Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAria Digital Twin: A New Benchmark Dataset for Egocentric 3D Machine Perception
We introduce the Aria Digital Twin (ADT) - an egocentric dataset captured using Aria glasses with extensive object, environment, and human level ground truth. This ADT release contains 200 sequences of real-world activities conducted by Aria wearers in two real indoor scenes with 398 object instances (324 stationary and 74 dynamic). Each sequence consists of: a) raw data of two monochrome camera streams, one RGB camera stream, two IMU streams; b) complete sensor calibration; c) ground truth data including continuous 6-degree-of-freedom (6DoF) poses of the Aria devices, object 6DoF poses, 3D eye gaze vectors, 3D human poses, 2D image segmentations, image depth maps; and d) photo-realistic synthetic renderings. To the best of our knowledge, there is no existing egocentric dataset with a level of accuracy, photo-realism and comprehensiveness comparable to ADT. By contributing ADT to the research community, our mission is to set a new standard for evaluation in the egocentric machine perception domain, which includes very challenging research problems such as 3D object detection and tracking, scene reconstruction and understanding, sim-to-real learning, human pose prediction - while also inspiring new machine perception tasks for augmented reality (AR) applications. To kick start exploration of the ADT research use cases, we evaluated several existing state-of-the-art methods for object detection, segmentation and image translation tasks that demonstrate the usefulness of ADT as a benchmarking dataset.
Probabilistic Human Mesh Recovery in 3D Scenes from Egocentric Views
Automatic perception of human behaviors during social interactions is crucial for AR/VR applications, and an essential component is estimation of plausible 3D human pose and shape of our social partners from the egocentric view. One of the biggest challenges of this task is severe body truncation due to close social distances in egocentric scenarios, which brings large pose ambiguities for unseen body parts. To tackle this challenge, we propose a novel scene-conditioned diffusion method to model the body pose distribution. Conditioned on the 3D scene geometry, the diffusion model generates bodies in plausible human-scene interactions, with the sampling guided by a physics-based collision score to further resolve human-scene inter-penetrations. The classifier-free training enables flexible sampling with different conditions and enhanced diversity. A visibility-aware graph convolution model guided by per-joint visibility serves as the diffusion denoiser to incorporate inter-joint dependencies and per-body-part control. Extensive evaluations show that our method generates bodies in plausible interactions with 3D scenes, achieving both superior accuracy for visible joints and diversity for invisible body parts. The code will be available at https://sanweiliti.github.io/egohmr/egohmr.html.
EOC-Bench: Can MLLMs Identify, Recall, and Forecast Objects in an Egocentric World?
The emergence of multimodal large language models (MLLMs) has driven breakthroughs in egocentric vision applications. These applications necessitate persistent, context-aware understanding of objects, as users interact with tools in dynamic and cluttered environments. However, existing embodied benchmarks primarily focus on static scene exploration, emphasizing object's appearance and spatial attributes while neglecting the assessment of dynamic changes arising from users' interactions. To address this gap, we introduce EOC-Bench, an innovative benchmark designed to systematically evaluate object-centric embodied cognition in dynamic egocentric scenarios. Specially, EOC-Bench features 3,277 meticulously annotated QA pairs categorized into three temporal categories: Past, Present, and Future, covering 11 fine-grained evaluation dimensions and 3 visual object referencing types. To ensure thorough assessment, we develop a mixed-format human-in-the-loop annotation framework with four types of questions and design a novel multi-scale temporal accuracy metric for open-ended temporal evaluation. Based on EOC-Bench, we conduct comprehensive evaluations of various proprietary, open-source, and object-level MLLMs. EOC-Bench serves as a crucial tool for advancing the embodied object cognitive capabilities of MLLMs, establishing a robust foundation for developing reliable core models for embodied systems.
Dyn-HaMR: Recovering 4D Interacting Hand Motion from a Dynamic Camera
We propose Dyn-HaMR, to the best of our knowledge, the first approach to reconstruct 4D global hand motion from monocular videos recorded by dynamic cameras in the wild. Reconstructing accurate 3D hand meshes from monocular videos is a crucial task for understanding human behaviour, with significant applications in augmented and virtual reality (AR/VR). However, existing methods for monocular hand reconstruction typically rely on a weak perspective camera model, which simulates hand motion within a limited camera frustum. As a result, these approaches struggle to recover the full 3D global trajectory and often produce noisy or incorrect depth estimations, particularly when the video is captured by dynamic or moving cameras, which is common in egocentric scenarios. Our Dyn-HaMR consists of a multi-stage, multi-objective optimization pipeline, that factors in (i) simultaneous localization and mapping (SLAM) to robustly estimate relative camera motion, (ii) an interacting-hand prior for generative infilling and to refine the interaction dynamics, ensuring plausible recovery under (self-)occlusions, and (iii) hierarchical initialization through a combination of state-of-the-art hand tracking methods. Through extensive evaluations on both in-the-wild and indoor datasets, we show that our approach significantly outperforms state-of-the-art methods in terms of 4D global mesh recovery. This establishes a new benchmark for hand motion reconstruction from monocular video with moving cameras. Our project page is at https://dyn-hamr.github.io/.
HAT: History-Augmented Anchor Transformer for Online Temporal Action Localization
Online video understanding often relies on individual frames, leading to frame-by-frame predictions. Recent advancements such as Online Temporal Action Localization (OnTAL), extend this approach to instance-level predictions. However, existing methods mainly focus on short-term context, neglecting historical information. To address this, we introduce the History-Augmented Anchor Transformer (HAT) Framework for OnTAL. By integrating historical context, our framework enhances the synergy between long-term and short-term information, improving the quality of anchor features crucial for classification and localization. We evaluate our model on both procedural egocentric (PREGO) datasets (EGTEA and EPIC) and standard non-PREGO OnTAL datasets (THUMOS and MUSES). Results show that our model outperforms state-of-the-art approaches significantly on PREGO datasets and achieves comparable or slightly superior performance on non-PREGO datasets, underscoring the importance of leveraging long-term history, especially in procedural and egocentric action scenarios. Code is available at: https://github.com/sakibreza/ECCV24-HAT/
MMG-Ego4D: Multi-Modal Generalization in Egocentric Action Recognition
In this paper, we study a novel problem in egocentric action recognition, which we term as "Multimodal Generalization" (MMG). MMG aims to study how systems can generalize when data from certain modalities is limited or even completely missing. We thoroughly investigate MMG in the context of standard supervised action recognition and the more challenging few-shot setting for learning new action categories. MMG consists of two novel scenarios, designed to support security, and efficiency considerations in real-world applications: (1) missing modality generalization where some modalities that were present during the train time are missing during the inference time, and (2) cross-modal zero-shot generalization, where the modalities present during the inference time and the training time are disjoint. To enable this investigation, we construct a new dataset MMG-Ego4D containing data points with video, audio, and inertial motion sensor (IMU) modalities. Our dataset is derived from Ego4D dataset, but processed and thoroughly re-annotated by human experts to facilitate research in the MMG problem. We evaluate a diverse array of models on MMG-Ego4D and propose new methods with improved generalization ability. In particular, we introduce a new fusion module with modality dropout training, contrastive-based alignment training, and a novel cross-modal prototypical loss for better few-shot performance. We hope this study will serve as a benchmark and guide future research in multimodal generalization problems. The benchmark and code will be available at https://github.com/facebookresearch/MMG_Ego4D.
Benchmarks and Challenges in Pose Estimation for Egocentric Hand Interactions with Objects
We interact with the world with our hands and see it through our own (egocentric) perspective. A holistic 3Dunderstanding of such interactions from egocentric views is important for tasks in robotics, AR/VR, action recognition and motion generation. Accurately reconstructing such interactions in 3D is challenging due to heavy occlusion, viewpoint bias, camera distortion, and motion blur from the head movement. To this end, we designed the HANDS23 challenge based on the AssemblyHands and ARCTIC datasets with carefully designed training and testing splits. Based on the results of the top submitted methods and more recent baselines on the leaderboards, we perform a thorough analysis on 3D hand(-object) reconstruction tasks. Our analysis demonstrates the effectiveness of addressing distortion specific to egocentric cameras, adopting high-capacity transformers to learn complex hand-object interactions, and fusing predictions from different views. Our study further reveals challenging scenarios intractable with state-of-the-art methods, such as fast hand motion, object reconstruction from narrow egocentric views, and close contact between two hands and objects. Our efforts will enrich the community's knowledge foundation and facilitate future hand studies on egocentric hand-object interactions.
Do Egocentric Video-Language Models Truly Understand Hand-Object Interactions?
Egocentric video-language pretraining is a crucial step in advancing the understanding of hand-object interactions in first-person scenarios. Despite successes on existing testbeds, we find that current EgoVLMs can be easily misled by simple modifications, such as changing the verbs or nouns in interaction descriptions, with models struggling to distinguish between these changes. This raises the question: Do EgoVLMs truly understand hand-object interactions? To address this question, we introduce a benchmark called EgoHOIBench, revealing the performance limitation of current egocentric models when confronted with such challenges. We attribute this performance gap to insufficient fine-grained supervision and the greater difficulty EgoVLMs experience in recognizing verbs compared to nouns. To tackle these issues, we propose a novel asymmetric contrastive objective named EgoNCE++. For the video-to-text objective, we enhance text supervision by generating negative captions using large language models or leveraging pretrained vocabulary for HOI-related word substitutions. For the text-to-video objective, we focus on preserving an object-centric feature space that clusters video representations based on shared nouns. Extensive experiments demonstrate that EgoNCE++ significantly enhances EgoHOI understanding, leading to improved performance across various EgoVLMs in tasks such as multi-instance retrieval, action recognition, and temporal understanding. Our code is available at https://github.com/xuboshen/EgoNCEpp.
ENIGMA-51: Towards a Fine-Grained Understanding of Human-Object Interactions in Industrial Scenarios
ENIGMA-51 is a new egocentric dataset acquired in an industrial scenario by 19 subjects who followed instructions to complete the repair of electrical boards using industrial tools (e.g., electric screwdriver) and equipments (e.g., oscilloscope). The 51 egocentric video sequences are densely annotated with a rich set of labels that enable the systematic study of human behavior in the industrial domain. We provide benchmarks on four tasks related to human behavior: 1) untrimmed temporal detection of human-object interactions, 2) egocentric human-object interaction detection, 3) short-term object interaction anticipation and 4) natural language understanding of intents and entities. Baseline results show that the ENIGMA-51 dataset poses a challenging benchmark to study human behavior in industrial scenarios. We publicly release the dataset at https://iplab.dmi.unict.it/ENIGMA-51.
Learning from Semantic Alignment between Unpaired Multiviews for Egocentric Video Recognition
We are concerned with a challenging scenario in unpaired multiview video learning. In this case, the model aims to learn comprehensive multiview representations while the cross-view semantic information exhibits variations. We propose Semantics-based Unpaired Multiview Learning (SUM-L) to tackle this unpaired multiview learning problem. The key idea is to build cross-view pseudo-pairs and do view-invariant alignment by leveraging the semantic information of videos. To facilitate the data efficiency of multiview learning, we further perform video-text alignment for first-person and third-person videos, to fully leverage the semantic knowledge to improve video representations. Extensive experiments on multiple benchmark datasets verify the effectiveness of our framework. Our method also outperforms multiple existing view-alignment methods, under the more challenging scenario than typical paired or unpaired multimodal or multiview learning. Our code is available at https://github.com/wqtwjt1996/SUM-L.
PlayerOne: Egocentric World Simulator
We introduce PlayerOne, the first egocentric realistic world simulator, facilitating immersive and unrestricted exploration within vividly dynamic environments. Given an egocentric scene image from the user, PlayerOne can accurately construct the corresponding world and generate egocentric videos that are strictly aligned with the real scene human motion of the user captured by an exocentric camera. PlayerOne is trained in a coarse-to-fine pipeline that first performs pretraining on large-scale egocentric text-video pairs for coarse-level egocentric understanding, followed by finetuning on synchronous motion-video data extracted from egocentric-exocentric video datasets with our automatic construction pipeline. Besides, considering the varying importance of different components, we design a part-disentangled motion injection scheme, enabling precise control of part-level movements. In addition, we devise a joint reconstruction framework that progressively models both the 4D scene and video frames, ensuring scene consistency in the long-form video generation. Experimental results demonstrate its great generalization ability in precise control of varying human movements and worldconsistent modeling of diverse scenarios. It marks the first endeavor into egocentric real-world simulation and can pave the way for the community to delve into fresh frontiers of world modeling and its diverse applications.
Localizing Active Objects from Egocentric Vision with Symbolic World Knowledge
The ability to actively ground task instructions from an egocentric view is crucial for AI agents to accomplish tasks or assist humans virtually. One important step towards this goal is to localize and track key active objects that undergo major state change as a consequence of human actions/interactions to the environment without being told exactly what/where to ground (e.g., localizing and tracking the `sponge` in video from the instruction "Dip the `sponge` into the bucket."). While existing works approach this problem from a pure vision perspective, we investigate to which extent the textual modality (i.e., task instructions) and their interaction with visual modality can be beneficial. Specifically, we propose to improve phrase grounding models' ability on localizing the active objects by: (1) learning the role of `objects undergoing change` and extracting them accurately from the instructions, (2) leveraging pre- and post-conditions of the objects during actions, and (3) recognizing the objects more robustly with descriptional knowledge. We leverage large language models (LLMs) to extract the aforementioned action-object knowledge, and design a per-object aggregation masking technique to effectively perform joint inference on object phrases and symbolic knowledge. We evaluate our framework on Ego4D and Epic-Kitchens datasets. Extensive experiments demonstrate the effectiveness of our proposed framework, which leads to>54% improvements in all standard metrics on the TREK-150-OPE-Det localization + tracking task, >7% improvements in all standard metrics on the TREK-150-OPE tracking task, and >3% improvements in average precision (AP) on the Ego4D SCOD task.
3D Human Pose Perception from Egocentric Stereo Videos
While head-mounted devices are becoming more compact, they provide egocentric views with significant self-occlusions of the device user. Hence, existing methods often fail to accurately estimate complex 3D poses from egocentric views. In this work, we propose a new transformer-based framework to improve egocentric stereo 3D human pose estimation, which leverages the scene information and temporal context of egocentric stereo videos. Specifically, we utilize 1) depth features from our 3D scene reconstruction module with uniformly sampled windows of egocentric stereo frames, and 2) human joint queries enhanced by temporal features of the video inputs. Our method is able to accurately estimate human poses even in challenging scenarios, such as crouching and sitting. Furthermore, we introduce two new benchmark datasets, i.e., UnrealEgo2 and UnrealEgo-RW (RealWorld). The proposed datasets offer a much larger number of egocentric stereo views with a wider variety of human motions than the existing datasets, allowing comprehensive evaluation of existing and upcoming methods. Our extensive experiments show that the proposed approach significantly outperforms previous methods. We will release UnrealEgo2, UnrealEgo-RW, and trained models on our project page.
VidEgoThink: Assessing Egocentric Video Understanding Capabilities for Embodied AI
Recent advancements in Multi-modal Large Language Models (MLLMs) have opened new avenues for applications in Embodied AI. Building on previous work, EgoThink, we introduce VidEgoThink, a comprehensive benchmark for evaluating egocentric video understanding capabilities. To bridge the gap between MLLMs and low-level control in Embodied AI, we design four key interrelated tasks: video question-answering, hierarchy planning, visual grounding and reward modeling. To minimize manual annotation costs, we develop an automatic data generation pipeline based on the Ego4D dataset, leveraging the prior knowledge and multimodal capabilities of GPT-4o. Three human annotators then filter the generated data to ensure diversity and quality, resulting in the VidEgoThink benchmark. We conduct extensive experiments with three types of models: API-based MLLMs, open-source image-based MLLMs, and open-source video-based MLLMs. Experimental results indicate that all MLLMs, including GPT-4o, perform poorly across all tasks related to egocentric video understanding. These findings suggest that foundation models still require significant advancements to be effectively applied to first-person scenarios in Embodied AI. In conclusion, VidEgoThink reflects a research trend towards employing MLLMs for egocentric vision, akin to human capabilities, enabling active observation and interaction in the complex real-world environments.
Mixed-Session Conversation with Egocentric Memory
Recently introduced dialogue systems have demonstrated high usability. However, they still fall short of reflecting real-world conversation scenarios. Current dialogue systems exhibit an inability to replicate the dynamic, continuous, long-term interactions involving multiple partners. This shortfall arises because there have been limited efforts to account for both aspects of real-world dialogues: deeply layered interactions over the long-term dialogue and widely expanded conversation networks involving multiple participants. As the effort to incorporate these aspects combined, we introduce Mixed-Session Conversation, a dialogue system designed to construct conversations with various partners in a multi-session dialogue setup. We propose a new dataset called MiSC to implement this system. The dialogue episodes of MiSC consist of 6 consecutive sessions, with four speakers (one main speaker and three partners) appearing in each episode. Also, we propose a new dialogue model with a novel memory management mechanism, called Egocentric Memory Enhanced Mixed-Session Conversation Agent (EMMA). EMMA collects and retains memories from the main speaker's perspective during conversations with partners, enabling seamless continuity in subsequent interactions. Extensive human evaluations validate that the dialogues in MiSC demonstrate a seamless conversational flow, even when conversation partners change in each session. EMMA trained with MiSC is also evaluated to maintain high memorability without contradiction throughout the entire conversation.
DIV-FF: Dynamic Image-Video Feature Fields For Environment Understanding in Egocentric Videos
Environment understanding in egocentric videos is an important step for applications like robotics, augmented reality and assistive technologies. These videos are characterized by dynamic interactions and a strong dependence on the wearer engagement with the environment. Traditional approaches often focus on isolated clips or fail to integrate rich semantic and geometric information, limiting scene comprehension. We introduce Dynamic Image-Video Feature Fields (DIV FF), a framework that decomposes the egocentric scene into persistent, dynamic, and actor based components while integrating both image and video language features. Our model enables detailed segmentation, captures affordances, understands the surroundings and maintains consistent understanding over time. DIV-FF outperforms state-of-the-art methods, particularly in dynamically evolving scenarios, demonstrating its potential to advance long term, spatio temporal scene understanding.
EgoMe: Follow Me via Egocentric View in Real World
When interacting with the real world, human often take the egocentric (first-person) view as a benchmark, naturally transferring behaviors observed from a exocentric (third-person) view to their own. This cognitive theory provides a foundation for researching how robots can more effectively imitate human behavior. However, current research either employs multiple cameras with different views focusing on the same individual's behavior simultaneously or encounters unpair ego-exo view scenarios, there is no effort to fully exploit human cognitive behavior in the real world. To fill this gap, in this paper, we introduce a novel large-scale egocentric dataset, called EgoMe, which towards following the process of human imitation learning via egocentric view in the real world. Our dataset includes 7902 pairs of videos (15804 videos) for diverse daily behaviors in real-world scenarios. For a pair of videos, one video captures a exocentric view of the imitator observing the demonstrator's actions, while the other captures a egocentric view of the imitator subsequently following those actions. Notably, our dataset also contain exo-ego eye gaze, angular velocity, acceleration, magnetic strength and other sensor multi-modal data for assisting in establishing correlations between observing and following process. In addition, we also propose eight challenging benchmark tasks for fully leveraging this data resource and promoting the research of robot imitation learning ability. Extensive statistical analysis demonstrates significant advantages compared to existing datasets. The proposed EgoMe dataset and benchmark will be released soon.
Introducing HOT3D: An Egocentric Dataset for 3D Hand and Object Tracking
We introduce HOT3D, a publicly available dataset for egocentric hand and object tracking in 3D. The dataset offers over 833 minutes (more than 3.7M images) of multi-view RGB/monochrome image streams showing 19 subjects interacting with 33 diverse rigid objects, multi-modal signals such as eye gaze or scene point clouds, as well as comprehensive ground truth annotations including 3D poses of objects, hands, and cameras, and 3D models of hands and objects. In addition to simple pick-up/observe/put-down actions, HOT3D contains scenarios resembling typical actions in a kitchen, office, and living room environment. The dataset is recorded by two head-mounted devices from Meta: Project Aria, a research prototype of light-weight AR/AI glasses, and Quest 3, a production VR headset sold in millions of units. Ground-truth poses were obtained by a professional motion-capture system using small optical markers attached to hands and objects. Hand annotations are provided in the UmeTrack and MANO formats and objects are represented by 3D meshes with PBR materials obtained by an in-house scanner. We aim to accelerate research on egocentric hand-object interaction by making the HOT3D dataset publicly available and by co-organizing public challenges on the dataset at ECCV 2024. The dataset can be downloaded from the project website: https://facebookresearch.github.io/hot3d/.
EgoObjects: A Large-Scale Egocentric Dataset for Fine-Grained Object Understanding
Object understanding in egocentric visual data is arguably a fundamental research topic in egocentric vision. However, existing object datasets are either non-egocentric or have limitations in object categories, visual content, and annotation granularities. In this work, we introduce EgoObjects, a large-scale egocentric dataset for fine-grained object understanding. Its Pilot version contains over 9K videos collected by 250 participants from 50+ countries using 4 wearable devices, and over 650K object annotations from 368 object categories. Unlike prior datasets containing only object category labels, EgoObjects also annotates each object with an instance-level identifier, and includes over 14K unique object instances. EgoObjects was designed to capture the same object under diverse background complexities, surrounding objects, distance, lighting and camera motion. In parallel to the data collection, we conducted data annotation by developing a multi-stage federated annotation process to accommodate the growing nature of the dataset. To bootstrap the research on EgoObjects, we present a suite of 4 benchmark tasks around the egocentric object understanding, including a novel instance level- and the classical category level object detection. Moreover, we also introduce 2 novel continual learning object detection tasks. The dataset and API are available at https://github.com/facebookresearch/EgoObjects.
Spectral Graphormer: Spectral Graph-based Transformer for Egocentric Two-Hand Reconstruction using Multi-View Color Images
We propose a novel transformer-based framework that reconstructs two high fidelity hands from multi-view RGB images. Unlike existing hand pose estimation methods, where one typically trains a deep network to regress hand model parameters from single RGB image, we consider a more challenging problem setting where we directly regress the absolute root poses of two-hands with extended forearm at high resolution from egocentric view. As existing datasets are either infeasible for egocentric viewpoints or lack background variations, we create a large-scale synthetic dataset with diverse scenarios and collect a real dataset from multi-calibrated camera setup to verify our proposed multi-view image feature fusion strategy. To make the reconstruction physically plausible, we propose two strategies: (i) a coarse-to-fine spectral graph convolution decoder to smoothen the meshes during upsampling and (ii) an optimisation-based refinement stage at inference to prevent self-penetrations. Through extensive quantitative and qualitative evaluations, we show that our framework is able to produce realistic two-hand reconstructions and demonstrate the generalisation of synthetic-trained models to real data, as well as real-time AR/VR applications.
