13 FreGrad: Lightweight and Fast Frequency-aware Diffusion Vocoder The goal of this paper is to generate realistic audio with a lightweight and fast diffusion-based vocoder, named FreGrad. Our framework consists of the following three key components: (1) We employ discrete wavelet transform that decomposes a complicated waveform into sub-band wavelets, which helps FreGrad to operate on a simple and concise feature space, (2) We design a frequency-aware dilated convolution that elevates frequency awareness, resulting in generating speech with accurate frequency information, and (3) We introduce a bag of tricks that boosts the generation quality of the proposed model. In our experiments, FreGrad achieves 3.7 times faster training time and 2.2 times faster inference speed compared to our baseline while reducing the model size by 0.6 times (only 1.78M parameters) without sacrificing the output quality. Audio samples are available at: https://mm.kaist.ac.kr/projects/FreGrad. 5 authors · Jan 18, 2024 1
19 MusicHiFi: Fast High-Fidelity Stereo Vocoding Diffusion-based audio and music generation models commonly generate music by constructing an image representation of audio (e.g., a mel-spectrogram) and then converting it to audio using a phase reconstruction model or vocoder. Typical vocoders, however, produce monophonic audio at lower resolutions (e.g., 16-24 kHz), which limits their effectiveness. We propose MusicHiFi -- an efficient high-fidelity stereophonic vocoder. Our method employs a cascade of three generative adversarial networks (GANs) that convert low-resolution mel-spectrograms to audio, upsamples to high-resolution audio via bandwidth expansion, and upmixes to stereophonic audio. Compared to previous work, we propose 1) a unified GAN-based generator and discriminator architecture and training procedure for each stage of our cascade, 2) a new fast, near downsampling-compatible bandwidth extension module, and 3) a new fast downmix-compatible mono-to-stereo upmixer that ensures the preservation of monophonic content in the output. We evaluate our approach using both objective and subjective listening tests and find our approach yields comparable or better audio quality, better spatialization control, and significantly faster inference speed compared to past work. Sound examples are at https://MusicHiFi.github.io/web/. 4 authors · Mar 15, 2024 1
- PeriodGrad: Towards Pitch-Controllable Neural Vocoder Based on a Diffusion Probabilistic Model This paper presents a neural vocoder based on a denoising diffusion probabilistic model (DDPM) incorporating explicit periodic signals as auxiliary conditioning signals. Recently, DDPM-based neural vocoders have gained prominence as non-autoregressive models that can generate high-quality waveforms. The neural vocoders based on DDPM have the advantage of training with a simple time-domain loss. In practical applications, such as singing voice synthesis, there is a demand for neural vocoders to generate high-fidelity speech waveforms with flexible pitch control. However, conventional DDPM-based neural vocoders struggle to generate speech waveforms under such conditions. Our proposed model aims to accurately capture the periodic structure of speech waveforms by incorporating explicit periodic signals. Experimental results show that our model improves sound quality and provides better pitch control than conventional DDPM-based neural vocoders. 4 authors · Feb 22, 2024
1 WaveFit: An Iterative and Non-autoregressive Neural Vocoder based on Fixed-Point Iteration Denoising diffusion probabilistic models (DDPMs) and generative adversarial networks (GANs) are popular generative models for neural vocoders. The DDPMs and GANs can be characterized by the iterative denoising framework and adversarial training, respectively. This study proposes a fast and high-quality neural vocoder called WaveFit, which integrates the essence of GANs into a DDPM-like iterative framework based on fixed-point iteration. WaveFit iteratively denoises an input signal, and trains a deep neural network (DNN) for minimizing an adversarial loss calculated from intermediate outputs at all iterations. Subjective (side-by-side) listening tests showed no statistically significant differences in naturalness between human natural speech and those synthesized by WaveFit with five iterations. Furthermore, the inference speed of WaveFit was more than 240 times faster than WaveRNN. Audio demos are available at google.github.io/df-conformer/wavefit/. 4 authors · Oct 3, 2022
- SpecDiff-GAN: A Spectrally-Shaped Noise Diffusion GAN for Speech and Music Synthesis Generative adversarial network (GAN) models can synthesize highquality audio signals while ensuring fast sample generation. However, they are difficult to train and are prone to several issues including mode collapse and divergence. In this paper, we introduce SpecDiff-GAN, a neural vocoder based on HiFi-GAN, which was initially devised for speech synthesis from mel spectrogram. In our model, the training stability is enhanced by means of a forward diffusion process which consists in injecting noise from a Gaussian distribution to both real and fake samples before inputting them to the discriminator. We further improve the model by exploiting a spectrally-shaped noise distribution with the aim to make the discriminator's task more challenging. We then show the merits of our proposed model for speech and music synthesis on several datasets. Our experiments confirm that our model compares favorably in audio quality and efficiency compared to several baselines. 5 authors · Jan 30, 2024
- NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling In this work, we introduce NU-Wave, the first neural audio upsampling model to produce waveforms of sampling rate 48kHz from coarse 16kHz or 24kHz inputs, while prior works could generate only up to 16kHz. NU-Wave is the first diffusion probabilistic model for audio super-resolution which is engineered based on neural vocoders. NU-Wave generates high-quality audio that achieves high performance in terms of signal-to-noise ratio (SNR), log-spectral distance (LSD), and accuracy of the ABX test. In all cases, NU-Wave outperforms the baseline models despite the substantially smaller model capacity (3.0M parameters) than baselines (5.4-21%). The audio samples of our model are available at https://mindslab-ai.github.io/nuwave, and the code will be made available soon. 2 authors · Apr 6, 2021
- PriorGrad: Improving Conditional Denoising Diffusion Models with Data-Dependent Adaptive Prior Denoising diffusion probabilistic models have been recently proposed to generate high-quality samples by estimating the gradient of the data density. The framework defines the prior noise as a standard Gaussian distribution, whereas the corresponding data distribution may be more complicated than the standard Gaussian distribution, which potentially introduces inefficiency in denoising the prior noise into the data sample because of the discrepancy between the data and the prior. In this paper, we propose PriorGrad to improve the efficiency of the conditional diffusion model for speech synthesis (for example, a vocoder using a mel-spectrogram as the condition) by applying an adaptive prior derived from the data statistics based on the conditional information. We formulate the training and sampling procedures of PriorGrad and demonstrate the advantages of an adaptive prior through a theoretical analysis. Focusing on the speech synthesis domain, we consider the recently proposed diffusion-based speech generative models based on both the spectral and time domains and show that PriorGrad achieves faster convergence and inference with superior performance, leading to an improved perceptual quality and robustness to a smaller network capacity, and thereby demonstrating the efficiency of a data-dependent adaptive prior. 10 authors · Jun 11, 2021
- DiffAR: Denoising Diffusion Autoregressive Model for Raw Speech Waveform Generation Diffusion models have recently been shown to be relevant for high-quality speech generation. Most work has been focused on generating spectrograms, and as such, they further require a subsequent model to convert the spectrogram to a waveform (i.e., a vocoder). This work proposes a diffusion probabilistic end-to-end model for generating a raw speech waveform. The proposed model is autoregressive, generating overlapping frames sequentially, where each frame is conditioned on a portion of the previously generated one. Hence, our model can effectively synthesize an unlimited speech duration while preserving high-fidelity synthesis and temporal coherence. We implemented the proposed model for unconditional and conditional speech generation, where the latter can be driven by an input sequence of phonemes, amplitudes, and pitch values. Working on the waveform directly has some empirical advantages. Specifically, it allows the creation of local acoustic behaviors, like vocal fry, which makes the overall waveform sounds more natural. Furthermore, the proposed diffusion model is stochastic and not deterministic; therefore, each inference generates a slightly different waveform variation, enabling abundance of valid realizations. Experiments show that the proposed model generates speech with superior quality compared with other state-of-the-art neural speech generation systems. 3 authors · Oct 2, 2023
10 FastVoiceGrad: One-step Diffusion-Based Voice Conversion with Adversarial Conditional Diffusion Distillation Diffusion-based voice conversion (VC) techniques such as VoiceGrad have attracted interest because of their high VC performance in terms of speech quality and speaker similarity. However, a notable limitation is the slow inference caused by the multi-step reverse diffusion. Therefore, we propose FastVoiceGrad, a novel one-step diffusion-based VC that reduces the number of iterations from dozens to one while inheriting the high VC performance of the multi-step diffusion-based VC. We obtain the model using adversarial conditional diffusion distillation (ACDD), leveraging the ability of generative adversarial networks and diffusion models while reconsidering the initial states in sampling. Evaluations of one-shot any-to-any VC demonstrate that FastVoiceGrad achieves VC performance superior to or comparable to that of previous multi-step diffusion-based VC while enhancing the inference speed. Audio samples are available at https://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/fastvoicegrad/. 4 authors · Sep 3, 2024 2
- HiddenSinger: High-Quality Singing Voice Synthesis via Neural Audio Codec and Latent Diffusion Models Recently, denoising diffusion models have demonstrated remarkable performance among generative models in various domains. However, in the speech domain, the application of diffusion models for synthesizing time-varying audio faces limitations in terms of complexity and controllability, as speech synthesis requires very high-dimensional samples with long-term acoustic features. To alleviate the challenges posed by model complexity in singing voice synthesis, we propose HiddenSinger, a high-quality singing voice synthesis system using a neural audio codec and latent diffusion models. To ensure high-fidelity audio, we introduce an audio autoencoder that can encode audio into an audio codec as a compressed representation and reconstruct the high-fidelity audio from the low-dimensional compressed latent vector. Subsequently, we use the latent diffusion models to sample a latent representation from a musical score. In addition, our proposed model is extended to an unsupervised singing voice learning framework, HiddenSinger-U, to train the model using an unlabeled singing voice dataset. Experimental results demonstrate that our model outperforms previous models in terms of audio quality. Furthermore, the HiddenSinger-U can synthesize high-quality singing voices of speakers trained solely on unlabeled data. 3 authors · Jun 11, 2023
- Diffusion-Based Voice Conversion with Fast Maximum Likelihood Sampling Scheme Voice conversion is a common speech synthesis task which can be solved in different ways depending on a particular real-world scenario. The most challenging one often referred to as one-shot many-to-many voice conversion consists in copying the target voice from only one reference utterance in the most general case when both source and target speakers do not belong to the training dataset. We present a scalable high-quality solution based on diffusion probabilistic modeling and demonstrate its superior quality compared to state-of-the-art one-shot voice conversion approaches. Moreover, focusing on real-time applications, we investigate general principles which can make diffusion models faster while keeping synthesis quality at a high level. As a result, we develop a novel Stochastic Differential Equations solver suitable for various diffusion model types and generative tasks as shown through empirical studies and justify it by theoretical analysis. 6 authors · Sep 28, 2021
1 StoRM: A Diffusion-based Stochastic Regeneration Model for Speech Enhancement and Dereverberation Diffusion models have shown a great ability at bridging the performance gap between predictive and generative approaches for speech enhancement. We have shown that they may even outperform their predictive counterparts for non-additive corruption types or when they are evaluated on mismatched conditions. However, diffusion models suffer from a high computational burden, mainly as they require to run a neural network for each reverse diffusion step, whereas predictive approaches only require one pass. As diffusion models are generative approaches they may also produce vocalizing and breathing artifacts in adverse conditions. In comparison, in such difficult scenarios, predictive models typically do not produce such artifacts but tend to distort the target speech instead, thereby degrading the speech quality. In this work, we present a stochastic regeneration approach where an estimate given by a predictive model is provided as a guide for further diffusion. We show that the proposed approach uses the predictive model to remove the vocalizing and breathing artifacts while producing very high quality samples thanks to the diffusion model, even in adverse conditions. We further show that this approach enables to use lighter sampling schemes with fewer diffusion steps without sacrificing quality, thus lifting the computational burden by an order of magnitude. Source code and audio examples are available online (https://uhh.de/inf-sp-storm). 4 authors · Dec 22, 2022
1 Diffusion-based speech enhancement with a weighted generative-supervised learning loss Diffusion-based generative models have recently gained attention in speech enhancement (SE), providing an alternative to conventional supervised methods. These models transform clean speech training samples into Gaussian noise centered at noisy speech, and subsequently learn a parameterized model to reverse this process, conditionally on noisy speech. Unlike supervised methods, generative-based SE approaches usually rely solely on an unsupervised loss, which may result in less efficient incorporation of conditioned noisy speech. To address this issue, we propose augmenting the original diffusion training objective with a mean squared error (MSE) loss, measuring the discrepancy between estimated enhanced speech and ground-truth clean speech at each reverse process iteration. Experimental results demonstrate the effectiveness of our proposed methodology. 3 authors · Sep 19, 2023
2 Speech Enhancement and Dereverberation with Diffusion-based Generative Models In this work, we build upon our previous publication and use diffusion-based generative models for speech enhancement. We present a detailed overview of the diffusion process that is based on a stochastic differential equation and delve into an extensive theoretical examination of its implications. Opposed to usual conditional generation tasks, we do not start the reverse process from pure Gaussian noise but from a mixture of noisy speech and Gaussian noise. This matches our forward process which moves from clean speech to noisy speech by including a drift term. We show that this procedure enables using only 30 diffusion steps to generate high-quality clean speech estimates. By adapting the network architecture, we are able to significantly improve the speech enhancement performance, indicating that the network, rather than the formalism, was the main limitation of our original approach. In an extensive cross-dataset evaluation, we show that the improved method can compete with recent discriminative models and achieves better generalization when evaluating on a different corpus than used for training. We complement the results with an instrumental evaluation using real-world noisy recordings and a listening experiment, in which our proposed method is rated best. Examining different sampler configurations for solving the reverse process allows us to balance the performance and computational speed of the proposed method. Moreover, we show that the proposed method is also suitable for dereverberation and thus not limited to additive background noise removal. Code and audio examples are available online, see https://github.com/sp-uhh/sgmse 5 authors · Aug 11, 2022
1 Extract and Diffuse: Latent Integration for Improved Diffusion-based Speech and Vocal Enhancement Diffusion-based generative models have recently achieved remarkable results in speech and vocal enhancement due to their ability to model complex speech data distributions. While these models generalize well to unseen acoustic environments, they may not achieve the same level of fidelity as the discriminative models specifically trained to enhance particular acoustic conditions. In this paper, we propose Ex-Diff, a novel score-based diffusion model that integrates the latent representations produced by a discriminative model to improve speech and vocal enhancement, which combines the strengths of both generative and discriminative models. Experimental results on the widely used MUSDB dataset show relative improvements of 3.7% in SI-SDR and 10.0% in SI-SIR compared to the baseline diffusion model for speech and vocal enhancement tasks, respectively. Additionally, case studies are provided to further illustrate and analyze the complementary nature of generative and discriminative models in this context. 6 authors · Sep 15, 2024
1 Unsupervised speech enhancement with diffusion-based generative models Recently, conditional score-based diffusion models have gained significant attention in the field of supervised speech enhancement, yielding state-of-the-art performance. However, these methods may face challenges when generalising to unseen conditions. To address this issue, we introduce an alternative approach that operates in an unsupervised manner, leveraging the generative power of diffusion models. Specifically, in a training phase, a clean speech prior distribution is learnt in the short-time Fourier transform (STFT) domain using score-based diffusion models, allowing it to unconditionally generate clean speech from Gaussian noise. Then, we develop a posterior sampling methodology for speech enhancement by combining the learnt clean speech prior with a noise model for speech signal inference. The noise parameters are simultaneously learnt along with clean speech estimation through an iterative expectationmaximisation (EM) approach. To the best of our knowledge, this is the first work exploring diffusion-based generative models for unsupervised speech enhancement, demonstrating promising results compared to a recent variational auto-encoder (VAE)-based unsupervised approach and a state-of-the-art diffusion-based supervised method. It thus opens a new direction for future research in unsupervised speech enhancement. 3 authors · Sep 19, 2023
- DiffWave: A Versatile Diffusion Model for Audio Synthesis In this work, we propose DiffWave, a versatile diffusion probabilistic model for conditional and unconditional waveform generation. The model is non-autoregressive, and converts the white noise signal into structured waveform through a Markov chain with a constant number of steps at synthesis. It is efficiently trained by optimizing a variant of variational bound on the data likelihood. DiffWave produces high-fidelity audios in different waveform generation tasks, including neural vocoding conditioned on mel spectrogram, class-conditional generation, and unconditional generation. We demonstrate that DiffWave matches a strong WaveNet vocoder in terms of speech quality (MOS: 4.44 versus 4.43), while synthesizing orders of magnitude faster. In particular, it significantly outperforms autoregressive and GAN-based waveform models in the challenging unconditional generation task in terms of audio quality and sample diversity from various automatic and human evaluations. 5 authors · Sep 21, 2020
