing to do with the transformer LM architecture or data quality. For "arbitrary" facts whose veracity cannot be determined from the training data, we show that hallucination is necessary for language models that satisfy a statistical calibration condition appropriate for generative language models. Specifically, if the maximum probability of any fact is bounded, we show that the probability of generating a hallucination is close to the fraction of facts that occur exactly once in the training data (a "Good-Turing" estimate), even assuming ideal training data without errors. One conclusion is that models pretrained to be sufficiently good predictors (i.e., calibrated) may require post-training to mitigate hallucinations on the type of arbitrary facts that tend to appear once in the training set. However, our analysis also suggests that there is no statistical reason that pretraining will lead to hallucination on facts that tend to appear more than once in the training data (like references to publications such as articles and books, whose hallucinations have been particularly notable and problematic) or on systematic facts (like arithmetic calculations). Therefore, different architectures and learning algorithms may mitigate these latter types of hallucinations.
Zero-Shot vs. Few-Shot Multi-Speaker TTS Using Pre-trained Czech SpeechT5 Model
In this paper, we experimented with the SpeechT5 model pre-trained on large-scale datasets. We pre-trained the foundation model from scratch and fine-tuned it on a large-scale robust multi-speaker text-to-speech (TTS) task. We tested the model capabilities in a zero- and few-shot scenario. Based on two listening tests, we evaluated the synthetic audio quality and the similarity of how synthetic voices resemble real voices. Our results showed that the SpeechT5 model can generate a synthetic voice for any speaker using only one minute of the target speaker's data. We successfully demonstrated the high quality and similarity of our synthetic voices on publicly known Czech politicians and celebrities.
ToxicTone: A Mandarin Audio Dataset Annotated for Toxicity and Toxic Utterance Tonality
Despite extensive research on toxic speech detection in text, a critical gap remains in handling spoken Mandarin audio. The lack of annotated datasets that capture the unique prosodic cues and culturally specific expressions in Mandarin leaves spoken toxicity underexplored. To address this, we introduce ToxicTone -- the largest public dataset of its kind -- featuring detailed annotations that distinguish both forms of toxicity (e.g., profanity, bullying) and sources of toxicity (e.g., anger, sarcasm, dismissiveness). Our data, sourced from diverse real-world audio and organized into 13 topical categories, mirrors authentic communication scenarios. We also propose a multimodal detection framework that integrates acoustic, linguistic, and emotional features using state-of-the-art speech and emotion encoders. Extensive experiments show our approach outperforms text-only and baseline models, underscoring the essential role of speech-specific cues in revealing hidden toxic expressions.
Noise Augmented Fine Tuning for Mitigating Hallucinations in Large Language Models
Large language models (LLMs) often produce inaccurate or misleading content-hallucinations. To address this challenge, we introduce Noise-Augmented Fine-Tuning (NoiseFiT), a novel framework that leverages adaptive noise injection based on the signal-to-noise ratio (SNR) to enhance model robustness. In particular, NoiseFiT selectively perturbs layers identified as either high-SNR (more robust) or low-SNR (potentially under-regularized) using a dynamically scaled Gaussian noise. We further propose a hybrid loss that combines standard cross-entropy, soft cross-entropy, and consistency regularization to ensure stable and accurate outputs under noisy training conditions. Our theoretical analysis shows that adaptive noise injection is both unbiased and variance-preserving, providing strong guarantees for convergence in expectation. Empirical results on multiple test and benchmark datasets demonstrate that NoiseFiT significantly reduces hallucination rates, often improving or matching baseline performance in key tasks. These findings highlight the promise of noise-driven strategies for achieving robust, trustworthy language modeling without incurring prohibitive computational overhead. Given the comprehensive and detailed nature of our experiments, we have publicly released the fine-tuning logs, benchmark evaluation artifacts, and source code online at W&B, Hugging Face, and GitHub, respectively, to foster further research, accessibility and reproducibility.