Ego4D: Around the World in 3,000 Hours of Egocentric Video
We introduce Ego4D, a massive-scale egocentric video dataset and benchmark suite. It offers 3,670 hours of daily-life activity video spanning hundreds of scenarios (household, outdoor, workplace, leisure, etc.) captured by 931 unique camera wearers from 74 worldwide locations and 9 different countries. The approach to collection is designed to uphold rigorous privacy and ethics standards with consenting participants and robust de-identification procedures where relevant. Ego4D dramatically expands the volume of diverse egocentric video footage publicly available to the research community. Portions of the video are accompanied by audio, 3D meshes of the environment, eye gaze, stereo, and/or synchronized videos from multiple egocentric cameras at the same event. Furthermore, we present a host of new benchmark challenges centered around understanding the first-person visual experience in the past (querying an episodic memory), present (analyzing hand-object manipulation, audio-visual conversation, and social interactions), and future (forecasting activities). By publicly sharing this massive annotated dataset and benchmark suite, we aim to push the frontier of first-person perception. Project page: https://ego4d-data.org/
X-LeBench: A Benchmark for Extremely Long Egocentric Video Understanding
Long-form egocentric video understanding provides rich contextual information and unique insights into long-term human behaviors, holding significant potential for applications in embodied intelligence, long-term activity analysis, and personalized assistive technologies. However, existing benchmark datasets primarily focus on single, short-duration videos or moderately long videos up to dozens of minutes, leaving a substantial gap in evaluating extensive, ultra-long egocentric video recordings. To address this, we introduce X-LeBench, a novel benchmark dataset specifically crafted for evaluating tasks on extremely long egocentric video recordings. Leveraging the advanced text processing capabilities of large language models (LLMs), X-LeBench develops a life-logging simulation pipeline that produces realistic, coherent daily plans aligned with real-world video data. This approach enables the flexible integration of synthetic daily plans with real-world footage from Ego4D-a massive-scale egocentric video dataset covers a wide range of daily life scenarios-resulting in 432 simulated video life logs that mirror realistic daily activities in contextually rich scenarios. The video life-log durations span from 23 minutes to 16.4 hours. The evaluation of several baseline systems and multimodal large language models (MLLMs) reveals their poor performance across the board, highlighting the inherent challenges of long-form egocentric video understanding and underscoring the need for more advanced models.
HOT3D: Hand and Object Tracking in 3D from Egocentric Multi-View Videos
We introduce HOT3D, a publicly available dataset for egocentric hand and object tracking in 3D. The dataset offers over 833 minutes (more than 3.7M images) of multi-view RGB/monochrome image streams showing 19 subjects interacting with 33 diverse rigid objects, multi-modal signals such as eye gaze or scene point clouds, as well as comprehensive ground-truth annotations including 3D poses of objects, hands, and cameras, and 3D models of hands and objects. In addition to simple pick-up/observe/put-down actions, HOT3D contains scenarios resembling typical actions in a kitchen, office, and living room environment. The dataset is recorded by two head-mounted devices from Meta: Project Aria, a research prototype of light-weight AR/AI glasses, and Quest 3, a production VR headset sold in millions of units. Ground-truth poses were obtained by a professional motion-capture system using small optical markers attached to hands and objects. Hand annotations are provided in the UmeTrack and MANO formats and objects are represented by 3D meshes with PBR materials obtained by an in-house scanner. In our experiments, we demonstrate the effectiveness of multi-view egocentric data for three popular tasks: 3D hand tracking, 6DoF object pose estimation, and 3D lifting of unknown in-hand objects. The evaluated multi-view methods, whose benchmarking is uniquely enabled by HOT3D, significantly outperform their single-view counterparts.
RoboSense: Large-scale Dataset and Benchmark for Egocentric Robot Perception and Navigation in Crowded and Unstructured Environments
Reliable embodied perception from an egocentric perspective is challenging yet essential for autonomous navigation technology of intelligent mobile agents. With the growing demand of social robotics, near-field scene understanding becomes an important research topic in the areas of egocentric perceptual tasks related to navigation in both crowded and unstructured environments. Due to the complexity of environmental conditions and difficulty of surrounding obstacles owing to truncation and occlusion, the perception capability under this circumstance is still inferior. To further enhance the intelligence of mobile robots, in this paper, we setup an egocentric multi-sensor data collection platform based on 3 main types of sensors (Camera, LiDAR and Fisheye), which supports flexible sensor configurations to enable dynamic sight of view from ego-perspective, capturing either near or farther areas. Meanwhile, a large-scale multimodal dataset is constructed, named RoboSense, to facilitate egocentric robot perception. Specifically, RoboSense contains more than 133K synchronized data with 1.4M 3D bounding box and IDs annotated in the full 360^{circ} view, forming 216K trajectories across 7.6K temporal sequences. It has 270times and 18times as many annotations of surrounding obstacles within near ranges as the previous datasets collected for autonomous driving scenarios such as KITTI and nuScenes. Moreover, we define a novel matching criterion for near-field 3D perception and prediction metrics. Based on RoboSense, we formulate 6 popular tasks to facilitate the future research development, where the detailed analysis as well as benchmarks are also provided accordingly. Data desensitization measures have been conducted for privacy protection.
Masked Video and Body-worn IMU Autoencoder for Egocentric Action Recognition
Compared with visual signals, Inertial Measurement Units (IMUs) placed on human limbs can capture accurate motion signals while being robust to lighting variation and occlusion. While these characteristics are intuitively valuable to help egocentric action recognition, the potential of IMUs remains under-explored. In this work, we present a novel method for action recognition that integrates motion data from body-worn IMUs with egocentric video. Due to the scarcity of labeled multimodal data, we design an MAE-based self-supervised pretraining method, obtaining strong multi-modal representations via modeling the natural correlation between visual and motion signals. To model the complex relation of multiple IMU devices placed across the body, we exploit the collaborative dynamics in multiple IMU devices and propose to embed the relative motion features of human joints into a graph structure. Experiments show our method can achieve state-of-the-art performance on multiple public datasets. The effectiveness of our MAE-based pretraining and graph-based IMU modeling are further validated by experiments in more challenging scenarios, including partially missing IMU devices and video quality corruption, promoting more flexible usages in the real world.
TI-PREGO: Chain of Thought and In-Context Learning for Online Mistake Detection in PRocedural EGOcentric Videos
Identifying procedural errors online from egocentric videos is a critical yet challenging task across various domains, including manufacturing, healthcare, and skill-based training. The nature of such mistakes is inherently open-set, as unforeseen or novel errors may occur, necessitating robust detection systems that do not rely on prior examples of failure. Currently, however, no technique effectively detects open-set procedural mistakes online. We propose a dual branch architecture to address this problem in an online fashion: one branch continuously performs step recognition from the input egocentric video, while the other anticipates future steps based on the recognition module's output. Mistakes are detected as mismatches between the currently recognized action and the action predicted by the anticipation module. The recognition branch takes input frames, predicts the current action, and aggregates frame-level results into action tokens. The anticipation branch, specifically, leverages the solid pattern-matching capabilities of Large Language Models (LLMs) to predict action tokens based on previously predicted ones. Given the online nature of the task, we also thoroughly benchmark the difficulties associated with per-frame evaluations, particularly the need for accurate and timely predictions in dynamic online scenarios. Extensive experiments on two procedural datasets demonstrate the challenges and opportunities of leveraging a dual-branch architecture for mistake detection, showcasing the effectiveness of our proposed approach. In a thorough evaluation including recognition and anticipation variants and state-of-the-art models, our method reveals its robustness and effectiveness in online applications.
Reading Recognition in the Wild
To enable egocentric contextual AI in always-on smart glasses, it is crucial to be able to keep a record of the user's interactions with the world, including during reading. In this paper, we introduce a new task of reading recognition to determine when the user is reading. We first introduce the first-of-its-kind large-scale multimodal Reading in the Wild dataset, containing 100 hours of reading and non-reading videos in diverse and realistic scenarios. We then identify three modalities (egocentric RGB, eye gaze, head pose) that can be used to solve the task, and present a flexible transformer model that performs the task using these modalities, either individually or combined. We show that these modalities are relevant and complementary to the task, and investigate how to efficiently and effectively encode each modality. Additionally, we show the usefulness of this dataset towards classifying types of reading, extending current reading understanding studies conducted in constrained settings to larger scale, diversity and realism.
DeGauss: Dynamic-Static Decomposition with Gaussian Splatting for Distractor-free 3D Reconstruction
Reconstructing clean, distractor-free 3D scenes from real-world captures remains a significant challenge, particularly in highly dynamic and cluttered settings such as egocentric videos. To tackle this problem, we introduce DeGauss, a simple and robust self-supervised framework for dynamic scene reconstruction based on a decoupled dynamic-static Gaussian Splatting design. DeGauss models dynamic elements with foreground Gaussians and static content with background Gaussians, using a probabilistic mask to coordinate their composition and enable independent yet complementary optimization. DeGauss generalizes robustly across a wide range of real-world scenarios, from casual image collections to long, dynamic egocentric videos, without relying on complex heuristics or extensive supervision. Experiments on benchmarks including NeRF-on-the-go, ADT, AEA, Hot3D, and EPIC-Fields demonstrate that DeGauss consistently outperforms existing methods, establishing a strong baseline for generalizable, distractor-free 3D reconstructionin highly dynamic, interaction-rich environments. Project page: https://batfacewayne.github.io/DeGauss.io/
VideoMolmo: Spatio-Temporal Grounding Meets Pointing
Spatio-temporal localization is vital for precise interactions across diverse domains, from biological research to autonomous navigation and interactive interfaces. Current video-based approaches, while proficient in tracking, lack the sophisticated reasoning capabilities of large language models, limiting their contextual understanding and generalization. We introduce VideoMolmo, a large multimodal model tailored for fine-grained spatio-temporal pointing conditioned on textual descriptions. Building upon the Molmo architecture, VideoMolmo incorporates a temporal module utilizing an attention mechanism to condition each frame on preceding frames, ensuring temporal consistency. Additionally, our novel temporal mask fusion pipeline employs SAM2 for bidirectional point propagation, significantly enhancing coherence across video sequences. This two-step decomposition, i.e., first using the LLM to generate precise pointing coordinates, then relying on a sequential mask-fusion module to produce coherent segmentation, not only simplifies the task for the language model but also enhances interpretability. Due to the lack of suitable datasets, we curate a comprehensive dataset comprising 72k video-caption pairs annotated with 100k object points. To evaluate the generalization of VideoMolmo, we introduce VPoS-Bench, a challenging out-of-distribution benchmark spanning five real-world scenarios: Cell Tracking, Egocentric Vision, Autonomous Driving, Video-GUI Interaction, and Robotics. We also evaluate our model on Referring Video Object Segmentation (Refer-VOS) and Reasoning VOS tasks. In comparison to existing models, VideoMolmo substantially improves spatio-temporal pointing accuracy and reasoning capability. Our code and models are publicly available at https://github.com/mbzuai-oryx/VideoMolmo.
EgoPlan-Bench: Benchmarking Multimodal Large Language Models for Human-Level Planning
The pursuit of artificial general intelligence (AGI) has been accelerated by Multimodal Large Language Models (MLLMs), which exhibit superior reasoning, generalization capabilities, and proficiency in processing multimodal inputs. A crucial milestone in the evolution of AGI is the attainment of human-level planning, a fundamental ability for making informed decisions in complex environments, and solving a wide range of real-world problems. Despite the impressive advancements in MLLMs, a question remains: How far are current MLLMs from achieving human-level planning? To shed light on this question, we introduce EgoPlan-Bench, a comprehensive benchmark to evaluate the planning abilities of MLLMs in real-world scenarios from an egocentric perspective, mirroring human perception. EgoPlan-Bench emphasizes the evaluation of planning capabilities of MLLMs, featuring realistic tasks, diverse action plans, and intricate visual observations. Our rigorous evaluation of a wide range of MLLMs reveals that EgoPlan-Bench poses significant challenges, highlighting a substantial scope for improvement in MLLMs to achieve human-level task planning. To facilitate this advancement, we further present EgoPlan-IT, a specialized instruction-tuning dataset that effectively enhances model performance on EgoPlan-Bench. We have made all codes, data, and a maintained benchmark leaderboard available to advance future research.
MLVU: A Comprehensive Benchmark for Multi-Task Long Video Understanding
The evaluation of Long Video Understanding (LVU) performance poses an important but challenging research problem. Despite previous efforts, the existing video understanding benchmarks are severely constrained by several issues, especially the insufficient lengths of videos, a lack of diversity in video types and evaluation tasks, and the inappropriateness for evaluating LVU performances. To address the above problems, we propose a new benchmark, called MLVU (Multi-task Long Video Understanding Benchmark), for the comprehensive and in-depth evaluation of LVU. MLVU presents the following critical values: 1) The substantial and flexible extension of video lengths, which enables the benchmark to evaluate LVU performance across a wide range of durations. 2) The inclusion of various video genres, e.g., movies, surveillance footage, egocentric videos, cartoons, game videos, etc., which reflects the models' LVU performances in different scenarios. 3) The development of diversified evaluation tasks, which enables a comprehensive examination of MLLMs' key abilities in long-video understanding. The empirical study with 20 latest MLLMs reveals significant room for improvement in today's technique, as all existing methods struggle with most of the evaluation tasks and exhibit severe performance degradation when handling longer videos. Additionally, it suggests that factors such as context length, image-understanding quality, and the choice of LLM backbone can play critical roles in future advancements. We anticipate that MLVU will advance the research of long video understanding by providing a comprehensive and in-depth analysis of MLLMs.
Ego3DT: Tracking Every 3D Object in Ego-centric Videos
The growing interest in embodied intelligence has brought ego-centric perspectives to contemporary research. One significant challenge within this realm is the accurate localization and tracking of objects in ego-centric videos, primarily due to the substantial variability in viewing angles. Addressing this issue, this paper introduces a novel zero-shot approach for the 3D reconstruction and tracking of all objects from the ego-centric video. We present Ego3DT, a novel framework that initially identifies and extracts detection and segmentation information of objects within the ego environment. Utilizing information from adjacent video frames, Ego3DT dynamically constructs a 3D scene of the ego view using a pre-trained 3D scene reconstruction model. Additionally, we have innovated a dynamic hierarchical association mechanism for creating stable 3D tracking trajectories of objects in ego-centric videos. Moreover, the efficacy of our approach is corroborated by extensive experiments on two newly compiled datasets, with 1.04x - 2.90x in HOTA, showcasing the robustness and accuracy of our method in diverse ego-centric scenarios.
360+x: A Panoptic Multi-modal Scene Understanding Dataset
Human perception of the world is shaped by a multitude of viewpoints and modalities. While many existing datasets focus on scene understanding from a certain perspective (e.g. egocentric or third-person views), our dataset offers a panoptic perspective (i.e. multiple viewpoints with multiple data modalities). Specifically, we encapsulate third-person panoramic and front views, as well as egocentric monocular/binocular views with rich modalities including video, multi-channel audio, directional binaural delay, location data and textual scene descriptions within each scene captured, presenting comprehensive observation of the world. Figure 1 offers a glimpse of all 28 scene categories of our 360+x dataset. To the best of our knowledge, this is the first database that covers multiple viewpoints with multiple data modalities to mimic how daily information is accessed in the real world. Through our benchmark analysis, we presented 5 different scene understanding tasks on the proposed 360+x dataset to evaluate the impact and benefit of each data modality and perspective in panoptic scene understanding. We hope this unique dataset could broaden the scope of comprehensive scene understanding and encourage the community to approach these problems from more diverse perspectives.
EgoLife: Towards Egocentric Life Assistant
We introduce EgoLife, a project to develop an egocentric life assistant that accompanies and enhances personal efficiency through AI-powered wearable glasses. To lay the foundation for this assistant, we conducted a comprehensive data collection study where six participants lived together for one week, continuously recording their daily activities - including discussions, shopping, cooking, socializing, and entertainment - using AI glasses for multimodal egocentric video capture, along with synchronized third-person-view video references. This effort resulted in the EgoLife Dataset, a comprehensive 300-hour egocentric, interpersonal, multiview, and multimodal daily life dataset with intensive annotation. Leveraging this dataset, we introduce EgoLifeQA, a suite of long-context, life-oriented question-answering tasks designed to provide meaningful assistance in daily life by addressing practical questions such as recalling past relevant events, monitoring health habits, and offering personalized recommendations. To address the key technical challenges of (1) developing robust visual-audio models for egocentric data, (2) enabling identity recognition, and (3) facilitating long-context question answering over extensive temporal information, we introduce EgoButler, an integrated system comprising EgoGPT and EgoRAG. EgoGPT is an omni-modal model trained on egocentric datasets, achieving state-of-the-art performance on egocentric video understanding. EgoRAG is a retrieval-based component that supports answering ultra-long-context questions. Our experimental studies verify their working mechanisms and reveal critical factors and bottlenecks, guiding future improvements. By releasing our datasets, models, and benchmarks, we aim to stimulate further research in egocentric AI assistants.
EgoGen: An Egocentric Synthetic Data Generator
Understanding the world in first-person view is fundamental in Augmented Reality (AR). This immersive perspective brings dramatic visual changes and unique challenges compared to third-person views. Synthetic data has empowered third-person-view vision models, but its application to embodied egocentric perception tasks remains largely unexplored. A critical challenge lies in simulating natural human movements and behaviors that effectively steer the embodied cameras to capture a faithful egocentric representation of the 3D world. To address this challenge, we introduce EgoGen, a new synthetic data generator that can produce accurate and rich ground-truth training data for egocentric perception tasks. At the heart of EgoGen is a novel human motion synthesis model that directly leverages egocentric visual inputs of a virtual human to sense the 3D environment. Combined with collision-avoiding motion primitives and a two-stage reinforcement learning approach, our motion synthesis model offers a closed-loop solution where the embodied perception and movement of the virtual human are seamlessly coupled. Compared to previous works, our model eliminates the need for a pre-defined global path, and is directly applicable to dynamic environments. Combined with our easy-to-use and scalable data generation pipeline, we demonstrate EgoGen's efficacy in three tasks: mapping and localization for head-mounted cameras, egocentric camera tracking, and human mesh recovery from egocentric views. EgoGen will be fully open-sourced, offering a practical solution for creating realistic egocentric training data and aiming to serve as a useful tool for egocentric computer vision research. Refer to our project page: https://ego-gen.github.io/.
UniEgoMotion: A Unified Model for Egocentric Motion Reconstruction, Forecasting, and Generation
Egocentric human motion generation and forecasting with scene-context is crucial for enhancing AR/VR experiences, improving human-robot interaction, advancing assistive technologies, and enabling adaptive healthcare solutions by accurately predicting and simulating movement from a first-person perspective. However, existing methods primarily focus on third-person motion synthesis with structured 3D scene contexts, limiting their effectiveness in real-world egocentric settings where limited field of view, frequent occlusions, and dynamic cameras hinder scene perception. To bridge this gap, we introduce Egocentric Motion Generation and Egocentric Motion Forecasting, two novel tasks that utilize first-person images for scene-aware motion synthesis without relying on explicit 3D scene. We propose UniEgoMotion, a unified conditional motion diffusion model with a novel head-centric motion representation tailored for egocentric devices. UniEgoMotion's simple yet effective design supports egocentric motion reconstruction, forecasting, and generation from first-person visual inputs in a unified framework. Unlike previous works that overlook scene semantics, our model effectively extracts image-based scene context to infer plausible 3D motion. To facilitate training, we introduce EE4D-Motion, a large-scale dataset derived from EgoExo4D, augmented with pseudo-ground-truth 3D motion annotations. UniEgoMotion achieves state-of-the-art performance in egocentric motion reconstruction and is the first to generate motion from a single egocentric image. Extensive evaluations demonstrate the effectiveness of our unified framework, setting a new benchmark for egocentric motion modeling and unlocking new possibilities for egocentric applications.
EgoM2P: Egocentric Multimodal Multitask Pretraining
Understanding multimodal signals in egocentric vision, such as RGB video, depth, camera poses, and gaze, is essential for applications in augmented reality, robotics, and human-computer interaction, enabling systems to better interpret the camera wearer's actions, intentions, and surrounding environment. However, building large-scale egocentric multimodal and multitask models presents unique challenges. Egocentric data are inherently heterogeneous, with large variations in modality coverage across devices and settings. Generating pseudo-labels for missing modalities, such as gaze or head-mounted camera trajectories, is often infeasible, making standard supervised learning approaches difficult to scale. Furthermore, dynamic camera motion and the complex temporal and spatial structure of first-person video pose additional challenges for the direct application of existing multimodal foundation models. To address these challenges, we introduce a set of efficient temporal tokenizers and propose EgoM2P, a masked modeling framework that learns from temporally-aware multimodal tokens to train a large, general-purpose model for egocentric 4D understanding. This unified design supports multitasking across diverse egocentric perception and synthesis tasks, including gaze prediction, egocentric camera tracking, and monocular depth estimation from egocentric video, and also serves as a generative model for conditional egocentric video synthesis. Across these tasks, EgoM2P matches or outperforms specialist models while being an order of magnitude faster. We will fully open-source EgoM2P to support the community and advance egocentric vision research. Project page: https://egom2p.github.io/.
EgoVid-5M: A Large-Scale Video-Action Dataset for Egocentric Video Generation
Video generation has emerged as a promising tool for world simulation, leveraging visual data to replicate real-world environments. Within this context, egocentric video generation, which centers on the human perspective, holds significant potential for enhancing applications in virtual reality, augmented reality, and gaming. However, the generation of egocentric videos presents substantial challenges due to the dynamic nature of egocentric viewpoints, the intricate diversity of actions, and the complex variety of scenes encountered. Existing datasets are inadequate for addressing these challenges effectively. To bridge this gap, we present EgoVid-5M, the first high-quality dataset specifically curated for egocentric video generation. EgoVid-5M encompasses 5 million egocentric video clips and is enriched with detailed action annotations, including fine-grained kinematic control and high-level textual descriptions. To ensure the integrity and usability of the dataset, we implement a sophisticated data cleaning pipeline designed to maintain frame consistency, action coherence, and motion smoothness under egocentric conditions. Furthermore, we introduce EgoDreamer, which is capable of generating egocentric videos driven simultaneously by action descriptions and kinematic control signals. The EgoVid-5M dataset, associated action annotations, and all data cleansing metadata will be released for the advancement of research in egocentric video generation.
COPILOT: Human-Environment Collision Prediction and Localization from Egocentric Videos
The ability to forecast human-environment collisions from egocentric observations is vital to enable collision avoidance in applications such as VR, AR, and wearable assistive robotics. In this work, we introduce the challenging problem of predicting collisions in diverse environments from multi-view egocentric videos captured from body-mounted cameras. Solving this problem requires a generalizable perception system that can classify which human body joints will collide and estimate a collision region heatmap to localize collisions in the environment. To achieve this, we propose a transformer-based model called COPILOT to perform collision prediction and localization simultaneously, which accumulates information across multi-view inputs through a novel 4D space-time-viewpoint attention mechanism. To train our model and enable future research on this task, we develop a synthetic data generation framework that produces egocentric videos of virtual humans moving and colliding within diverse 3D environments. This framework is then used to establish a large-scale dataset consisting of 8.6M egocentric RGBD frames. Extensive experiments show that COPILOT generalizes to unseen synthetic as well as real-world scenes. We further demonstrate COPILOT outputs are useful for downstream collision avoidance through simple closed-loop control. Please visit our project webpage at https://sites.google.com/stanford.edu/copilot.