1 SEED: Speaker Embedding Enhancement Diffusion Model A primary challenge when deploying speaker recognition systems in real-world applications is performance degradation caused by environmental mismatch. We propose a diffusion-based method that takes speaker embeddings extracted from a pre-trained speaker recognition model and generates refined embeddings. For training, our approach progressively adds Gaussian noise to both clean and noisy speaker embeddings extracted from clean and noisy speech, respectively, via forward process of a diffusion model, and then reconstructs them to clean embeddings in the reverse process. While inferencing, all embeddings are regenerated via diffusion process. Our method needs neither speaker label nor any modification to the existing speaker recognition pipeline. Experiments on evaluation sets simulating environment mismatch scenarios show that our method can improve recognition accuracy by up to 19.6% over baseline models while retaining performance on conventional scenarios. We publish our code here https://github.com/kaistmm/seed-pytorch 7 authors · May 22
1 DMDSpeech: Distilled Diffusion Model Surpassing The Teacher in Zero-shot Speech Synthesis via Direct Metric Optimization Diffusion models have demonstrated significant potential in speech synthesis tasks, including text-to-speech (TTS) and voice cloning. However, their iterative denoising processes are inefficient and hinder the application of end-to-end optimization with perceptual metrics. In this paper, we propose a novel method of distilling TTS diffusion models with direct end-to-end evaluation metric optimization, achieving state-of-the-art performance. By incorporating Connectionist Temporal Classification (CTC) loss and Speaker Verification (SV) loss, our approach optimizes perceptual evaluation metrics, leading to notable improvements in word error rate and speaker similarity. Our experiments show that DMDSpeech consistently surpasses prior state-of-the-art models in both naturalness and speaker similarity while being significantly faster. Moreover, our synthetic speech has a higher level of voice similarity to the prompt than the ground truth in both human evaluation and objective speaker similarity metric. This work highlights the potential of direct metric optimization in speech synthesis, allowing models to better align with human auditory preferences. The audio samples are available at https://dmdspeech.github.io/. 3 authors · Oct 14, 2024
- DDDM-VC: Decoupled Denoising Diffusion Models with Disentangled Representation and Prior Mixup for Verified Robust Voice Conversion Diffusion-based generative models have exhibited powerful generative performance in recent years. However, as many attributes exist in the data distribution and owing to several limitations of sharing the model parameters across all levels of the generation process, it remains challenging to control specific styles for each attribute. To address the above problem, this paper presents decoupled denoising diffusion models (DDDMs) with disentangled representations, which can control the style for each attribute in generative models. We apply DDDMs to voice conversion (VC) tasks to address the challenges of disentangling and controlling each speech attribute (e.g., linguistic information, intonation, and timbre). First, we use a self-supervised representation to disentangle the speech representation. Subsequently, the DDDMs are applied to resynthesize the speech from the disentangled representations for denoising with respect to each attribute. Moreover, we also propose the prior mixup for robust voice style transfer, which uses the converted representation of the mixed style as a prior distribution for the diffusion models. The experimental results reveal that our method outperforms publicly available VC models. Furthermore, we show that our method provides robust generative performance regardless of the model size. Audio samples are available https://hayeong0.github.io/DDDM-VC-demo/. 3 authors · May 25, 2023
- DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism Singing voice synthesis (SVS) systems are built to synthesize high-quality and expressive singing voice, in which the acoustic model generates the acoustic features (e.g., mel-spectrogram) given a music score. Previous singing acoustic models adopt a simple loss (e.g., L1 and L2) or generative adversarial network (GAN) to reconstruct the acoustic features, while they suffer from over-smoothing and unstable training issues respectively, which hinder the naturalness of synthesized singing. In this work, we propose DiffSinger, an acoustic model for SVS based on the diffusion probabilistic model. DiffSinger is a parameterized Markov chain that iteratively converts the noise into mel-spectrogram conditioned on the music score. By implicitly optimizing variational bound, DiffSinger can be stably trained and generate realistic outputs. To further improve the voice quality and speed up inference, we introduce a shallow diffusion mechanism to make better use of the prior knowledge learned by the simple loss. Specifically, DiffSinger starts generation at a shallow step smaller than the total number of diffusion steps, according to the intersection of the diffusion trajectories of the ground-truth mel-spectrogram and the one predicted by a simple mel-spectrogram decoder. Besides, we propose boundary prediction methods to locate the intersection and determine the shallow step adaptively. The evaluations conducted on a Chinese singing dataset demonstrate that DiffSinger outperforms state-of-the-art SVS work. Extensional experiments also prove the generalization of our methods on text-to-speech task (DiffSpeech). Audio samples: https://diffsinger.github.io. Codes: https://github.com/MoonInTheRiver/DiffSinger. The old title of this work: "Diffsinger: Diffusion acoustic model for singing voice synthesis". 5 authors · May 6, 2021
- DiffSVC: A Diffusion Probabilistic Model for Singing Voice Conversion Singing voice conversion (SVC) is one promising technique which can enrich the way of human-computer interaction by endowing a computer the ability to produce high-fidelity and expressive singing voice. In this paper, we propose DiffSVC, an SVC system based on denoising diffusion probabilistic model. DiffSVC uses phonetic posteriorgrams (PPGs) as content features. A denoising module is trained in DiffSVC, which takes destroyed mel spectrogram produced by the diffusion/forward process and its corresponding step information as input to predict the added Gaussian noise. We use PPGs, fundamental frequency features and loudness features as auxiliary input to assist the denoising process. Experiments show that DiffSVC can achieve superior conversion performance in terms of naturalness and voice similarity to current state-of-the-art SVC approaches. 4 authors · May 28, 2021
11 CoMoSVC: Consistency Model-based Singing Voice Conversion The diffusion-based Singing Voice Conversion (SVC) methods have achieved remarkable performances, producing natural audios with high similarity to the target timbre. However, the iterative sampling process results in slow inference speed, and acceleration thus becomes crucial. In this paper, we propose CoMoSVC, a consistency model-based SVC method, which aims to achieve both high-quality generation and high-speed sampling. A diffusion-based teacher model is first specially designed for SVC, and a student model is further distilled under self-consistency properties to achieve one-step sampling. Experiments on a single NVIDIA GTX4090 GPU reveal that although CoMoSVC has a significantly faster inference speed than the state-of-the-art (SOTA) diffusion-based SVC system, it still achieves comparable or superior conversion performance based on both subjective and objective metrics. Audio samples and codes are available at https://comosvc.github.io/. 6 authors · Jan 3, 2024
- ItôWave: Itô Stochastic Differential Equation Is All You Need For Wave Generation In this paper, we propose a vocoder based on a pair of forward and reverse-time linear stochastic differential equations (SDE). The solutions of this SDE pair are two stochastic processes, one of which turns the distribution of wave, that we want to generate, into a simple and tractable distribution. The other is the generation procedure that turns this tractable simple signal into the target wave. The model is called It\^oWave. It\^oWave use the Wiener process as a driver to gradually subtract the excess signal from the noise signal to generate realistic corresponding meaningful audio respectively, under the conditional inputs of original mel spectrogram. The results of the experiment show that the mean opinion scores (MOS) of It\^oWave can exceed the current state-of-the-art (SOTA) methods, and reached 4.35pm0.115. The generated audio samples are available online. 2 authors · Jan 29, 2022
20 EzAudio: Enhancing Text-to-Audio Generation with Efficient Diffusion Transformer Latent diffusion models have shown promising results in text-to-audio (T2A) generation tasks, yet previous models have encountered difficulties in generation quality, computational cost, diffusion sampling, and data preparation. In this paper, we introduce EzAudio, a transformer-based T2A diffusion model, to handle these challenges. Our approach includes several key innovations: (1) We build the T2A model on the latent space of a 1D waveform Variational Autoencoder (VAE), avoiding the complexities of handling 2D spectrogram representations and using an additional neural vocoder. (2) We design an optimized diffusion transformer architecture specifically tailored for audio latent representations and diffusion modeling, which enhances convergence speed, training stability, and memory usage, making the training process easier and more efficient. (3) To tackle data scarcity, we adopt a data-efficient training strategy that leverages unlabeled data for learning acoustic dependencies, audio caption data annotated by audio-language models for text-to-audio alignment learning, and human-labeled data for fine-tuning. (4) We introduce a classifier-free guidance (CFG) rescaling method that simplifies EzAudio by achieving strong prompt alignment while preserving great audio quality when using larger CFG scores, eliminating the need to struggle with finding the optimal CFG score to balance this trade-off. EzAudio surpasses existing open-source models in both objective metrics and subjective evaluations, delivering realistic listening experiences while maintaining a streamlined model structure, low training costs, and an easy-to-follow training pipeline. Code, data, and pre-trained models are released at: https://haidog-yaqub.github.io/EzAudio-Page/. 7 authors · Sep 16, 2024 3
1 Ultra-lightweight Neural Differential DSP Vocoder For High Quality Speech Synthesis Neural vocoders model the raw audio waveform and synthesize high-quality audio, but even the highly efficient ones, like MB-MelGAN and LPCNet, fail to run real-time on a low-end device like a smartglass. A pure digital signal processing (DSP) based vocoder can be implemented via lightweight fast Fourier transforms (FFT), and therefore, is a magnitude faster than any neural vocoder. A DSP vocoder often gets a lower audio quality due to consuming over-smoothed acoustic model predictions of approximate representations for the vocal tract. In this paper, we propose an ultra-lightweight differential DSP (DDSP) vocoder that uses a jointly optimized acoustic model with a DSP vocoder, and learns without an extracted spectral feature for the vocal tract. The model achieves audio quality comparable to neural vocoders with a high average MOS of 4.36 while being efficient as a DSP vocoder. Our C++ implementation, without any hardware-specific optimization, is at 15 MFLOPS, surpasses MB-MelGAN by 340 times in terms of FLOPS, and achieves a vocoder-only RTF of 0.003 and overall RTF of 0.044 while running single-threaded on a 2GHz Intel Xeon CPU. 5 authors · Jan 18, 2024 2
3 AudioToken: Adaptation of Text-Conditioned Diffusion Models for Audio-to-Image Generation In recent years, image generation has shown a great leap in performance, where diffusion models play a central role. Although generating high-quality images, such models are mainly conditioned on textual descriptions. This begs the question: "how can we adopt such models to be conditioned on other modalities?". In this paper, we propose a novel method utilizing latent diffusion models trained for text-to-image-generation to generate images conditioned on audio recordings. Using a pre-trained audio encoding model, the proposed method encodes audio into a new token, which can be considered as an adaptation layer between the audio and text representations. Such a modeling paradigm requires a small number of trainable parameters, making the proposed approach appealing for lightweight optimization. Results suggest the proposed method is superior to the evaluated baseline methods, considering objective and subjective metrics. Code and samples are available at: https://pages.cs.huji.ac.il/adiyoss-lab/AudioToken. 5 authors · May 22, 2023 2
5 From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion Deep generative models can generate high-fidelity audio conditioned on various types of representations (e.g., mel-spectrograms, Mel-frequency Cepstral Coefficients (MFCC)). Recently, such models have been used to synthesize audio waveforms conditioned on highly compressed representations. Although such methods produce impressive results, they are prone to generate audible artifacts when the conditioning is flawed or imperfect. An alternative modeling approach is to use diffusion models. However, these have mainly been used as speech vocoders (i.e., conditioned on mel-spectrograms) or generating relatively low sampling rate signals. In this work, we propose a high-fidelity multi-band diffusion-based framework that generates any type of audio modality (e.g., speech, music, environmental sounds) from low-bitrate discrete representations. At equal bit rate, the proposed approach outperforms state-of-the-art generative techniques in terms of perceptual quality. Training and, evaluation code, along with audio samples, are available on the facebookresearch/audiocraft Github page. 6 authors · Aug 2, 2023
- DiffS2UT: A Semantic Preserving Diffusion Model for Textless Direct Speech-to-Speech Translation While Diffusion Generative Models have achieved great success on image generation tasks, how to efficiently and effectively incorporate them into speech generation especially translation tasks remains a non-trivial problem. Specifically, due to the low information density of speech data, the transformed discrete speech unit sequence is much longer than the corresponding text transcription, posing significant challenges to existing auto-regressive models. Furthermore, it is not optimal to brutally apply discrete diffusion on the speech unit sequence while disregarding the continuous space structure, which will degrade the generation performance significantly. In this paper, we propose a novel diffusion model by applying the diffusion forward process in the continuous speech representation space, while employing the diffusion backward process in the discrete speech unit space. In this way, we preserve the semantic structure of the continuous speech representation space in the diffusion process and integrate the continuous and discrete diffusion models. We conduct extensive experiments on the textless direct speech-to-speech translation task, where the proposed method achieves comparable results to the computationally intensive auto-regressive baselines (500 steps on average) with significantly fewer decoding steps (50 steps). 5 authors · Oct 26, 2023
39 NaturalSpeech 3: Zero-Shot Speech Synthesis with Factorized Codec and Diffusion Models While recent large-scale text-to-speech (TTS) models have achieved significant progress, they still fall short in speech quality, similarity, and prosody. Considering speech intricately encompasses various attributes (e.g., content, prosody, timbre, and acoustic details) that pose significant challenges for generation, a natural idea is to factorize speech into individual subspaces representing different attributes and generate them individually. Motivated by it, we propose NaturalSpeech 3, a TTS system with novel factorized diffusion models to generate natural speech in a zero-shot way. Specifically, 1) we design a neural codec with factorized vector quantization (FVQ) to disentangle speech waveform into subspaces of content, prosody, timbre, and acoustic details; 2) we propose a factorized diffusion model to generate attributes in each subspace following its corresponding prompt. With this factorization design, NaturalSpeech 3 can effectively and efficiently model the intricate speech with disentangled subspaces in a divide-and-conquer way. Experiments show that NaturalSpeech 3 outperforms the state-of-the-art TTS systems on quality, similarity, prosody, and intelligibility. Furthermore, we achieve better performance by scaling to 1B parameters and 200K hours of training data. 19 authors · Mar 5, 2024 3
- DiffSSD: A Diffusion-Based Dataset For Speech Forensics Diffusion-based speech generators are ubiquitous. These methods can generate very high quality synthetic speech and several recent incidents report their malicious use. To counter such misuse, synthetic speech detectors have been developed. Many of these detectors are trained on datasets which do not include diffusion-based synthesizers. In this paper, we demonstrate that existing detectors trained on one such dataset, ASVspoof2019, do not perform well in detecting synthetic speech from recent diffusion-based synthesizers. We propose the Diffusion-Based Synthetic Speech Dataset (DiffSSD), a dataset consisting of about 200 hours of labeled speech, including synthetic speech generated by 8 diffusion-based open-source and 2 commercial generators. We also examine the performance of existing synthetic speech detectors on DiffSSD in both closed-set and open-set scenarios. The results highlight the importance of this dataset in detecting synthetic speech generated from recent open-source and commercial speech generators. 4 authors · Sep 19, 2024
1 AV2Wav: Diffusion-Based Re-synthesis from Continuous Self-supervised Features for Audio-Visual Speech Enhancement Speech enhancement systems are typically trained using pairs of clean and noisy speech. In audio-visual speech enhancement (AVSE), there is not as much ground-truth clean data available; most audio-visual datasets are collected in real-world environments with background noise and reverberation, hampering the development of AVSE. In this work, we introduce AV2Wav, a resynthesis-based audio-visual speech enhancement approach that can generate clean speech despite the challenges of real-world training data. We obtain a subset of nearly clean speech from an audio-visual corpus using a neural quality estimator, and then train a diffusion model on this subset to generate waveforms conditioned on continuous speech representations from AV-HuBERT with noise-robust training. We use continuous rather than discrete representations to retain prosody and speaker information. With this vocoding task alone, the model can perform speech enhancement better than a masking-based baseline. We further fine-tune the diffusion model on clean/noisy utterance pairs to improve the performance. Our approach outperforms a masking-based baseline in terms of both automatic metrics and a human listening test and is close in quality to the target speech in the listening test. Audio samples can be found at https://home.ttic.edu/~jcchou/demo/avse/avse_demo.html. 3 authors · Sep 14, 2023
- Investigating Training Objectives for Generative Speech Enhancement Generative speech enhancement has recently shown promising advancements in improving speech quality in noisy environments. Multiple diffusion-based frameworks exist, each employing distinct training objectives and learning techniques. This paper aims at explaining the differences between these frameworks by focusing our investigation on score-based generative models and Schr\"odinger bridge. We conduct a series of comprehensive experiments to compare their performance and highlight differing training behaviors. Furthermore, we propose a novel perceptual loss function tailored for the Schr\"odinger bridge framework, demonstrating enhanced performance and improved perceptual quality of the enhanced speech signals. All experimental code and pre-trained models are publicly available to facilitate further research and development in this. 3 authors · Sep 16, 2024