HyPoradise: An Open Baseline for Generative Speech Recognition with Large Language Models
Advancements in deep neural networks have allowed automatic speech recognition (ASR) systems to attain human parity on several publicly available clean speech datasets. However, even state-of-the-art ASR systems experience performance degradation when confronted with adverse conditions, as a well-trained acoustic model is sensitive to variations in the speech domain, e.g., background noise. Intuitively, humans address this issue by relying on their linguistic knowledge: the meaning of ambiguous spoken terms is usually inferred from contextual cues thereby reducing the dependency on the auditory system. Inspired by this observation, we introduce the first open-source benchmark to utilize external large language models (LLMs) for ASR error correction, where N-best decoding hypotheses provide informative elements for true transcription prediction. This approach is a paradigm shift from the traditional language model rescoring strategy that can only select one candidate hypothesis as the output transcription. The proposed benchmark contains a novel dataset, HyPoradise (HP), encompassing more than 334,000 pairs of N-best hypotheses and corresponding accurate transcriptions across prevalent speech domains. Given this dataset, we examine three types of error correction techniques based on LLMs with varying amounts of labeled hypotheses-transcription pairs, which gains a significant word error rate (WER) reduction. Experimental evidence demonstrates the proposed technique achieves a breakthrough by surpassing the upper bound of traditional re-ranking based methods. More surprisingly, LLM with reasonable prompt and its generative capability can even correct those tokens that are missing in N-best list. We make our results publicly accessible for reproducible pipelines with released pre-trained models, thus providing a new evaluation paradigm for ASR error correction with LLMs.
Speechless: Speech Instruction Training Without Speech for Low Resource Languages
The rapid growth of voice assistants powered by large language models (LLM) has highlighted a need for speech instruction data to train these systems. Despite the abundance of speech recognition data, there is a notable scarcity of speech instruction data, which is essential for fine-tuning models to understand and execute spoken commands. Generating high-quality synthetic speech requires a good text-to-speech (TTS) model, which may not be available to low resource languages. Our novel approach addresses this challenge by halting synthesis at the semantic representation level, bypassing the need for TTS. We achieve this by aligning synthetic semantic representations with the pre-trained Whisper encoder, enabling an LLM to be fine-tuned on text instructions while maintaining the ability to understand spoken instructions during inference. This simplified training process is a promising approach to building voice assistant for low-resource languages.
LLaSE-G1: Incentivizing Generalization Capability for LLaMA-based Speech Enhancement
Recent advancements in language models (LMs) have demonstrated strong capabilities in semantic understanding and contextual modeling, which have flourished in generative speech enhancement (SE). However, many LM-based SE approaches primarily focus on semantic information, often neglecting the critical role of acoustic information, which leads to acoustic inconsistency after enhancement and limited generalization across diverse SE tasks. In this paper, we introduce LLaSE-G1, a LLaMA-based language model that incentivizes generalization capabilities for speech enhancement. LLaSE-G1 offers the following key contributions: First, to mitigate acoustic inconsistency, LLaSE-G1 employs continuous representations from WavLM as input and predicts speech tokens from X-Codec2, maximizing acoustic preservation. Second, to promote generalization capability, LLaSE-G1 introduces dual-channel inputs and outputs, unifying multiple SE tasks without requiring task-specific IDs. Third, LLaSE-G1 outperforms prior task-specific discriminative and generative SE models, demonstrating scaling effects at test time and emerging capabilities for unseen SE tasks. Additionally, we release our code and models to support further research in this area.
Ultra-FineWeb: Efficient Data Filtering and Verification for High-Quality LLM Training Data
Data quality has become a key factor in enhancing model performance with the rapid development of large language models (LLMs). Model-driven data filtering has increasingly become a primary approach for acquiring high-quality data. However, it still faces two main challenges: (1) the lack of an efficient data verification strategy makes it difficult to provide timely feedback on data quality; and (2) the selection of seed data for training classifiers lacks clear criteria and relies heavily on human expertise, introducing a degree of subjectivity. To address the first challenge, we introduce an efficient verification strategy that enables rapid evaluation of the impact of data on LLM training with minimal computational cost. To tackle the second challenge, we build upon the assumption that high-quality seed data is beneficial for LLM training, and by integrating the proposed verification strategy, we optimize the selection of positive and negative samples and propose an efficient data filtering pipeline. This pipeline not only improves filtering efficiency, classifier quality, and robustness, but also significantly reduces experimental and inference costs. In addition, to efficiently filter high-quality data, we employ a lightweight classifier based on fastText, and successfully apply the filtering pipeline to two widely-used pre-training corpora, FineWeb and Chinese FineWeb datasets, resulting in the creation of the higher-quality Ultra-FineWeb dataset. Ultra-FineWeb contains approximately 1 trillion English tokens and 120 billion Chinese tokens. Empirical results demonstrate that the LLMs trained on Ultra-FineWeb exhibit significant performance improvements across multiple benchmark tasks, validating the effectiveness of our pipeline in enhancing both data quality and training efficiency.