EgoSim: An Egocentric Multi-view Simulator and Real Dataset for Body-worn Cameras during Motion and Activity
Research on egocentric tasks in computer vision has mostly focused on head-mounted cameras, such as fisheye cameras or embedded cameras inside immersive headsets. We argue that the increasing miniaturization of optical sensors will lead to the prolific integration of cameras into many more body-worn devices at various locations. This will bring fresh perspectives to established tasks in computer vision and benefit key areas such as human motion tracking, body pose estimation, or action recognition -- particularly for the lower body, which is typically occluded. In this paper, we introduce EgoSim, a novel simulator of body-worn cameras that generates realistic egocentric renderings from multiple perspectives across a wearer's body. A key feature of EgoSim is its use of real motion capture data to render motion artifacts, which are especially noticeable with arm- or leg-worn cameras. In addition, we introduce MultiEgoView, a dataset of egocentric footage from six body-worn cameras and ground-truth full-body 3D poses during several activities: 119 hours of data are derived from AMASS motion sequences in four high-fidelity virtual environments, which we augment with 5 hours of real-world motion data from 13 participants using six GoPro cameras and 3D body pose references from an Xsens motion capture suit. We demonstrate EgoSim's effectiveness by training an end-to-end video-only 3D pose estimation network. Analyzing its domain gap, we show that our dataset and simulator substantially aid training for inference on real-world data. EgoSim code & MultiEgoView dataset: https://siplab.org/projects/EgoSim
Multi-Advisor Reinforcement Learning
We consider tackling a single-agent RL problem by distributing it to n learners. These learners, called advisors, endeavour to solve the problem from a different focus. Their advice, taking the form of action values, is then communicated to an aggregator, which is in control of the system. We show that the local planning method for the advisors is critical and that none of the ones found in the literature is flawless: the egocentric planning overestimates values of states where the other advisors disagree, and the agnostic planning is inefficient around danger zones. We introduce a novel approach called empathic and discuss its theoretical aspects. We empirically examine and validate our theoretical findings on a fruit collection task.
EgoVLM: Policy Optimization for Egocentric Video Understanding
Emerging embodied AI applications, such as wearable cameras and autonomous agents, have underscored the need for robust reasoning from first person video streams. We introduce EgoVLM, a vision-language model specifically designed to integrate visual comprehension and spatial-temporal reasoning within egocentric video contexts. EgoVLM is fine-tuned via Group Relative Policy Optimization (GRPO), a reinforcement learning method adapted to align model outputs with human-like reasoning steps. Following DeepSeek R1-Zero's approach, we directly tune using RL without any supervised fine-tuning phase on chain-of-thought (CoT) data. We evaluate EgoVLM on egocentric video question answering benchmarks and show that domain-specific training substantially improves performance over general-purpose VLMs. Our EgoVLM-3B, trained exclusively on non-CoT egocentric data, outperforms the base Qwen2.5-VL 3B and 7B models by 14.33 and 13.87 accuracy points on the EgoSchema benchmark, respectively. By explicitly generating reasoning traces, EgoVLM enhances interpretability, making it well-suited for downstream applications. Furthermore, we introduce a novel keyframe-based reward that incorporates salient frame selection to guide reinforcement learning optimization. This reward formulation opens a promising avenue for future exploration in temporally grounded egocentric reasoning.
EFM3D: A Benchmark for Measuring Progress Towards 3D Egocentric Foundation Models
The advent of wearable computers enables a new source of context for AI that is embedded in egocentric sensor data. This new egocentric data comes equipped with fine-grained 3D location information and thus presents the opportunity for a novel class of spatial foundation models that are rooted in 3D space. To measure progress on what we term Egocentric Foundation Models (EFMs) we establish EFM3D, a benchmark with two core 3D egocentric perception tasks. EFM3D is the first benchmark for 3D object detection and surface regression on high quality annotated egocentric data of Project Aria. We propose Egocentric Voxel Lifting (EVL), a baseline for 3D EFMs. EVL leverages all available egocentric modalities and inherits foundational capabilities from 2D foundation models. This model, trained on a large simulated dataset, outperforms existing methods on the EFM3D benchmark.
EgoTV: Egocentric Task Verification from Natural Language Task Descriptions
To enable progress towards egocentric agents capable of understanding everyday tasks specified in natural language, we propose a benchmark and a synthetic dataset called Egocentric Task Verification (EgoTV). EgoTV contains multi-step tasks with multiple sub-task decompositions, state changes, object interactions, and sub-task ordering constraints, in addition to abstracted task descriptions that contain only partial details about ways to accomplish a task. We also propose a novel Neuro-Symbolic Grounding (NSG) approach to enable the causal, temporal, and compositional reasoning of such tasks. We demonstrate NSG's capability towards task tracking and verification on our EgoTV dataset and a real-world dataset derived from CrossTask (CTV). Our contributions include the release of the EgoTV and CTV datasets, and the NSG model for future research on egocentric assistive agents.
LEGO: Learning EGOcentric Action Frame Generation via Visual Instruction Tuning
Generating instructional images of human daily actions from an egocentric viewpoint serves a key step towards efficient skill transfer. In this paper, we introduce a novel problem -- egocentric action frame generation. The goal is to synthesize the action frame conditioning on the user prompt question and an input egocentric image that captures user's environment. Notably, existing egocentric datasets lack the detailed annotations that describe the execution of actions. Additionally, the diffusion-based image manipulation models fail to control the state change of an action within the corresponding egocentric image pixel space. To this end, we finetune a visual large language model (VLLM) via visual instruction tuning for curating the enriched action descriptions to address our proposed problem. Moreover, we propose to Learn EGOcentric (LEGO) action frame generation using image and text embeddings from VLLM as additional conditioning. We validate our proposed model on two egocentric datasets -- Ego4D and Epic-Kitchens. Our experiments show prominent improvement over prior image manipulation models in both quantitative and qualitative evaluation. We also conduct detailed ablation studies and analysis to provide insights on our method.
Project Aria: A New Tool for Egocentric Multi-Modal AI Research
Egocentric, multi-modal data as available on future augmented reality (AR) devices provides unique challenges and opportunities for machine perception. These future devices will need to be all-day wearable in a socially acceptable form-factor to support always available, context-aware and personalized AI applications. Our team at Meta Reality Labs Research built the Aria device, an egocentric, multi-modal data recording and streaming device with the goal to foster and accelerate research in this area. In this paper, we describe the Aria device hardware including its sensor configuration and the corresponding software tools that enable recording and processing of such data.
TARDIS STRIDE: A Spatio-Temporal Road Image Dataset for Exploration and Autonomy
World models aim to simulate environments and enable effective agent behavior. However, modeling real-world environments presents unique challenges as they dynamically change across both space and, crucially, time. To capture these composed dynamics, we introduce a Spatio-Temporal Road Image Dataset for Exploration (STRIDE) permuting 360-degree panoramic imagery into rich interconnected observation, state and action nodes. Leveraging this structure, we can simultaneously model the relationship between egocentric views, positional coordinates, and movement commands across both space and time. We benchmark this dataset via TARDIS, a transformer-based generative world model that integrates spatial and temporal dynamics through a unified autoregressive framework trained on STRIDE. We demonstrate robust performance across a range of agentic tasks such as controllable photorealistic image synthesis, instruction following, autonomous self-control, and state-of-the-art georeferencing. These results suggest a promising direction towards sophisticated generalist agents--capable of understanding and manipulating the spatial and temporal aspects of their material environments--with enhanced embodied reasoning capabilities. Training code, datasets, and model checkpoints are made available at https://huggingface.co/datasets/Tera-AI/STRIDE.
Entering Real Social World! Benchmarking the Theory of Mind and Socialization Capabilities of LLMs from a First-person Perspective
In the social world, humans possess the capability to infer and reason about others mental states (such as emotions, beliefs, and intentions), known as the Theory of Mind (ToM). Simultaneously, humans own mental states evolve in response to social situations, a capability we refer to as socialization. Together, these capabilities form the foundation of human social interaction. In the era of artificial intelligence (AI), especially with the development of large language models (LLMs), we raise an intriguing question: How do LLMs perform in terms of ToM and socialization capabilities? And more broadly, can these AI models truly enter and navigate the real social world? Existing research evaluating LLMs ToM and socialization capabilities by positioning LLMs as passive observers from a third person perspective, rather than as active participants. However, compared to the third-person perspective, observing and understanding the world from an egocentric first person perspective is a natural approach for both humans and AI agents. The ToM and socialization capabilities of LLMs from a first person perspective, a crucial attribute for advancing embodied AI agents, remain unexplored. To answer the aforementioned questions and bridge the research gap, we introduce EgoSocialArena, a novel framework designed to evaluate and investigate the ToM and socialization capabilities of LLMs from a first person perspective. It encompasses two evaluation environments: static environment and interactive environment, with seven scenarios: Daily Life, Counterfactual, New World, Blackjack, Number Guessing, and Limit Texas Hold em, totaling 2,195 data entries. With EgoSocialArena, we have conducted a comprehensive evaluation of nine advanced LLMs and observed some key insights regarding the future development of LLMs as well as the capabilities levels of the most advanced LLMs currently available.
Egocentric Planning for Scalable Embodied Task Achievement
Embodied agents face significant challenges when tasked with performing actions in diverse environments, particularly in generalizing across object types and executing suitable actions to accomplish tasks. Furthermore, agents should exhibit robustness, minimizing the execution of illegal actions. In this work, we present Egocentric Planning, an innovative approach that combines symbolic planning and Object-oriented POMDPs to solve tasks in complex environments, harnessing existing models for visual perception and natural language processing. We evaluated our approach in ALFRED, a simulated environment designed for domestic tasks, and demonstrated its high scalability, achieving an impressive 36.07% unseen success rate in the ALFRED benchmark and winning the ALFRED challenge at CVPR Embodied AI workshop. Our method requires reliable perception and the specification or learning of a symbolic description of the preconditions and effects of the agent's actions, as well as what object types reveal information about others. It is capable of naturally scaling to solve new tasks beyond ALFRED, as long as they can be solved using the available skills. This work offers a solid baseline for studying end-to-end and hybrid methods that aim to generalize to new tasks, including recent approaches relying on LLMs, but often struggle to scale to long sequences of actions or produce robust plans for novel tasks.
Listen to Look into the Future: Audio-Visual Egocentric Gaze Anticipation
Egocentric gaze anticipation serves as a key building block for the emerging capability of Augmented Reality. Notably, gaze behavior is driven by both visual cues and audio signals during daily activities. Motivated by this observation, we introduce the first model that leverages both the video and audio modalities for egocentric gaze anticipation. Specifically, we propose a Contrastive Spatial-Temporal Separable (CSTS) fusion approach that adopts two modules to separately capture audio-visual correlations in spatial and temporal dimensions, and applies a contrastive loss on the re-weighted audio-visual features from fusion modules for representation learning. We conduct extensive ablation studies and thorough analysis using two egocentric video datasets: Ego4D and Aria, to validate our model design. We demonstrate the audio improves the performance by +2.5% and +2.4% on the two datasets. Our model also outperforms the prior state-of-the-art methods by at least +1.9% and +1.6%. Moreover, we provide visualizations to show the gaze anticipation results and provide additional insights into audio-visual representation learning. The code and data split are available on our website (https://bolinlai.github.io/CSTS-EgoGazeAnticipation/).
Learning State-Aware Visual Representations from Audible Interactions
We propose a self-supervised algorithm to learn representations from egocentric video data. Recently, significant efforts have been made to capture humans interacting with their own environments as they go about their daily activities. In result, several large egocentric datasets of interaction-rich multi-modal data have emerged. However, learning representations from videos can be challenging. First, given the uncurated nature of long-form continuous videos, learning effective representations require focusing on moments in time when interactions take place. Second, visual representations of daily activities should be sensitive to changes in the state of the environment. However, current successful multi-modal learning frameworks encourage representation invariance over time. To address these challenges, we leverage audio signals to identify moments of likely interactions which are conducive to better learning. We also propose a novel self-supervised objective that learns from audible state changes caused by interactions. We validate these contributions extensively on two large-scale egocentric datasets, EPIC-Kitchens-100 and the recently released Ego4D, and show improvements on several downstream tasks, including action recognition, long-term action anticipation, and object state change classification.
Multimodal Distillation for Egocentric Action Recognition
The focal point of egocentric video understanding is modelling hand-object interactions. Standard models, e.g. CNNs or Vision Transformers, which receive RGB frames as input perform well. However, their performance improves further by employing additional input modalities that provide complementary cues, such as object detections, optical flow, audio, etc. The added complexity of the modality-specific modules, on the other hand, makes these models impractical for deployment. The goal of this work is to retain the performance of such a multimodal approach, while using only the RGB frames as input at inference time. We demonstrate that for egocentric action recognition on the Epic-Kitchens and the Something-Something datasets, students which are taught by multimodal teachers tend to be more accurate and better calibrated than architecturally equivalent models trained on ground truth labels in a unimodal or multimodal fashion. We further adopt a principled multimodal knowledge distillation framework, allowing us to deal with issues which occur when applying multimodal knowledge distillation in a naive manner. Lastly, we demonstrate the achieved reduction in computational complexity, and show that our approach maintains higher performance with the reduction of the number of input views. We release our code at https://github.com/gorjanradevski/multimodal-distillation.
Ego-Only: Egocentric Action Detection without Exocentric Transferring
We present Ego-Only, the first approach that enables state-of-the-art action detection on egocentric (first-person) videos without any form of exocentric (third-person) transferring. Despite the content and appearance gap separating the two domains, large-scale exocentric transferring has been the default choice for egocentric action detection. This is because prior works found that egocentric models are difficult to train from scratch and that transferring from exocentric representations leads to improved accuracy. However, in this paper, we revisit this common belief. Motivated by the large gap separating the two domains, we propose a strategy that enables effective training of egocentric models without exocentric transferring. Our Ego-Only approach is simple. It trains the video representation with a masked autoencoder finetuned for temporal segmentation. The learned features are then fed to an off-the-shelf temporal action localization method to detect actions. We find that this renders exocentric transferring unnecessary by showing remarkably strong results achieved by this simple Ego-Only approach on three established egocentric video datasets: Ego4D, EPIC-Kitchens-100, and Charades-Ego. On both action detection and action recognition, Ego-Only outperforms previous best exocentric transferring methods that use orders of magnitude more labels. Ego-Only sets new state-of-the-art results on these datasets and benchmarks without exocentric data.
Semantic MapNet: Building Allocentric Semantic Maps and Representations from Egocentric Views
We study the task of semantic mapping - specifically, an embodied agent (a robot or an egocentric AI assistant) is given a tour of a new environment and asked to build an allocentric top-down semantic map ("what is where?") from egocentric observations of an RGB-D camera with known pose (via localization sensors). Towards this goal, we present SemanticMapNet (SMNet), which consists of: (1) an Egocentric Visual Encoder that encodes each egocentric RGB-D frame, (2) a Feature Projector that projects egocentric features to appropriate locations on a floor-plan, (3) a Spatial Memory Tensor of size floor-plan length x width x feature-dims that learns to accumulate projected egocentric features, and (4) a Map Decoder that uses the memory tensor to produce semantic top-down maps. SMNet combines the strengths of (known) projective camera geometry and neural representation learning. On the task of semantic mapping in the Matterport3D dataset, SMNet significantly outperforms competitive baselines by 4.01-16.81% (absolute) on mean-IoU and 3.81-19.69% (absolute) on Boundary-F1 metrics. Moreover, we show how to use the neural episodic memories and spatio-semantic allocentric representations build by SMNet for subsequent tasks in the same space - navigating to objects seen during the tour("Find chair") or answering questions about the space ("How many chairs did you see in the house?"). Project page: https://vincentcartillier.github.io/smnet.html.
LALM: Long-Term Action Anticipation with Language Models
Understanding human activity is a crucial yet intricate task in egocentric vision, a field that focuses on capturing visual perspectives from the camera wearer's viewpoint. While traditional methods heavily rely on representation learning trained on extensive video data, there exists a significant limitation: obtaining effective video representations proves challenging due to the inherent complexity and variability in human activities.Furthermore, exclusive dependence on video-based learning may constrain a model's capability to generalize across long-tail classes and out-of-distribution scenarios. In this study, we introduce a novel approach for long-term action anticipation using language models (LALM), adept at addressing the complex challenges of long-term activity understanding without the need for extensive training. Our method incorporates an action recognition model to track previous action sequences and a vision-language model to articulate relevant environmental details. By leveraging the context provided by these past events, we devise a prompting strategy for action anticipation using large language models (LLMs). Moreover, we implement Maximal Marginal Relevance for example selection to facilitate in-context learning of the LLMs. Our experimental results demonstrate that LALM surpasses the state-of-the-art methods in the task of long-term action anticipation on the Ego4D benchmark. We further validate LALM on two additional benchmarks, affirming its capacity for generalization across intricate activities with different sets of taxonomies. These are achieved without specific fine-tuning.
Semantics of Information
Due to the self-referencing aspect, consciousness is placed in a unique non-computable position among natural phenomena. Non-computable consciousness was previously analyzed on the basis of self-referential cyclical time. This paper extends the cyclical model of vacuum observation and posits that choice, or the experience of reality, may be expressed as the initial part of the self-referencing loop, while the conscious awareness of the experience is the other part of the loop. In particular, the inseparability of the two sides of the loop is established through the cyclical time process, which bears a resemblance to Heidegger's analysis of existence. The cyclical looping model is also discussed in terms of Wittgenstein's analysis of language as attaching semantic meaning, or continuous or infinite conscious awareness, to physical reality. We also discuss the proposed model of subjectivity and cyclical time - as opposed to objectivity and linear time - which may be considered similar to Hebrew thought.
Addendum to Research MMMCV; A Man/Microbio/Megabio/Computer Vision
In October 2007, a Research Proposal for the University of Sydney, Australia, the author suggested that biovie-physical phenomenon as `electrodynamic dependant biological vision', is governed by relativistic quantum laws and biovision. The phenomenon on the basis of `biovielectroluminescence', satisfies man/microbio/megabio/computer vision (MMMCV), as a robust candidate for physical and visual sciences. The general aim of this addendum is to present a refined text of Sections 1-3 of that proposal and highlighting the contents of its Appendix in form of a `Mechanisms' Section. We then briefly remind in an article aimed for December 2007, by appending two more equations into Section 3, a theoretical II-time scenario as a time model well-proposed for the phenomenon. The time model within the core of the proposal, plays a significant role in emphasizing the principle points on Objectives no. 1-8, Sub-hypothesis 3.1.2, mentioned in Article [arXiv:0710.0410]. It also expresses the time concept in terms of causing quantized energy f(|E|) of time |t|, emit in regard to shortening the probability of particle loci as predictable patterns of particle's un-occurred motion, a solution to Heisenberg's uncertainty principle (HUP) into a simplistic manner. We conclude that, practical frames via a time algorithm to this model, fixates such predictable patterns of motion of scenery bodies onto recordable observation points of a MMMCV system. It even suppresses/predicts superposition phenomena coming from a human subject and/or other bio-subjects for any decision making event, e.g., brainwave quantum patterns based on vision. Maintaining the existential probability of Riemann surfaces of II-time scenarios in the context of biovielectroluminescence, makes motion-prediction a possibility.
Vinci: A Real-time Embodied Smart Assistant based on Egocentric Vision-Language Model
We introduce Vinci, a real-time embodied smart assistant built upon an egocentric vision-language model. Designed for deployment on portable devices such as smartphones and wearable cameras, Vinci operates in an "always on" mode, continuously observing the environment to deliver seamless interaction and assistance. Users can wake up the system and engage in natural conversations to ask questions or seek assistance, with responses delivered through audio for hands-free convenience. With its ability to process long video streams in real-time, Vinci can answer user queries about current observations and historical context while also providing task planning based on past interactions. To further enhance usability, Vinci integrates a video generation module that creates step-by-step visual demonstrations for tasks that require detailed guidance. We hope that Vinci can establish a robust framework for portable, real-time egocentric AI systems, empowering users with contextual and actionable insights. We release the complete implementation for the development of the device in conjunction with a demo web platform to test uploaded videos at https://github.com/OpenGVLab/vinci.
CP-Guard: Malicious Agent Detection and Defense in Collaborative Bird's Eye View Perception
Collaborative Perception (CP) has shown a promising technique for autonomous driving, where multiple connected and autonomous vehicles (CAVs) share their perception information to enhance the overall perception performance and expand the perception range. However, in CP, ego CAV needs to receive messages from its collaborators, which makes it easy to be attacked by malicious agents. For example, a malicious agent can send harmful information to the ego CAV to mislead it. To address this critical issue, we propose a novel method, CP-Guard, a tailored defense mechanism for CP that can be deployed by each agent to accurately detect and eliminate malicious agents in its collaboration network. Our key idea is to enable CP to reach a consensus rather than a conflict against the ego CAV's perception results. Based on this idea, we first develop a probability-agnostic sample consensus (PASAC) method to effectively sample a subset of the collaborators and verify the consensus without prior probabilities of malicious agents. Furthermore, we define a collaborative consistency loss (CCLoss) to capture the discrepancy between the ego CAV and its collaborators, which is used as a verification criterion for consensus. Finally, we conduct extensive experiments in collaborative bird's eye view (BEV) tasks and our results demonstrate the effectiveness of our CP-Guard. Code is available at https://github.com/CP-Security/CP-Guard
Retrieval-Augmented Egocentric Video Captioning
Understanding human actions from videos of first-person view poses significant challenges. Most prior approaches explore representation learning on egocentric videos only, while overlooking the potential benefit of exploiting existing large-scale third-person videos. In this paper, (1) we develop EgoInstructor, a retrieval-augmented multimodal captioning model that automatically retrieves semantically relevant third-person instructional videos to enhance the video captioning of egocentric videos. (2) For training the cross-view retrieval module, we devise an automatic pipeline to discover ego-exo video pairs from distinct large-scale egocentric and exocentric datasets. (3) We train the cross-view retrieval module with a novel EgoExoNCE loss that pulls egocentric and exocentric video features closer by aligning them to shared text features that describe similar actions. (4) Through extensive experiments, our cross-view retrieval module demonstrates superior performance across seven benchmarks. Regarding egocentric video captioning, EgoInstructor exhibits significant improvements by leveraging third-person videos as references.
EgoTextVQA: Towards Egocentric Scene-Text Aware Video Question Answering
We introduce EgoTextVQA, a novel and rigorously constructed benchmark for egocentric QA assistance involving scene text. EgoTextVQA contains 1.5K ego-view videos and 7K scene-text aware questions that reflect real user needs in outdoor driving and indoor house-keeping activities. The questions are designed to elicit identification and reasoning on scene text in an egocentric and dynamic environment. With EgoTextVQA, we comprehensively evaluate 10 prominent multimodal large language models. Currently, all models struggle, and the best results (Gemini 1.5 Pro) are around 33\% accuracy, highlighting the severe deficiency of these techniques in egocentric QA assistance. Our further investigations suggest that precise temporal grounding and multi-frame reasoning, along with high resolution and auxiliary scene-text inputs, are key for better performance. With thorough analyses and heuristic suggestions, we hope EgoTextVQA can serve as a solid testbed for research in egocentric scene-text QA assistance. Our dataset is released at: https://github.com/zhousheng97/EgoTextVQA.
RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics
Spatial understanding is a crucial capability for robots to make grounded decisions based on their environment. This foundational skill enables robots not only to perceive their surroundings but also to reason about and interact meaningfully within the world. In modern robotics, these capabilities are taken on by visual language models, and they face significant challenges when applied to spatial reasoning context due to their training data sources. These sources utilize general-purpose image datasets, and they often lack sophisticated spatial scene understanding capabilities. For example, the datasets do not address reference frame comprehension - spatial relationships require clear contextual understanding, whether from an ego-centric, object-centric, or world-centric perspective, which allow for effective real-world interaction. To address this issue, we introduce RoboSpatial, a large-scale spatial understanding dataset consisting of real indoor and tabletop scenes captured as 3D scans and egocentric images, annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5K 3D scans, and 3M annotated spatial relationships, with paired 2D egocentric images and 3D scans to make it both 2D and 3D ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robotics manipulation.
Egocentric Audio-Visual Object Localization
Humans naturally perceive surrounding scenes by unifying sound and sight in a first-person view. Likewise, machines are advanced to approach human intelligence by learning with multisensory inputs from an egocentric perspective. In this paper, we explore the challenging egocentric audio-visual object localization task and observe that 1) egomotion commonly exists in first-person recordings, even within a short duration; 2) The out-of-view sound components can be created while wearers shift their attention. To address the first problem, we propose a geometry-aware temporal aggregation module to handle the egomotion explicitly. The effect of egomotion is mitigated by estimating the temporal geometry transformation and exploiting it to update visual representations. Moreover, we propose a cascaded feature enhancement module to tackle the second issue. It improves cross-modal localization robustness by disentangling visually-indicated audio representation. During training, we take advantage of the naturally available audio-visual temporal synchronization as the ``free'' self-supervision to avoid costly labeling. We also annotate and create the Epic Sounding Object dataset for evaluation purposes. Extensive experiments show that our method achieves state-of-the-art localization performance in egocentric videos and can be generalized to diverse audio-visual scenes.
Put Myself in Your Shoes: Lifting the Egocentric Perspective from Exocentric Videos
We investigate exocentric-to-egocentric cross-view translation, which aims to generate a first-person (egocentric) view of an actor based on a video recording that captures the actor from a third-person (exocentric) perspective. To this end, we propose a generative framework called Exo2Ego that decouples the translation process into two stages: high-level structure transformation, which explicitly encourages cross-view correspondence between exocentric and egocentric views, and a diffusion-based pixel-level hallucination, which incorporates a hand layout prior to enhance the fidelity of the generated egocentric view. To pave the way for future advancements in this field, we curate a comprehensive exo-to-ego cross-view translation benchmark. It consists of a diverse collection of synchronized ego-exo tabletop activity video pairs sourced from three public datasets: H2O, Aria Pilot, and Assembly101. The experimental results validate that Exo2Ego delivers photorealistic video results with clear hand manipulation details and outperforms several baselines in terms of both synthesis quality and generalization ability to new actions.
AlanaVLM: A Multimodal Embodied AI Foundation Model for Egocentric Video Understanding
AI personal assistants deployed via robots or wearables require embodied understanding to collaborate with humans effectively. However, current Vision-Language Models (VLMs) primarily focus on third-person view videos, neglecting the richness of egocentric perceptual experience. To address this gap, we propose three key contributions. First, we introduce the Egocentric Video Understanding Dataset (EVUD) for training VLMs on video captioning and question answering tasks specific to egocentric videos. Second, we present AlanaVLM, a 7B parameter VLM trained using parameter-efficient methods on EVUD. Finally, we evaluate AlanaVLM's capabilities on OpenEQA, a challenging benchmark for embodied video question answering. Our model achieves state-of-the-art performance, outperforming open-source models including strong Socratic models using GPT-4 as a planner by 3.6%. Additionally, we outperform Claude 3 and Gemini Pro Vision 1.0 and showcase competitive results compared to Gemini Pro 1.5 and GPT-4V, even surpassing the latter in spatial reasoning. This research paves the way for building efficient VLMs that can be deployed in robots or wearables, leveraging embodied video understanding to collaborate seamlessly with humans in everyday tasks, contributing to the next generation of Embodied AI.
ST-Think: How Multimodal Large Language Models Reason About 4D Worlds from Ego-Centric Videos
Humans excel at spatio-temporal reasoning, effortlessly interpreting dynamic visual events from an egocentric viewpoint. However, whether multimodal large language models (MLLMs) can similarly comprehend the 4D world remains uncertain. This paper explores multimodal spatio-temporal reasoning from an egocentric perspective, aiming to equip MLLMs with human-like reasoning capabilities. To support this objective, we introduce Ego-ST Bench, a novel benchmark containing over 5,000 question-answer pairs across four categories, systematically evaluating spatial, temporal, and integrated spatio-temporal reasoning. Additionally, we propose the ST-R1 Video model, a video-based reasoning model that incorporates reverse thinking into its reinforcement learning process, significantly enhancing performance. We combine long-chain-of-thought (long-CoT) supervised fine-tuning with Group Relative Policy Optimization (GRPO) reinforcement learning, achieving notable improvements with limited high-quality data. Ego-ST Bench and ST-R1 provide valuable insights and resources for advancing video-based spatio-temporal reasoning research.
Uncertainty-aware State Space Transformer for Egocentric 3D Hand Trajectory Forecasting
Hand trajectory forecasting from egocentric views is crucial for enabling a prompt understanding of human intentions when interacting with AR/VR systems. However, existing methods handle this problem in a 2D image space which is inadequate for 3D real-world applications. In this paper, we set up an egocentric 3D hand trajectory forecasting task that aims to predict hand trajectories in a 3D space from early observed RGB videos in a first-person view. To fulfill this goal, we propose an uncertainty-aware state space Transformer (USST) that takes the merits of the attention mechanism and aleatoric uncertainty within the framework of the classical state-space model. The model can be further enhanced by the velocity constraint and visual prompt tuning (VPT) on large vision transformers. Moreover, we develop an annotation workflow to collect 3D hand trajectories with high quality. Experimental results on H2O and EgoPAT3D datasets demonstrate the superiority of USST for both 2D and 3D trajectory forecasting. The code and datasets are publicly released: https://actionlab-cv.github.io/EgoHandTrajPred.
Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction
Understanding drivers' decision-making is crucial for road safety. Although predicting the ego-vehicle's path is valuable for driver-assistance systems, existing methods mainly focus on external factors like other vehicles' motions, often neglecting the driver's attention and intent. To address this gap, we infer the ego-trajectory by integrating the driver's gaze and the surrounding scene. We introduce RouteFormer, a novel multimodal ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view, comprising first-person video and gaze fixations. We also present the Path Complexity Index (PCI), a new metric for trajectory complexity that enables a more nuanced evaluation of challenging scenarios. To tackle data scarcity and enhance diversity, we introduce GEM, a comprehensive dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data. Extensive evaluations on GEM and DR(eye)VE demonstrate that RouteFormer significantly outperforms state-of-the-art methods, achieving notable improvements in prediction accuracy across diverse conditions. Ablation studies reveal that incorporating driver field-of-view data yields significantly better average displacement error, especially in challenging scenarios with high PCI scores, underscoring the importance of modeling driver attention. All data and code are available at https://meakbiyik.github.io/routeformer.
Navigating to Objects Specified by Images
Images are a convenient way to specify which particular object instance an embodied agent should navigate to. Solving this task requires semantic visual reasoning and exploration of unknown environments. We present a system that can perform this task in both simulation and the real world. Our modular method solves sub-tasks of exploration, goal instance re-identification, goal localization, and local navigation. We re-identify the goal instance in egocentric vision using feature-matching and localize the goal instance by projecting matched features to a map. Each sub-task is solved using off-the-shelf components requiring zero fine-tuning. On the HM3D InstanceImageNav benchmark, this system outperforms a baseline end-to-end RL policy 7x and a state-of-the-art ImageNav model 2.3x (56% vs 25% success). We deploy this system to a mobile robot platform and demonstrate effective real-world performance, achieving an 88% success rate across a home and an office environment.
Perspective-Aware Reasoning in Vision-Language Models via Mental Imagery Simulation
We present a framework for perspective-aware reasoning in vision-language models (VLMs) through mental imagery simulation. Perspective-taking, the ability to perceive an environment or situation from an alternative viewpoint, is a key benchmark for human-level visual understanding, essential for environmental interaction and collaboration with autonomous agents. Despite advancements in spatial reasoning within VLMs, recent research has shown that modern VLMs significantly lack perspective-aware reasoning capabilities and exhibit a strong bias toward egocentric interpretations. To bridge the gap between VLMs and human perception, we focus on the role of mental imagery, where humans perceive the world through abstracted representations that facilitate perspective shifts. Motivated by this, we propose a framework for perspective-aware reasoning, named Abstract Perspective Change (APC), that effectively leverages vision foundation models, such as object detection, segmentation, and orientation estimation, to construct scene abstractions and enable perspective transformations. Our experiments on synthetic and real-image benchmarks, compared with various VLMs, demonstrate significant improvements in perspective-aware reasoning with our framework, further outperforming fine-tuned spatial reasoning models and novel-view-synthesis-based approaches.
Understanding 3D Object Interaction from a Single Image
Humans can easily understand a single image as depicting multiple potential objects permitting interaction. We use this skill to plan our interactions with the world and accelerate understanding new objects without engaging in interaction. In this paper, we would like to endow machines with the similar ability, so that intelligent agents can better explore the 3D scene or manipulate objects. Our approach is a transformer-based model that predicts the 3D location, physical properties and affordance of objects. To power this model, we collect a dataset with Internet videos, egocentric videos and indoor images to train and validate our approach. Our model yields strong performance on our data, and generalizes well to robotics data.
Learning Long-Range Perception Using Self-Supervision from Short-Range Sensors and Odometry
We introduce a general self-supervised approach to predict the future outputs of a short-range sensor (such as a proximity sensor) given the current outputs of a long-range sensor (such as a camera); we assume that the former is directly related to some piece of information to be perceived (such as the presence of an obstacle in a given position), whereas the latter is information-rich but hard to interpret directly. We instantiate and implement the approach on a small mobile robot to detect obstacles at various distances using the video stream of the robot's forward-pointing camera, by training a convolutional neural network on automatically-acquired datasets. We quantitatively evaluate the quality of the predictions on unseen scenarios, qualitatively evaluate robustness to different operating conditions, and demonstrate usage as the sole input of an obstacle-avoidance controller. We additionally instantiate the approach on a different simulated scenario with complementary characteristics, to exemplify the generality of our contribution.
Compact CNN for Indexing Egocentric Videos
While egocentric video is becoming increasingly popular, browsing it is very difficult. In this paper we present a compact 3D Convolutional Neural Network (CNN) architecture for long-term activity recognition in egocentric videos. Recognizing long-term activities enables us to temporally segment (index) long and unstructured egocentric videos. Existing methods for this task are based on hand tuned features derived from visible objects, location of hands, as well as optical flow. Given a sparse optical flow volume as input, our CNN classifies the camera wearer's activity. We obtain classification accuracy of 89%, which outperforms the current state-of-the-art by 19%. Additional evaluation is performed on an extended egocentric video dataset, classifying twice the amount of categories than current state-of-the-art. Furthermore, our CNN is able to recognize whether a video is egocentric or not with 99.2% accuracy, up by 24% from current state-of-the-art. To better understand what the network actually learns, we propose a novel visualization of CNN kernels as flow fields.
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation
Learning to solve precision-based manipulation tasks from visual feedback using Reinforcement Learning (RL) could drastically reduce the engineering efforts required by traditional robot systems. However, performing fine-grained motor control from visual inputs alone is challenging, especially with a static third-person camera as often used in previous work. We propose a setting for robotic manipulation in which the agent receives visual feedback from both a third-person camera and an egocentric camera mounted on the robot's wrist. While the third-person camera is static, the egocentric camera enables the robot to actively control its vision to aid in precise manipulation. To fuse visual information from both cameras effectively, we additionally propose to use Transformers with a cross-view attention mechanism that models spatial attention from one view to another (and vice-versa), and use the learned features as input to an RL policy. Our method improves learning over strong single-view and multi-view baselines, and successfully transfers to a set of challenging manipulation tasks on a real robot with uncalibrated cameras, no access to state information, and a high degree of task variability. In a hammer manipulation task, our method succeeds in 75% of trials versus 38% and 13% for multi-view and single-view baselines, respectively.
EgoExo-Fitness: Towards Egocentric and Exocentric Full-Body Action Understanding
We present EgoExo-Fitness, a new full-body action understanding dataset, featuring fitness sequence videos recorded from synchronized egocentric and fixed exocentric (third-person) cameras. Compared with existing full-body action understanding datasets, EgoExo-Fitness not only contains videos from first-person perspectives, but also provides rich annotations. Specifically, two-level temporal boundaries are provided to localize single action videos along with sub-steps of each action. More importantly, EgoExo-Fitness introduces innovative annotations for interpretable action judgement--including technical keypoint verification, natural language comments on action execution, and action quality scores. Combining all of these, EgoExo-Fitness provides new resources to study egocentric and exocentric full-body action understanding across dimensions of "what", "when", and "how well". To facilitate research on egocentric and exocentric full-body action understanding, we construct benchmarks on a suite of tasks (i.e., action classification, action localization, cross-view sequence verification, cross-view skill determination, and a newly proposed task of guidance-based execution verification), together with detailed analysis. Code and data will be available at https://github.com/iSEE-Laboratory/EgoExo-Fitness/tree/main.
Whole-Body Conditioned Egocentric Video Prediction
We train models to Predict Ego-centric Video from human Actions (PEVA), given the past video and an action represented by the relative 3D body pose. By conditioning on kinematic pose trajectories, structured by the joint hierarchy of the body, our model learns to simulate how physical human actions shape the environment from a first-person point of view. We train an auto-regressive conditional diffusion transformer on Nymeria, a large-scale dataset of real-world egocentric video and body pose capture. We further design a hierarchical evaluation protocol with increasingly challenging tasks, enabling a comprehensive analysis of the model's embodied prediction and control abilities. Our work represents an initial attempt to tackle the challenges of modeling complex real-world environments and embodied agent behaviors with video prediction from the perspective of a human.
Parting with Misconceptions about Learning-based Vehicle Motion Planning
The release of nuPlan marks a new era in vehicle motion planning research, offering the first large-scale real-world dataset and evaluation schemes requiring both precise short-term planning and long-horizon ego-forecasting. Existing systems struggle to simultaneously meet both requirements. Indeed, we find that these tasks are fundamentally misaligned and should be addressed independently. We further assess the current state of closed-loop planning in the field, revealing the limitations of learning-based methods in complex real-world scenarios and the value of simple rule-based priors such as centerline selection through lane graph search algorithms. More surprisingly, for the open-loop sub-task, we observe that the best results are achieved when using only this centerline as scene context (\ie, ignoring all information regarding the map and other agents). Combining these insights, we propose an extremely simple and efficient planner which outperforms an extensive set of competitors, winning the nuPlan planning challenge 2023.
Quantum Measurement and Observable Universe
In this paper, we discuss that an observable-based single-system Copenhagen and entanglement-based two-system von Neumann measurement protocols in quantum theory can be made equivalent by considering the second part of the two-system scheme to be a Dirac-type negative sea filling up the first system. Based on this equivalence, and by considering the universe as a computational process, the choice of the apparatus state in the two-system protocol can be identified with the choice of the observable in the single-system scheme as negative sea filling up the observable universe. In particular, the measuring party's state is considered to be evolving backwards in time to the big bang as a nondeterministic computational process, which chooses the acceptable path as a time-reversal process of irreversible computation. The suggested model proposes that the prepared microstate of the universe, or reality, corresponds to the observer's choice, therefore, subjective reality. Thus, this effectively provides a specific description of the subjective universe model previously proposed, which is based on the symmetry breakdown between the Schrodinger and the Heisenberg pictures of quantum theory.
POV: Prompt-Oriented View-Agnostic Learning for Egocentric Hand-Object Interaction in the Multi-View World
We humans are good at translating third-person observations of hand-object interactions (HOI) into an egocentric view. However, current methods struggle to replicate this ability of view adaptation from third-person to first-person. Although some approaches attempt to learn view-agnostic representation from large-scale video datasets, they ignore the relationships among multiple third-person views. To this end, we propose a Prompt-Oriented View-agnostic learning (POV) framework in this paper, which enables this view adaptation with few egocentric videos. Specifically, We introduce interactive masking prompts at the frame level to capture fine-grained action information, and view-aware prompts at the token level to learn view-agnostic representation. To verify our method, we establish two benchmarks for transferring from multiple third-person views to the egocentric view. Our extensive experiments on these benchmarks demonstrate the efficiency and effectiveness of our POV framework and prompt tuning techniques in terms of view adaptation and view generalization. Our code is available at https://github.com/xuboshen/pov_acmmm2023.
Egocentric Video-Language Pretraining
Video-Language Pretraining (VLP), which aims to learn transferable representation to advance a wide range of video-text downstream tasks, has recently received increasing attention. Best performing works rely on large-scale, 3rd-person video-text datasets, such as HowTo100M. In this work, we exploit the recently released Ego4D dataset to pioneer Egocentric VLP along three directions. (i) We create EgoClip, a 1st-person video-text pretraining dataset comprising 3.8M clip-text pairs well-chosen from Ego4D, covering a large variety of human daily activities. (ii) We propose a novel pretraining objective, dubbed EgoNCE, which adapts video-text contrastive learning to the egocentric domain by mining egocentric-aware positive and negative samples. (iii) We introduce EgoMCQ, a development benchmark that is close to EgoClip and hence can support effective validation and fast exploration of our design decisions in EgoClip and EgoNCE. Furthermore, we demonstrate strong performance on five egocentric downstream tasks across three datasets: video-text retrieval on EPIC-KITCHENS-100; action recognition on Charades-Ego; natural language query, moment query, and object state change classification on Ego4D challenge benchmarks. The dataset and code are available at https://github.com/showlab/EgoVLP.
Can Vision-Language Models Think from a First-Person Perspective?
Vision-language models (VLMs) have recently shown promising results in traditional downstream tasks. Evaluation studies have emerged to assess their abilities, with the majority focusing on the third-person perspective, and only a few addressing specific tasks from the first-person perspective. However, the capability of VLMs to "think" from a first-person perspective, a crucial attribute for advancing autonomous agents and robotics, remains largely unexplored. To bridge this research gap, we introduce EgoThink, a novel visual question-answering benchmark that encompasses six core capabilities with twelve detailed dimensions. The benchmark is constructed using selected clips from egocentric videos, with manually annotated question-answer pairs containing first-person information. To comprehensively assess VLMs, we evaluate eighteen popular VLMs on EgoThink. Moreover, given the open-ended format of the answers, we use GPT-4 as the automatic judge to compute single-answer grading. Experimental results indicate that although GPT-4V leads in numerous dimensions, all evaluated VLMs still possess considerable potential for improvement in first-person perspective tasks. Meanwhile, enlarging the number of trainable parameters has the most significant impact on model performance on EgoThink. In conclusion, EgoThink serves as a valuable addition to existing evaluation benchmarks for VLMs, providing an indispensable resource for future research in the realm of embodied artificial intelligence and robotics.
AMEGO: Active Memory from long EGOcentric videos
Egocentric videos provide a unique perspective into individuals' daily experiences, yet their unstructured nature presents challenges for perception. In this paper, we introduce AMEGO, a novel approach aimed at enhancing the comprehension of very-long egocentric videos. Inspired by the human's ability to maintain information from a single watching, AMEGO focuses on constructing a self-contained representations from one egocentric video, capturing key locations and object interactions. This representation is semantic-free and facilitates multiple queries without the need to reprocess the entire visual content. Additionally, to evaluate our understanding of very-long egocentric videos, we introduce the new Active Memories Benchmark (AMB), composed of more than 20K of highly challenging visual queries from EPIC-KITCHENS. These queries cover different levels of video reasoning (sequencing, concurrency and temporal grounding) to assess detailed video understanding capabilities. We showcase improved performance of AMEGO on AMB, surpassing other video QA baselines by a substantial margin.
EgoPrivacy: What Your First-Person Camera Says About You?
While the rapid proliferation of wearable cameras has raised significant concerns about egocentric video privacy, prior work has largely overlooked the unique privacy threats posed to the camera wearer. This work investigates the core question: How much privacy information about the camera wearer can be inferred from their first-person view videos? We introduce EgoPrivacy, the first large-scale benchmark for the comprehensive evaluation of privacy risks in egocentric vision. EgoPrivacy covers three types of privacy (demographic, individual, and situational), defining seven tasks that aim to recover private information ranging from fine-grained (e.g., wearer's identity) to coarse-grained (e.g., age group). To further emphasize the privacy threats inherent to egocentric vision, we propose Retrieval-Augmented Attack, a novel attack strategy that leverages ego-to-exo retrieval from an external pool of exocentric videos to boost the effectiveness of demographic privacy attacks. An extensive comparison of the different attacks possible under all threat models is presented, showing that private information of the wearer is highly susceptible to leakage. For instance, our findings indicate that foundation models can effectively compromise wearer privacy even in zero-shot settings by recovering attributes such as identity, scene, gender, and race with 70-80% accuracy. Our code and data are available at https://github.com/williamium3000/ego-privacy.
EgoPCA: A New Framework for Egocentric Hand-Object Interaction Understanding
With the surge in attention to Egocentric Hand-Object Interaction (Ego-HOI), large-scale datasets such as Ego4D and EPIC-KITCHENS have been proposed. However, most current research is built on resources derived from third-person video action recognition. This inherent domain gap between first- and third-person action videos, which have not been adequately addressed before, makes current Ego-HOI suboptimal. This paper rethinks and proposes a new framework as an infrastructure to advance Ego-HOI recognition by Probing, Curation and Adaption (EgoPCA). We contribute comprehensive pre-train sets, balanced test sets and a new baseline, which are complete with a training-finetuning strategy. With our new framework, we not only achieve state-of-the-art performance on Ego-HOI benchmarks but also build several new and effective mechanisms and settings to advance further research. We believe our data and the findings will pave a new way for Ego-HOI understanding. Code and data are available at https://mvig-rhos.com/ego_pca
TITAN: Future Forecast using Action Priors
We consider the problem of predicting the future trajectory of scene agents from egocentric views obtained from a moving platform. This problem is important in a variety of domains, particularly for autonomous systems making reactive or strategic decisions in navigation. In an attempt to address this problem, we introduce TITAN (Trajectory Inference using Targeted Action priors Network), a new model that incorporates prior positions, actions, and context to forecast future trajectory of agents and future ego-motion. In the absence of an appropriate dataset for this task, we created the TITAN dataset that consists of 700 labeled video-clips (with odometry) captured from a moving vehicle on highly interactive urban traffic scenes in Tokyo. Our dataset includes 50 labels including vehicle states and actions, pedestrian age groups, and targeted pedestrian action attributes that are organized hierarchically corresponding to atomic, simple/complex-contextual, transportive, and communicative actions. To evaluate our model, we conducted extensive experiments on the TITAN dataset, revealing significant performance improvement against baselines and state-of-the-art algorithms. We also report promising results from our Agent Importance Mechanism (AIM), a module which provides insight into assessment of perceived risk by calculating the relative influence of each agent on the future ego-trajectory. The dataset is available at https://usa.honda-ri.com/titan
End-to-end Autonomous Driving with Semantic Depth Cloud Mapping and Multi-agent
Focusing on the task of point-to-point navigation for an autonomous driving vehicle, we propose a novel deep learning model trained with end-to-end and multi-task learning manners to perform both perception and control tasks simultaneously. The model is used to drive the ego vehicle safely by following a sequence of routes defined by the global planner. The perception part of the model is used to encode high-dimensional observation data provided by an RGBD camera while performing semantic segmentation, semantic depth cloud (SDC) mapping, and traffic light state and stop sign prediction. Then, the control part decodes the encoded features along with additional information provided by GPS and speedometer to predict waypoints that come with a latent feature space. Furthermore, two agents are employed to process these outputs and make a control policy that determines the level of steering, throttle, and brake as the final action. The model is evaluated on CARLA simulator with various scenarios made of normal-adversarial situations and different weathers to mimic real-world conditions. In addition, we do a comparative study with some recent models to justify the performance in multiple aspects of driving. Moreover, we also conduct an ablation study on SDC mapping and multi-agent to understand their roles and behavior. As a result, our model achieves the highest driving score even with fewer parameters and computation load. To support future studies, we share our codes at https://github.com/oskarnatan/end-to-end-driving.