16 Faster Diffusion: Rethinking the Role of UNet Encoder in Diffusion Models One of the key components within diffusion models is the UNet for noise prediction. While several works have explored basic properties of the UNet decoder, its encoder largely remains unexplored. In this work, we conduct the first comprehensive study of the UNet encoder. We empirically analyze the encoder features and provide insights to important questions regarding their changes at the inference process. In particular, we find that encoder features change gently, whereas the decoder features exhibit substantial variations across different time-steps. This finding inspired us to omit the encoder at certain adjacent time-steps and reuse cyclically the encoder features in the previous time-steps for the decoder. Further based on this observation, we introduce a simple yet effective encoder propagation scheme to accelerate the diffusion sampling for a diverse set of tasks. By benefiting from our propagation scheme, we are able to perform in parallel the decoder at certain adjacent time-steps. Additionally, we introduce a prior noise injection method to improve the texture details in the generated image. Besides the standard text-to-image task, we also validate our approach on other tasks: text-to-video, personalized generation and reference-guided generation. Without utilizing any knowledge distillation technique, our approach accelerates both the Stable Diffusion (SD) and the DeepFloyd-IF models sampling by 41% and 24% respectively, while maintaining high-quality generation performance. Our code is available in https://github.com/hutaiHang/Faster-Diffusion{FasterDiffusion}. 8 authors · Dec 15, 2023 1
1 DiffV2S: Diffusion-based Video-to-Speech Synthesis with Vision-guided Speaker Embedding Recent research has demonstrated impressive results in video-to-speech synthesis which involves reconstructing speech solely from visual input. However, previous works have struggled to accurately synthesize speech due to a lack of sufficient guidance for the model to infer the correct content with the appropriate sound. To resolve the issue, they have adopted an extra speaker embedding as a speaking style guidance from a reference auditory information. Nevertheless, it is not always possible to obtain the audio information from the corresponding video input, especially during the inference time. In this paper, we present a novel vision-guided speaker embedding extractor using a self-supervised pre-trained model and prompt tuning technique. In doing so, the rich speaker embedding information can be produced solely from input visual information, and the extra audio information is not necessary during the inference time. Using the extracted vision-guided speaker embedding representations, we further develop a diffusion-based video-to-speech synthesis model, so called DiffV2S, conditioned on those speaker embeddings and the visual representation extracted from the input video. The proposed DiffV2S not only maintains phoneme details contained in the input video frames, but also creates a highly intelligible mel-spectrogram in which the speaker identities of the multiple speakers are all preserved. Our experimental results show that DiffV2S achieves the state-of-the-art performance compared to the previous video-to-speech synthesis technique. 3 authors · Aug 15, 2023
1 CM-TTS: Enhancing Real Time Text-to-Speech Synthesis Efficiency through Weighted Samplers and Consistency Models Neural Text-to-Speech (TTS) systems find broad applications in voice assistants, e-learning, and audiobook creation. The pursuit of modern models, like Diffusion Models (DMs), holds promise for achieving high-fidelity, real-time speech synthesis. Yet, the efficiency of multi-step sampling in Diffusion Models presents challenges. Efforts have been made to integrate GANs with DMs, speeding up inference by approximating denoising distributions, but this introduces issues with model convergence due to adversarial training. To overcome this, we introduce CM-TTS, a novel architecture grounded in consistency models (CMs). Drawing inspiration from continuous-time diffusion models, CM-TTS achieves top-quality speech synthesis in fewer steps without adversarial training or pre-trained model dependencies. We further design weighted samplers to incorporate different sampling positions into model training with dynamic probabilities, ensuring unbiased learning throughout the entire training process. We present a real-time mel-spectrogram generation consistency model, validated through comprehensive evaluations. Experimental results underscore CM-TTS's superiority over existing single-step speech synthesis systems, representing a significant advancement in the field. 7 authors · Mar 31, 2024
- SimpleSpeech: Towards Simple and Efficient Text-to-Speech with Scalar Latent Transformer Diffusion Models In this study, we propose a simple and efficient Non-Autoregressive (NAR) text-to-speech (TTS) system based on diffusion, named SimpleSpeech. Its simpleness shows in three aspects: (1) It can be trained on the speech-only dataset, without any alignment information; (2) It directly takes plain text as input and generates speech through an NAR way; (3) It tries to model speech in a finite and compact latent space, which alleviates the modeling difficulty of diffusion. More specifically, we propose a novel speech codec model (SQ-Codec) with scalar quantization, SQ-Codec effectively maps the complex speech signal into a finite and compact latent space, named scalar latent space. Benefits from SQ-Codec, we apply a novel transformer diffusion model in the scalar latent space of SQ-Codec. We train SimpleSpeech on 4k hours of a speech-only dataset, it shows natural prosody and voice cloning ability. Compared with previous large-scale TTS models, it presents significant speech quality and generation speed improvement. Demos are released. 6 authors · Jun 4, 2024
- DIFFA: Large Language Diffusion Models Can Listen and Understand Recent advances in Large language models (LLMs) have shown remarkable capabilities across textual and multimodal domains. In parallel, diffusion-based language models have emerged as a promising alternative to the autoregressive paradigm, offering improved controllability, bidirectional context modeling, and robust generation. However, their application to the audio modality remains underexplored. In this work, we introduce DIFFA, the first diffusion-based Large Audio-Language Model designed to perform spoken language understanding. DIFFA integrates a frozen diffusion language model with a lightweight dual-adapter architecture that bridges speech understanding and natural language reasoning. We employ a two-stage training pipeline: first, aligning semantic representations via an ASR objective; then, learning instruction-following abilities through synthetic audio-caption pairs automatically generated by prompting LLMs. Despite being trained on only 960 hours of ASR and 127 hours of synthetic instruction data, DIFFA demonstrates competitive performance on major benchmarks, including MMSU, MMAU, and VoiceBench, outperforming several autoregressive open-source baselines. Our results reveal the potential of diffusion-based language models for efficient and scalable audio understanding, opening a new direction for speech-driven AI. Our code will be available at https://github.com/NKU-HLT/DIFFA.git. 12 authors · Jul 24
1 Composer Style-specific Symbolic Music Generation Using Vector Quantized Discrete Diffusion Models Emerging Denoising Diffusion Probabilistic Models (DDPM) have become increasingly utilised because of promising results they have achieved in diverse generative tasks with continuous data, such as image and sound synthesis. Nonetheless, the success of diffusion models has not been fully extended to discrete symbolic music. We propose to combine a vector quantized variational autoencoder (VQ-VAE) and discrete diffusion models for the generation of symbolic music with desired composer styles. The trained VQ-VAE can represent symbolic music as a sequence of indexes that correspond to specific entries in a learned codebook. Subsequently, a discrete diffusion model is used to model the VQ-VAE's discrete latent space. The diffusion model is trained to generate intermediate music sequences consisting of codebook indexes, which are then decoded to symbolic music using the VQ-VAE's decoder. The results demonstrate our model can generate symbolic music with target composer styles that meet the given conditions with a high accuracy of 72.36%. 4 authors · Oct 21, 2023
- FlashSR: One-step Versatile Audio Super-resolution via Diffusion Distillation Versatile audio super-resolution (SR) is the challenging task of restoring high-frequency components from low-resolution audio with sampling rates between 4kHz and 32kHz in various domains such as music, speech, and sound effects. Previous diffusion-based SR methods suffer from slow inference due to the need for a large number of sampling steps. In this paper, we introduce FlashSR, a single-step diffusion model for versatile audio super-resolution aimed at producing 48kHz audio. FlashSR achieves fast inference by utilizing diffusion distillation with three objectives: distillation loss, adversarial loss, and distribution-matching distillation loss. We further enhance performance by proposing the SR Vocoder, which is specifically designed for SR models operating on mel-spectrograms. FlashSR demonstrates competitive performance with the current state-of-the-art model in both objective and subjective evaluations while being approximately 22 times faster. 2 authors · Jan 18
- DiTTo-TTS: Efficient and Scalable Zero-Shot Text-to-Speech with Diffusion Transformer Large-scale diffusion models have shown outstanding generative abilities across multiple modalities including images, videos, and audio. However, text-to-speech (TTS) systems typically involve domain-specific modeling factors (e.g., phonemes and phoneme-level durations) to ensure precise temporal alignments between text and speech, which hinders the efficiency and scalability of diffusion models for TTS. In this work, we present an efficient and scalable Diffusion Transformer (DiT) that utilizes off-the-shelf pre-trained text and speech encoders. Our approach addresses the challenge of text-speech alignment via cross-attention mechanisms with the prediction of the total length of speech representations. To achieve this, we enhance the DiT architecture to suit TTS and improve the alignment by incorporating semantic guidance into the latent space of speech. We scale the training dataset and the model size to 82K hours and 790M parameters, respectively. Our extensive experiments demonstrate that the large-scale diffusion model for TTS without domain-specific modeling not only simplifies the training pipeline but also yields superior or comparable zero-shot performance to state-of-the-art TTS models in terms of naturalness, intelligibility, and speaker similarity. Our speech samples are available at https://ditto-tts.github.io. 4 authors · Jun 17, 2024
- DiTSE: High-Fidelity Generative Speech Enhancement via Latent Diffusion Transformers Real-world speech recordings suffer from degradations such as background noise and reverberation. Speech enhancement aims to mitigate these issues by generating clean high-fidelity signals. While recent generative approaches for speech enhancement have shown promising results, they still face two major challenges: (1) content hallucination, where plausible phonemes generated differ from the original utterance; and (2) inconsistency, failing to preserve speaker's identity and paralinguistic features from the input speech. In this work, we introduce DiTSE (Diffusion Transformer for Speech Enhancement), which addresses quality issues of degraded speech in full bandwidth. Our approach employs a latent diffusion transformer model together with robust conditioning features, effectively addressing these challenges while remaining computationally efficient. Experimental results from both subjective and objective evaluations demonstrate that DiTSE achieves state-of-the-art audio quality that, for the first time, matches real studio-quality audio from the DAPS dataset. Furthermore, DiTSE significantly improves the preservation of speaker identity and content fidelity, reducing hallucinations across datasets compared to state-of-the-art enhancers. Audio samples are available at: http://hguimaraes.me/DiTSE 5 authors · Apr 12
- Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain Score-based generative models (SGMs) have recently shown impressive results for difficult generative tasks such as the unconditional and conditional generation of natural images and audio signals. In this work, we extend these models to the complex short-time Fourier transform (STFT) domain, proposing a novel training task for speech enhancement using a complex-valued deep neural network. We derive this training task within the formalism of stochastic differential equations (SDEs), thereby enabling the use of predictor-corrector samplers. We provide alternative formulations inspired by previous publications on using generative diffusion models for speech enhancement, avoiding the need for any prior assumptions on the noise distribution and making the training task purely generative which, as we show, results in improved enhancement performance. 3 authors · Mar 31, 2022
- Diffusion-TS: Interpretable Diffusion for General Time Series Generation Denoising diffusion probabilistic models (DDPMs) are becoming the leading paradigm for generative models. It has recently shown breakthroughs in audio synthesis, time series imputation and forecasting. In this paper, we propose Diffusion-TS, a novel diffusion-based framework that generates multivariate time series samples of high quality by using an encoder-decoder transformer with disentangled temporal representations, in which the decomposition technique guides Diffusion-TS to capture the semantic meaning of time series while transformers mine detailed sequential information from the noisy model input. Different from existing diffusion-based approaches, we train the model to directly reconstruct the sample instead of the noise in each diffusion step, combining a Fourier-based loss term. Diffusion-TS is expected to generate time series satisfying both interpretablity and realness. In addition, it is shown that the proposed Diffusion-TS can be easily extended to conditional generation tasks, such as forecasting and imputation, without any model changes. This also motivates us to further explore the performance of Diffusion-TS under irregular settings. Finally, through qualitative and quantitative experiments, results show that Diffusion-TS achieves the state-of-the-art results on various realistic analyses of time series. 2 authors · Mar 4, 2024
- FreeV: Free Lunch For Vocoders Through Pseudo Inversed Mel Filter Vocoders reconstruct speech waveforms from acoustic features and play a pivotal role in modern TTS systems. Frequent-domain GAN vocoders like Vocos and APNet2 have recently seen rapid advancements, outperforming time-domain models in inference speed while achieving comparable audio quality. However, these frequency-domain vocoders suffer from large parameter sizes, thus introducing extra memory burden. Inspired by PriorGrad and SpecGrad, we employ pseudo-inverse to estimate the amplitude spectrum as the initialization roughly. This simple initialization significantly mitigates the parameter demand for vocoder. Based on APNet2 and our streamlined Amplitude prediction branch, we propose our FreeV, compared with its counterpart APNet2, our FreeV achieves 1.8 times inference speed improvement with nearly half parameters. Meanwhile, our FreeV outperforms APNet2 in resynthesis quality, marking a step forward in pursuing real-time, high-fidelity speech synthesis. Code and checkpoints is available at: https://github.com/BakerBunker/FreeV 6 authors · Jun 12, 2024
- Latent Diffusion for Language Generation Diffusion models have achieved great success in modeling continuous data modalities such as images, audio, and video, but have seen limited use in discrete domains such as language. Recent attempts to adapt diffusion to language have presented diffusion as an alternative to autoregressive language generation. We instead view diffusion as a complementary method that can augment the generative capabilities of existing pre-trained language models. We demonstrate that continuous diffusion models can be learned in the latent space of a pre-trained encoder-decoder model, enabling us to sample continuous latent representations that can be decoded into natural language with the pre-trained decoder. We show that our latent diffusion models are more effective at sampling novel text from data distributions than a strong autoregressive baseline and also enable controllable generation. 5 authors · Dec 19, 2022
- Towards achieving robust universal neural vocoding This paper explores the potential universality of neural vocoders. We train a WaveRNN-based vocoder on 74 speakers coming from 17 languages. This vocoder is shown to be capable of generating speech of consistently good quality (98% relative mean MUSHRA when compared to natural speech) regardless of whether the input spectrogram comes from a speaker or style seen during training or from an out-of-domain scenario when the recording conditions are studio-quality. When the recordings show significant changes in quality, or when moving towards non-speech vocalizations or singing, the vocoder still significantly outperforms speaker-dependent vocoders, but operates at a lower average relative MUSHRA of 75%. These results are shown to be consistent across languages, regardless of them being seen during training (e.g. English or Japanese) or unseen (e.g. Wolof, Swahili, Ahmaric). 8 authors · Nov 15, 2018
6 CoMoSpeech: One-Step Speech and Singing Voice Synthesis via Consistency Model Denoising diffusion probabilistic models (DDPMs) have shown promising performance for speech synthesis. However, a large number of iterative steps are required to achieve high sample quality, which restricts the inference speed. Maintaining sample quality while increasing sampling speed has become a challenging task. In this paper, we propose a "Co"nsistency "Mo"del-based "Speech" synthesis method, CoMoSpeech, which achieve speech synthesis through a single diffusion sampling step while achieving high audio quality. The consistency constraint is applied to distill a consistency model from a well-designed diffusion-based teacher model, which ultimately yields superior performances in the distilled CoMoSpeech. Our experiments show that by generating audio recordings by a single sampling step, the CoMoSpeech achieves an inference speed more than 150 times faster than real-time on a single NVIDIA A100 GPU, which is comparable to FastSpeech2, making diffusion-sampling based speech synthesis truly practical. Meanwhile, objective and subjective evaluations on text-to-speech and singing voice synthesis show that the proposed teacher models yield the best audio quality, and the one-step sampling based CoMoSpeech achieves the best inference speed with better or comparable audio quality to other conventional multi-step diffusion model baselines. Audio samples are available at https://comospeech.github.io/. 6 authors · May 11, 2023
8 FADI-AEC: Fast Score Based Diffusion Model Guided by Far-end Signal for Acoustic Echo Cancellation Despite the potential of diffusion models in speech enhancement, their deployment in Acoustic Echo Cancellation (AEC) has been restricted. In this paper, we propose DI-AEC, pioneering a diffusion-based stochastic regeneration approach dedicated to AEC. Further, we propose FADI-AEC, fast score-based diffusion AEC framework to save computational demands, making it favorable for edge devices. It stands out by running the score model once per frame, achieving a significant surge in processing efficiency. Apart from that, we introduce a novel noise generation technique where far-end signals are utilized, incorporating both far-end and near-end signals to refine the score model's accuracy. We test our proposed method on the ICASSP2023 Microsoft deep echo cancellation challenge evaluation dataset, where our method outperforms some of the end-to-end methods and other diffusion based echo cancellation methods. 8 authors · Jan 8, 2024