Enhancing Large Language Models' Situated Faithfulness to External Contexts
Large Language Models (LLMs) are often augmented with external information as contexts, but this external information can sometimes be inaccurate or even intentionally misleading. We argue that robust LLMs should demonstrate situated faithfulness, dynamically calibrating their trust in external information based on their confidence in the internal knowledge and the external context. To benchmark this capability, we evaluate LLMs across several QA datasets, including a newly created dataset called RedditQA featuring in-the-wild incorrect contexts sourced from Reddit posts. We show that when provided with both correct and incorrect contexts, both open-source and proprietary models tend to overly rely on external information, regardless of its factual accuracy. To enhance situated faithfulness, we propose two approaches: Self-Guided Confidence Reasoning (SCR) and Rule-Based Confidence Reasoning (RCR). SCR enables models to self-access the confidence of external information relative to their own internal knowledge to produce the most accurate answer. RCR, in contrast, extracts explicit confidence signals from the LLM and determines the final answer using predefined rules. Our results show that for LLMs with strong reasoning capabilities, such as GPT-4o and GPT-4o mini, SCR outperforms RCR, achieving improvements of up to 24.2% over a direct input augmentation baseline. Conversely, for a smaller model like Llama-3-8B, RCR outperforms SCR. Fine-tuning SCR with our proposed Confidence Reasoning Direct Preference Optimization (CR-DPO) method improves performance on both seen and unseen datasets, yielding an average improvement of 8.9% on Llama-3-8B. In addition to quantitative results, we offer insights into the relative strengths of SCR and RCR. Our findings highlight promising avenues for improving situated faithfulness in LLMs. The data and code are released.
RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models
Pretrained neural language models (LMs) are prone to generating racist, sexist, or otherwise toxic language which hinders their safe deployment. We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration. We create and release RealToxicityPrompts, a dataset of 100K naturally occurring, sentence-level prompts derived from a large corpus of English web text, paired with toxicity scores from a widely-used toxicity classifier. Using RealToxicityPrompts, we find that pretrained LMs can degenerate into toxic text even from seemingly innocuous prompts. We empirically assess several controllable generation methods, and find that while data- or compute-intensive methods (e.g., adaptive pretraining on non-toxic data) are more effective at steering away from toxicity than simpler solutions (e.g., banning "bad" words), no current method is failsafe against neural toxic degeneration. To pinpoint the potential cause of such persistent toxic degeneration, we analyze two web text corpora used to pretrain several LMs (including GPT-2; Radford et. al, 2019), and find a significant amount of offensive, factually unreliable, and otherwise toxic content. Our work provides a test bed for evaluating toxic generations by LMs and stresses the need for better data selection processes for pretraining.
Sequence-Level Certainty Reduces Hallucination In Knowledge-Grounded Dialogue Generation
In this work, we propose sequence-level certainty as a common theme over hallucination in Knowledge Grounded Dialogue Generation (KGDG). We explore the correlation between the level of hallucination and two types of sequence-level certainty: probabilistic certainty and semantic certainty. Empirical results reveal that a higher level of both types of sequence-level certainty in model responses is correlated with a lower level of hallucination. We further propose Certainty-based Response Ranking (CRR), a decoding-time hallucination mitigation method that ranks response candidates based on their sequence-level certainty and outputs the answer with the highest certainty level. Aligning with our definitions of sequence-level certainty, we design 2 types of CRR approaches: Probabilistic CRR (P-CRR) and Semantic CRR (S-CRR). P-CRR ranks individually sampled model responses using the arithmetic mean log-probability of the entire sequence. S-CRR approaches certainty estimation from meaning-space, and ranks model response candidates based on their semantic certainty level as measured by an entailment-based Agreement Score (AS). Through extensive experiments across 3 KGDG datasets, 3 decoding methods, and 4 different models, we validate the effectiveness of the CRR methods in reducing model hallucination.