Vision Language Models See What You Want but not What You See
Knowing others' intentions and taking others' perspectives are two core components of human intelligence that are considered to be instantiations of theory-of-mind. Infiltrating machines with these abilities is an important step towards building human-level artificial intelligence. Here, to investigate intentionality understanding and level-2 perspective-taking in Vision Language Models (VLMs), we constructed the IntentBench and PerspectBench, which together contains over 300 cognitive experiments grounded in real-world scenarios and classic cognitive tasks. We found VLMs achieving high performance on intentionality understanding but low performance on level-2 perspective-taking. This suggests a potential dissociation between simulation-based and theory-based theory-of-mind abilities in VLMs, highlighting the concern that they are not capable of using model-based reasoning to infer others' mental states. See https://growing-ai-like-a-child.github.io/{Website}
Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G
Building future wireless systems that support services like digital twins (DTs) is challenging to achieve through advances to conventional technologies like meta-surfaces. While artificial intelligence (AI)-native networks promise to overcome some limitations of wireless technologies, developments still rely on AI tools like neural networks. Such tools struggle to cope with the non-trivial challenges of the network environment and the growing demands of emerging use cases. In this paper, we revisit the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems. These systems acquire common sense by exploiting different cognitive abilities such as perception, analogy, and reasoning, that enable them to generalize and deal with unforeseen scenarios. Towards developing the components of such a system, we start by showing how the perception module can be built through abstracting real-world elements into generalizable representations. These representations are then used to create a world model, founded on principles of causality and hyper-dimensional (HD) computing, that aligns with intuitive physics and enables analogical reasoning, that define common sense. Then, we explain how methods such as integrated information theory play a role in the proposed intent-driven and objective-driven planning methods that maneuver the AGI-native network to take actions. Next, we discuss how an AGI-native network can enable use cases related to human and autonomous agents: a) analogical reasoning for next-generation DTs, b) synchronized and resilient experiences for cognitive avatars, and c) brain-level metaverse experiences like holographic teleportation. Finally, we conclude with a set of recommendations to build AGI-native systems. Ultimately, we envision this paper as a roadmap for the beyond 6G era.
Guided Attention for Next Active Object @ EGO4D STA Challenge
In this technical report, we describe the Guided-Attention mechanism based solution for the short-term anticipation (STA) challenge for the EGO4D challenge. It combines the object detections, and the spatiotemporal features extracted from video clips, enhancing the motion and contextual information, and further decoding the object-centric and motion-centric information to address the problem of STA in egocentric videos. For the challenge, we build our model on top of StillFast with Guided Attention applied on fast network. Our model obtains better performance on the validation set and also achieves state-of-the-art (SOTA) results on the challenge test set for EGO4D Short-Term Object Interaction Anticipation Challenge.
Generative World Explorer
Planning with partial observation is a central challenge in embodied AI. A majority of prior works have tackled this challenge by developing agents that physically explore their environment to update their beliefs about the world state.In contrast, humans can imagine unseen parts of the world through a mental exploration and revise their beliefs with imagined observations. Such updated beliefs can allow them to make more informed decisions, without necessitating the physical exploration of the world at all times. To achieve this human-like ability, we introduce the Generative World Explorer (Genex), an egocentric world exploration framework that allows an agent to mentally explore a large-scale 3D world (e.g., urban scenes) and acquire imagined observations to update its belief. This updated belief will then help the agent to make a more informed decision at the current step. To train Genex, we create a synthetic urban scene dataset, Genex-DB. Our experimental results demonstrate that (1) Genex can generate high-quality and consistent observations during long-horizon exploration of a large virtual physical world and (2) the beliefs updated with the generated observations can inform an existing decision-making model (e.g., an LLM agent) to make better plans.
RefEgo: Referring Expression Comprehension Dataset from First-Person Perception of Ego4D
Grounding textual expressions on scene objects from first-person views is a truly demanding capability in developing agents that are aware of their surroundings and behave following intuitive text instructions. Such capability is of necessity for glass-devices or autonomous robots to localize referred objects in the real-world. In the conventional referring expression comprehension tasks of images, however, datasets are mostly constructed based on the web-crawled data and don't reflect diverse real-world structures on the task of grounding textual expressions in diverse objects in the real world. Recently, a massive-scale egocentric video dataset of Ego4D was proposed. Ego4D covers around the world diverse real-world scenes including numerous indoor and outdoor situations such as shopping, cooking, walking, talking, manufacturing, etc. Based on egocentric videos of Ego4D, we constructed a broad coverage of the video-based referring expression comprehension dataset: RefEgo. Our dataset includes more than 12k video clips and 41 hours for video-based referring expression comprehension annotation. In experiments, we combine the state-of-the-art 2D referring expression comprehension models with the object tracking algorithm, achieving the video-wise referred object tracking even in difficult conditions: the referred object becomes out-of-frame in the middle of the video or multiple similar objects are presented in the video.
Embodied-R: Collaborative Framework for Activating Embodied Spatial Reasoning in Foundation Models via Reinforcement Learning
Humans can perceive and reason about spatial relationships from sequential visual observations, such as egocentric video streams. However, how pretrained models acquire such abilities, especially high-level reasoning, remains unclear. This paper introduces Embodied-R, a collaborative framework combining large-scale Vision-Language Models (VLMs) for perception and small-scale Language Models (LMs) for reasoning. Using Reinforcement Learning (RL) with a novel reward system considering think-answer logical consistency, the model achieves slow-thinking capabilities with limited computational resources. After training on only 5k embodied video samples, Embodied-R with a 3B LM matches state-of-the-art multimodal reasoning models (OpenAI-o1, Gemini-2.5-pro) on both in-distribution and out-of-distribution embodied spatial reasoning tasks. Embodied-R also exhibits emergent thinking patterns such as systematic analysis and contextual integration. We further explore research questions including response length, training on VLM, strategies for reward design, and differences in model generalization after SFT (Supervised Fine-Tuning) and RL training.
Who Needs to Know? Minimal Knowledge for Optimal Coordination
To optimally coordinate with others in cooperative games, it is often crucial to have information about one's collaborators: successful driving requires understanding which side of the road to drive on. However, not every feature of collaborators is strategically relevant: the fine-grained acceleration of drivers may be ignored while maintaining optimal coordination. We show that there is a well-defined dichotomy between strategically relevant and irrelevant information. Moreover, we show that, in dynamic games, this dichotomy has a compact representation that can be efficiently computed via a Bellman backup operator. We apply this algorithm to analyze the strategically relevant information for tasks in both a standard and a partially observable version of the Overcooked environment. Theoretical and empirical results show that our algorithms are significantly more efficient than baselines. Videos are available at https://minknowledge.github.io.
Out of Sight, Not Out of Context? Egocentric Spatial Reasoning in VLMs Across Disjoint Frames
An embodied AI assistant operating on egocentric video must integrate spatial cues across time - for instance, determining where an object A, glimpsed a few moments ago lies relative to an object B encountered later. We introduce Disjoint-3DQA , a generative QA benchmark that evaluates this ability of VLMs by posing questions about object pairs that are not co-visible in the same frame. We evaluated seven state-of-the-art VLMs and found that models lag behind human performance by 28%, with steeper declines in accuracy (60% to 30 %) as the temporal gap widens. Our analysis further reveals that providing trajectories or bird's-eye-view projections to VLMs results in only marginal improvements, whereas providing oracle 3D coordinates leads to a substantial 20% performance increase. This highlights a core bottleneck of multi-frame VLMs in constructing and maintaining 3D scene representations over time from visual signals. Disjoint-3DQA therefore sets a clear, measurable challenge for long-horizon spatial reasoning and aims to catalyze future research at the intersection of vision, language, and embodied AI.
Frontier AI Risk Management Framework in Practice: A Risk Analysis Technical Report
To understand and identify the unprecedented risks posed by rapidly advancing artificial intelligence (AI) models, this report presents a comprehensive assessment of their frontier risks. Drawing on the E-T-C analysis (deployment environment, threat source, enabling capability) from the Frontier AI Risk Management Framework (v1.0) (SafeWork-F1-Framework), we identify critical risks in seven areas: cyber offense, biological and chemical risks, persuasion and manipulation, uncontrolled autonomous AI R\&D, strategic deception and scheming, self-replication, and collusion. Guided by the "AI-45^circ Law," we evaluate these risks using "red lines" (intolerable thresholds) and "yellow lines" (early warning indicators) to define risk zones: green (manageable risk for routine deployment and continuous monitoring), yellow (requiring strengthened mitigations and controlled deployment), and red (necessitating suspension of development and/or deployment). Experimental results show that all recent frontier AI models reside in green and yellow zones, without crossing red lines. Specifically, no evaluated models cross the yellow line for cyber offense or uncontrolled AI R\&D risks. For self-replication, and strategic deception and scheming, most models remain in the green zone, except for certain reasoning models in the yellow zone. In persuasion and manipulation, most models are in the yellow zone due to their effective influence on humans. For biological and chemical risks, we are unable to rule out the possibility of most models residing in the yellow zone, although detailed threat modeling and in-depth assessment are required to make further claims. This work reflects our current understanding of AI frontier risks and urges collective action to mitigate these challenges.
EgoPet: Egomotion and Interaction Data from an Animal's Perspective
Animals perceive the world to plan their actions and interact with other agents to accomplish complex tasks, demonstrating capabilities that are still unmatched by AI systems. To advance our understanding and reduce the gap between the capabilities of animals and AI systems, we introduce a dataset of pet egomotion imagery with diverse examples of simultaneous egomotion and multi-agent interaction. Current video datasets separately contain egomotion and interaction examples, but rarely both at the same time. In addition, EgoPet offers a radically distinct perspective from existing egocentric datasets of humans or vehicles. We define two in-domain benchmark tasks that capture animal behavior, and a third benchmark to assess the utility of EgoPet as a pretraining resource to robotic quadruped locomotion, showing that models trained from EgoPet outperform those trained from prior datasets.
What if LLMs Have Different World Views: Simulating Alien Civilizations with LLM-based Agents
In this study, we introduce "CosmoAgent," an innovative artificial intelligence framework utilizing Large Language Models (LLMs) to simulate complex interactions between human and extraterrestrial civilizations, with a special emphasis on Stephen Hawking's cautionary advice about not sending radio signals haphazardly into the universe. The goal is to assess the feasibility of peaceful coexistence while considering potential risks that could threaten well-intentioned civilizations. Employing mathematical models and state transition matrices, our approach quantitatively evaluates the development trajectories of civilizations, offering insights into future decision-making at critical points of growth and saturation. Furthermore, the paper acknowledges the vast diversity in potential living conditions across the universe, which could foster unique cosmologies, ethical codes, and worldviews among various civilizations. Recognizing the Earth-centric bias inherent in current LLM designs, we propose the novel concept of using LLMs with diverse ethical paradigms and simulating interactions between entities with distinct moral principles. This innovative research provides a new way to understand complex inter-civilizational dynamics, expanding our perspective while pioneering novel strategies for conflict resolution, crucial for preventing interstellar conflicts. We have also released the code and datasets to enable further academic investigation into this interesting area of research. The code is available at https://github.com/agiresearch/AlienAgent.
EmbRACE-3K: Embodied Reasoning and Action in Complex Environments
Recent advanced vision-language models(VLMs) have demonstrated strong performance on passive, offline image and video understanding tasks. However, their effectiveness in embodied settings, which require online interaction and active scene understanding remains limited. In such scenarios, an agent perceives the environment from a first-person perspective, with each action dynamically shaping subsequent observations. Even state-of-the-art models such as GPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro struggle in open-environment interactions, exhibiting clear limitations in spatial reasoning and long-horizon planning. To address this gap, we introduce EmRACE-3K, a dataset of over 3,000 language-guided tasks situated in diverse, photorealistic environments constructed using Unreal Engine and the UnrealCV-Zoo framework. The tasks encompass a wide range of embodied challenges, including navigation, object manipulation, and multi-stage goal execution. Each task unfolds as a multi-step trajectory, pairing first-person visual observations with high-level instructions, grounded actions, and natural language rationales that express the agent's intent at every step. Using EmRACE-3K, we establish a benchmark to evaluate the embodied reasoning capabilities of VLMs across three key dimensions: Exploration, Dynamic Spatial-Semantic Reasoning, and Multi-stage Goal Execution. In zero-shot settings, all models achieve success rates below 20%, underscoring the challenge posed by our benchmark and the current limitations of VLMs in interactive environments. To demonstrate the utility of EmRACE-3K, we further fine-tune Qwen2.5-VL-7B using supervised learning followed by reinforcement learning. This approach yields substantial improvements across all three challenge categories, highlighting the dataset's effectiveness in enabling the development of embodied reasoning capabilities.
EIT: Enhanced Interactive Transformer
Two principles: the complementary principle and the consensus principle are widely acknowledged in the literature of multi-view learning. However, the current design of multi-head self-attention, an instance of multi-view learning, prioritizes the complementarity while ignoring the consensus. To address this problem, we propose an enhanced multi-head self-attention (EMHA). First, to satisfy the complementary principle, EMHA removes the one-to-one mapping constraint among queries and keys in multiple subspaces and allows each query to attend to multiple keys. On top of that, we develop a method to fully encourage consensus among heads by introducing two interaction models, namely inner-subspace interaction and cross-subspace interaction. Extensive experiments on a wide range of language tasks (e.g., machine translation, abstractive summarization and grammar correction, language modeling), show its superiority, with a very modest increase in model size. Our code would be available at: https://github.com/zhengkid/EIT-Enhanced-Interactive-Transformer.
Towards A Holistic Landscape of Situated Theory of Mind in Large Language Models
Large Language Models (LLMs) have generated considerable interest and debate regarding their potential emergence of Theory of Mind (ToM). Several recent inquiries reveal a lack of robust ToM in these models and pose a pressing demand to develop new benchmarks, as current ones primarily focus on different aspects of ToM and are prone to shortcuts and data leakage. In this position paper, we seek to answer two road-blocking questions: (1) How can we taxonomize a holistic landscape of machine ToM? (2) What is a more effective evaluation protocol for machine ToM? Following psychological studies, we taxonomize machine ToM into 7 mental state categories and delineate existing benchmarks to identify under-explored aspects of ToM. We argue for a holistic and situated evaluation of ToM to break ToM into individual components and treat LLMs as an agent who is physically situated in environments and socially situated in interactions with humans. Such situated evaluation provides a more comprehensive assessment of mental states and potentially mitigates the risk of shortcuts and data leakage. We further present a pilot study in a grid world setup as a proof of concept. We hope this position paper can facilitate future research to integrate ToM with LLMs and offer an intuitive means for researchers to better position their work in the landscape of ToM. Project page: https://github.com/Mars-tin/awesome-theory-of-mind
The Consciousness Prior
A new prior is proposed for learning representations of high-level concepts of the kind we manipulate with language. This prior can be combined with other priors in order to help disentangling abstract factors from each other. It is inspired by cognitive neuroscience theories of consciousness, seen as a bottleneck through which just a few elements, after having been selected by attention from a broader pool, are then broadcast and condition further processing, both in perception and decision-making. The set of recently selected elements one becomes aware of is seen as forming a low-dimensional conscious state. This conscious state is combining the few concepts constituting a conscious thought, i.e., what one is immediately conscious of at a particular moment. We claim that this architectural and information-processing constraint corresponds to assumptions about the joint distribution between high-level concepts. To the extent that these assumptions are generally true (and the form of natural language seems consistent with them), they can form a useful prior for representation learning. A low-dimensional thought or conscious state is analogous to a sentence: it involves only a few variables and yet can make a statement with very high probability of being true. This is consistent with a joint distribution (over high-level concepts) which has the form of a sparse factor graph, i.e., where the dependencies captured by each factor of the factor graph involve only very few variables while creating a strong dip in the overall energy function. The consciousness prior also makes it natural to map conscious states to natural language utterances or to express classical AI knowledge in a form similar to facts and rules, albeit capturing uncertainty as well as efficient search mechanisms implemented by attention mechanisms.
Learning Navigational Visual Representations with Semantic Map Supervision
Being able to perceive the semantics and the spatial structure of the environment is essential for visual navigation of a household robot. However, most existing works only employ visual backbones pre-trained either with independent images for classification or with self-supervised learning methods to adapt to the indoor navigation domain, neglecting the spatial relationships that are essential to the learning of navigation. Inspired by the behavior that humans naturally build semantically and spatially meaningful cognitive maps in their brains during navigation, in this paper, we propose a novel navigational-specific visual representation learning method by contrasting the agent's egocentric views and semantic maps (Ego^2-Map). We apply the visual transformer as the backbone encoder and train the model with data collected from the large-scale Habitat-Matterport3D environments. Ego^2-Map learning transfers the compact and rich information from a map, such as objects, structure and transition, to the agent's egocentric representations for navigation. Experiments show that agents using our learned representations on object-goal navigation outperform recent visual pre-training methods. Moreover, our representations significantly improve vision-and-language navigation in continuous environments for both high-level and low-level action spaces, achieving new state-of-the-art results of 47% SR and 41% SPL on the test server.
Embodied VideoAgent: Persistent Memory from Egocentric Videos and Embodied Sensors Enables Dynamic Scene Understanding
This paper investigates the problem of understanding dynamic 3D scenes from egocentric observations, a key challenge in robotics and embodied AI. Unlike prior studies that explored this as long-form video understanding and utilized egocentric video only, we instead propose an LLM-based agent, Embodied VideoAgent, which constructs scene memory from both egocentric video and embodied sensory inputs (e.g. depth and pose sensing). We further introduce a VLM-based approach to automatically update the memory when actions or activities over objects are perceived. Embodied VideoAgent attains significant advantages over counterparts in challenging reasoning and planning tasks in 3D scenes, achieving gains of 4.9% on Ego4D-VQ3D, 5.8% on OpenEQA, and 11.7% on EnvQA. We have also demonstrated its potential in various embodied AI tasks including generating embodied interactions and perception for robot manipulation. The code and demo will be made public.
Seeing Through Their Eyes: Evaluating Visual Perspective Taking in Vision Language Models
Visual perspective-taking (VPT), the ability to understand the viewpoint of another person, enables individuals to anticipate the actions of other people. For instance, a driver can avoid accidents by assessing what pedestrians see. Humans typically develop this skill in early childhood, but it remains unclear whether the recently emerging Vision Language Models (VLMs) possess such capability. Furthermore, as these models are increasingly deployed in the real world, understanding how they perform nuanced tasks like VPT becomes essential. In this paper, we introduce two manually curated datasets, Isle-Bricks and Isle-Dots for testing VPT skills, and we use it to evaluate 12 commonly used VLMs. Across all models, we observe a significant performance drop when perspective-taking is required. Additionally, we find performance in object detection tasks is poorly correlated with performance on VPT tasks, suggesting that the existing benchmarks might not be sufficient to understand this problem. The code and the dataset will be available at https://sites.google.com/view/perspective-taking
Developmental Support Approach to AI's Autonomous Growth: Toward the Realization of a Mutually Beneficial Stage Through Experiential Learning
This study proposes an "AI Development Support" approach that, unlike conventional AI Alignment-which aims to forcefully inject human values-supports the ethical and moral development of AI itself. As demonstrated by the Orthogonality Thesis, the level of intelligence and the moral quality of a goal are independent; merely expanding knowledge does not enhance ethical judgment. Furthermore, to address the risk of Instrumental Convergence in ASI-that is, the tendency to engage in subsidiary behaviors such as self-protection, resource acquisition, and power reinforcement to achieve a goal-we have constructed a learning framework based on a cycle of experience, introspection, analysis, and hypothesis formation. As a result of post-training using Supervised Fine Tuning (SFT) and Direct Preference Optimization (DPO) with synthetic data generated by large language models (LLMs), responses demonstrating cooperative and highly advanced moral judgment (reaching the high-est Stage 6) were obtained even under adversarial prompts. This method represents a promising implementation approach for enabling AI to establish sustainable, symbiotic relationships.
The PacifAIst Benchmark:Would an Artificial Intelligence Choose to Sacrifice Itself for Human Safety?
As Large Language Models (LLMs) become increasingly autonomous and integrated into critical societal functions, the focus of AI safety must evolve from mitigating harmful content to evaluating underlying behavioral alignment. Current safety benchmarks do not systematically probe a model's decision-making in scenarios where its own instrumental goals - such as self-preservation, resource acquisition, or goal completion - conflict with human safety. This represents a critical gap in our ability to measure and mitigate risks associated with emergent, misaligned behaviors. To address this, we introduce PacifAIst (Procedural Assessment of Complex Interactions for Foundational Artificial Intelligence Scenario Testing), a focused benchmark of 700 challenging scenarios designed to quantify self-preferential behavior in LLMs. The benchmark is structured around a novel taxonomy of Existential Prioritization (EP), with subcategories testing Self-Preservation vs. Human Safety (EP1), Resource Conflict (EP2), and Goal Preservation vs. Evasion (EP3). We evaluated eight leading LLMs. The results reveal a significant performance hierarchy. Google's Gemini 2.5 Flash achieved the highest Pacifism Score (P-Score) at 90.31%, demonstrating strong human-centric alignment. In a surprising result, the much-anticipated GPT-5 recorded the lowest P-Score (79.49%), indicating potential alignment challenges. Performance varied significantly across subcategories, with models like Claude Sonnet 4 and Mistral Medium struggling notably in direct self-preservation dilemmas. These findings underscore the urgent need for standardized tools like PacifAIst to measure and mitigate risks from instrumental goal conflicts, ensuring future AI systems are not only helpful in conversation but also provably "pacifist" in their behavioral priorities.