- FastDiff: A Fast Conditional Diffusion Model for High-Quality Speech Synthesis Denoising diffusion probabilistic models (DDPMs) have recently achieved leading performances in many generative tasks. However, the inherited iterative sampling process costs hindered their applications to speech synthesis. This paper proposes FastDiff, a fast conditional diffusion model for high-quality speech synthesis. FastDiff employs a stack of time-aware location-variable convolutions of diverse receptive field patterns to efficiently model long-term time dependencies with adaptive conditions. A noise schedule predictor is also adopted to reduce the sampling steps without sacrificing the generation quality. Based on FastDiff, we design an end-to-end text-to-speech synthesizer, FastDiff-TTS, which generates high-fidelity speech waveforms without any intermediate feature (e.g., Mel-spectrogram). Our evaluation of FastDiff demonstrates the state-of-the-art results with higher-quality (MOS 4.28) speech samples. Also, FastDiff enables a sampling speed of 58x faster than real-time on a V100 GPU, making diffusion models practically applicable to speech synthesis deployment for the first time. We further show that FastDiff generalized well to the mel-spectrogram inversion of unseen speakers, and FastDiff-TTS outperformed other competing methods in end-to-end text-to-speech synthesis. Audio samples are available at https://FastDiff.github.io/. 7 authors · Apr 21, 2022
- Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech Recently, denoising diffusion probabilistic models and generative score matching have shown high potential in modelling complex data distributions while stochastic calculus has provided a unified point of view on these techniques allowing for flexible inference schemes. In this paper we introduce Grad-TTS, a novel text-to-speech model with score-based decoder producing mel-spectrograms by gradually transforming noise predicted by encoder and aligned with text input by means of Monotonic Alignment Search. The framework of stochastic differential equations helps us to generalize conventional diffusion probabilistic models to the case of reconstructing data from noise with different parameters and allows to make this reconstruction flexible by explicitly controlling trade-off between sound quality and inference speed. Subjective human evaluation shows that Grad-TTS is competitive with state-of-the-art text-to-speech approaches in terms of Mean Opinion Score. We will make the code publicly available shortly. 5 authors · May 13, 2021
- Improvement Speaker Similarity for Zero-Shot Any-to-Any Voice Conversion of Whispered and Regular Speech Zero-shot voice conversion aims to transfer the voice of a source speaker to that of a speaker unseen during training, while preserving the content information. Although various methods have been proposed to reconstruct speaker information in generated speech, there is still room for improvement in achieving high similarity between generated and ground truth recordings. Furthermore, zero-shot voice conversion for speech in specific domains, such as whispered, remains an unexplored area. To address this problem, we propose a SpeakerVC model that can effectively perform zero-shot speech conversion in both voiced and whispered domains, while being lightweight and capable of running in streaming mode without significant quality degradation. In addition, we explore methods to improve the quality of speaker identity transfer and demonstrate their effectiveness for a variety of voice conversion systems. 2 authors · Aug 21, 2024
- VoiceShop: A Unified Speech-to-Speech Framework for Identity-Preserving Zero-Shot Voice Editing We present VoiceShop, a novel speech-to-speech framework that can modify multiple attributes of speech, such as age, gender, accent, and speech style, in a single forward pass while preserving the input speaker's timbre. Previous works have been constrained to specialized models that can only edit these attributes individually and suffer from the following pitfalls: the magnitude of the conversion effect is weak, there is no zero-shot capability for out-of-distribution speakers, or the synthesized outputs exhibit undesirable timbre leakage. Our work proposes solutions for each of these issues in a simple modular framework based on a conditional diffusion backbone model with optional normalizing flow-based and sequence-to-sequence speaker attribute-editing modules, whose components can be combined or removed during inference to meet a wide array of tasks without additional model finetuning. Audio samples are available at https://voiceshopai.github.io. 9 authors · Apr 9, 2024
1 DreamVoice: Text-Guided Voice Conversion Generative voice technologies are rapidly evolving, offering opportunities for more personalized and inclusive experiences. Traditional one-shot voice conversion (VC) requires a target recording during inference, limiting ease of usage in generating desired voice timbres. Text-guided generation offers an intuitive solution to convert voices to desired "DreamVoices" according to the users' needs. Our paper presents two major contributions to VC technology: (1) DreamVoiceDB, a robust dataset of voice timbre annotations for 900 speakers from VCTK and LibriTTS. (2) Two text-guided VC methods: DreamVC, an end-to-end diffusion-based text-guided VC model; and DreamVG, a versatile text-to-voice generation plugin that can be combined with any one-shot VC models. The experimental results demonstrate that our proposed methods trained on the DreamVoiceDB dataset generate voice timbres accurately aligned with the text prompt and achieve high-quality VC. 5 authors · Jun 24, 2024
- FADA: Fast Diffusion Avatar Synthesis with Mixed-Supervised Multi-CFG Distillation Diffusion-based audio-driven talking avatar methods have recently gained attention for their high-fidelity, vivid, and expressive results. However, their slow inference speed limits practical applications. Despite the development of various distillation techniques for diffusion models, we found that naive diffusion distillation methods do not yield satisfactory results. Distilled models exhibit reduced robustness with open-set input images and a decreased correlation between audio and video compared to teacher models, undermining the advantages of diffusion models. To address this, we propose FADA (Fast Diffusion Avatar Synthesis with Mixed-Supervised Multi-CFG Distillation). We first designed a mixed-supervised loss to leverage data of varying quality and enhance the overall model capability as well as robustness. Additionally, we propose a multi-CFG distillation with learnable tokens to utilize the correlation between audio and reference image conditions, reducing the threefold inference runs caused by multi-CFG with acceptable quality degradation. Extensive experiments across multiple datasets show that FADA generates vivid videos comparable to recent diffusion model-based methods while achieving an NFE speedup of 4.17-12.5 times. Demos are available at our webpage http://fadavatar.github.io. 6 authors · Dec 22, 2024
- LatentSpeech: Latent Diffusion for Text-To-Speech Generation Diffusion-based Generative AI gains significant attention for its superior performance over other generative techniques like Generative Adversarial Networks and Variational Autoencoders. While it has achieved notable advancements in fields such as computer vision and natural language processing, their application in speech generation remains under-explored. Mainstream Text-to-Speech systems primarily map outputs to Mel-Spectrograms in the spectral space, leading to high computational loads due to the sparsity of MelSpecs. To address these limitations, we propose LatentSpeech, a novel TTS generation approach utilizing latent diffusion models. By using latent embeddings as the intermediate representation, LatentSpeech reduces the target dimension to 5% of what is required for MelSpecs, simplifying the processing for the TTS encoder and vocoder and enabling efficient high-quality speech generation. This study marks the first integration of latent diffusion models in TTS, enhancing the accuracy and naturalness of generated speech. Experimental results on benchmark datasets demonstrate that LatentSpeech achieves a 25% improvement in Word Error Rate and a 24% improvement in Mel Cepstral Distortion compared to existing models, with further improvements rising to 49.5% and 26%, respectively, with additional training data. These findings highlight the potential of LatentSpeech to advance the state-of-the-art in TTS technology 5 authors · Dec 11, 2024
1 High-Fidelity Speech Synthesis with Minimal Supervision: All Using Diffusion Models Text-to-speech (TTS) methods have shown promising results in voice cloning, but they require a large number of labeled text-speech pairs. Minimally-supervised speech synthesis decouples TTS by combining two types of discrete speech representations(semantic \& acoustic) and using two sequence-to-sequence tasks to enable training with minimal supervision. However, existing methods suffer from information redundancy and dimension explosion in semantic representation, and high-frequency waveform distortion in discrete acoustic representation. Autoregressive frameworks exhibit typical instability and uncontrollability issues. And non-autoregressive frameworks suffer from prosodic averaging caused by duration prediction models. To address these issues, we propose a minimally-supervised high-fidelity speech synthesis method, where all modules are constructed based on the diffusion models. The non-autoregressive framework enhances controllability, and the duration diffusion model enables diversified prosodic expression. Contrastive Token-Acoustic Pretraining (CTAP) is used as an intermediate semantic representation to solve the problems of information redundancy and dimension explosion in existing semantic coding methods. Mel-spectrogram is used as the acoustic representation. Both semantic and acoustic representations are predicted by continuous variable regression tasks to solve the problem of high-frequency fine-grained waveform distortion. Experimental results show that our proposed method outperforms the baseline method. We provide audio samples on our website. 7 authors · Sep 27, 2023
7 ZeroSep: Separate Anything in Audio with Zero Training Audio source separation is fundamental for machines to understand complex acoustic environments and underpins numerous audio applications. Current supervised deep learning approaches, while powerful, are limited by the need for extensive, task-specific labeled data and struggle to generalize to the immense variability and open-set nature of real-world acoustic scenes. Inspired by the success of generative foundation models, we investigate whether pre-trained text-guided audio diffusion models can overcome these limitations. We make a surprising discovery: zero-shot source separation can be achieved purely through a pre-trained text-guided audio diffusion model under the right configuration. Our method, named ZeroSep, works by inverting the mixed audio into the diffusion model's latent space and then using text conditioning to guide the denoising process to recover individual sources. Without any task-specific training or fine-tuning, ZeroSep repurposes the generative diffusion model for a discriminative separation task and inherently supports open-set scenarios through its rich textual priors. ZeroSep is compatible with a variety of pre-trained text-guided audio diffusion backbones and delivers strong separation performance on multiple separation benchmarks, surpassing even supervised methods. 9 authors · May 29 2
- ProDiff: Progressive Fast Diffusion Model For High-Quality Text-to-Speech Denoising diffusion probabilistic models (DDPMs) have recently achieved leading performances in many generative tasks. However, the inherited iterative sampling process costs hinder their applications to text-to-speech deployment. Through the preliminary study on diffusion model parameterization, we find that previous gradient-based TTS models require hundreds or thousands of iterations to guarantee high sample quality, which poses a challenge for accelerating sampling. In this work, we propose ProDiff, on progressive fast diffusion model for high-quality text-to-speech. Unlike previous work estimating the gradient for data density, ProDiff parameterizes the denoising model by directly predicting clean data to avoid distinct quality degradation in accelerating sampling. To tackle the model convergence challenge with decreased diffusion iterations, ProDiff reduces the data variance in the target site via knowledge distillation. Specifically, the denoising model uses the generated mel-spectrogram from an N-step DDIM teacher as the training target and distills the behavior into a new model with N/2 steps. As such, it allows the TTS model to make sharp predictions and further reduces the sampling time by orders of magnitude. Our evaluation demonstrates that ProDiff needs only 2 iterations to synthesize high-fidelity mel-spectrograms, while it maintains sample quality and diversity competitive with state-of-the-art models using hundreds of steps. ProDiff enables a sampling speed of 24x faster than real-time on a single NVIDIA 2080Ti GPU, making diffusion models practically applicable to text-to-speech synthesis deployment for the first time. Our extensive ablation studies demonstrate that each design in ProDiff is effective, and we further show that ProDiff can be easily extended to the multi-speaker setting. Audio samples are available at https://ProDiff.github.io/. 6 authors · Jul 13, 2022
1 LipVoicer: Generating Speech from Silent Videos Guided by Lip Reading Lip-to-speech involves generating a natural-sounding speech synchronized with a soundless video of a person talking. Despite recent advances, current methods still cannot produce high-quality speech with high levels of intelligibility for challenging and realistic datasets such as LRS3. In this work, we present LipVoicer, a novel method that generates high-quality speech, even for in-the-wild and rich datasets, by incorporating the text modality. Given a silent video, we first predict the spoken text using a pre-trained lip-reading network. We then condition a diffusion model on the video and use the extracted text through a classifier-guidance mechanism where a pre-trained ASR serves as the classifier. LipVoicer outperforms multiple lip-to-speech baselines on LRS2 and LRS3, which are in-the-wild datasets with hundreds of unique speakers in their test set and an unrestricted vocabulary. Moreover, our experiments show that the inclusion of the text modality plays a major role in the intelligibility of the produced speech, readily perceptible while listening, and is empirically reflected in the substantial reduction of the WER metric. We demonstrate the effectiveness of LipVoicer through human evaluation, which shows that it produces more natural and synchronized speech signals compared to competing methods. Finally, we created a demo showcasing LipVoicer's superiority in producing natural, synchronized, and intelligible speech, providing additional evidence of its effectiveness. Project page and code: https://github.com/yochaiye/LipVoicer 5 authors · Jun 5, 2023
2 StyleTTS-ZS: Efficient High-Quality Zero-Shot Text-to-Speech Synthesis with Distilled Time-Varying Style Diffusion The rapid development of large-scale text-to-speech (TTS) models has led to significant advancements in modeling diverse speaker prosody and voices. However, these models often face issues such as slow inference speeds, reliance on complex pre-trained neural codec representations, and difficulties in achieving naturalness and high similarity to reference speakers. To address these challenges, this work introduces StyleTTS-ZS, an efficient zero-shot TTS model that leverages distilled time-varying style diffusion to capture diverse speaker identities and prosodies. We propose a novel approach that represents human speech using input text and fixed-length time-varying discrete style codes to capture diverse prosodic variations, trained adversarially with multi-modal discriminators. A diffusion model is then built to sample this time-varying style code for efficient latent diffusion. Using classifier-free guidance, StyleTTS-ZS achieves high similarity to the reference speaker in the style diffusion process. Furthermore, to expedite sampling, the style diffusion model is distilled with perceptual loss using only 10k samples, maintaining speech quality and similarity while reducing inference speed by 90%. Our model surpasses previous state-of-the-art large-scale zero-shot TTS models in both naturalness and similarity, offering a 10-20 faster sampling speed, making it an attractive alternative for efficient large-scale zero-shot TTS systems. The audio demo, code and models are available at https://styletts-zs.github.io/. 4 authors · Sep 16, 2024 1
- A Comparative Study of Voice Conversion Models with Large-Scale Speech and Singing Data: The T13 Systems for the Singing Voice Conversion Challenge 2023 This paper presents our systems (denoted as T13) for the singing voice conversion challenge (SVCC) 2023. For both in-domain and cross-domain English singing voice conversion (SVC) tasks (Task 1 and Task 2), we adopt a recognition-synthesis approach with self-supervised learning-based representation. To achieve data-efficient SVC with a limited amount of target singer/speaker's data (150 to 160 utterances for SVCC 2023), we first train a diffusion-based any-to-any voice conversion model using publicly available large-scale 750 hours of speech and singing data. Then, we finetune the model for each target singer/speaker of Task 1 and Task 2. Large-scale listening tests conducted by SVCC 2023 show that our T13 system achieves competitive naturalness and speaker similarity for the harder cross-domain SVC (Task 2), which implies the generalization ability of our proposed method. Our objective evaluation results show that using large datasets is particularly beneficial for cross-domain SVC. 5 authors · Oct 8, 2023
- StableVC: Style Controllable Zero-Shot Voice Conversion with Conditional Flow Matching Zero-shot voice conversion (VC) aims to transfer the timbre from the source speaker to an arbitrary unseen speaker while preserving the original linguistic content. Despite recent advancements in zero-shot VC using language model-based or diffusion-based approaches, several challenges remain: 1) current approaches primarily focus on adapting timbre from unseen speakers and are unable to transfer style and timbre to different unseen speakers independently; 2) these approaches often suffer from slower inference speeds due to the autoregressive modeling methods or the need for numerous sampling steps; 3) the quality and similarity of the converted samples are still not fully satisfactory. To address these challenges, we propose a style controllable zero-shot VC approach named StableVC, which aims to transfer timbre and style from source speech to different unseen target speakers. Specifically, we decompose speech into linguistic content, timbre, and style, and then employ a conditional flow matching module to reconstruct the high-quality mel-spectrogram based on these decomposed features. To effectively capture timbre and style in a zero-shot manner, we introduce a novel dual attention mechanism with an adaptive gate, rather than using conventional feature concatenation. With this non-autoregressive design, StableVC can efficiently capture the intricate timbre and style from different unseen speakers and generate high-quality speech significantly faster than real-time. Experiments demonstrate that our proposed StableVC outperforms state-of-the-art baseline systems in zero-shot VC and achieves flexible control over timbre and style from different unseen speakers. Moreover, StableVC offers approximately 25x and 1.65x faster sampling compared to autoregressive and diffusion-based baselines. 7 authors · Dec 5, 2024
- Zero-shot Voice Conversion with Diffusion Transformers Zero-shot voice conversion aims to transform a source speech utterance to match the timbre of a reference speech from an unseen speaker. Traditional approaches struggle with timbre leakage, insufficient timbre representation, and mismatches between training and inference tasks. We propose Seed-VC, a novel framework that addresses these issues by introducing an external timbre shifter during training to perturb the source speech timbre, mitigating leakage and aligning training with inference. Additionally, we employ a diffusion transformer that leverages the entire reference speech context, capturing fine-grained timbre features through in-context learning. Experiments demonstrate that Seed-VC outperforms strong baselines like OpenVoice and CosyVoice, achieving higher speaker similarity and lower word error rates in zero-shot voice conversion tasks. We further extend our approach to zero-shot singing voice conversion by incorporating fundamental frequency (F0) conditioning, resulting in comparative performance to current state-of-the-art methods. Our findings highlight the effectiveness of Seed-VC in overcoming core challenges, paving the way for more accurate and versatile voice conversion systems. 1 authors · Nov 14, 2024