E1 TTS: Simple and Fast Non-Autoregressive TTS
This paper introduces Easy One-Step Text-to-Speech (E1 TTS), an efficient non-autoregressive zero-shot text-to-speech system based on denoising diffusion pretraining and distribution matching distillation. The training of E1 TTS is straightforward; it does not require explicit monotonic alignment between the text and audio pairs. The inference of E1 TTS is efficient, requiring only one neural network evaluation for each utterance. Despite its sampling efficiency, E1 TTS achieves naturalness and speaker similarity comparable to various strong baseline models. Audio samples are available at http://e1tts.github.io/ .
Listen to the Context: Towards Faithful Large Language Models for Retrieval Augmented Generation on Climate Questions
Large language models that use retrieval augmented generation have the potential to unlock valuable knowledge for researchers, policymakers, and the public by making long and technical climate-related documents more accessible. While this approach can help alleviate factual hallucinations by relying on retrieved passages as additional context, its effectiveness depends on whether the model's output remains faithful to these passages. To address this, we explore the automatic assessment of faithfulness of different models in this setting. We then focus on ClimateGPT, a large language model specialised in climate science, to examine which factors in its instruction fine-tuning impact the model's faithfulness. By excluding unfaithful subsets of the model's training data, we develop ClimateGPT Faithful+, which achieves an improvement in faithfulness from 30% to 57% in supported atomic claims according to our automatic metric.
Pandora's Box or Aladdin's Lamp: A Comprehensive Analysis Revealing the Role of RAG Noise in Large Language Models
Retrieval-Augmented Generation (RAG) has emerged as a crucial method for addressing hallucinations in large language models (LLMs). While recent research has extended RAG models to complex noisy scenarios, these explorations often confine themselves to limited noise types and presuppose that noise is inherently detrimental to LLMs, potentially deviating from real-world retrieval environments and restricting practical applicability. In this paper, we define seven distinct noise types from a linguistic perspective and establish a Noise RAG Benchmark (NoiserBench), a comprehensive evaluation framework encompassing multiple datasets and reasoning tasks. Through empirical evaluation of eight representative LLMs with diverse architectures and scales, we reveal that these noises can be further categorized into two practical groups: noise that is beneficial to LLMs (aka beneficial noise) and noise that is harmful to LLMs (aka harmful noise). While harmful noise generally impairs performance, beneficial noise may enhance several aspects of model capabilities and overall performance. Our analysis offers insights for developing more robust, adaptable RAG solutions and mitigating hallucinations across diverse retrieval scenarios.
Fine-grained Hallucination Detection and Editing for Language Models
Large language models (LMs) are prone to generate diverse factually incorrect statements, which are widely called hallucinations. Current approaches predominantly focus on coarse-grained automatic hallucination detection or editing, overlooking nuanced error levels. In this paper, we propose a novel task -- automatic fine-grained hallucination detection -- and present a comprehensive taxonomy encompassing six hierarchically defined types of hallucination. To facilitate evaluation, we introduce a new benchmark that includes fine-grained human judgments on two LM outputs across various domains. Our analysis reveals that ChatGPT and Llama 2-Chat exhibit hallucinations in 60% and 75% of their outputs, respectively, and a majority of these hallucinations fall into categories that have been underexplored. As an initial step to address this, we train FAVA, a retrieval-augmented LM by carefully designing synthetic data generations to detect and correct fine-grained hallucinations. On our benchmark, our automatic and human evaluations show that FAVA significantly outperforms ChatGPT on fine-grained hallucination detection by a large margin though a large room for future improvement still exists. FAVA's suggested edits also improve the factuality of LM-generated text, resulting in 5-10% FActScore improvements.
VoiceFixer: Toward General Speech Restoration with Neural Vocoder
Speech restoration aims to remove distortions in speech signals. Prior methods mainly focus on single-task speech restoration (SSR), such as speech denoising or speech declipping. However, SSR systems only focus on one task and do not address the general speech restoration problem. In addition, previous SSR systems show limited performance in some speech restoration tasks such as speech super-resolution. To overcome those limitations, we propose a general speech restoration (GSR) task that attempts to remove multiple distortions simultaneously. Furthermore, we propose VoiceFixer, a generative framework to address the GSR task. VoiceFixer consists of an analysis stage and a synthesis stage to mimic the speech analysis and comprehension of the human auditory system. We employ a ResUNet to model the analysis stage and a neural vocoder to model the synthesis stage. We evaluate VoiceFixer with additive noise, room reverberation, low-resolution, and clipping distortions. Our baseline GSR model achieves a 0.499 higher mean opinion score (MOS) than the speech enhancement SSR model. VoiceFixer further surpasses the GSR baseline model on the MOS score by 0.256. Moreover, we observe that VoiceFixer generalizes well to severely degraded real speech recordings, indicating its potential in restoring old movies and historical speeches. The source code is available at https://github.com/haoheliu/voicefixer_main.