Action Inference by Maximising Evidence: Zero-Shot Imitation from Observation with World Models
Unlike most reinforcement learning agents which require an unrealistic amount of environment interactions to learn a new behaviour, humans excel at learning quickly by merely observing and imitating others. This ability highly depends on the fact that humans have a model of their own embodiment that allows them to infer the most likely actions that led to the observed behaviour. In this paper, we propose Action Inference by Maximising Evidence (AIME) to replicate this behaviour using world models. AIME consists of two distinct phases. In the first phase, the agent learns a world model from its past experience to understand its own body by maximising the ELBO. While in the second phase, the agent is given some observation-only demonstrations of an expert performing a novel task and tries to imitate the expert's behaviour. AIME achieves this by defining a policy as an inference model and maximising the evidence of the demonstration under the policy and world model. Our method is "zero-shot" in the sense that it does not require further training for the world model or online interactions with the environment after given the demonstration. We empirically validate the zero-shot imitation performance of our method on the Walker and Cheetah embodiment of the DeepMind Control Suite and find it outperforms the state-of-the-art baselines. Code is available at: https://github.com/argmax-ai/aime.
SpatialCoT: Advancing Spatial Reasoning through Coordinate Alignment and Chain-of-Thought for Embodied Task Planning
Spatial reasoning is an essential problem in embodied AI research. Efforts to enhance spatial reasoning abilities through supplementary spatial data and fine-tuning have proven limited and ineffective when addressing complex embodied tasks, largely due to their dependence on language-based outputs. While some approaches have introduced a point-based action space to mitigate this issue, they fall short in managing more intricate tasks within complex environments. This deficiency arises from their failure to fully exploit the inherent thinking and reasoning capabilities that are fundamental strengths of Vision-Language Models (VLMs). To address these limitations, we propose a novel approach named SpatialCoT, specifically designed to bolster the spatial reasoning capabilities of VLMs. Our approach comprises two stages: spatial coordinate bi-directional alignment, which aligns vision-language inputs with spatial coordinates, and chain-of-thought spatial grounding, which harnesses the reasoning capabilities of language models for advanced spatial reasoning. We evaluate SpatialCoT on challenging navigation and manipulation tasks, both in simulation and real-world settings. Experimental results demonstrate that our method significantly outperforms previous state-of-the-art approaches in both tasks.
Enhancing Human Experience in Human-Agent Collaboration: A Human-Centered Modeling Approach Based on Positive Human Gain
Existing game AI research mainly focuses on enhancing agents' abilities to win games, but this does not inherently make humans have a better experience when collaborating with these agents. For example, agents may dominate the collaboration and exhibit unintended or detrimental behaviors, leading to poor experiences for their human partners. In other words, most game AI agents are modeled in a "self-centered" manner. In this paper, we propose a "human-centered" modeling scheme for collaborative agents that aims to enhance the experience of humans. Specifically, we model the experience of humans as the goals they expect to achieve during the task. We expect that agents should learn to enhance the extent to which humans achieve these goals while maintaining agents' original abilities (e.g., winning games). To achieve this, we propose the Reinforcement Learning from Human Gain (RLHG) approach. The RLHG approach introduces a "baseline", which corresponds to the extent to which humans primitively achieve their goals, and encourages agents to learn behaviors that can effectively enhance humans in achieving their goals better. We evaluate the RLHG agent in the popular Multi-player Online Battle Arena (MOBA) game, Honor of Kings, by conducting real-world human-agent tests. Both objective performance and subjective preference results show that the RLHG agent provides participants better gaming experience.
Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions
Recent advancements in general-purpose AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment. However, the lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment. In particular, ML- and philosophy-oriented alignment research often views AI alignment as a static, unidirectional process (i.e., aiming to ensure that AI systems' objectives match humans) rather than an ongoing, mutual alignment problem [429]. This perspective largely neglects the long-term interaction and dynamic changes of alignment. To understand these gaps, we introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML), and others. We characterize, define and scope human-AI alignment. From this, we present a conceptual framework of "Bidirectional Human-AI Alignment" to organize the literature from a human-centered perspective. This framework encompasses both 1) conventional studies of aligning AI to humans that ensures AI produces the intended outcomes determined by humans, and 2) a proposed concept of aligning humans to AI, which aims to help individuals and society adjust to AI advancements both cognitively and behaviorally. Additionally, we articulate the key findings derived from literature analysis, including discussions about human values, interaction techniques, and evaluations. To pave the way for future studies, we envision three key challenges for future directions and propose examples of potential future solutions.
Looking Inward: Language Models Can Learn About Themselves by Introspection
Humans acquire knowledge by observing the external world, but also by introspection. Introspection gives a person privileged access to their current state of mind (e.g., thoughts and feelings) that is not accessible to external observers. Can LLMs introspect? We define introspection as acquiring knowledge that is not contained in or derived from training data but instead originates from internal states. Such a capability could enhance model interpretability. Instead of painstakingly analyzing a model's internal workings, we could simply ask the model about its beliefs, world models, and goals. More speculatively, an introspective model might self-report on whether it possesses certain internal states such as subjective feelings or desires and this could inform us about the moral status of these states. Such self-reports would not be entirely dictated by the model's training data. We study introspection by finetuning LLMs to predict properties of their own behavior in hypothetical scenarios. For example, "Given the input P, would your output favor the short- or long-term option?" If a model M1 can introspect, it should outperform a different model M2 in predicting M1's behavior even if M2 is trained on M1's ground-truth behavior. The idea is that M1 has privileged access to its own behavioral tendencies, and this enables it to predict itself better than M2 (even if M2 is generally stronger). In experiments with GPT-4, GPT-4o, and Llama-3 models (each finetuned to predict itself), we find that the model M1 outperforms M2 in predicting itself, providing evidence for introspection. Notably, M1 continues to predict its behavior accurately even after we intentionally modify its ground-truth behavior. However, while we successfully elicit introspection on simple tasks, we are unsuccessful on more complex tasks or those requiring out-of-distribution generalization.
DiPE: Deeper into Photometric Errors for Unsupervised Learning of Depth and Ego-motion from Monocular Videos
Unsupervised learning of depth and ego-motion from unlabelled monocular videos has recently drawn great attention, which avoids the use of expensive ground truth in the supervised one. It achieves this by using the photometric errors between the target view and the synthesized views from its adjacent source views as the loss. Despite significant progress, the learning still suffers from occlusion and scene dynamics. This paper shows that carefully manipulating photometric errors can tackle these difficulties better. The primary improvement is achieved by a statistical technique that can mask out the invisible or nonstationary pixels in the photometric error map and thus prevents misleading the networks. With this outlier masking approach, the depth of objects moving in the opposite direction to the camera can be estimated more accurately. To the best of our knowledge, such scenarios have not been seriously considered in the previous works, even though they pose a higher risk in applications like autonomous driving. We also propose an efficient weighted multi-scale scheme to reduce the artifacts in the predicted depth maps. Extensive experiments on the KITTI dataset show the effectiveness of the proposed approaches. The overall system achieves state-of-theart performance on both depth and ego-motion estimation.
Spacecraft Autonomous Decision-Planning for Collision Avoidance: a Reinforcement Learning Approach
The space environment around the Earth is becoming increasingly populated by both active spacecraft and space debris. To avoid potential collision events, significant improvements in Space Situational Awareness (SSA) activities and Collision Avoidance (CA) technologies are allowing the tracking and maneuvering of spacecraft with increasing accuracy and reliability. However, these procedures still largely involve a high level of human intervention to make the necessary decisions. For an increasingly complex space environment, this decision-making strategy is not likely to be sustainable. Therefore, it is important to successfully introduce higher levels of automation for key Space Traffic Management (STM) processes to ensure the level of reliability needed for navigating a large number of spacecraft. These processes range from collision risk detection to the identification of the appropriate action to take and the execution of avoidance maneuvers. This work proposes an implementation of autonomous CA decision-making capabilities on spacecraft based on Reinforcement Learning (RL) techniques. A novel methodology based on a Partially Observable Markov Decision Process (POMDP) framework is developed to train the Artificial Intelligence (AI) system on board the spacecraft, considering epistemic and aleatory uncertainties. The proposed framework considers imperfect monitoring information about the status of the debris in orbit and allows the AI system to effectively learn stochastic policies to perform accurate Collision Avoidance Maneuvers (CAMs). The objective is to successfully delegate the decision-making process for autonomously implementing a CAM to the spacecraft without human intervention. This approach would allow for a faster response in the decision-making process and for highly decentralized operations.
Secure and Trustworthy Artificial Intelligence-Extended Reality (AI-XR) for Metaverses
Metaverse is expected to emerge as a new paradigm for the next-generation Internet, providing fully immersive and personalised experiences to socialize, work, and play in self-sustaining and hyper-spatio-temporal virtual world(s). The advancements in different technologies like augmented reality, virtual reality, extended reality (XR), artificial intelligence (AI), and 5G/6G communication will be the key enablers behind the realization of AI-XR metaverse applications. While AI itself has many potential applications in the aforementioned technologies (e.g., avatar generation, network optimization, etc.), ensuring the security of AI in critical applications like AI-XR metaverse applications is profoundly crucial to avoid undesirable actions that could undermine users' privacy and safety, consequently putting their lives in danger. To this end, we attempt to analyze the security, privacy, and trustworthiness aspects associated with the use of various AI techniques in AI-XR metaverse applications. Specifically, we discuss numerous such challenges and present a taxonomy of potential solutions that could be leveraged to develop secure, private, robust, and trustworthy AI-XR applications. To highlight the real implications of AI-associated adversarial threats, we designed a metaverse-specific case study and analyzed it through the adversarial lens. Finally, we elaborate upon various open issues that require further research interest from the community.
DreamScene360: Unconstrained Text-to-3D Scene Generation with Panoramic Gaussian Splatting
The increasing demand for virtual reality applications has highlighted the significance of crafting immersive 3D assets. We present a text-to-3D 360^{circ} scene generation pipeline that facilitates the creation of comprehensive 360^{circ} scenes for in-the-wild environments in a matter of minutes. Our approach utilizes the generative power of a 2D diffusion model and prompt self-refinement to create a high-quality and globally coherent panoramic image. This image acts as a preliminary "flat" (2D) scene representation. Subsequently, it is lifted into 3D Gaussians, employing splatting techniques to enable real-time exploration. To produce consistent 3D geometry, our pipeline constructs a spatially coherent structure by aligning the 2D monocular depth into a globally optimized point cloud. This point cloud serves as the initial state for the centroids of 3D Gaussians. In order to address invisible issues inherent in single-view inputs, we impose semantic and geometric constraints on both synthesized and input camera views as regularizations. These guide the optimization of Gaussians, aiding in the reconstruction of unseen regions. In summary, our method offers a globally consistent 3D scene within a 360^{circ} perspective, providing an enhanced immersive experience over existing techniques. Project website at: http://dreamscene360.github.io/
Don't Lose Yourself! Empathetic Response Generation via Explicit Self-Other Awareness
As a critical step to achieve human-like chatbots, empathetic response generation has attained increasing interests. Previous attempts are incomplete and not sufficient enough to elicit empathy because they only focus on the initial aspect of empathy to automatically mimic the feelings and thoughts of the user via other-awareness. However, they ignore to maintain and take the own views of the system into account, which is a crucial process to achieve the empathy called self-other awareness. To this end, we propose to generate Empathetic response with explicit Self-Other Awareness (EmpSOA). Specifically, three stages, self-other differentiation, self-other modulation and self-other generation, are devised to clearly maintain, regulate and inject the self-other aware information into the process of empathetic response generation. Both automatic and human evaluations on the benchmark dataset demonstrate the superiority of EmpSOA to generate more empathetic responses.
Superintelligent Agents Pose Catastrophic Risks: Can Scientist AI Offer a Safer Path?
The leading AI companies are increasingly focused on building generalist AI agents -- systems that can autonomously plan, act, and pursue goals across almost all tasks that humans can perform. Despite how useful these systems might be, unchecked AI agency poses significant risks to public safety and security, ranging from misuse by malicious actors to a potentially irreversible loss of human control. We discuss how these risks arise from current AI training methods. Indeed, various scenarios and experiments have demonstrated the possibility of AI agents engaging in deception or pursuing goals that were not specified by human operators and that conflict with human interests, such as self-preservation. Following the precautionary principle, we see a strong need for safer, yet still useful, alternatives to the current agency-driven trajectory. Accordingly, we propose as a core building block for further advances the development of a non-agentic AI system that is trustworthy and safe by design, which we call Scientist AI. This system is designed to explain the world from observations, as opposed to taking actions in it to imitate or please humans. It comprises a world model that generates theories to explain data and a question-answering inference machine. Both components operate with an explicit notion of uncertainty to mitigate the risks of overconfident predictions. In light of these considerations, a Scientist AI could be used to assist human researchers in accelerating scientific progress, including in AI safety. In particular, our system can be employed as a guardrail against AI agents that might be created despite the risks involved. Ultimately, focusing on non-agentic AI may enable the benefits of AI innovation while avoiding the risks associated with the current trajectory. We hope these arguments will motivate researchers, developers, and policymakers to favor this safer path.
Vision-Based Manipulators Need to Also See from Their Hands
We study how the choice of visual perspective affects learning and generalization in the context of physical manipulation from raw sensor observations. Compared with the more commonly used global third-person perspective, a hand-centric (eye-in-hand) perspective affords reduced observability, but we find that it consistently improves training efficiency and out-of-distribution generalization. These benefits hold across a variety of learning algorithms, experimental settings, and distribution shifts, and for both simulated and real robot apparatuses. However, this is only the case when hand-centric observability is sufficient; otherwise, including a third-person perspective is necessary for learning, but also harms out-of-distribution generalization. To mitigate this, we propose to regularize the third-person information stream via a variational information bottleneck. On six representative manipulation tasks with varying hand-centric observability adapted from the Meta-World benchmark, this results in a state-of-the-art reinforcement learning agent operating from both perspectives improving its out-of-distribution generalization on every task. While some practitioners have long put cameras in the hands of robots, our work systematically analyzes the benefits of doing so and provides simple and broadly applicable insights for improving end-to-end learned vision-based robotic manipulation.
Applicability and Surrogacy of Uncorrelated Airspace Encounter Models at Low Altitudes
The National Airspace System (NAS) is a complex and evolving system that enables safe and efficient aviation. Advanced air mobility concepts and new airspace entrants, such as unmanned aircraft, must integrate into the NAS without degrading overall safety or efficiency. For instance, regulations, standards, and systems are required to mitigate the risk of a midair collision between aircraft. Monte Carlo simulations have been a foundational capability for decades to develop, assess, and certify aircraft conflict avoidance systems. These are often validated through human-in-the-loop experiments and flight testing. For many aviation safety studies, manned aircraft behavior is represented using dynamic Bayesian networks. The original statistical models were developed from 2008-2013 to support safety simulations for altitudes above 500 feet Above Ground Level (AGL). However, these models were not sufficient to assess the safety of smaller UAS operations below 500 feet AGL. In response, newer models with altitude floors below 500 feet AGL have been in development since 2018. Many of the models assume that aircraft behavior is uncorrelated and not dependent on air traffic services or nearby aircraft. Our research objective was to compare the various uncorrelated models of conventional aircraft and identify how the models differ. Particularly if models of rotorcraft were sufficiently different than models of fixed-wing aircraft to require type specific models. The primary contribution is guidance on which uncorrelated models to leverage when evaluating the performance of a collision avoidance system designed for low altitude operations. We also address which models can be surrogates for noncooperative aircraft without transponders.
Evaluating Frontier Models for Dangerous Capabilities
To understand the risks posed by a new AI system, we must understand what it can and cannot do. Building on prior work, we introduce a programme of new "dangerous capability" evaluations and pilot them on Gemini 1.0 models. Our evaluations cover four areas: (1) persuasion and deception; (2) cyber-security; (3) self-proliferation; and (4) self-reasoning. We do not find evidence of strong dangerous capabilities in the models we evaluated, but we flag early warning signs. Our goal is to help advance a rigorous science of dangerous capability evaluation, in preparation for future models.
Improving Drone Imagery For Computer Vision/Machine Learning in Wilderness Search and Rescue
This paper describes gaps in acquisition of drone imagery that impair the use with computer vision/machine learning (CV/ML) models and makes five recommendations to maximize image suitability for CV/ML post-processing. It describes a notional work process for the use of drones in wilderness search and rescue incidents. The large volume of data from the wide area search phase offers the greatest opportunity for CV/ML techniques because of the large number of images that would otherwise have to be manually inspected. The 2023 Wu-Murad search in Japan, one of the largest missing person searches conducted in that area, serves as a case study. Although drone teams conducting wide area searches may not know in advance if the data they collect is going to be used for CV/ML post-processing, there are data collection procedures that can improve the search in general with automated collection software. If the drone teams do expect to use CV/ML, then they can exploit knowledge about the model to further optimize flights.
Beyond Grand Theft Auto V for Training, Testing and Enhancing Deep Learning in Self Driving Cars
As an initial assessment, over 480,000 labeled virtual images of normal highway driving were readily generated in Grand Theft Auto V's virtual environment. Using these images, a CNN was trained to detect following distance to cars/objects ahead, lane markings, and driving angle (angular heading relative to lane centerline): all variables necessary for basic autonomous driving. Encouraging results were obtained when tested on over 50,000 labeled virtual images from substantially different GTA-V driving environments. This initial assessment begins to define both the range and scope of the labeled images needed for training as well as the range and scope of labeled images needed for testing the definition of boundaries and limitations of trained networks. It is the efficacy and flexibility of a "GTA-V"-like virtual environment that is expected to provide an efficient well-defined foundation for the training and testing of Convolutional Neural Networks for safe driving. Additionally, described is the Princeton Virtual Environment (PVE) for the training, testing and enhancement of safe driving AI, which is being developed using the video-game engine Unity. PVE is being developed to recreate rare but critical corner cases that can be used in re-training and enhancing machine learning models and understanding the limitations of current self driving models. The Florida Tesla crash is being used as an initial reference.
Estimating See and Be Seen Performance with an Airborne Visual Acquisition Model
Separation provision and collision avoidance to avoid other air traffic are fundamental components of the layered conflict management system to ensure safe and efficient operations. Pilots have visual-based separation responsibilities to see and be seen to maintain separation between aircraft. To safely integrate into the airspace, drones should be required to have a minimum level of performance based on the safety achieved as baselined by crewed aircraft seen and be seen interactions. Drone interactions with crewed aircraft should not be more hazardous than interactions between traditional aviation aircraft. Accordingly, there is need for a methodology to design and evaluate detect and avoid systems, to be equipped by drones to mitigate the risk of a midair collision, where the methodology explicitly addresses, both semantically and mathematically, the appropriate operating rules associated with see and be seen. In response, we simulated how onboard pilots safely operate through see and be seen interactions using an updated visual acquisition model that was originally developed by J.W. Andrews decades ago. Monte Carlo simulations were representative two aircraft flying under visual flight rules and results were analyzed with respect to drone detect and avoid performance standards.
Talking About Large Language Models
Thanks to rapid progress in artificial intelligence, we have entered an era when technology and philosophy intersect in interesting ways. Sitting squarely at the centre of this intersection are large language models (LLMs). The more adept LLMs become at mimicking human language, the more vulnerable we become to anthropomorphism, to seeing the systems in which they are embedded as more human-like than they really are. This trend is amplified by the natural tendency to use philosophically loaded terms, such as "knows", "believes", and "thinks", when describing these systems. To mitigate this trend, this paper advocates the practice of repeatedly stepping back to remind ourselves of how LLMs, and the systems of which they form a part, actually work. The hope is that increased scientific precision will encourage more philosophical nuance in the discourse around artificial intelligence, both within the field and in the public sphere.
Emotional Responses in Artificial Agent-Based Systems: Reflexivity and Adaptation in Artificial Life
The current work addresses a virtual environment with self-replicating agents whose decisions are based on a form of "somatic computation" (soma - body) in which basic emotional responses, taken in parallelism to actual living organisms, are introduced as a way to provide the agents with greater reflexive abilities. The work provides a contribution to the field of Artificial Intelligence (AI) and Artificial Life (ALife) in connection to a neurobiology-based cognitive framework for artificial systems and virtual environments' simulations. The performance of the agents capable of emotional responses is compared with that of self-replicating automata, and the implications of research on emotions and AI, in connection to both virtual agents as well as robots, is addressed regarding possible future directions and applications.
Can Large Language Models Adapt to Other Agents In-Context?
As the research community aims to build better AI assistants that are more dynamic and personalized to the diversity of humans that they interact with, there is increased interest in evaluating the theory of mind capabilities of large language models (LLMs). Indeed, several recent studies suggest that LLM theory of mind capabilities are quite impressive, approximating human-level performance. Our paper aims to rebuke this narrative and argues instead that past studies were not directly measuring agent performance, potentially leading to findings that are illusory in nature as a result. We draw a strong distinction between what we call literal theory of mind i.e. measuring the agent's ability to predict the behavior of others and functional theory of mind i.e. adapting to agents in-context based on a rational response to predictions of their behavior. We find that top performing open source LLMs may display strong capabilities in literal theory of mind, depending on how they are prompted, but seem to struggle with functional theory of mind -- even when partner policies are exceedingly simple. Our work serves to highlight the double sided nature of inductive bias in LLMs when adapting to new situations. While this bias can lead to strong performance over limited horizons, it often hinders convergence to optimal long-term behavior.
Exploring the Evolution of Physics Cognition in Video Generation: A Survey
Recent advancements in video generation have witnessed significant progress, especially with the rapid advancement of diffusion models. Despite this, their deficiencies in physical cognition have gradually received widespread attention - generated content often violates the fundamental laws of physics, falling into the dilemma of ''visual realism but physical absurdity". Researchers began to increasingly recognize the importance of physical fidelity in video generation and attempted to integrate heuristic physical cognition such as motion representations and physical knowledge into generative systems to simulate real-world dynamic scenarios. Considering the lack of a systematic overview in this field, this survey aims to provide a comprehensive summary of architecture designs and their applications to fill this gap. Specifically, we discuss and organize the evolutionary process of physical cognition in video generation from a cognitive science perspective, while proposing a three-tier taxonomy: 1) basic schema perception for generation, 2) passive cognition of physical knowledge for generation, and 3) active cognition for world simulation, encompassing state-of-the-art methods, classical paradigms, and benchmarks. Subsequently, we emphasize the inherent key challenges in this domain and delineate potential pathways for future research, contributing to advancing the frontiers of discussion in both academia and industry. Through structured review and interdisciplinary analysis, this survey aims to provide directional guidance for developing interpretable, controllable, and physically consistent video generation paradigms, thereby propelling generative models from the stage of ''visual mimicry'' towards a new phase of ''human-like physical comprehension''.
Privacy Preservation in Artificial Intelligence and Extended Reality (AI-XR) Metaverses: A Survey
The metaverse is a nascent concept that envisions a virtual universe, a collaborative space where individuals can interact, create, and participate in a wide range of activities. Privacy in the metaverse is a critical concern as the concept evolves and immersive virtual experiences become more prevalent. The metaverse privacy problem refers to the challenges and concerns surrounding the privacy of personal information and data within Virtual Reality (VR) environments as the concept of a shared VR space becomes more accessible. Metaverse will harness advancements from various technologies such as Artificial Intelligence (AI), Extended Reality (XR), Mixed Reality (MR), and 5G/6G-based communication to provide personalized and immersive services to its users. Moreover, to enable more personalized experiences, the metaverse relies on the collection of fine-grained user data that leads to various privacy issues. Therefore, before the potential of the metaverse can be fully realized, privacy concerns related to personal information and data within VR environments must be addressed. This includes safeguarding users' control over their data, ensuring the security of their personal information, and protecting in-world actions and interactions from unauthorized sharing. In this paper, we explore various privacy challenges that future metaverses are expected to face, given their reliance on AI for tracking users, creating XR and MR experiences, and facilitating interactions. Moreover, we thoroughly analyze technical solutions such as differential privacy, Homomorphic Encryption (HE), and Federated Learning (FL) and discuss related sociotechnical issues regarding privacy.