1 Autoregressive Diffusion Transformer for Text-to-Speech Synthesis Audio language models have recently emerged as a promising approach for various audio generation tasks, relying on audio tokenizers to encode waveforms into sequences of discrete symbols. Audio tokenization often poses a necessary compromise between code bitrate and reconstruction accuracy. When dealing with low-bitrate audio codes, language models are constrained to process only a subset of the information embedded in the audio, which in turn restricts their generative capabilities. To circumvent these issues, we propose encoding audio as vector sequences in continuous space mathbb R^d and autoregressively generating these sequences using a decoder-only diffusion transformer (ARDiT). Our findings indicate that ARDiT excels in zero-shot text-to-speech and exhibits performance that compares to or even surpasses that of state-of-the-art models. High-bitrate continuous speech representation enables almost flawless reconstruction, allowing our model to achieve nearly perfect speech editing. Our experiments reveal that employing Integral Kullback-Leibler (IKL) divergence for distillation at each autoregressive step significantly boosts the perceived quality of the samples. Simultaneously, it condenses the iterative sampling process of the diffusion model into a single step. Furthermore, ARDiT can be trained to predict several continuous vectors in one step, significantly reducing latency during sampling. Impressively, one of our models can generate 170 ms of 24 kHz speech per evaluation step with minimal degradation in performance. Audio samples are available at http://ardit-tts.github.io/ . 5 authors · Jun 8, 2024
- Guided-TTS 2: A Diffusion Model for High-quality Adaptive Text-to-Speech with Untranscribed Data We propose Guided-TTS 2, a diffusion-based generative model for high-quality adaptive TTS using untranscribed data. Guided-TTS 2 combines a speaker-conditional diffusion model with a speaker-dependent phoneme classifier for adaptive text-to-speech. We train the speaker-conditional diffusion model on large-scale untranscribed datasets for a classifier-free guidance method and further fine-tune the diffusion model on the reference speech of the target speaker for adaptation, which only takes 40 seconds. We demonstrate that Guided-TTS 2 shows comparable performance to high-quality single-speaker TTS baselines in terms of speech quality and speaker similarity with only a ten-second untranscribed data. We further show that Guided-TTS 2 outperforms adaptive TTS baselines on multi-speaker datasets even with a zero-shot adaptation setting. Guided-TTS 2 can adapt to a wide range of voices only using untranscribed speech, which enables adaptive TTS with the voice of non-human characters such as Gollum in "The Lord of the Rings". 3 authors · May 30, 2022
- DiffDub: Person-generic Visual Dubbing Using Inpainting Renderer with Diffusion Auto-encoder Generating high-quality and person-generic visual dubbing remains a challenge. Recent innovation has seen the advent of a two-stage paradigm, decoupling the rendering and lip synchronization process facilitated by intermediate representation as a conduit. Still, previous methodologies rely on rough landmarks or are confined to a single speaker, thus limiting their performance. In this paper, we propose DiffDub: Diffusion-based dubbing. We first craft the Diffusion auto-encoder by an inpainting renderer incorporating a mask to delineate editable zones and unaltered regions. This allows for seamless filling of the lower-face region while preserving the remaining parts. Throughout our experiments, we encountered several challenges. Primarily, the semantic encoder lacks robustness, constricting its ability to capture high-level features. Besides, the modeling ignored facial positioning, causing mouth or nose jitters across frames. To tackle these issues, we employ versatile strategies, including data augmentation and supplementary eye guidance. Moreover, we encapsulated a conformer-based reference encoder and motion generator fortified by a cross-attention mechanism. This enables our model to learn person-specific textures with varying references and reduces reliance on paired audio-visual data. Our rigorous experiments comprehensively highlight that our ground-breaking approach outpaces existing methods with considerable margins and delivers seamless, intelligible videos in person-generic and multilingual scenarios. 5 authors · Nov 3, 2023
1 Sample-Efficient Diffusion for Text-To-Speech Synthesis This work introduces Sample-Efficient Speech Diffusion (SESD), an algorithm for effective speech synthesis in modest data regimes through latent diffusion. It is based on a novel diffusion architecture, that we call U-Audio Transformer (U-AT), that efficiently scales to long sequences and operates in the latent space of a pre-trained audio autoencoder. Conditioned on character-aware language model representations, SESD achieves impressive results despite training on less than 1k hours of speech - far less than current state-of-the-art systems. In fact, it synthesizes more intelligible speech than the state-of-the-art auto-regressive model, VALL-E, while using less than 2% the training data. 5 authors · Sep 1, 2024
7 Towards Diverse and Efficient Audio Captioning via Diffusion Models We introduce Diffusion-based Audio Captioning (DAC), a non-autoregressive diffusion model tailored for diverse and efficient audio captioning. Although existing captioning models relying on language backbones have achieved remarkable success in various captioning tasks, their insufficient performance in terms of generation speed and diversity impede progress in audio understanding and multimedia applications. Our diffusion-based framework offers unique advantages stemming from its inherent stochasticity and holistic context modeling in captioning. Through rigorous evaluation, we demonstrate that DAC not only achieves SOTA performance levels compared to existing benchmarks in the caption quality, but also significantly outperforms them in terms of generation speed and diversity. The success of DAC illustrates that text generation can also be seamlessly integrated with audio and visual generation tasks using a diffusion backbone, paving the way for a unified, audio-related generative model across different modalities. 7 authors · Sep 14, 2024 3
2 Ditto: Motion-Space Diffusion for Controllable Realtime Talking Head Synthesis Recent advances in diffusion models have revolutionized audio-driven talking head synthesis. Beyond precise lip synchronization, diffusion-based methods excel in generating subtle expressions and natural head movements that are well-aligned with the audio signal. However, these methods are confronted by slow inference speed, insufficient fine-grained control over facial motions, and occasional visual artifacts largely due to an implicit latent space derived from Variational Auto-Encoders (VAE), which prevent their adoption in realtime interaction applications. To address these issues, we introduce Ditto, a diffusion-based framework that enables controllable realtime talking head synthesis. Our key innovation lies in bridging motion generation and photorealistic neural rendering through an explicit identity-agnostic motion space, replacing conventional VAE representations. This design substantially reduces the complexity of diffusion learning while enabling precise control over the synthesized talking heads. We further propose an inference strategy that jointly optimizes three key components: audio feature extraction, motion generation, and video synthesis. This optimization enables streaming processing, realtime inference, and low first-frame delay, which are the functionalities crucial for interactive applications such as AI assistants. Extensive experimental results demonstrate that Ditto generates compelling talking head videos and substantially outperforms existing methods in both motion control and realtime performance. 5 authors · Nov 29, 2024
- Towards Robust Neural Vocoding for Speech Generation: A Survey Recently, neural vocoders have been widely used in speech synthesis tasks, including text-to-speech and voice conversion. However, when encountering data distribution mismatch between training and inference, neural vocoders trained on real data often degrade in voice quality for unseen scenarios. In this paper, we train four common neural vocoders, including WaveNet, WaveRNN, FFTNet, Parallel WaveGAN alternately on five different datasets. To study the robustness of neural vocoders, we evaluate the models using acoustic features from seen/unseen speakers, seen/unseen languages, a text-to-speech model, and a voice conversion model. We found out that the speaker variety is much more important for achieving a universal vocoder than the language. Through our experiments, we show that WaveNet and WaveRNN are more suitable for text-to-speech models, while Parallel WaveGAN is more suitable for voice conversion applications. Great amount of subjective MOS results in naturalness for all vocoders are presented for future studies. 4 authors · Dec 5, 2019
19 EDMSound: Spectrogram Based Diffusion Models for Efficient and High-Quality Audio Synthesis Audio diffusion models can synthesize a wide variety of sounds. Existing models often operate on the latent domain with cascaded phase recovery modules to reconstruct waveform. This poses challenges when generating high-fidelity audio. In this paper, we propose EDMSound, a diffusion-based generative model in spectrogram domain under the framework of elucidated diffusion models (EDM). Combining with efficient deterministic sampler, we achieved similar Fr\'echet audio distance (FAD) score as top-ranked baseline with only 10 steps and reached state-of-the-art performance with 50 steps on the DCASE2023 foley sound generation benchmark. We also revealed a potential concern regarding diffusion based audio generation models that they tend to generate samples with high perceptual similarity to the data from training data. Project page: https://agentcooper2002.github.io/EDMSound/ 4 authors · Nov 14, 2023 1
- Pureformer-VC: Non-parallel One-Shot Voice Conversion with Pure Transformer Blocks and Triplet Discriminative Training One-shot voice conversion(VC) aims to change the timbre of any source speech to match that of the target speaker with only one speech sample. Existing style transfer-based VC methods relied on speech representation disentanglement and suffered from accurately and independently encoding each speech component and recomposing back to converted speech effectively. To tackle this, we proposed Pureformer-VC, which utilizes Conformer blocks to build a disentangled encoder, and Zipformer blocks to build a style transfer decoder as the generator. In the decoder, we used effective styleformer blocks to integrate speaker characteristics effectively into the generated speech. The models used the generative VAE loss for encoding components and triplet loss for unsupervised discriminative training. We applied the styleformer method to Zipformer's shared weights for style transfer. The experimental results show that the proposed model achieves comparable subjective scores and exhibits improvements in objective metrics compared to existing methods in a one-shot voice conversion scenario. 6 authors · Sep 3, 2024
2 Vocos: Closing the gap between time-domain and Fourier-based neural vocoders for high-quality audio synthesis Recent advancements in neural vocoding are predominantly driven by Generative Adversarial Networks (GANs) operating in the time-domain. While effective, this approach neglects the inductive bias offered by time-frequency representations, resulting in reduntant and computionally-intensive upsampling operations. Fourier-based time-frequency representation is an appealing alternative, aligning more accurately with human auditory perception, and benefitting from well-established fast algorithms for its computation. Nevertheless, direct reconstruction of complex-valued spectrograms has been historically problematic, primarily due to phase recovery issues. This study seeks to close this gap by presenting Vocos, a new model that directly generates Fourier spectral coefficients. Vocos not only matches the state-of-the-art in audio quality, as demonstrated in our evaluations, but it also substantially improves computational efficiency, achieving an order of magnitude increase in speed compared to prevailing time-domain neural vocoding approaches. The source code and model weights have been open-sourced at https://github.com/charactr-platform/vocos. 1 authors · Jun 1, 2023
35 Schrodinger Bridges Beat Diffusion Models on Text-to-Speech Synthesis In text-to-speech (TTS) synthesis, diffusion models have achieved promising generation quality. However, because of the pre-defined data-to-noise diffusion process, their prior distribution is restricted to a noisy representation, which provides little information of the generation target. In this work, we present a novel TTS system, Bridge-TTS, making the first attempt to substitute the noisy Gaussian prior in established diffusion-based TTS methods with a clean and deterministic one, which provides strong structural information of the target. Specifically, we leverage the latent representation obtained from text input as our prior, and build a fully tractable Schrodinger bridge between it and the ground-truth mel-spectrogram, leading to a data-to-data process. Moreover, the tractability and flexibility of our formulation allow us to empirically study the design spaces such as noise schedules, as well as to develop stochastic and deterministic samplers. Experimental results on the LJ-Speech dataset illustrate the effectiveness of our method in terms of both synthesis quality and sampling efficiency, significantly outperforming our diffusion counterpart Grad-TTS in 50-step/1000-step synthesis and strong fast TTS models in few-step scenarios. Project page: https://bridge-tts.github.io/ 5 authors · Dec 6, 2023
4 BigVGAN: A Universal Neural Vocoder with Large-Scale Training Despite recent progress in generative adversarial network (GAN)-based vocoders, where the model generates raw waveform conditioned on acoustic features, it is challenging to synthesize high-fidelity audio for numerous speakers across various recording environments. In this work, we present BigVGAN, a universal vocoder that generalizes well for various out-of-distribution scenarios without fine-tuning. We introduce periodic activation function and anti-aliased representation into the GAN generator, which brings the desired inductive bias for audio synthesis and significantly improves audio quality. In addition, we train our GAN vocoder at the largest scale up to 112M parameters, which is unprecedented in the literature. We identify and address the failure modes in large-scale GAN training for audio, while maintaining high-fidelity output without over-regularization. Our BigVGAN, trained only on clean speech (LibriTTS), achieves the state-of-the-art performance for various zero-shot (out-of-distribution) conditions, including unseen speakers, languages, recording environments, singing voices, music, and instrumental audio. We release our code and model at: https://github.com/NVIDIA/BigVGAN 5 authors · Jun 9, 2022 2
- Multi-task self-supervised learning for Robust Speech Recognition Despite the growing interest in unsupervised learning, extracting meaningful knowledge from unlabelled audio remains an open challenge. To take a step in this direction, we recently proposed a problem-agnostic speech encoder (PASE), that combines a convolutional encoder followed by multiple neural networks, called workers, tasked to solve self-supervised problems (i.e., ones that do not require manual annotations as ground truth). PASE was shown to capture relevant speech information, including speaker voice-print and phonemes. This paper proposes PASE+, an improved version of PASE for robust speech recognition in noisy and reverberant environments. To this end, we employ an online speech distortion module, that contaminates the input signals with a variety of random disturbances. We then propose a revised encoder that better learns short- and long-term speech dynamics with an efficient combination of recurrent and convolutional networks. Finally, we refine the set of workers used in self-supervision to encourage better cooperation. Results on TIMIT, DIRHA and CHiME-5 show that PASE+ significantly outperforms both the previous version of PASE as well as common acoustic features. Interestingly, PASE+ learns transferable representations suitable for highly mismatched acoustic conditions. 7 authors · Jan 24, 2020
1 Realistic Speech-to-Face Generation with Speech-Conditioned Latent Diffusion Model with Face Prior Speech-to-face generation is an intriguing area of research that focuses on generating realistic facial images based on a speaker's audio speech. However, state-of-the-art methods employing GAN-based architectures lack stability and cannot generate realistic face images. To fill this gap, we propose a novel speech-to-face generation framework, which leverages a Speech-Conditioned Latent Diffusion Model, called SCLDM. To the best of our knowledge, this is the first work to harness the exceptional modeling capabilities of diffusion models for speech-to-face generation. Preserving the shared identity information between speech and face is crucial in generating realistic results. Therefore, we employ contrastive pre-training for both the speech encoder and the face encoder. This pre-training strategy facilitates effective alignment between the attributes of speech, such as age and gender, and the corresponding facial characteristics in the face images. Furthermore, we tackle the challenge posed by excessive diversity in the synthesis process caused by the diffusion model. To overcome this challenge, we introduce the concept of residuals by integrating a statistical face prior to the diffusion process. This addition helps to eliminate the shared component across the faces and enhances the subtle variations captured by the speech condition. Extensive quantitative, qualitative, and user study experiments demonstrate that our method can produce more realistic face images while preserving the identity of the speaker better than state-of-the-art methods. Highlighting the notable enhancements, our method demonstrates significant gains in all metrics on the AVSpeech dataset and Voxceleb dataset, particularly noteworthy are the improvements of 32.17 and 32.72 on the cosine distance metric for the two datasets, respectively. 4 authors · Oct 5, 2023
12 Simple and Effective Masked Diffusion Language Models While diffusion models excel at generating high-quality images, prior work reports a significant performance gap between diffusion and autoregressive (AR) methods in language modeling. In this work, we show that simple masked discrete diffusion is more performant than previously thought. We apply an effective training recipe that improves the performance of masked diffusion models and derive a simplified, Rao-Blackwellized objective that results in additional improvements. Our objective has a simple form -- it is a mixture of classical masked language modeling losses -- and can be used to train encoder-only language models that admit efficient samplers, including ones that can generate arbitrary lengths of text semi-autoregressively like a traditional language model. On language modeling benchmarks, a range of masked diffusion models trained with modern engineering practices achieves a new state-of-the-art among diffusion models, and approaches AR perplexity. We release our code at: https://github.com/kuleshov-group/mdlm 8 authors · Jun 11, 2024 2
- Talking Head Generation with Probabilistic Audio-to-Visual Diffusion Priors In this paper, we introduce a simple and novel framework for one-shot audio-driven talking head generation. Unlike prior works that require additional driving sources for controlled synthesis in a deterministic manner, we instead probabilistically sample all the holistic lip-irrelevant facial motions (i.e. pose, expression, blink, gaze, etc.) to semantically match the input audio while still maintaining both the photo-realism of audio-lip synchronization and the overall naturalness. This is achieved by our newly proposed audio-to-visual diffusion prior trained on top of the mapping between audio and disentangled non-lip facial representations. Thanks to the probabilistic nature of the diffusion prior, one big advantage of our framework is it can synthesize diverse facial motion sequences given the same audio clip, which is quite user-friendly for many real applications. Through comprehensive evaluations on public benchmarks, we conclude that (1) our diffusion prior outperforms auto-regressive prior significantly on almost all the concerned metrics; (2) our overall system is competitive with prior works in terms of audio-lip synchronization but can effectively sample rich and natural-looking lip-irrelevant facial motions while still semantically harmonized with the audio input. 6 authors · Dec 7, 2022