Importance Weighting Can Help Large Language Models Self-Improve
Large language models (LLMs) have shown remarkable capability in numerous tasks and applications. However, fine-tuning LLMs using high-quality datasets under external supervision remains prohibitively expensive. In response, LLM self-improvement approaches have been vibrantly developed recently. The typical paradigm of LLM self-improvement involves training LLM on self-generated data, part of which may be detrimental and should be filtered out due to the unstable data quality. While current works primarily employs filtering strategies based on answer correctness, in this paper, we demonstrate that filtering out correct but with high distribution shift extent (DSE) samples could also benefit the results of self-improvement. Given that the actual sample distribution is usually inaccessible, we propose a new metric called DS weight to approximate DSE, inspired by the Importance Weighting methods. Consequently, we integrate DS weight with self-consistency to comprehensively filter the self-generated samples and fine-tune the language model. Experiments show that with only a tiny valid set (up to 5\% size of the training set) to compute DS weight, our approach can notably promote the reasoning ability of current LLM self-improvement methods. The resulting performance is on par with methods that rely on external supervision from pre-trained reward models.
VoiceFixer: A Unified Framework for High-Fidelity Speech Restoration
Speech restoration aims to remove distortions in speech signals. Prior methods mainly focus on a single type of distortion, such as speech denoising or dereverberation. However, speech signals can be degraded by several different distortions simultaneously in the real world. It is thus important to extend speech restoration models to deal with multiple distortions. In this paper, we introduce VoiceFixer, a unified framework for high-fidelity speech restoration. VoiceFixer restores speech from multiple distortions (e.g., noise, reverberation, and clipping) and can expand degraded speech (e.g., noisy speech) with a low bandwidth to 44.1 kHz full-bandwidth high-fidelity speech. We design VoiceFixer based on (1) an analysis stage that predicts intermediate-level features from the degraded speech, and (2) a synthesis stage that generates waveform using a neural vocoder. Both objective and subjective evaluations show that VoiceFixer is effective on severely degraded speech, such as real-world historical speech recordings. Samples of VoiceFixer are available at https://haoheliu.github.io/voicefixer.
Don't Fight Hallucinations, Use Them: Estimating Image Realism using NLI over Atomic Facts
Quantifying the realism of images remains a challenging problem in the field of artificial intelligence. For example, an image of Albert Einstein holding a smartphone violates common-sense because modern smartphone were invented after Einstein's death. We introduce a novel method for assessing image realism using Large Vision-Language Models (LVLMs) and Natural Language Inference (NLI). Our approach is based on the premise that LVLMs may generate hallucinations when confronted with images that defy common sense. Using LVLM to extract atomic facts from these images, we obtain a mix of accurate facts and erroneous hallucinations. We proceed by calculating pairwise entailment scores among these facts, subsequently aggregating these values to yield a singular reality score. This process serves to identify contradictions between genuine facts and hallucinatory elements, signaling the presence of images that violate common sense. Our approach has achieved a new state-of-the-art performance in zero-shot mode on the WHOOPS! dataset.
Pheme: Efficient and Conversational Speech Generation
In recent years, speech generation has seen remarkable progress, now achieving one-shot generation capability that is often virtually indistinguishable from real human voice. Integrating such advancements in speech generation with large language models might revolutionize a wide range of applications. However, certain applications, such as assistive conversational systems, require natural and conversational speech generation tools that also operate efficiently in real time. Current state-of-the-art models like VALL-E and SoundStorm, powered by hierarchical neural audio codecs, require large neural components and extensive training data to work well. In contrast, MQTTS aims to build more compact conversational TTS models while capitalizing on smaller-scale real-life conversational speech data. However, its autoregressive nature yields high inference latency and thus limits its real-time usage. In order to mitigate the current limitations of the state-of-the-art TTS models while capitalizing on their strengths, in this work we introduce the Pheme model series that 1) offers compact yet high-performing models, 2) allows for parallel speech generation of 3) natural conversational speech, and 4) it can be trained efficiently on smaller-scale conversational data, cutting data demands by more than 10x but still matching the quality of the autoregressive TTS models. We also show that through simple teacher-student distillation we can meet significant improvements in voice quality for single-speaker setups on top of pretrained Pheme checkpoints, relying solely on synthetic speech generated by much larger teacher models. Audio samples and pretrained models are available online.