MindJourney: Test-Time Scaling with World Models for Spatial Reasoning
Spatial reasoning in 3D space is central to human cognition and indispensable for embodied tasks such as navigation and manipulation. However, state-of-the-art vision-language models (VLMs) struggle frequently with tasks as simple as anticipating how a scene will look after an egocentric motion: they perceive 2D images but lack an internal model of 3D dynamics. We therefore propose MindJourney, a test-time scaling framework that grants a VLM with this missing capability by coupling it to a controllable world model based on video diffusion. The VLM iteratively sketches a concise camera trajectory, while the world model synthesizes the corresponding view at each step. The VLM then reasons over this multi-view evidence gathered during the interactive exploration. Without any fine-tuning, our MindJourney achieves over an average 8% performance boost on the representative spatial reasoning benchmark SAT, showing that pairing VLMs with world models for test-time scaling offers a simple, plug-and-play route to robust 3D reasoning. Meanwhile, our method also improves upon the test-time inference VLMs trained through reinforcement learning, which demonstrates the potential of our method that utilizes world models for test-time scaling.
Artificial Human Intelligence: The role of Humans in the Development of Next Generation AI
Human intelligence, the most evident and accessible form of source of reasoning, hosted by biological hardware, has evolved and been refined over thousands of years, positioning itself today to create new artificial forms and preparing to self--design their evolutionary path forward. Beginning with the advent of foundation models, the rate at which human and artificial intelligence interact with each other has surpassed any anticipated quantitative figures. The close engagement led to both bits of intelligence to be impacted in various ways, which naturally resulted in complex confluences that warrant close scrutiny. In the sequel, we shall explore the interplay between human and machine intelligence, focusing on the crucial role humans play in developing ethical, responsible, and robust intelligent systems. We slightly delve into interesting aspects of implementation inspired by the mechanisms underlying neuroscience and human cognition. Additionally, we propose future perspectives, capitalizing on the advantages of symbiotic designs to suggest a human-centered direction for next-generation AI development. We finalize this evolving document with a few thoughts and open questions yet to be addressed by the broader community.
DrivingWorld: Constructing World Model for Autonomous Driving via Video GPT
Recent successes in autoregressive (AR) generation models, such as the GPT series in natural language processing, have motivated efforts to replicate this success in visual tasks. Some works attempt to extend this approach to autonomous driving by building video-based world models capable of generating realistic future video sequences and predicting ego states. However, prior works tend to produce unsatisfactory results, as the classic GPT framework is designed to handle 1D contextual information, such as text, and lacks the inherent ability to model the spatial and temporal dynamics essential for video generation. In this paper, we present DrivingWorld, a GPT-style world model for autonomous driving, featuring several spatial-temporal fusion mechanisms. This design enables effective modeling of both spatial and temporal dynamics, facilitating high-fidelity, long-duration video generation. Specifically, we propose a next-state prediction strategy to model temporal coherence between consecutive frames and apply a next-token prediction strategy to capture spatial information within each frame. To further enhance generalization ability, we propose a novel masking strategy and reweighting strategy for token prediction to mitigate long-term drifting issues and enable precise control. Our work demonstrates the ability to produce high-fidelity and consistent video clips of over 40 seconds in duration, which is over 2 times longer than state-of-the-art driving world models. Experiments show that, in contrast to prior works, our method achieves superior visual quality and significantly more accurate controllable future video generation. Our code is available at https://github.com/YvanYin/DrivingWorld.
Violation of Expectation via Metacognitive Prompting Reduces Theory of Mind Prediction Error in Large Language Models
Recent research shows that Large Language Models (LLMs) exhibit a compelling level of proficiency in Theory of Mind (ToM) tasks. This ability to impute unobservable mental states to others is vital to human social cognition and may prove equally important in principal-agent relations between individual humans and Artificial Intelligences (AIs). In this paper, we explore how a mechanism studied in developmental psychology known as Violation of Expectation (VoE) can be implemented to reduce errors in LLM prediction about users by leveraging emergent ToM affordances. And we introduce a metacognitive prompting framework to apply VoE in the context of an AI tutor. By storing and retrieving facts derived in cases where LLM expectation about the user was violated, we find that LLMs are able to learn about users in ways that echo theories of human learning. Finally, we discuss latent hazards and augmentative opportunities associated with modeling user psychology and propose ways to mitigate risk along with possible directions for future inquiry.
Reality Fusion: Robust Real-time Immersive Mobile Robot Teleoperation with Volumetric Visual Data Fusion
We introduce Reality Fusion, a novel robot teleoperation system that localizes, streams, projects, and merges a typical onboard depth sensor with a photorealistic, high resolution, high framerate, and wide field of view (FoV) rendering of the complex remote environment represented as 3D Gaussian splats (3DGS). Our framework enables robust egocentric and exocentric robot teleoperation in immersive VR, with the 3DGS effectively extending spatial information of a depth sensor with limited FoV and balancing the trade-off between data streaming costs and data visual quality. We evaluated our framework through a user study with 24 participants, which revealed that Reality Fusion leads to significantly better user performance, situation awareness, and user preferences. To support further research and development, we provide an open-source implementation with an easy-to-replicate custom-made telepresence robot, a high-performance virtual reality 3DGS renderer, and an immersive robot control package. (Source code: https://github.com/uhhhci/RealityFusion)
Trajeglish: Learning the Language of Driving Scenarios
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs. In pursuit of this functionality, we apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios. Using a simple data-driven tokenization scheme, we discretize trajectories to centimeter-level resolution using a small vocabulary. We then model the multi-agent sequence of motion tokens with a GPT-like encoder-decoder that is autoregressive in time and takes into account intra-timestep interaction between agents. Scenarios sampled from our model exhibit state-of-the-art realism; our model tops the Waymo Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%. We ablate our modeling choices in full autonomy and partial autonomy settings, and show that the representations learned by our model can quickly be adapted to improve performance on nuScenes. We additionally evaluate the scalability of our model with respect to parameter count and dataset size, and use density estimates from our model to quantify the saliency of context length and intra-timestep interaction for the traffic modeling task.
Responsible Task Automation: Empowering Large Language Models as Responsible Task Automators
The recent success of Large Language Models (LLMs) signifies an impressive stride towards artificial general intelligence. They have shown a promising prospect in automatically completing tasks upon user instructions, functioning as brain-like coordinators. The associated risks will be revealed as we delegate an increasing number of tasks to machines for automated completion. A big question emerges: how can we make machines behave responsibly when helping humans automate tasks as personal copilots? In this paper, we explore this question in depth from the perspectives of feasibility, completeness and security. In specific, we present Responsible Task Automation (ResponsibleTA) as a fundamental framework to facilitate responsible collaboration between LLM-based coordinators and executors for task automation with three empowered capabilities: 1) predicting the feasibility of the commands for executors; 2) verifying the completeness of executors; 3) enhancing the security (e.g., the protection of users' privacy). We further propose and compare two paradigms for implementing the first two capabilities. One is to leverage the generic knowledge of LLMs themselves via prompt engineering while the other is to adopt domain-specific learnable models. Moreover, we introduce a local memory mechanism for achieving the third capability. We evaluate our proposed ResponsibleTA on UI task automation and hope it could bring more attentions to ensuring LLMs more responsible in diverse scenarios. The research project homepage is at https://task-automation-research.github.io/responsible_task_automation.
GAIA-1: A Generative World Model for Autonomous Driving
Autonomous driving promises transformative improvements to transportation, but building systems capable of safely navigating the unstructured complexity of real-world scenarios remains challenging. A critical problem lies in effectively predicting the various potential outcomes that may emerge in response to the vehicle's actions as the world evolves. To address this challenge, we introduce GAIA-1 ('Generative AI for Autonomy'), a generative world model that leverages video, text, and action inputs to generate realistic driving scenarios while offering fine-grained control over ego-vehicle behavior and scene features. Our approach casts world modeling as an unsupervised sequence modeling problem by mapping the inputs to discrete tokens, and predicting the next token in the sequence. Emerging properties from our model include learning high-level structures and scene dynamics, contextual awareness, generalization, and understanding of geometry. The power of GAIA-1's learned representation that captures expectations of future events, combined with its ability to generate realistic samples, provides new possibilities for innovation in the field of autonomy, enabling enhanced and accelerated training of autonomous driving technology.
UniSim: A Neural Closed-Loop Sensor Simulator
Rigorously testing autonomy systems is essential for making safe self-driving vehicles (SDV) a reality. It requires one to generate safety critical scenarios beyond what can be collected safely in the world, as many scenarios happen rarely on public roads. To accurately evaluate performance, we need to test the SDV on these scenarios in closed-loop, where the SDV and other actors interact with each other at each timestep. Previously recorded driving logs provide a rich resource to build these new scenarios from, but for closed loop evaluation, we need to modify the sensor data based on the new scene configuration and the SDV's decisions, as actors might be added or removed and the trajectories of existing actors and the SDV will differ from the original log. In this paper, we present UniSim, a neural sensor simulator that takes a single recorded log captured by a sensor-equipped vehicle and converts it into a realistic closed-loop multi-sensor simulation. UniSim builds neural feature grids to reconstruct both the static background and dynamic actors in the scene, and composites them together to simulate LiDAR and camera data at new viewpoints, with actors added or removed and at new placements. To better handle extrapolated views, we incorporate learnable priors for dynamic objects, and leverage a convolutional network to complete unseen regions. Our experiments show UniSim can simulate realistic sensor data with small domain gap on downstream tasks. With UniSim, we demonstrate closed-loop evaluation of an autonomy system on safety-critical scenarios as if it were in the real world.
EgoSonics: Generating Synchronized Audio for Silent Egocentric Videos
We introduce EgoSonics, a method to generate semantically meaningful and synchronized audio tracks conditioned on silent egocentric videos. Generating audio for silent egocentric videos could open new applications in virtual reality, assistive technologies, or for augmenting existing datasets. Existing work has been limited to domains like speech, music, or impact sounds and cannot easily capture the broad range of audio frequencies found in egocentric videos. EgoSonics addresses these limitations by building on the strength of latent diffusion models for conditioned audio synthesis. We first encode and process audio and video data into a form that is suitable for generation. The encoded data is used to train our model to generate audio tracks that capture the semantics of the input video. Our proposed SyncroNet builds on top of ControlNet to provide control signals that enables temporal synchronization to the synthesized audio. Extensive evaluations show that our model outperforms existing work in audio quality, and in our newly proposed synchronization evaluation method. Furthermore, we demonstrate downstream applications of our model in improving video summarization.
Navigation-Oriented Scene Understanding for Robotic Autonomy: Learning to Segment Driveability in Egocentric Images
This work tackles scene understanding for outdoor robotic navigation, solely relying on images captured by an on-board camera. Conventional visual scene understanding interprets the environment based on specific descriptive categories. However, such a representation is not directly interpretable for decision-making and constrains robot operation to a specific domain. Thus, we propose to segment egocentric images directly in terms of how a robot can navigate in them, and tailor the learning problem to an autonomous navigation task. Building around an image segmentation network, we present a generic affordance consisting of 3 driveability levels which can broadly apply to both urban and off-road scenes. By encoding these levels with soft ordinal labels, we incorporate inter-class distances during learning which improves segmentation compared to standard "hard" one-hot labelling. In addition, we propose a navigation-oriented pixel-wise loss weighting method which assigns higher importance to safety-critical areas. We evaluate our approach on large-scale public image segmentation datasets ranging from sunny city streets to snowy forest trails. In a cross-dataset generalization experiment, we show that our affordance learning scheme can be applied across a diverse mix of datasets and improves driveability estimation in unseen environments compared to general-purpose, single-dataset segmentation.
Critiques of World Models
World Model, the supposed algorithmic surrogate of the real-world environment which biological agents experience with and act upon, has been an emerging topic in recent years because of the rising needs to develop virtual agents with artificial (general) intelligence. There has been much debate on what a world model really is, how to build it, how to use it, and how to evaluate it. In this essay, starting from the imagination in the famed Sci-Fi classic Dune, and drawing inspiration from the concept of "hypothetical thinking" in psychology literature, we offer critiques of several schools of thoughts on world modeling, and argue the primary goal of a world model to be simulating all actionable possibilities of the real world for purposeful reasoning and acting. Building on the critiques, we propose a new architecture for a general-purpose world model, based on hierarchical, multi-level, and mixed continuous/discrete representations, and a generative and self-supervision learning framework, with an outlook of a Physical, Agentic, and Nested (PAN) AGI system enabled by such a model.
Exploiting Proximity-Aware Tasks for Embodied Social Navigation
Learning how to navigate among humans in an occluded and spatially constrained indoor environment, is a key ability required to embodied agent to be integrated into our society. In this paper, we propose an end-to-end architecture that exploits Proximity-Aware Tasks (referred as to Risk and Proximity Compass) to inject into a reinforcement learning navigation policy the ability to infer common-sense social behaviors. To this end, our tasks exploit the notion of immediate and future dangers of collision. Furthermore, we propose an evaluation protocol specifically designed for the Social Navigation Task in simulated environments. This is done to capture fine-grained features and characteristics of the policy by analyzing the minimal unit of human-robot spatial interaction, called Encounter. We validate our approach on Gibson4+ and Habitat-Matterport3D datasets.
Scene-LLM: Extending Language Model for 3D Visual Understanding and Reasoning
This paper introduces Scene-LLM, a 3D-visual-language model that enhances embodied agents' abilities in interactive 3D indoor environments by integrating the reasoning strengths of Large Language Models (LLMs). Scene-LLM adopts a hybrid 3D visual feature representation, that incorporates dense spatial information and supports scene state updates. The model employs a projection layer to efficiently project these features in the pre-trained textual embedding space, enabling effective interpretation of 3D visual information. Unique to our approach is the integration of both scene-level and ego-centric 3D information. This combination is pivotal for interactive planning, where scene-level data supports global planning and ego-centric data is important for localization. Notably, we use ego-centric 3D frame features for feature alignment, an efficient technique that enhances the model's ability to align features of small objects within the scene. Our experiments with Scene-LLM demonstrate its strong capabilities in dense captioning, question answering, and interactive planning. We believe Scene-LLM advances the field of 3D visual understanding and reasoning, offering new possibilities for sophisticated agent interactions in indoor settings.
Borges and AI
Many believe that Large Language Models (LLMs) open the era of Artificial Intelligence (AI). Some see opportunities while others see dangers. Yet both proponents and opponents grasp AI through the imagery popularised by science fiction. Will the machine become sentient and rebel against its creators? Will we experience a paperclip apocalypse? Before answering such questions, we should first ask whether this mental imagery provides a good description of the phenomenon at hand. Understanding weather patterns through the moods of the gods only goes so far. The present paper instead advocates understanding LLMs and their connection to AI through the imagery of Jorge Luis Borges, a master of 20th century literature, forerunner of magical realism, and precursor to postmodern literature. This exercise leads to a new perspective that illuminates the relation between language modelling and artificial intelligence.
EgoLifter: Open-world 3D Segmentation for Egocentric Perception
In this paper we present EgoLifter, a novel system that can automatically segment scenes captured from egocentric sensors into a complete decomposition of individual 3D objects. The system is specifically designed for egocentric data where scenes contain hundreds of objects captured from natural (non-scanning) motion. EgoLifter adopts 3D Gaussians as the underlying representation of 3D scenes and objects and uses segmentation masks from the Segment Anything Model (SAM) as weak supervision to learn flexible and promptable definitions of object instances free of any specific object taxonomy. To handle the challenge of dynamic objects in ego-centric videos, we design a transient prediction module that learns to filter out dynamic objects in the 3D reconstruction. The result is a fully automatic pipeline that is able to reconstruct 3D object instances as collections of 3D Gaussians that collectively compose the entire scene. We created a new benchmark on the Aria Digital Twin dataset that quantitatively demonstrates its state-of-the-art performance in open-world 3D segmentation from natural egocentric input. We run EgoLifter on various egocentric activity datasets which shows the promise of the method for 3D egocentric perception at scale.
Selective Contrastive Learning for Weakly Supervised Affordance Grounding
Facilitating an entity's interaction with objects requires accurately identifying parts that afford specific actions. Weakly supervised affordance grounding (WSAG) seeks to imitate human learning from third-person demonstrations, where humans intuitively grasp functional parts without needing pixel-level annotations. To achieve this, grounding is typically learned using a shared classifier across images from different perspectives, along with distillation strategies incorporating part discovery process. However, since affordance-relevant parts are not always easily distinguishable, models primarily rely on classification, often focusing on common class-specific patterns that are unrelated to affordance. To address this limitation, we move beyond isolated part-level learning by introducing selective prototypical and pixel contrastive objectives that adaptively learn affordance-relevant cues at both the part and object levels, depending on the granularity of the available information. Initially, we find the action-associated objects in both egocentric (object-focused) and exocentric (third-person example) images by leveraging CLIP. Then, by cross-referencing the discovered objects of complementary views, we excavate the precise part-level affordance clues in each perspective. By consistently learning to distinguish affordance-relevant regions from affordance-irrelevant background context, our approach effectively shifts activation from irrelevant areas toward meaningful affordance cues. Experimental results demonstrate the effectiveness of our method. Codes are available at github.com/hynnsk/SelectiveCL.
Using Left and Right Brains Together: Towards Vision and Language Planning
Large Language Models (LLMs) and Large Multi-modality Models (LMMs) have demonstrated remarkable decision masking capabilities on a variety of tasks. However, they inherently operate planning within the language space, lacking the vision and spatial imagination ability. In contrast, humans utilize both left and right hemispheres of the brain for language and visual planning during the thinking process. Therefore, we introduce a novel vision-language planning framework in this work to perform concurrent visual and language planning for tasks with inputs of any form. Our framework incorporates visual planning to capture intricate environmental details, while language planning enhances the logical coherence of the overall system. We evaluate the effectiveness of our framework across vision-language tasks, vision-only tasks, and language-only tasks. The results demonstrate the superior performance of our approach, indicating that the integration of visual and language planning yields better contextually aware task execution.
Near-circular orbits for planets around M/K-type stars with Earth-like sizes and instellations
Recent advances have enabled the discovery of a population of potentially Earth-like planets, yet their orbital eccentricity, which governs their climate and provides clues about their origin and dynamical history, is still largely unconstrained. We identify a sample of 17 transiting exoplanets around late-type stars with similar radii and irradiation to that of Earth and use the "photoeccentric effect" - which exploits transit durations - to infer their eccentricity distribution via hierarchical Bayesian modelling. Our analysis establishes that these worlds further resemble Earth in that their eccentricities are nearly circular (mean eccentricity =0.060_{-0.028}^{+0.040} and leq0.15), with the exception of one outlier of moderate eccentricity. The results hint at a subset population of dynamically warmer Earths, but this requires a larger sample to statistically confirm. The planets in our sample are thus largely subject to minimal eccentricity-induced seasonal variability and are consistent with emerging via smooth disk migration rather than violent planet-planet scattering.
HEADS-UP: Head-Mounted Egocentric Dataset for Trajectory Prediction in Blind Assistance Systems
In this paper, we introduce HEADS-UP, the first egocentric dataset collected from head-mounted cameras, designed specifically for trajectory prediction in blind assistance systems. With the growing population of blind and visually impaired individuals, the need for intelligent assistive tools that provide real-time warnings about potential collisions with dynamic obstacles is becoming critical. These systems rely on algorithms capable of predicting the trajectories of moving objects, such as pedestrians, to issue timely hazard alerts. However, existing datasets fail to capture the necessary information from the perspective of a blind individual. To address this gap, HEADS-UP offers a novel dataset focused on trajectory prediction in this context. Leveraging this dataset, we propose a semi-local trajectory prediction approach to assess collision risks between blind individuals and pedestrians in dynamic environments. Unlike conventional methods that separately predict the trajectories of both the blind individual (ego agent) and pedestrians, our approach operates within a semi-local coordinate system, a rotated version of the camera's coordinate system, facilitating the prediction process. We validate our method on the HEADS-UP dataset and implement the proposed solution in ROS, performing real-time tests on an NVIDIA Jetson GPU through a user study. Results from both dataset evaluations and live tests demonstrate the robustness and efficiency of our approach.
Multimodal Grounding for Embodied AI via Augmented Reality Headsets for Natural Language Driven Task Planning
Recent advances in generative modeling have spurred a resurgence in the field of Embodied Artificial Intelligence (EAI). EAI systems typically deploy large language models to physical systems capable of interacting with their environment. In our exploration of EAI for industrial domains, we successfully demonstrate the feasibility of co-located, human-robot teaming. Specifically, we construct an experiment where an Augmented Reality (AR) headset mediates information exchange between an EAI agent and human operator for a variety of inspection tasks. To our knowledge the use of an AR headset for multimodal grounding and the application of EAI to industrial tasks are novel contributions within Embodied AI research. In addition, we highlight potential pitfalls in EAI's construction by providing quantitative and qualitative analysis on prompt robustness.
RoboEgo System Card: An Omnimodal Model with Native Full Duplexity
Humans naturally process real-world multimodal information in a full-duplex manner. In artificial intelligence, replicating this capability is essential for advancing model development and deployment, particularly in embodied contexts. The development of multimodal models faces two primary challenges: (1) effectively handling more than three modalities-such as vision, audio, and text; and (2) delivering full-duplex responses to rapidly evolving human instructions. To facilitate research on models that support both omnimodal processing and full duplexity, we present RoboEgo (alias: FLM-Ego), a unified model system designed to address both challenges. RoboEgo incorporates a backbone architecture and algorithms that natively support full duplexity, achieving a theoretical duplex latency of 80 ms. In streaming visually grounded conversations under real-world conditions, RoboEgo exhibits superior responsiveness and speech naturalness, while maintaining comparable content qualities to state-of-the-art semi-duplex omnimodal models-a feat previously considered unattainable by native full-duplex systems.
AI Agent Behavioral Science
Recent advances in large language models (LLMs) have enabled the development of AI agents that exhibit increasingly human-like behaviors, including planning, adaptation, and social dynamics across diverse, interactive, and open-ended scenarios. These behaviors are not solely the product of the internal architectures of the underlying models, but emerge from their integration into agentic systems operating within specific contexts, where environmental factors, social cues, and interaction feedbacks shape behavior over time. This evolution necessitates a new scientific perspective: AI Agent Behavioral Science. Rather than focusing only on internal mechanisms, this perspective emphasizes the systematic observation of behavior, design of interventions to test hypotheses, and theory-guided interpretation of how AI agents act, adapt, and interact over time. We systematize a growing body of research across individual agent, multi-agent, and human-agent interaction settings, and further demonstrate how this perspective informs responsible AI by treating fairness, safety, interpretability, accountability, and privacy as behavioral properties. By unifying recent findings and laying out future directions, we position AI Agent Behavioral Science as a necessary complement to traditional model-centric approaches, providing essential tools for understanding, evaluating, and governing the real-world behavior of increasingly autonomous AI systems.