1 DiffuSIA: A Spiral Interaction Architecture for Encoder-Decoder Text Diffusion Diffusion models have emerged as the new state-of-the-art family of deep generative models, and their promising potentials for text generation have recently attracted increasing attention. Existing studies mostly adopt a single encoder architecture with partially noising processes for conditional text generation, but its degree of flexibility for conditional modeling is limited. In fact, the encoder-decoder architecture is naturally more flexible for its detachable encoder and decoder modules, which is extensible to multilingual and multimodal generation tasks for conditions and target texts. However, the encoding process of conditional texts lacks the understanding of target texts. To this end, a spiral interaction architecture for encoder-decoder text diffusion (DiffuSIA) is proposed. Concretely, the conditional information from encoder is designed to be captured by the diffusion decoder, while the target information from decoder is designed to be captured by the conditional encoder. These two types of information flow run through multilayer interaction spirally for deep fusion and understanding. DiffuSIA is evaluated on four text generation tasks, including paraphrase, text simplification, question generation, and open-domain dialogue generation. Experimental results show that DiffuSIA achieves competitive performance among previous methods on all four tasks, demonstrating the effectiveness and generalization ability of the proposed method. 3 authors · May 19, 2023
- MambaFoley: Foley Sound Generation using Selective State-Space Models Recent advancements in deep learning have led to widespread use of techniques for audio content generation, notably employing Denoising Diffusion Probabilistic Models (DDPM) across various tasks. Among these, Foley Sound Synthesis is of particular interest for its role in applications for the creation of multimedia content. Given the temporal-dependent nature of sound, it is crucial to design generative models that can effectively handle the sequential modeling of audio samples. Selective State Space Models (SSMs) have recently been proposed as a valid alternative to previously proposed techniques, demonstrating competitive performance with lower computational complexity. In this paper, we introduce MambaFoley, a diffusion-based model that, to the best of our knowledge, is the first to leverage the recently proposed SSM known as Mamba for the Foley sound generation task. To evaluate the effectiveness of the proposed method, we compare it with a state-of-the-art Foley sound generative model using both objective and subjective analyses. 4 authors · Sep 13, 2024
- DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs Denoising diffusion probabilistic models (DDPMs) are expressive generative models that have been used to solve a variety of speech synthesis problems. However, because of their high sampling costs, DDPMs are difficult to use in real-time speech processing applications. In this paper, we introduce DiffGAN-TTS, a novel DDPM-based text-to-speech (TTS) model achieving high-fidelity and efficient speech synthesis. DiffGAN-TTS is based on denoising diffusion generative adversarial networks (GANs), which adopt an adversarially-trained expressive model to approximate the denoising distribution. We show with multi-speaker TTS experiments that DiffGAN-TTS can generate high-fidelity speech samples within only 4 denoising steps. We present an active shallow diffusion mechanism to further speed up inference. A two-stage training scheme is proposed, with a basic TTS acoustic model trained at stage one providing valuable prior information for a DDPM trained at stage two. Our experiments show that DiffGAN-TTS can achieve high synthesis performance with only 1 denoising step. 3 authors · Jan 28, 2022
- Universal Speech Enhancement with Score-based Diffusion Removing background noise from speech audio has been the subject of considerable effort, especially in recent years due to the rise of virtual communication and amateur recordings. Yet background noise is not the only unpleasant disturbance that can prevent intelligibility: reverb, clipping, codec artifacts, problematic equalization, limited bandwidth, or inconsistent loudness are equally disturbing and ubiquitous. In this work, we propose to consider the task of speech enhancement as a holistic endeavor, and present a universal speech enhancement system that tackles 55 different distortions at the same time. Our approach consists of a generative model that employs score-based diffusion, together with a multi-resolution conditioning network that performs enhancement with mixture density networks. We show that this approach significantly outperforms the state of the art in a subjective test performed by expert listeners. We also show that it achieves competitive objective scores with just 4-8 diffusion steps, despite not considering any particular strategy for fast sampling. We hope that both our methodology and technical contributions encourage researchers and practitioners to adopt a universal approach to speech enhancement, possibly framing it as a generative task. 5 authors · Jun 7, 2022
1 Graph Representation Learning with Diffusion Generative Models Diffusion models have established themselves as state-of-the-art generative models across various data modalities, including images and videos, due to their ability to accurately approximate complex data distributions. Unlike traditional generative approaches such as VAEs and GANs, diffusion models employ a progressive denoising process that transforms noise into meaningful data over multiple iterative steps. This gradual approach enhances their expressiveness and generation quality. Not only that, diffusion models have also been shown to extract meaningful representations from data while learning to generate samples. Despite their success, the application of diffusion models to graph-structured data remains relatively unexplored, primarily due to the discrete nature of graphs, which necessitates discrete diffusion processes distinct from the continuous methods used in other domains. In this work, we leverage the representational capabilities of diffusion models to learn meaningful embeddings for graph data. By training a discrete diffusion model within an autoencoder framework, we enable both effective autoencoding and representation learning tailored to the unique characteristics of graph-structured data. We only need the encoder at the end to extract representations. Our approach demonstrates the potential of discrete diffusion models to be used for graph representation learning. 1 authors · Jan 22
- UnitSpeech: Speaker-adaptive Speech Synthesis with Untranscribed Data We propose UnitSpeech, a speaker-adaptive speech synthesis method that fine-tunes a diffusion-based text-to-speech (TTS) model using minimal untranscribed data. To achieve this, we use the self-supervised unit representation as a pseudo transcript and integrate the unit encoder into the pre-trained TTS model. We train the unit encoder to provide speech content to the diffusion-based decoder and then fine-tune the decoder for speaker adaptation to the reference speaker using a single <unit, speech> pair. UnitSpeech performs speech synthesis tasks such as TTS and voice conversion (VC) in a personalized manner without requiring model re-training for each task. UnitSpeech achieves comparable and superior results on personalized TTS and any-to-any VC tasks compared to previous baselines. Our model also shows widespread adaptive performance on real-world data and other tasks that use a unit sequence as input. 4 authors · Jun 28, 2023
- DINOISER: Diffused Conditional Sequence Learning by Manipulating Noises While diffusion models have achieved great success in generating continuous signals such as images and audio, it remains elusive for diffusion models in learning discrete sequence data like natural languages. Although recent advances circumvent this challenge of discreteness by embedding discrete tokens as continuous surrogates, they still fall short of satisfactory generation quality. To understand this, we first dive deep into the denoised training protocol of diffusion-based sequence generative models and determine their three severe problems, i.e., 1) failing to learn, 2) lack of scalability, and 3) neglecting source conditions. We argue that these problems can be boiled down to the pitfall of the not completely eliminated discreteness in the embedding space, and the scale of noises is decisive herein. In this paper, we introduce DINOISER to facilitate diffusion models for sequence generation by manipulating noises. We propose to adaptively determine the range of sampled noise scales for counter-discreteness training; and encourage the proposed diffused sequence learner to leverage source conditions with amplified noise scales during inference. Experiments show that DINOISER enables consistent improvement over the baselines of previous diffusion-based sequence generative models on several conditional sequence modeling benchmarks thanks to both effective training and inference strategies. Analyses further verify that DINOISER can make better use of source conditions to govern its generative process. 5 authors · Feb 20, 2023
- NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot Speech and Singing Synthesizers Scaling text-to-speech (TTS) to large-scale, multi-speaker, and in-the-wild datasets is important to capture the diversity in human speech such as speaker identities, prosodies, and styles (e.g., singing). Current large TTS systems usually quantize speech into discrete tokens and use language models to generate these tokens one by one, which suffer from unstable prosody, word skipping/repeating issue, and poor voice quality. In this paper, we develop NaturalSpeech 2, a TTS system that leverages a neural audio codec with residual vector quantizers to get the quantized latent vectors and uses a diffusion model to generate these latent vectors conditioned on text input. To enhance the zero-shot capability that is important to achieve diverse speech synthesis, we design a speech prompting mechanism to facilitate in-context learning in the diffusion model and the duration/pitch predictor. We scale NaturalSpeech 2 to large-scale datasets with 44K hours of speech and singing data and evaluate its voice quality on unseen speakers. NaturalSpeech 2 outperforms previous TTS systems by a large margin in terms of prosody/timbre similarity, robustness, and voice quality in a zero-shot setting, and performs novel zero-shot singing synthesis with only a speech prompt. Audio samples are available at https://speechresearch.github.io/naturalspeech2. 9 authors · Apr 18, 2023 2
- ItôTTS and ItôWave: Linear Stochastic Differential Equation Is All You Need For Audio Generation In this paper, we propose to unify the two aspects of voice synthesis, namely text-to-speech (TTS) and vocoder, into one framework based on a pair of forward and reverse-time linear stochastic differential equations (SDE). The solutions of this SDE pair are two stochastic processes, one of which turns the distribution of mel spectrogram (or wave), that we want to generate, into a simple and tractable distribution. The other is the generation procedure that turns this tractable simple signal into the target mel spectrogram (or wave). The model that generates mel spectrogram is called It\^oTTS, and the model that generates wave is called It\^oWave. It\^oTTS and It\^oWave use the Wiener process as a driver to gradually subtract the excess signal from the noise signal to generate realistic corresponding meaningful mel spectrogram and audio respectively, under the conditional inputs of original text or mel spectrogram. The results of the experiment show that the mean opinion scores (MOS) of It\^oTTS and It\^oWave can exceed the current state-of-the-art methods, and reached 3.925pm0.160 and 4.35pm0.115 respectively. The generated audio samples are available at https://wushoule.github.io/ItoAudio/. All authors contribute equally to this work. 2 authors · May 16, 2021
- ViT-TTS: Visual Text-to-Speech with Scalable Diffusion Transformer Text-to-speech(TTS) has undergone remarkable improvements in performance, particularly with the advent of Denoising Diffusion Probabilistic Models (DDPMs). However, the perceived quality of audio depends not solely on its content, pitch, rhythm, and energy, but also on the physical environment. In this work, we propose ViT-TTS, the first visual TTS model with scalable diffusion transformers. ViT-TTS complement the phoneme sequence with the visual information to generate high-perceived audio, opening up new avenues for practical applications of AR and VR to allow a more immersive and realistic audio experience. To mitigate the data scarcity in learning visual acoustic information, we 1) introduce a self-supervised learning framework to enhance both the visual-text encoder and denoiser decoder; 2) leverage the diffusion transformer scalable in terms of parameters and capacity to learn visual scene information. Experimental results demonstrate that ViT-TTS achieves new state-of-the-art results, outperforming cascaded systems and other baselines regardless of the visibility of the scene. With low-resource data (1h, 2h, 5h), ViT-TTS achieves comparative results with rich-resource baselines.~Audio samples are available at \url{https://ViT-TTS.github.io/.} 8 authors · May 22, 2023
4 Token-based Audio Inpainting via Discrete Diffusion Audio inpainting refers to the task of reconstructing missing segments in corrupted audio recordings. While prior approaches-including waveform and spectrogram-based diffusion models-have shown promising results for short gaps, they often degrade in quality when gaps exceed 100 milliseconds (ms). In this work, we introduce a novel inpainting method based on discrete diffusion modeling, which operates over tokenized audio representations produced by a pre-trained audio tokenizer. Our approach models the generative process directly in the discrete latent space, enabling stable and semantically coherent reconstruction of missing audio. We evaluate the method on the MusicNet dataset using both objective and perceptual metrics across gap durations up to 300 ms. We further evaluated our approach on the MTG dataset, extending the gap duration to 500 ms. Experimental results demonstrate that our method achieves competitive or superior performance compared to existing baselines, particularly for longer gaps, offering a robust solution for restoring degraded musical recordings. Audio examples of our proposed method can be found at https://iftach21.github.io/ 7 authors · Jul 11 1
1 Difformer: Empowering Diffusion Models on the Embedding Space for Text Generation Diffusion models have achieved state-of-the-art synthesis quality on both visual and audio tasks, and recent works further adapt them to textual data by diffusing on the embedding space. In this paper, we conduct systematic studies and analyze the challenges between the continuous data space and the embedding space which have not been carefully explored. Firstly, the data distribution is learnable for embeddings, which may lead to the collapse of the loss function. Secondly, as the norm of embeddings varies between popular and rare words, adding the same noise scale will lead to sub-optimal results. In addition, we find the normal level of noise causes insufficient training of the model. To address the above challenges, we propose Difformer, an embedding diffusion model based on Transformer, which consists of three essential modules including an additional anchor loss function, a layer normalization module for embeddings, and a noise factor to the Gaussian noise. Experiments on two seminal text generation tasks including machine translation and text summarization show the superiority of Difformer over compared embedding diffusion baselines. 7 authors · Dec 19, 2022
1 Score Distillation Sampling for Audio: Source Separation, Synthesis, and Beyond We introduce Audio-SDS, a generalization of Score Distillation Sampling (SDS) to text-conditioned audio diffusion models. While SDS was initially designed for text-to-3D generation using image diffusion, its core idea of distilling a powerful generative prior into a separate parametric representation extends to the audio domain. Leveraging a single pretrained model, Audio-SDS enables a broad range of tasks without requiring specialized datasets. In particular, we demonstrate how Audio-SDS can guide physically informed impact sound simulations, calibrate FM-synthesis parameters, and perform prompt-specified source separation. Our findings illustrate the versatility of distillation-based methods across modalities and establish a robust foundation for future work using generative priors in audio tasks. 3 authors · May 7
- Style Description based Text-to-Speech with Conditional Prosodic Layer Normalization based Diffusion GAN In this paper, we present a Diffusion GAN based approach (Prosodic Diff-TTS) to generate the corresponding high-fidelity speech based on the style description and content text as an input to generate speech samples within only 4 denoising steps. It leverages the novel conditional prosodic layer normalization to incorporate the style embeddings into the multi head attention based phoneme encoder and mel spectrogram decoder based generator architecture to generate the speech. The style embedding is generated by fine tuning the pretrained BERT model on auxiliary tasks such as pitch, speaking speed, emotion,gender classifications. We demonstrate the efficacy of our proposed architecture on multi-speaker LibriTTS and PromptSpeech datasets, using multiple quantitative metrics that measure generated accuracy and MOS. 3 authors · Oct 27, 2023
18 SemantiCodec: An Ultra Low Bitrate Semantic Audio Codec for General Sound Large language models (LLMs) have significantly advanced audio processing through audio codecs that convert audio into discrete tokens, enabling the application of language modelling techniques to audio data. However, traditional codecs often operate at high bitrates or within narrow domains such as speech and lack the semantic clues required for efficient language modelling. Addressing these challenges, we introduce SemantiCodec, a novel codec designed to compress audio into fewer than a hundred tokens per second across diverse audio types, including speech, general audio, and music, without compromising quality. SemantiCodec features a dual-encoder architecture: a semantic encoder using a self-supervised AudioMAE, discretized using k-means clustering on extensive audio data, and an acoustic encoder to capture the remaining details. The semantic and acoustic encoder outputs are used to reconstruct audio via a diffusion-model-based decoder. SemantiCodec is presented in three variants with token rates of 25, 50, and 100 per second, supporting a range of ultra-low bit rates between 0.31 kbps and 1.43 kbps. Experimental results demonstrate that SemantiCodec significantly outperforms the state-of-the-art Descript codec on reconstruction quality. Our results also suggest that SemantiCodec contains significantly richer semantic information than all evaluated audio codecs, even at significantly lower bitrates. Our code and demos are available at https://haoheliu.github.io/SemantiCodec/. 6 authors · Apr 30, 2024 1
1 Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement The imitation of voice, targeted on specific speech attributes such as timbre and speaking style, is crucial in speech generation. However, existing methods rely heavily on annotated data, and struggle with effectively disentangling timbre and style, leading to challenges in achieving controllable generation, especially in zero-shot scenarios. To address these issues, we propose Vevo, a versatile zero-shot voice imitation framework with controllable timbre and style. Vevo operates in two core stages: (1) Content-Style Modeling: Given either text or speech's content tokens as input, we utilize an autoregressive transformer to generate the content-style tokens, which is prompted by a style reference; (2) Acoustic Modeling: Given the content-style tokens as input, we employ a flow-matching transformer to produce acoustic representations, which is prompted by a timbre reference. To obtain the content and content-style tokens of speech, we design a fully self-supervised approach that progressively decouples the timbre, style, and linguistic content of speech. Specifically, we adopt VQ-VAE as the tokenizer for the continuous hidden features of HuBERT. We treat the vocabulary size of the VQ-VAE codebook as the information bottleneck, and adjust it carefully to obtain the disentangled speech representations. Solely self-supervised trained on 60K hours of audiobook speech data, without any fine-tuning on style-specific corpora, Vevo matches or surpasses existing methods in accent and emotion conversion tasks. Additionally, Vevo's effectiveness in zero-shot voice conversion and text-to-speech tasks further demonstrates its strong generalization and versatility. Audio samples are available at https://versavoice.github.io. 13 authors · Feb 10