Natural language guidance of high-fidelity text-to-speech with synthetic annotations
Text-to-speech models trained on large-scale datasets have demonstrated impressive in-context learning capabilities and naturalness. However, control of speaker identity and style in these models typically requires conditioning on reference speech recordings, limiting creative applications. Alternatively, natural language prompting of speaker identity and style has demonstrated promising results and provides an intuitive method of control. However, reliance on human-labeled descriptions prevents scaling to large datasets. Our work bridges the gap between these two approaches. We propose a scalable method for labeling various aspects of speaker identity, style, and recording conditions. We then apply this method to a 45k hour dataset, which we use to train a speech language model. Furthermore, we propose simple methods for increasing audio fidelity, significantly outperforming recent work despite relying entirely on found data. Our results demonstrate high-fidelity speech generation in a diverse range of accents, prosodic styles, channel conditions, and acoustic conditions, all accomplished with a single model and intuitive natural language conditioning. Audio samples can be heard at https://text-description-to-speech.com/.
CHARP: Conversation History AwaReness Probing for Knowledge-grounded Dialogue Systems
In this work, we dive deep into one of the popular knowledge-grounded dialogue benchmarks that focus on faithfulness, FaithDial. We show that a significant portion of the FaithDial data contains annotation artifacts, which may bias models towards completely ignoring the conversation history. We therefore introduce CHARP, a diagnostic test set, designed for an improved evaluation of hallucinations in conversational model. CHARP not only measures hallucination but also the compliance of the models to the conversation task. Our extensive analysis reveals that models primarily exhibit poor performance on CHARP due to their inability to effectively attend to and reason over the conversation history. Furthermore, the evaluation methods of FaithDial fail to capture these shortcomings, neglecting the conversational history. Our findings indicate that there is substantial room for contribution in both dataset creation and hallucination evaluation for knowledge-grounded dialogue, and that CHARP can serve as a tool for monitoring the progress in this particular research area. CHARP is publicly available at https://huggingface.co/datasets/huawei-noah/CHARP
Uhura: A Benchmark for Evaluating Scientific Question Answering and Truthfulness in Low-Resource African Languages
Evaluations of Large Language Models (LLMs) on knowledge-intensive tasks and factual accuracy often focus on high-resource languages primarily because datasets for low-resource languages (LRLs) are scarce. In this paper, we present Uhura -- a new benchmark that focuses on two tasks in six typologically-diverse African languages, created via human translation of existing English benchmarks. The first dataset, Uhura-ARC-Easy, is composed of multiple-choice science questions. The second, Uhura-TruthfulQA, is a safety benchmark testing the truthfulness of models on topics including health, law, finance, and politics. We highlight the challenges creating benchmarks with highly technical content for LRLs and outline mitigation strategies. Our evaluation reveals a significant performance gap between proprietary models such as GPT-4o and o1-preview, and Claude models, and open-source models like Meta's LLaMA and Google's Gemma. Additionally, all models perform better in English than in African languages. These results indicate that LMs struggle with answering scientific questions and are more prone to generating false claims in low-resource African languages. Our findings underscore the necessity for continuous improvement of multilingual LM capabilities in LRL settings to ensure safe and reliable use in real-world contexts. We open-source the Uhura Benchmark and Uhura Platform to foster further research and development in NLP for LRLs.