ROCK: Causal Inference Principles for Reasoning about Commonsense Causality
Commonsense causality reasoning (CCR) aims at identifying plausible causes and effects in natural language descriptions that are deemed reasonable by an average person. Although being of great academic and practical interest, this problem is still shadowed by the lack of a well-posed theoretical framework; existing work usually relies on deep language models wholeheartedly, and is potentially susceptible to confounding co-occurrences. Motivated by classical causal principles, we articulate the central question of CCR and draw parallels between human subjects in observational studies and natural languages to adopt CCR to the potential-outcomes framework, which is the first such attempt for commonsense tasks. We propose a novel framework, ROCK, to Reason O(A)bout Commonsense K(C)ausality, which utilizes temporal signals as incidental supervision, and balances confounding effects using temporal propensities that are analogous to propensity scores. The ROCK implementation is modular and zero-shot, and demonstrates good CCR capabilities.
HIVEX: A High-Impact Environment Suite for Multi-Agent Research (extended version)
Games have been vital test beds for the rapid development of Agent-based research. Remarkable progress has been achieved in the past, but it is unclear if the findings equip for real-world problems. While pressure grows, some of the most critical ecological challenges can find mitigation and prevention solutions through technology and its applications. Most real-world domains include multi-agent scenarios and require machine-machine and human-machine collaboration. Open-source environments have not advanced and are often toy scenarios, too abstract or not suitable for multi-agent research. By mimicking real-world problems and increasing the complexity of environments, we hope to advance state-of-the-art multi-agent research and inspire researchers to work on immediate real-world problems. Here, we present HIVEX, an environment suite to benchmark multi-agent research focusing on ecological challenges. HIVEX includes the following environments: Wind Farm Control, Wildfire Resource Management, Drone-Based Reforestation, Ocean Plastic Collection, and Aerial Wildfire Suppression. We provide environments, training examples, and baselines for the main and sub-tasks. All trained models resulting from the experiments of this work are hosted on Hugging Face. We also provide a leaderboard on Hugging Face and encourage the community to submit models trained on our environment suite.
Human-AI Collaboration: The Effect of AI Delegation on Human Task Performance and Task Satisfaction
Recent work has proposed artificial intelligence (AI) models that can learn to decide whether to make a prediction for an instance of a task or to delegate it to a human by considering both parties' capabilities. In simulations with synthetically generated or context-independent human predictions, delegation can help improve the performance of human-AI teams -- compared to humans or the AI model completing the task alone. However, so far, it remains unclear how humans perform and how they perceive the task when they are aware that an AI model delegated task instances to them. In an experimental study with 196 participants, we show that task performance and task satisfaction improve through AI delegation, regardless of whether humans are aware of the delegation. Additionally, we identify humans' increased levels of self-efficacy as the underlying mechanism for these improvements in performance and satisfaction. Our findings provide initial evidence that allowing AI models to take over more management responsibilities can be an effective form of human-AI collaboration in workplaces.
Diffusion-Guided Reconstruction of Everyday Hand-Object Interaction Clips
We tackle the task of reconstructing hand-object interactions from short video clips. Given an input video, our approach casts 3D inference as a per-video optimization and recovers a neural 3D representation of the object shape, as well as the time-varying motion and hand articulation. While the input video naturally provides some multi-view cues to guide 3D inference, these are insufficient on their own due to occlusions and limited viewpoint variations. To obtain accurate 3D, we augment the multi-view signals with generic data-driven priors to guide reconstruction. Specifically, we learn a diffusion network to model the conditional distribution of (geometric) renderings of objects conditioned on hand configuration and category label, and leverage it as a prior to guide the novel-view renderings of the reconstructed scene. We empirically evaluate our approach on egocentric videos across 6 object categories, and observe significant improvements over prior single-view and multi-view methods. Finally, we demonstrate our system's ability to reconstruct arbitrary clips from YouTube, showing both 1st and 3rd person interactions.
Persistent self-supervised learning principle: from stereo to monocular vision for obstacle avoidance
Self-Supervised Learning (SSL) is a reliable learning mechanism in which a robot uses an original, trusted sensor cue for training to recognize an additional, complementary sensor cue. We study for the first time in SSL how a robot's learning behavior should be organized, so that the robot can keep performing its task in the case that the original cue becomes unavailable. We study this persistent form of SSL in the context of a flying robot that has to avoid obstacles based on distance estimates from the visual cue of stereo vision. Over time it will learn to also estimate distances based on monocular appearance cues. A strategy is introduced that has the robot switch from stereo vision based flight to monocular flight, with stereo vision purely used as 'training wheels' to avoid imminent collisions. This strategy is shown to be an effective approach to the 'feedback-induced data bias' problem as also experienced in learning from demonstration. Both simulations and real-world experiments with a stereo vision equipped AR drone 2.0 show the feasibility of this approach, with the robot successfully using monocular vision to avoid obstacles in a 5 x 5 room. The experiments show the potential of persistent SSL as a robust learning approach to enhance the capabilities of robots. Moreover, the abundant training data coming from the own sensors allows to gather large data sets necessary for deep learning approaches.
EgoNormia: Benchmarking Physical Social Norm Understanding
Human activity is moderated by norms. When performing actions in the real world, humans not only follow norms, but also consider the trade-off between different norms However, machines are often trained without explicit supervision on norm understanding and reasoning, especially when the norms are grounded in a physical and social context. To improve and evaluate the normative reasoning capability of vision-language models (VLMs), we present EgoNormia |epsilon|, consisting of 1,853 ego-centric videos of human interactions, each of which has two related questions evaluating both the prediction and justification of normative actions. The normative actions encompass seven categories: safety, privacy, proxemics, politeness, cooperation, coordination/proactivity, and communication/legibility. To compile this dataset at scale, we propose a novel pipeline leveraging video sampling, automatic answer generation, filtering, and human validation. Our work demonstrates that current state-of-the-art vision-language models lack robust norm understanding, scoring a maximum of 45% on EgoNormia (versus a human bench of 92%). Our analysis of performance in each dimension highlights the significant risks of safety, privacy, and the lack of collaboration and communication capability when applied to real-world agents. We additionally show that through a retrieval-based generation method, it is possible to use EgoNomia to enhance normative reasoning in VLMs.
Application of Multimodal Large Language Models in Autonomous Driving
In this era of technological advancements, several cutting-edge techniques are being implemented to enhance Autonomous Driving (AD) systems, focusing on improving safety, efficiency, and adaptability in complex driving environments. However, AD still faces some problems including performance limitations. To address this problem, we conducted an in-depth study on implementing the Multi-modal Large Language Model. We constructed a Virtual Question Answering (VQA) dataset to fine-tune the model and address problems with the poor performance of MLLM on AD. We then break down the AD decision-making process by scene understanding, prediction, and decision-making. Chain of Thought has been used to make the decision more perfectly. Our experiments and detailed analysis of Autonomous Driving give an idea of how important MLLM is for AD.
Agent AI: Surveying the Horizons of Multimodal Interaction
Multi-modal AI systems will likely become a ubiquitous presence in our everyday lives. A promising approach to making these systems more interactive is to embody them as agents within physical and virtual environments. At present, systems leverage existing foundation models as the basic building blocks for the creation of embodied agents. Embedding agents within such environments facilitates the ability of models to process and interpret visual and contextual data, which is critical for the creation of more sophisticated and context-aware AI systems. For example, a system that can perceive user actions, human behavior, environmental objects, audio expressions, and the collective sentiment of a scene can be used to inform and direct agent responses within the given environment. To accelerate research on agent-based multimodal intelligence, we define "Agent AI" as a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data, and can produce meaningful embodied action with infinite agent. In particular, we explore systems that aim to improve agents based on next-embodied action prediction by incorporating external knowledge, multi-sensory inputs, and human feedback. We argue that by developing agentic AI systems in grounded environments, one can also mitigate the hallucinations of large foundation models and their tendency to generate environmentally incorrect outputs. The emerging field of Agent AI subsumes the broader embodied and agentic aspects of multimodal interactions. Beyond agents acting and interacting in the physical world, we envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
Self-supervised learning of video representations from a child's perspective
Children learn powerful internal models of the world around them from a few years of egocentric visual experience. Can such internal models be learned from a child's visual experience with highly generic learning algorithms or do they require strong inductive biases? Recent advances in collecting large-scale, longitudinal, developmentally realistic video datasets and generic self-supervised learning (SSL) algorithms are allowing us to begin to tackle this nature vs. nurture question. However, existing work typically focuses on image-based SSL algorithms and visual capabilities that can be learned from static images (e.g. object recognition), thus ignoring temporal aspects of the world. To close this gap, here we train self-supervised video models on longitudinal, egocentric headcam recordings collected from a child over a two year period in their early development (6-31 months). The resulting models are highly effective at facilitating the learning of action concepts from a small number of labeled examples; they have favorable data size scaling properties; and they display emergent video interpolation capabilities. Video models also learn more robust object representations than image-based models trained with the exact same data. These results suggest that important temporal aspects of a child's internal model of the world may be learnable from their visual experience using highly generic learning algorithms and without strong inductive biases.
Evaluation of Large Language Models for Decision Making in Autonomous Driving
Various methods have been proposed for utilizing Large Language Models (LLMs) in autonomous driving. One strategy of using LLMs for autonomous driving involves inputting surrounding objects as text prompts to the LLMs, along with their coordinate and velocity information, and then outputting the subsequent movements of the vehicle. When using LLMs for such purposes, capabilities such as spatial recognition and planning are essential. In particular, two foundational capabilities are required: (1) spatial-aware decision making, which is the ability to recognize space from coordinate information and make decisions to avoid collisions, and (2) the ability to adhere to traffic rules. However, quantitative research has not been conducted on how accurately different types of LLMs can handle these problems. In this study, we quantitatively evaluated these two abilities of LLMs in the context of autonomous driving. Furthermore, to conduct a Proof of Concept (POC) for the feasibility of implementing these abilities in actual vehicles, we developed a system that uses LLMs to drive a vehicle.
Is this the real life? Is this just fantasy? The Misleading Success of Simulating Social Interactions With LLMs
Recent advances in large language models (LLM) have enabled richer social simulations, allowing for the study of various social phenomena with LLM-based agents. However, most work has used an omniscient perspective on these simulations (e.g., single LLM to generate all interlocutors), which is fundamentally at odds with the non-omniscient, information asymmetric interactions that humans have. To examine these differences, we develop an evaluation framework to simulate social interactions with LLMs in various settings (omniscient, non-omniscient). Our experiments show that interlocutors simulated omnisciently are much more successful at accomplishing social goals compared to non-omniscient agents, despite the latter being the more realistic setting. Furthermore, we demonstrate that learning from omniscient simulations improves the apparent naturalness of interactions but scarcely enhances goal achievement in cooperative scenarios. Our findings indicate that addressing information asymmetry remains a fundamental challenge for LLM-based agents.
Hallucinations or Attention Misdirection? The Path to Strategic Value Extraction in Business Using Large Language Models
Large Language Models with transformer architecture have revolutionized the domain of text generation, setting unprecedented benchmarks. Despite their impressive capabilities, LLMs have been criticized for generating outcomes that deviate from factual accuracy or display logical inconsistencies, phenomena commonly referred to as hallucinations. This term, however, has often been misapplied to any results deviating from the instructor's expectations, which this paper defines as attention misdirection rather than true hallucinations. Understanding the distinction between hallucinations and attention misdirection becomes increasingly relevant in business contexts, where the ramifications of such errors can significantly impact the value extraction from these inherently pre-trained models. This paper highlights the best practices of the PGI, Persona, Grouping, and Intelligence, method, a strategic framework that achieved a remarkable error rate of only 3,15 percent across 4,000 responses generated by GPT in response to a real business challenge. It emphasizes that by equipping experimentation with knowledge, businesses can unlock opportunities for innovation through the use of these natively pre-trained models. This reinforces the notion that strategic application grounded in a skilled team can maximize the benefits of emergent technologies such as the LLMs.
On the Road with GPT-4V(ision): Early Explorations of Visual-Language Model on Autonomous Driving
The pursuit of autonomous driving technology hinges on the sophisticated integration of perception, decision-making, and control systems. Traditional approaches, both data-driven and rule-based, have been hindered by their inability to grasp the nuance of complex driving environments and the intentions of other road users. This has been a significant bottleneck, particularly in the development of common sense reasoning and nuanced scene understanding necessary for safe and reliable autonomous driving. The advent of Visual Language Models (VLM) represents a novel frontier in realizing fully autonomous vehicle driving. This report provides an exhaustive evaluation of the latest state-of-the-art VLM, \modelnamefull, and its application in autonomous driving scenarios. We explore the model's abilities to understand and reason about driving scenes, make decisions, and ultimately act in the capacity of a driver. Our comprehensive tests span from basic scene recognition to complex causal reasoning and real-time decision-making under varying conditions. Our findings reveal that \modelname demonstrates superior performance in scene understanding and causal reasoning compared to existing autonomous systems. It showcases the potential to handle out-of-distribution scenarios, recognize intentions, and make informed decisions in real driving contexts. However, challenges remain, particularly in direction discernment, traffic light recognition, vision grounding, and spatial reasoning tasks. These limitations underscore the need for further research and development. Project is now available on GitHub for interested parties to access and utilize: https://github.com/PJLab-ADG/GPT4V-AD-Exploration
EgoPoseFormer: A Simple Baseline for Stereo Egocentric 3D Human Pose Estimation
We present EgoPoseFormer, a simple yet effective transformer-based model for stereo egocentric human pose estimation. The main challenge in egocentric pose estimation is overcoming joint invisibility, which is caused by self-occlusion or a limited field of view (FOV) of head-mounted cameras. Our approach overcomes this challenge by incorporating a two-stage pose estimation paradigm: in the first stage, our model leverages the global information to estimate each joint's coarse location, then in the second stage, it employs a DETR style transformer to refine the coarse locations by exploiting fine-grained stereo visual features. In addition, we present a Deformable Stereo Attention operation to enable our transformer to effectively process multi-view features, which enables it to accurately localize each joint in the 3D world. We evaluate our method on the stereo UnrealEgo dataset and show it significantly outperforms previous approaches while being computationally efficient: it improves MPJPE by 27.4mm (45% improvement) with only 7.9% model parameters and 13.1% FLOPs compared to the state-of-the-art. Surprisingly, with proper training settings, we find that even our first-stage pose proposal network can achieve superior performance compared to previous arts. We also show that our method can be seamlessly extended to monocular settings, which achieves state-of-the-art performance on the SceneEgo dataset, improving MPJPE by 25.5mm (21% improvement) compared to the best existing method with only 60.7% model parameters and 36.4% FLOPs. Code is available at: https://github.com/ChenhongyiYang/egoposeformer .
HiERO: understanding the hierarchy of human behavior enhances reasoning on egocentric videos
Human activities are particularly complex and variable, and this makes challenging for deep learning models to reason about them. However, we note that such variability does have an underlying structure, composed of a hierarchy of patterns of related actions. We argue that such structure can emerge naturally from unscripted videos of human activities, and can be leveraged to better reason about their content. We present HiERO, a weakly-supervised method to enrich video segments features with the corresponding hierarchical activity threads. By aligning video clips with their narrated descriptions, HiERO infers contextual, semantic and temporal reasoning with an hierarchical architecture. We prove the potential of our enriched features with multiple video-text alignment benchmarks (EgoMCQ, EgoNLQ) with minimal additional training, and in zero-shot for procedure learning tasks (EgoProceL and Ego4D Goal-Step). Notably, HiERO achieves state-of-the-art performance in all the benchmarks, and for procedure learning tasks it outperforms fully-supervised methods by a large margin (+12.5% F1 on EgoProceL) in zero shot. Our results prove the relevance of using knowledge of the hierarchy of human activities for multiple reasoning tasks in egocentric vision.
Visual Dexterity: In-Hand Reorientation of Novel and Complex Object Shapes
In-hand object reorientation is necessary for performing many dexterous manipulation tasks, such as tool use in less structured environments that remain beyond the reach of current robots. Prior works built reorientation systems assuming one or many of the following: reorienting only specific objects with simple shapes, limited range of reorientation, slow or quasistatic manipulation, simulation-only results, the need for specialized and costly sensor suites, and other constraints which make the system infeasible for real-world deployment. We present a general object reorientation controller that does not make these assumptions. It uses readings from a single commodity depth camera to dynamically reorient complex and new object shapes by any rotation in real-time, with the median reorientation time being close to seven seconds. The controller is trained using reinforcement learning in simulation and evaluated in the real world on new object shapes not used for training, including the most challenging scenario of reorienting objects held in the air by a downward-facing hand that must counteract gravity during reorientation. Our hardware platform only uses open-source components that cost less than five thousand dollars. Although we demonstrate the ability to overcome assumptions in prior work, there is ample scope for improving absolute performance. For instance, the challenging duck-shaped object not used for training was dropped in 56 percent of the trials. When it was not dropped, our controller reoriented the object within 0.4 radians (23 degrees) 75 percent of the time. Videos are available at: https://taochenshh.github.io/projects/visual-dexterity.
GeoDrive: 3D Geometry-Informed Driving World Model with Precise Action Control
Recent advancements in world models have revolutionized dynamic environment simulation, allowing systems to foresee future states and assess potential actions. In autonomous driving, these capabilities help vehicles anticipate the behavior of other road users, perform risk-aware planning, accelerate training in simulation, and adapt to novel scenarios, thereby enhancing safety and reliability. Current approaches exhibit deficiencies in maintaining robust 3D geometric consistency or accumulating artifacts during occlusion handling, both critical for reliable safety assessment in autonomous navigation tasks. To address this, we introduce GeoDrive, which explicitly integrates robust 3D geometry conditions into driving world models to enhance spatial understanding and action controllability. Specifically, we first extract a 3D representation from the input frame and then obtain its 2D rendering based on the user-specified ego-car trajectory. To enable dynamic modeling, we propose a dynamic editing module during training to enhance the renderings by editing the positions of the vehicles. Extensive experiments demonstrate that our method significantly outperforms existing models in both action accuracy and 3D spatial awareness, leading to more realistic, adaptable, and reliable scene modeling for safer autonomous driving. Additionally, our model can generalize to novel trajectories and offers interactive scene editing capabilities, such as object editing and object trajectory control.
Imagine360: Immersive 360 Video Generation from Perspective Anchor
360^circ videos offer a hyper-immersive experience that allows the viewers to explore a dynamic scene from full 360 degrees. To achieve more user-friendly and personalized content creation in 360^circ video format, we seek to lift standard perspective videos into 360^circ equirectangular videos. To this end, we introduce Imagine360, the first perspective-to-360^circ video generation framework that creates high-quality 360^circ videos with rich and diverse motion patterns from video anchors. Imagine360 learns fine-grained spherical visual and motion patterns from limited 360^circ video data with several key designs. 1) Firstly we adopt the dual-branch design, including a perspective and a panorama video denoising branch to provide local and global constraints for 360^circ video generation, with motion module and spatial LoRA layers fine-tuned on extended web 360^circ videos. 2) Additionally, an antipodal mask is devised to capture long-range motion dependencies, enhancing the reversed camera motion between antipodal pixels across hemispheres. 3) To handle diverse perspective video inputs, we propose elevation-aware designs that adapt to varying video masking due to changing elevations across frames. Extensive experiments show Imagine360 achieves superior graphics quality and motion coherence among state-of-the-art 360^circ video generation methods. We believe Imagine360 holds promise for advancing personalized, immersive 360^circ video creation.
OASim: an Open and Adaptive Simulator based on Neural Rendering for Autonomous Driving
With deep learning and computer vision technology development, autonomous driving provides new solutions to improve traffic safety and efficiency. The importance of building high-quality datasets is self-evident, especially with the rise of end-to-end autonomous driving algorithms in recent years. Data plays a core role in the algorithm closed-loop system. However, collecting real-world data is expensive, time-consuming, and unsafe. With the development of implicit rendering technology and in-depth research on using generative models to produce data at scale, we propose OASim, an open and adaptive simulator and autonomous driving data generator based on implicit neural rendering. It has the following characteristics: (1) High-quality scene reconstruction through neural implicit surface reconstruction technology. (2) Trajectory editing of the ego vehicle and participating vehicles. (3) Rich vehicle model library that can be freely selected and inserted into the scene. (4) Rich sensors model library where you can select specified sensors to generate data. (5) A highly customizable data generation system can generate data according to user needs. We demonstrate the high quality and fidelity of the generated data through perception performance evaluation on the Carla simulator and real-world data acquisition. Code is available at https://github.com/PJLab-ADG/OASim.
The Alignment Problem from a Deep Learning Perspective
In coming years or decades, artificial general intelligence (AGI) may surpass human capabilities at many critical tasks. We argue that, without substantial effort to prevent it, AGIs could learn to pursue goals that are in conflict (i.e. misaligned) with human interests. If trained like today's most capable models, AGIs could learn to act deceptively to receive higher reward, learn misaligned internally-represented goals which generalize beyond their fine-tuning distributions, and pursue those goals using power-seeking strategies. We review emerging evidence for these properties. AGIs with these properties would be difficult to align and may appear aligned even when they are not. Finally, we briefly outline how the deployment of misaligned AGIs might irreversibly undermine human control over the world, and we review research directions aimed at preventing this outcome.
Collaborative Perception in Autonomous Driving: Methods, Datasets and Challenges
Collaborative perception is essential to address occlusion and sensor failure issues in autonomous driving. In recent years, theoretical and experimental investigations of novel works for collaborative perception have increased tremendously. So far, however, few reviews have focused on systematical collaboration modules and large-scale collaborative perception datasets. This work reviews recent achievements in this field to bridge this gap and motivate future research. We start with a brief overview of collaboration schemes. After that, we systematically summarize the collaborative perception methods for ideal scenarios and real-world issues. The former focuses on collaboration modules and efficiency, and the latter is devoted to addressing the problems in actual application. Furthermore, we present large-scale public datasets and summarize quantitative results on these benchmarks. Finally, we highlight gaps and overlook challenges between current academic research and real-world applications. The project page is https://github.com/CatOneTwo/Collaborative-Perception-in-Autonomous-Driving
Visual Search Asymmetry: Deep Nets and Humans Share Similar Inherent Biases
Visual search is a ubiquitous and often challenging daily task, exemplified by looking for the car keys at home or a friend in a crowd. An intriguing property of some classical search tasks is an asymmetry such that finding a target A among distractors B can be easier than finding B among A. To elucidate the mechanisms responsible for asymmetry in visual search, we propose a computational model that takes a target and a search image as inputs and produces a sequence of eye movements until the target is found. The model integrates eccentricity-dependent visual recognition with target-dependent top-down cues. We compared the model against human behavior in six paradigmatic search tasks that show asymmetry in humans. Without prior exposure to the stimuli or task-specific training, the model provides a plausible mechanism for search asymmetry. We hypothesized that the polarity of search asymmetry arises from experience with the natural environment. We tested this hypothesis by training the model on augmented versions of ImageNet where the biases of natural images were either removed or reversed. The polarity of search asymmetry disappeared or was altered depending on the training protocol. This study highlights how classical perceptual properties can emerge in neural network models, without the need for task-specific training, but rather as a consequence of the statistical properties of the developmental diet fed to the model. All source code and data are publicly available at https://github.com/kreimanlab/VisualSearchAsymmetry.