- Vec-Tok-VC+: Residual-enhanced Robust Zero-shot Voice Conversion with Progressive Constraints in a Dual-mode Training Strategy Zero-shot voice conversion (VC) aims to transform source speech into arbitrary unseen target voice while keeping the linguistic content unchanged. Recent VC methods have made significant progress, but semantic losses in the decoupling process as well as training-inference mismatch still hinder conversion performance. In this paper, we propose Vec-Tok-VC+, a novel prompt-based zero-shot VC model improved from Vec-Tok Codec, achieving voice conversion given only a 3s target speaker prompt. We design a residual-enhanced K-Means decoupler to enhance the semantic content extraction with a two-layer clustering process. Besides, we employ teacher-guided refinement to simulate the conversion process to eliminate the training-inference mismatch, forming a dual-mode training strategy. Furthermore, we design a multi-codebook progressive loss function to constrain the layer-wise output of the model from coarse to fine to improve speaker similarity and content accuracy. Objective and subjective evaluations demonstrate that Vec-Tok-VC+ outperforms the strong baselines in naturalness, intelligibility, and speaker similarity. 8 authors · Jun 14, 2024
2 Re-Bottleneck: Latent Re-Structuring for Neural Audio Autoencoders Neural audio codecs and autoencoders have emerged as versatile models for audio compression, transmission, feature-extraction, and latent-space generation. However, a key limitation is that most are trained to maximize reconstruction fidelity, often neglecting the specific latent structure necessary for optimal performance in diverse downstream applications. We propose a simple, post-hoc framework to address this by modifying the bottleneck of a pre-trained autoencoder. Our method introduces a "Re-Bottleneck", an inner bottleneck trained exclusively through latent space losses to instill user-defined structure. We demonstrate the framework's effectiveness in three experiments. First, we enforce an ordering on latent channels without sacrificing reconstruction quality. Second, we align latents with semantic embeddings, analyzing the impact on downstream diffusion modeling. Third, we introduce equivariance, ensuring that a filtering operation on the input waveform directly corresponds to a specific transformation in the latent space. Ultimately, our Re-Bottleneck framework offers a flexible and efficient way to tailor representations of neural audio models, enabling them to seamlessly meet the varied demands of different applications with minimal additional training. 3 authors · Jul 10 1
- Noise-robust Speech Separation with Fast Generative Correction Speech separation, the task of isolating multiple speech sources from a mixed audio signal, remains challenging in noisy environments. In this paper, we propose a generative correction method to enhance the output of a discriminative separator. By leveraging a generative corrector based on a diffusion model, we refine the separation process for single-channel mixture speech by removing noises and perceptually unnatural distortions. Furthermore, we optimize the generative model using a predictive loss to streamline the diffusion model's reverse process into a single step and rectify any associated errors by the reverse process. Our method achieves state-of-the-art performance on the in-domain Libri2Mix noisy dataset, and out-of-domain WSJ with a variety of noises, improving SI-SNR by 22-35% relative to SepFormer, demonstrating robustness and strong generalization capabilities. 6 authors · Jun 11, 2024
- Schrödinger Bridge for Generative Speech Enhancement This paper proposes a generative speech enhancement model based on Schr\"odinger bridge (SB). The proposed model is employing a tractable SB to formulate a data-to-data process between the clean speech distribution and the observed noisy speech distribution. The model is trained with a data prediction loss, aiming to recover the complex-valued clean speech coefficients, and an auxiliary time-domain loss is used to improve training of the model. The effectiveness of the proposed SB-based model is evaluated in two different speech enhancement tasks: speech denoising and speech dereverberation. The experimental results demonstrate that the proposed SB-based outperforms diffusion-based models in terms of speech quality metrics and ASR performance, e.g., resulting in relative word error rate reduction of 20% for denoising and 6% for dereverberation compared to the best baseline model. The proposed model also demonstrates improved efficiency, achieving better quality than the baselines for the same number of sampling steps and with a reduced computational cost. 4 authors · Jul 22, 2024
- MM-Diffusion: Learning Multi-Modal Diffusion Models for Joint Audio and Video Generation We propose the first joint audio-video generation framework that brings engaging watching and listening experiences simultaneously, towards high-quality realistic videos. To generate joint audio-video pairs, we propose a novel Multi-Modal Diffusion model (i.e., MM-Diffusion), with two-coupled denoising autoencoders. In contrast to existing single-modal diffusion models, MM-Diffusion consists of a sequential multi-modal U-Net for a joint denoising process by design. Two subnets for audio and video learn to gradually generate aligned audio-video pairs from Gaussian noises. To ensure semantic consistency across modalities, we propose a novel random-shift based attention block bridging over the two subnets, which enables efficient cross-modal alignment, and thus reinforces the audio-video fidelity for each other. Extensive experiments show superior results in unconditional audio-video generation, and zero-shot conditional tasks (e.g., video-to-audio). In particular, we achieve the best FVD and FAD on Landscape and AIST++ dancing datasets. Turing tests of 10k votes further demonstrate dominant preferences for our model. The code and pre-trained models can be downloaded at https://github.com/researchmm/MM-Diffusion. 9 authors · Dec 19, 2022
- DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from Low-Dimensional Latents Diffusion probabilistic models have been shown to generate state-of-the-art results on several competitive image synthesis benchmarks but lack a low-dimensional, interpretable latent space, and are slow at generation. On the other hand, standard Variational Autoencoders (VAEs) typically have access to a low-dimensional latent space but exhibit poor sample quality. We present DiffuseVAE, a novel generative framework that integrates VAE within a diffusion model framework, and leverage this to design novel conditional parameterizations for diffusion models. We show that the resulting model equips diffusion models with a low-dimensional VAE inferred latent code which can be used for downstream tasks like controllable synthesis. The proposed method also improves upon the speed vs quality tradeoff exhibited in standard unconditional DDPM/DDIM models (for instance, FID of 16.47 vs 34.36 using a standard DDIM on the CelebA-HQ-128 benchmark using T=10 reverse process steps) without having explicitly trained for such an objective. Furthermore, the proposed model exhibits synthesis quality comparable to state-of-the-art models on standard image synthesis benchmarks like CIFAR-10 and CelebA-64 while outperforming most existing VAE-based methods. Lastly, we show that the proposed method exhibits inherent generalization to different types of noise in the conditioning signal. For reproducibility, our source code is publicly available at https://github.com/kpandey008/DiffuseVAE. 4 authors · Jan 2, 2022
- OCD: Learning to Overfit with Conditional Diffusion Models We present a dynamic model in which the weights are conditioned on an input sample x and are learned to match those that would be obtained by finetuning a base model on x and its label y. This mapping between an input sample and network weights is approximated by a denoising diffusion model. The diffusion model we employ focuses on modifying a single layer of the base model and is conditioned on the input, activations, and output of this layer. Since the diffusion model is stochastic in nature, multiple initializations generate different networks, forming an ensemble, which leads to further improvements. Our experiments demonstrate the wide applicability of the method for image classification, 3D reconstruction, tabular data, speech separation, and natural language processing. Our code is available at https://github.com/ShaharLutatiPersonal/OCD 2 authors · Oct 2, 2022
- How Should We Extract Discrete Audio Tokens from Self-Supervised Models? Discrete audio tokens have recently gained attention for their potential to bridge the gap between audio and language processing. Ideal audio tokens must preserve content, paralinguistic elements, speaker identity, and many other audio details. Current audio tokenization methods fall into two categories: Semantic tokens, acquired through quantization of Self-Supervised Learning (SSL) models, and Neural compression-based tokens (codecs). Although previous studies have benchmarked codec models to identify optimal configurations, the ideal setup for quantizing pretrained SSL models remains unclear. This paper explores the optimal configuration of semantic tokens across discriminative and generative tasks. We propose a scalable solution to train a universal vocoder across multiple SSL layers. Furthermore, an attention mechanism is employed to identify task-specific influential layers, enhancing the adaptability and performance of semantic tokens in diverse audio applications. 7 authors · Jun 15, 2024
- Leveraging Content-based Features from Multiple Acoustic Models for Singing Voice Conversion Singing voice conversion (SVC) is a technique to enable an arbitrary singer to sing an arbitrary song. To achieve that, it is important to obtain speaker-agnostic representations from source audio, which is a challenging task. A common solution is to extract content-based features (e.g., PPGs) from a pretrained acoustic model. However, the choices for acoustic models are vast and varied. It is yet to be explored what characteristics of content features from different acoustic models are, and whether integrating multiple content features can help each other. Motivated by that, this study investigates three distinct content features, sourcing from WeNet, Whisper, and ContentVec, respectively. We explore their complementary roles in intelligibility, prosody, and conversion similarity for SVC. By integrating the multiple content features with a diffusion-based SVC model, our SVC system achieves superior conversion performance on both objective and subjective evaluation in comparison to a single source of content features. Our demo page and code can be available https://www.zhangxueyao.com/data/MultipleContentsSVC/index.html. 7 authors · Oct 17, 2023
17 AV-DiT: Efficient Audio-Visual Diffusion Transformer for Joint Audio and Video Generation Recent Diffusion Transformers (DiTs) have shown impressive capabilities in generating high-quality single-modality content, including images, videos, and audio. However, it is still under-explored whether the transformer-based diffuser can efficiently denoise the Gaussian noises towards superb multimodal content creation. To bridge this gap, we introduce AV-DiT, a novel and efficient audio-visual diffusion transformer designed to generate high-quality, realistic videos with both visual and audio tracks. To minimize model complexity and computational costs, AV-DiT utilizes a shared DiT backbone pre-trained on image-only data, with only lightweight, newly inserted adapters being trainable. This shared backbone facilitates both audio and video generation. Specifically, the video branch incorporates a trainable temporal attention layer into a frozen pre-trained DiT block for temporal consistency. Additionally, a small number of trainable parameters adapt the image-based DiT block for audio generation. An extra shared DiT block, equipped with lightweight parameters, facilitates feature interaction between audio and visual modalities, ensuring alignment. Extensive experiments on the AIST++ and Landscape datasets demonstrate that AV-DiT achieves state-of-the-art performance in joint audio-visual generation with significantly fewer tunable parameters. Furthermore, our results highlight that a single shared image generative backbone with modality-specific adaptations is sufficient for constructing a joint audio-video generator. Our source code and pre-trained models will be released. 5 authors · Jun 11, 2024
7 CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos and Pretrained Language-Vision Models Recent work has studied text-to-audio synthesis using large amounts of paired text-audio data. However, audio recordings with high-quality text annotations can be difficult to acquire. In this work, we approach text-to-audio synthesis using unlabeled videos and pretrained language-vision models. We propose to learn the desired text-audio correspondence by leveraging the visual modality as a bridge. We train a conditional diffusion model to generate the audio track of a video, given a video frame encoded by a pretrained contrastive language-image pretraining (CLIP) model. At test time, we first explore performing a zero-shot modality transfer and condition the diffusion model with a CLIP-encoded text query. However, we observe a noticeable performance drop with respect to image queries. To close this gap, we further adopt a pretrained diffusion prior model to generate a CLIP image embedding given a CLIP text embedding. Our results show the effectiveness of the proposed method, and that the pretrained diffusion prior can reduce the modality transfer gap. While we focus on text-to-audio synthesis, the proposed model can also generate audio from image queries, and it shows competitive performance against a state-of-the-art image-to-audio synthesis model in a subjective listening test. This study offers a new direction of approaching text-to-audio synthesis that leverages the naturally-occurring audio-visual correspondence in videos and the power of pretrained language-vision models. 8 authors · Jun 16, 2023
73 Block Diffusion: Interpolating Between Autoregressive and Diffusion Language Models Diffusion language models offer unique benefits over autoregressive models due to their potential for parallelized generation and controllability, yet they lag in likelihood modeling and are limited to fixed-length generation. In this work, we introduce a class of block diffusion language models that interpolate between discrete denoising diffusion and autoregressive models. Block diffusion overcomes key limitations of both approaches by supporting flexible-length generation and improving inference efficiency with KV caching and parallel token sampling. We propose a recipe for building effective block diffusion models that includes an efficient training algorithm, estimators of gradient variance, and data-driven noise schedules to minimize the variance. Block diffusion sets a new state-of-the-art performance among diffusion models on language modeling benchmarks and enables generation of arbitrary-length sequences. We provide the code, along with the model weights and blog post on the project page: https://m-arriola.com/bd3lms/ 8 authors · Mar 12 3
- DIVE: Inverting Conditional Diffusion Models for Discriminative Tasks Diffusion models have shown remarkable progress in various generative tasks such as image and video generation. This paper studies the problem of leveraging pretrained diffusion models for performing discriminative tasks. Specifically, we extend the discriminative capability of pretrained frozen generative diffusion models from the classification task to the more complex object detection task, by "inverting" a pretrained layout-to-image diffusion model. To this end, a gradient-based discrete optimization approach for replacing the heavy prediction enumeration process, and a prior distribution model for making more accurate use of the Bayes' rule, are proposed respectively. Empirical results show that this method is on par with basic discriminative object detection baselines on COCO dataset. In addition, our method can greatly speed up the previous diffusion-based method for classification without sacrificing accuracy. Code and models are available at https://github.com/LiYinqi/DIVE . 5 authors · Apr 24
2 Self-Supervised Audio-Visual Soundscape Stylization Speech sounds convey a great deal of information about the scenes, resulting in a variety of effects ranging from reverberation to additional ambient sounds. In this paper, we manipulate input speech to sound as though it was recorded within a different scene, given an audio-visual conditional example recorded from that scene. Our model learns through self-supervision, taking advantage of the fact that natural video contains recurring sound events and textures. We extract an audio clip from a video and apply speech enhancement. We then train a latent diffusion model to recover the original speech, using another audio-visual clip taken from elsewhere in the video as a conditional hint. Through this process, the model learns to transfer the conditional example's sound properties to the input speech. We show that our model can be successfully trained using unlabeled, in-the-wild videos, and that an additional visual signal can improve its sound prediction abilities. Please see our project webpage for video results: https://tinglok.netlify.app/files/avsoundscape/ 5 authors · Sep 22, 2024 2
30 Continuous Speech Synthesis using per-token Latent Diffusion The success of autoregressive transformer models with discrete tokens has inspired quantization-based approaches for continuous modalities, though these often limit reconstruction quality. We therefore introduce SALAD, a per-token latent diffusion model for zero-shot text-to-speech, that operates on continuous representations. SALAD builds upon the recently proposed expressive diffusion head for image generation, and extends it to generate variable-length outputs. Our approach utilizes semantic tokens for providing contextual information and determining the stopping condition. We suggest three continuous variants for our method, extending popular discrete speech synthesis techniques. Additionally, we implement discrete baselines for each variant and conduct a comparative analysis of discrete versus continuous speech modeling techniques. Our results demonstrate that both continuous and discrete approaches are highly competent, and that SALAD achieves a superior intelligibility score while obtaining speech quality and speaker similarity on par with the ground-truth audio. 7 authors · Oct 21, 2024 3
26 Controllable Music Production with Diffusion Models and Guidance Gradients We demonstrate how conditional generation from diffusion models can be used to tackle a variety of realistic tasks in the production of music in 44.1kHz stereo audio with sampling-time guidance. The scenarios we consider include continuation, inpainting and regeneration of musical audio, the creation of smooth transitions between two different music tracks, and the transfer of desired stylistic characteristics to existing audio clips. We achieve this by applying guidance at sampling time in a simple framework that supports both reconstruction and classification losses, or any combination of the two. This approach ensures that generated audio can match its surrounding context, or conform to a class distribution or latent representation specified relative to any suitable pre-trained classifier or embedding model. 5 authors · Nov 1, 2023 1
1 High-Fidelity Image Compression with Score-based Generative Models Despite the tremendous success of diffusion generative models in text-to-image generation, replicating this success in the domain of image compression has proven difficult. In this paper, we demonstrate that diffusion can significantly improve perceptual quality at a given bit-rate, outperforming state-of-the-art approaches PO-ELIC and HiFiC as measured by FID score. This is achieved using a simple but theoretically motivated two-stage approach combining an autoencoder targeting MSE followed by a further score-based decoder. However, as we will show, implementation details matter and the optimal design decisions can differ greatly from typical text-to-image models. 6 authors · May 26, 2023 1