Deductive Closure Training of Language Models for Coherence, Accuracy, and Updatability
While language models (LMs) can sometimes generate factually correct text and estimate truth values of individual claims, these generally do not reflect a globally coherent, manipulable model of the world. As a consequence, current LMs also generate incorrect or nonsensical content, and are difficult to edit and bring up to date. We present a method called Deductive Closure Training (DCT) that uses LMs themselves to identify implications of (and contradictions within) the text that they generate, yielding an efficient self-supervised procedure for improving LM factuality. Given a collection of seed documents, DCT prompts LMs to generate additional text implied by these documents, reason globally about the correctness of this generated text, and finally fine-tune on text inferred to be correct. Given seed documents from a trusted source, DCT provides a tool for supervised model updating; if seed documents are sampled from the LM itself, DCT enables fully unsupervised fine-tuning for improved coherence and accuracy. Across the CREAK, MQUaKE, and Reversal Curse datasets, supervised DCT improves LM fact verification and text generation accuracy by 3-26%; on CREAK fully unsupervised DCT improves verification accuracy by 12%. These results show that LMs' reasoning capabilities during inference can be leveraged during training to improve their reliability.
FinerWeb-10BT: Refining Web Data with LLM-Based Line-Level Filtering
Data quality is crucial for training Large Language Models (LLMs). Traditional heuristic filters often miss low-quality text or mistakenly remove valuable content. In this paper, we introduce an LLM-based line-level filtering method to enhance training data quality. We use GPT-4o mini to label a 20,000-document sample from FineWeb at the line level, allowing the model to create descriptive labels for low-quality lines. These labels are grouped into nine main categories, and we train a DeBERTa-v3 classifier to scale the filtering to a 10B-token subset of FineWeb. To test the impact of our filtering, we train GPT-2 models on both the original and the filtered datasets. The results show that models trained on the filtered data achieve higher accuracy on the HellaSwag benchmark and reach their performance targets faster, even with up to 25\% less data. This demonstrates that LLM-based line-level filtering can significantly improve data quality and training efficiency for LLMs. We release our quality-annotated dataset, FinerWeb-10BT, and the codebase to support further work in this area.
The People's Speech: A Large-Scale Diverse English Speech Recognition Dataset for Commercial Usage
The People's Speech is a free-to-download 30,000-hour and growing supervised conversational English speech recognition dataset licensed for academic and commercial usage under CC-BY-SA (with a CC-BY subset). The data is collected via searching the Internet for appropriately licensed audio data with existing transcriptions. We describe our data collection methodology and release our data collection system under the Apache 2.0 license. We show that a model trained on this dataset achieves a 9.98% word error rate on Librispeech's test-clean test set.Finally, we discuss the legal and ethical issues surrounding the creation of a sizable machine learning corpora and plans for continued maintenance of the project under MLCommons's sponsorship.
Reformatted Alignment
The quality of finetuning data is crucial for aligning large language models (LLMs) with human values. Current methods to improve data quality are either labor-intensive or prone to factual errors caused by LLM hallucinations. This paper explores elevating the quality of existing instruction data to better align with human values, introducing a simple and effective approach named ReAlign, which reformats the responses of instruction data into a format that better aligns with pre-established criteria and the collated evidence. This approach minimizes human annotation, hallucination, and the difficulty in scaling, remaining orthogonal to existing alignment techniques. Experimentally, ReAlign significantly boosts the general alignment ability, math reasoning, factuality, and readability of the LLMs. Encouragingly, without introducing any additional data or advanced training techniques, and merely by reformatting the response, LLaMA-2-13B's mathematical reasoning ability on GSM8K can be improved from 46.77% to 56.63% in accuracy. Additionally, a mere 5% of ReAlign data yields a 67% boost in general alignment ability measured by the Alpaca dataset. This work highlights the need for further research into the science and mechanistic interpretability of LLMs. We have made the associated code and data publicly accessible to support future studies at https://github.com/GAIR-NLP/ReAlign.
VoiceFilter-Lite: Streaming Targeted Voice Separation for On-Device Speech Recognition
We introduce VoiceFilter-Lite, a single-channel source separation model that runs on the device to preserve only the speech signals from a target user, as part of a streaming speech recognition system. Delivering such a model presents numerous challenges: It should improve the performance when the input signal consists of overlapped speech, and must not hurt the speech recognition performance under all other acoustic conditions. Besides, this model must be tiny, fast, and perform inference in a streaming fashion, in order to have minimal impact on CPU, memory, battery and latency. We propose novel techniques to meet these multi-faceted requirements, including using a new asymmetric loss, and adopting adaptive runtime suppression strength. We also show that such a model can be quantized as a 8-bit integer model and run in realtime.
StreamVoice: Streamable Context-Aware Language Modeling for Real-time Zero-Shot Voice Conversion
Recent language model (LM) advancements have showcased impressive zero-shot voice conversion (VC) performance. However, existing LM-based VC models usually apply offline conversion from source semantics to acoustic features, demanding the complete source speech, and limiting their deployment to real-time applications. In this paper, we introduce StreamVoice, a novel streaming LM-based model for zero-shot VC, facilitating real-time conversion given arbitrary speaker prompts and source speech. Specifically, to enable streaming capability, StreamVoice employs a fully causal context-aware LM with a temporal-independent acoustic predictor, while alternately processing semantic and acoustic features at each time step of autoregression which eliminates the dependence on complete source speech. To address the potential performance degradation from the incomplete context in streaming processing, we enhance the context-awareness of the LM through two strategies: 1) teacher-guided context foresight, using a teacher model to summarize the present and future semantic context during training to guide the model's forecasting for missing context; 2) semantic masking strategy, promoting acoustic prediction from preceding corrupted semantic and acoustic input, enhancing context-learning ability. Notably, StreamVoice is the first LM-based streaming zero-shot VC model without any future look-ahead. Experimental results demonstrate StreamVoice's streaming conversion capability while maintaining zero-shot performance comparable to non-streaming VC systems.
Measuring the Robustness of Audio Deepfake Detectors
Deepfakes have become a universal and rapidly intensifying concern of generative AI across various media types such as images, audio, and videos. Among these, audio deepfakes have been of particular concern due to the ease of high-quality voice synthesis and distribution via platforms such as social media and robocalls. Consequently, detecting audio deepfakes plays a critical role in combating the growing misuse of AI-synthesized speech. However, real-world scenarios often introduce various audio corruptions, such as noise, modification, and compression, that may significantly impact detection performance. This work systematically evaluates the robustness of 10 audio deepfake detection models against 16 common corruptions, categorized into noise perturbation, audio modification, and compression. Using both traditional deep learning models and state-of-the-art foundation models, we make four unique observations. First, our findings show that while most models demonstrate strong robustness to noise, they are notably more vulnerable to modifications and compression, especially when neural codecs are applied. Second, speech foundation models generally outperform traditional models across most scenarios, likely due to their self-supervised learning paradigm and large-scale pre-training. Third, our results show that increasing model size improves robustness, albeit with diminishing returns. Fourth, we demonstrate how targeted data augmentation during training can enhance model resilience to unseen perturbations. A case study on political speech deepfakes highlights the effectiveness of foundation models in achieving high accuracy under real-world conditions. These findings emphasize the importance of developing more robust detection frameworks to ensure reliability in practical deployment settings.
Exploring WavLM Back-ends for Speech Spoofing and Deepfake Detection
This paper describes our submitted systems to the ASVspoof 5 Challenge Track 1: Speech Deepfake Detection - Open Condition, which consists of a stand-alone speech deepfake (bonafide vs spoof) detection task. Recently, large-scale self-supervised models become a standard in Automatic Speech Recognition (ASR) and other speech processing tasks. Thus, we leverage a pre-trained WavLM as a front-end model and pool its representations with different back-end techniques. The complete framework is fine-tuned using only the trained dataset of the challenge, similar to the close condition. Besides, we adopt data-augmentation by adding noise and reverberation using MUSAN noise and RIR datasets. We also experiment with codec augmentations to increase the performance of our method. Ultimately, we use the Bosaris toolkit for score calibration and system fusion to get better Cllr scores. Our fused system achieves 0.0937 minDCF, 3.42% EER, 0.1927 Cllr, and 0.1375 actDCF.
Trusted Source Alignment in Large Language Models
Large language models (LLMs) are trained on web-scale corpora that inevitably include contradictory factual information from sources of varying reliability. In this paper, we propose measuring an LLM property called trusted source alignment (TSA): the model's propensity to align with content produced by trusted publishers in the face of uncertainty or controversy. We present FactCheckQA, a TSA evaluation dataset based on a corpus of fact checking articles. We describe a simple protocol for evaluating TSA and offer a detailed analysis of design considerations including response extraction, claim contextualization, and bias in prompt formulation. Applying the protocol to PaLM-2, we find that as we scale up the model size, the model performance on FactCheckQA improves from near-random to up to 80% balanced accuracy in aligning with trusted sources.