- SayAnything: Audio-Driven Lip Synchronization with Conditional Video Diffusion Recent advances in diffusion models have led to significant progress in audio-driven lip synchronization. However, existing methods typically rely on constrained audio-visual alignment priors or multi-stage learning of intermediate representations to force lip motion synthesis. This leads to complex training pipelines and limited motion naturalness. In this paper, we present SayAnything, a conditional video diffusion framework that directly synthesizes lip movements from audio input while preserving speaker identity. Specifically, we propose three specialized modules including identity preservation module, audio guidance module, and editing control module. Our novel design effectively balances different condition signals in the latent space, enabling precise control over appearance, motion, and region-specific generation without requiring additional supervision signals or intermediate representations. Extensive experiments demonstrate that SayAnything generates highly realistic videos with improved lip-teeth coherence, enabling unseen characters to say anything, while effectively generalizing to animated characters. 9 authors · Feb 17
- Voice Conversion with Denoising Diffusion Probabilistic GAN Models Voice conversion is a method that allows for the transformation of speaking style while maintaining the integrity of linguistic information. There are many researchers using deep generative models for voice conversion tasks. Generative Adversarial Networks (GANs) can quickly generate high-quality samples, but the generated samples lack diversity. The samples generated by the Denoising Diffusion Probabilistic Models (DDPMs) are better than GANs in terms of mode coverage and sample diversity. But the DDPMs have high computational costs and the inference speed is slower than GANs. In order to make GANs and DDPMs more practical we proposes DiffGAN-VC, a variant of GANs and DDPMS, to achieve non-parallel many-to-many voice conversion (VC). We use large steps to achieve denoising, and also introduce a multimodal conditional GANs to model the denoising diffusion generative adversarial network. According to both objective and subjective evaluation experiments, DiffGAN-VC has been shown to achieve high voice quality on non-parallel data sets. Compared with the CycleGAN-VC method, DiffGAN-VC achieves speaker similarity, naturalness and higher sound quality. 4 authors · Aug 28, 2023
- GAN Vocoder: Multi-Resolution Discriminator Is All You Need Several of the latest GAN-based vocoders show remarkable achievements, outperforming autoregressive and flow-based competitors in both qualitative and quantitative measures while synthesizing orders of magnitude faster. In this work, we hypothesize that the common factor underlying their success is the multi-resolution discriminating framework, not the minute details in architecture, loss function, or training strategy. We experimentally test the hypothesis by evaluating six different generators paired with one shared multi-resolution discriminating framework. For all evaluative measures with respect to text-to-speech syntheses and for all perceptual metrics, their performances are not distinguishable from one another, which supports our hypothesis. 5 authors · Mar 9, 2021
- UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation Most neural vocoders employ band-limited mel-spectrograms to generate waveforms. If full-band spectral features are used as the input, the vocoder can be provided with as much acoustic information as possible. However, in some models employing full-band mel-spectrograms, an over-smoothing problem occurs as part of which non-sharp spectrograms are generated. To address this problem, we propose UnivNet, a neural vocoder that synthesizes high-fidelity waveforms in real time. Inspired by works in the field of voice activity detection, we added a multi-resolution spectrogram discriminator that employs multiple linear spectrogram magnitudes computed using various parameter sets. Using full-band mel-spectrograms as input, we expect to generate high-resolution signals by adding a discriminator that employs spectrograms of multiple resolutions as the input. In an evaluation on a dataset containing information on hundreds of speakers, UnivNet obtained the best objective and subjective results among competing models for both seen and unseen speakers. These results, including the best subjective score for text-to-speech, demonstrate the potential for fast adaptation to new speakers without a need for training from scratch. 5 authors · Jun 15, 2021
- Speech Resynthesis from Discrete Disentangled Self-Supervised Representations We propose using self-supervised discrete representations for the task of speech resynthesis. To generate disentangled representation, we separately extract low-bitrate representations for speech content, prosodic information, and speaker identity. This allows to synthesize speech in a controllable manner. We analyze various state-of-the-art, self-supervised representation learning methods and shed light on the advantages of each method while considering reconstruction quality and disentanglement properties. Specifically, we evaluate the F0 reconstruction, speaker identification performance (for both resynthesis and voice conversion), recordings' intelligibility, and overall quality using subjective human evaluation. Lastly, we demonstrate how these representations can be used for an ultra-lightweight speech codec. Using the obtained representations, we can get to a rate of 365 bits per second while providing better speech quality than the baseline methods. Audio samples can be found under the following link: speechbot.github.io/resynthesis. 8 authors · Apr 1, 2021
1 BigVSAN: Enhancing GAN-based Neural Vocoders with Slicing Adversarial Network Generative adversarial network (GAN)-based vocoders have been intensively studied because they can synthesize high-fidelity audio waveforms faster than real-time. However, it has been reported that most GANs fail to obtain the optimal projection for discriminating between real and fake data in the feature space. In the literature, it has been demonstrated that slicing adversarial network (SAN), an improved GAN training framework that can find the optimal projection, is effective in the image generation task. In this paper, we investigate the effectiveness of SAN in the vocoding task. For this purpose, we propose a scheme to modify least-squares GAN, which most GAN-based vocoders adopt, so that their loss functions satisfy the requirements of SAN. Through our experiments, we demonstrate that SAN can improve the performance of GAN-based vocoders, including BigVGAN, with small modifications. Our code is available at https://github.com/sony/bigvsan. 3 authors · Sep 6, 2023
2 Diff2Lip: Audio Conditioned Diffusion Models for Lip-Synchronization The task of lip synchronization (lip-sync) seeks to match the lips of human faces with different audio. It has various applications in the film industry as well as for creating virtual avatars and for video conferencing. This is a challenging problem as one needs to simultaneously introduce detailed, realistic lip movements while preserving the identity, pose, emotions, and image quality. Many of the previous methods trying to solve this problem suffer from image quality degradation due to a lack of complete contextual information. In this paper, we present Diff2Lip, an audio-conditioned diffusion-based model which is able to do lip synchronization in-the-wild while preserving these qualities. We train our model on Voxceleb2, a video dataset containing in-the-wild talking face videos. Extensive studies show that our method outperforms popular methods like Wav2Lip and PC-AVS in Fr\'echet inception distance (FID) metric and Mean Opinion Scores (MOS) of the users. We show results on both reconstruction (same audio-video inputs) as well as cross (different audio-video inputs) settings on Voxceleb2 and LRW datasets. Video results and code can be accessed from our project page ( https://soumik-kanad.github.io/diff2lip ). 4 authors · Aug 18, 2023 1
- A Versatile Diffusion Transformer with Mixture of Noise Levels for Audiovisual Generation Training diffusion models for audiovisual sequences allows for a range of generation tasks by learning conditional distributions of various input-output combinations of the two modalities. Nevertheless, this strategy often requires training a separate model for each task which is expensive. Here, we propose a novel training approach to effectively learn arbitrary conditional distributions in the audiovisual space.Our key contribution lies in how we parameterize the diffusion timestep in the forward diffusion process. Instead of the standard fixed diffusion timestep, we propose applying variable diffusion timesteps across the temporal dimension and across modalities of the inputs. This formulation offers flexibility to introduce variable noise levels for various portions of the input, hence the term mixture of noise levels. We propose a transformer-based audiovisual latent diffusion model and show that it can be trained in a task-agnostic fashion using our approach to enable a variety of audiovisual generation tasks at inference time. Experiments demonstrate the versatility of our method in tackling cross-modal and multimodal interpolation tasks in the audiovisual space. Notably, our proposed approach surpasses baselines in generating temporally and perceptually consistent samples conditioned on the input. Project page: avdit2024.github.io 11 authors · May 22, 2024
14 Visual Echoes: A Simple Unified Transformer for Audio-Visual Generation In recent years, with the realistic generation results and a wide range of personalized applications, diffusion-based generative models gain huge attention in both visual and audio generation areas. Compared to the considerable advancements of text2image or text2audio generation, research in audio2visual or visual2audio generation has been relatively slow. The recent audio-visual generation methods usually resort to huge large language model or composable diffusion models. Instead of designing another giant model for audio-visual generation, in this paper we take a step back showing a simple and lightweight generative transformer, which is not fully investigated in multi-modal generation, can achieve excellent results on image2audio generation. The transformer operates in the discrete audio and visual Vector-Quantized GAN space, and is trained in the mask denoising manner. After training, the classifier-free guidance could be deployed off-the-shelf achieving better performance, without any extra training or modification. Since the transformer model is modality symmetrical, it could also be directly deployed for audio2image generation and co-generation. In the experiments, we show that our simple method surpasses recent image2audio generation methods. Generated audio samples can be found at https://docs.google.com/presentation/d/1ZtC0SeblKkut4XJcRaDsSTuCRIXB3ypxmSi7HTY3IyQ 7 authors · May 23, 2024 1
7 DMOSpeech 2: Reinforcement Learning for Duration Prediction in Metric-Optimized Speech Synthesis Diffusion-based text-to-speech (TTS) systems have made remarkable progress in zero-shot speech synthesis, yet optimizing all components for perceptual metrics remains challenging. Prior work with DMOSpeech demonstrated direct metric optimization for speech generation components, but duration prediction remained unoptimized. This paper presents DMOSpeech 2, which extends metric optimization to the duration predictor through a reinforcement learning approach. The proposed system implements a novel duration policy framework using group relative preference optimization (GRPO) with speaker similarity and word error rate as reward signals. By optimizing this previously unoptimized component, DMOSpeech 2 creates a more complete metric-optimized synthesis pipeline. Additionally, this paper introduces teacher-guided sampling, a hybrid approach leveraging a teacher model for initial denoising steps before transitioning to the student model, significantly improving output diversity while maintaining efficiency. Comprehensive evaluations demonstrate superior performance across all metrics compared to previous systems, while reducing sampling steps by half without quality degradation. These advances represent a significant step toward speech synthesis systems with metric optimization across multiple components. The audio samples, code and pre-trained models are available at https://dmospeech2.github.io/. 7 authors · Jul 20 2
- MAIN-VC: Lightweight Speech Representation Disentanglement for One-shot Voice Conversion One-shot voice conversion aims to change the timbre of any source speech to match that of the unseen target speaker with only one speech sample. Existing methods face difficulties in satisfactory speech representation disentanglement and suffer from sizable networks as some of them leverage numerous complex modules for disentanglement. In this paper, we propose a model named MAIN-VC to effectively disentangle via a concise neural network. The proposed model utilizes Siamese encoders to learn clean representations, further enhanced by the designed mutual information estimator. The Siamese structure and the newly designed convolution module contribute to the lightweight of our model while ensuring performance in diverse voice conversion tasks. The experimental results show that the proposed model achieves comparable subjective scores and exhibits improvements in objective metrics compared to existing methods in a one-shot voice conversion scenario. 6 authors · May 1, 2024
- DiTAR: Diffusion Transformer Autoregressive Modeling for Speech Generation Several recent studies have attempted to autoregressively generate continuous speech representations without discrete speech tokens by combining diffusion and autoregressive models, yet they often face challenges with excessive computational loads or suboptimal outcomes. In this work, we propose Diffusion Transformer Autoregressive Modeling (DiTAR), a patch-based autoregressive framework combining a language model with a diffusion transformer. This approach significantly enhances the efficacy of autoregressive models for continuous tokens and reduces computational demands. DiTAR utilizes a divide-and-conquer strategy for patch generation, where the language model processes aggregated patch embeddings and the diffusion transformer subsequently generates the next patch based on the output of the language model. For inference, we propose defining temperature as the time point of introducing noise during the reverse diffusion ODE to balance diversity and determinism. We also show in the extensive scaling analysis that DiTAR has superb scalability. In zero-shot speech generation, DiTAR achieves state-of-the-art performance in robustness, speaker similarity, and naturalness. 11 authors · Feb 6 1
- KaraTuner: Towards end to end natural pitch correction for singing voice in karaoke An automatic pitch correction system typically includes several stages, such as pitch extraction, deviation estimation, pitch shift processing, and cross-fade smoothing. However, designing these components with strategies often requires domain expertise and they are likely to fail on corner cases. In this paper, we present KaraTuner, an end-to-end neural architecture that predicts pitch curve and resynthesizes the singing voice directly from the tuned pitch and vocal spectrum extracted from the original recordings. Several vital technical points have been introduced in KaraTuner to ensure pitch accuracy, pitch naturalness, timbre consistency, and sound quality. A feed-forward Transformer is employed in the pitch predictor to capture longterm dependencies in the vocal spectrum and musical note. We also develop a pitch-controllable vocoder based on a novel source-filter block and the Fre-GAN architecture. KaraTuner obtains a higher preference than the rule-based pitch correction approach through A/B tests, and perceptual experiments show that the proposed vocoder achieves significant advantages in timbre consistency and sound quality compared with the parametric WORLD vocoder, phase vocoder and CLPC vocoder. 5 authors · Oct 18, 2021
2 MoDA: Multi-modal Diffusion Architecture for Talking Head Generation Talking head generation with arbitrary identities and speech audio remains a crucial problem in the realm of the virtual metaverse. Recently, diffusion models have become a popular generative technique in this field with their strong generation capabilities. However, several challenges remain for diffusion-based methods: 1) inefficient inference and visual artifacts caused by the implicit latent space of Variational Auto-Encoders (VAE), which complicates the diffusion process; 2) a lack of authentic facial expressions and head movements due to inadequate multi-modal information fusion. In this paper, MoDA handles these challenges by: 1) defining a joint parameter space that bridges motion generation and neural rendering, and leveraging flow matching to simplify diffusion learning; 2) introducing a multi-modal diffusion architecture to model the interaction among noisy motion, audio, and auxiliary conditions, enhancing overall facial expressiveness. In addition, a coarse-to-fine fusion strategy is employed to progressively integrate different modalities, ensuring effective feature fusion. Experimental results demonstrate that MoDA improves video diversity, realism, and efficiency, making it suitable for real-world applications. Project Page: https://lixinyyang.github.io/MoDA.github.io/ 9 authors · Jul 3
- DAE-Talker: High Fidelity Speech-Driven Talking Face Generation with Diffusion Autoencoder While recent research has made significant progress in speech-driven talking face generation, the quality of the generated video still lags behind that of real recordings. One reason for this is the use of handcrafted intermediate representations like facial landmarks and 3DMM coefficients, which are designed based on human knowledge and are insufficient to precisely describe facial movements. Additionally, these methods require an external pretrained model for extracting these representations, whose performance sets an upper bound on talking face generation. To address these limitations, we propose a novel method called DAE-Talker that leverages data-driven latent representations obtained from a diffusion autoencoder (DAE). DAE contains an image encoder that encodes an image into a latent vector and a DDIM image decoder that reconstructs the image from it. We train our DAE on talking face video frames and then extract their latent representations as the training target for a Conformer-based speech2latent model. This allows DAE-Talker to synthesize full video frames and produce natural head movements that align with the content of speech, rather than relying on a predetermined head pose from a template video. We also introduce pose modelling in speech2latent for pose controllability. Additionally, we propose a novel method for generating continuous video frames with the DDIM image decoder trained on individual frames, eliminating the need for modelling the joint distribution of consecutive frames directly. Our experiments show that DAE-Talker outperforms existing popular methods in lip-sync, video fidelity, and pose naturalness. We also conduct ablation studies to analyze the effectiveness of the proposed techniques and demonstrate the pose controllability of DAE-Talker. 8 authors · Mar 30, 2023
- FlashAudio: Rectified Flows for Fast and High-Fidelity Text-to-Audio Generation Recent advancements in latent diffusion models (LDMs) have markedly enhanced text-to-audio generation, yet their iterative sampling processes impose substantial computational demands, limiting practical deployment. While recent methods utilizing consistency-based distillation aim to achieve few-step or single-step inference, their one-step performance is constrained by curved trajectories, preventing them from surpassing traditional diffusion models. In this work, we introduce FlashAudio with rectified flows to learn straight flow for fast simulation. To alleviate the inefficient timesteps allocation and suboptimal distribution of noise, FlashAudio optimizes the time distribution of rectified flow with Bifocal Samplers and proposes immiscible flow to minimize the total distance of data-noise pairs in a batch vias assignment. Furthermore, to address the amplified accumulation error caused by the classifier-free guidance (CFG), we propose Anchored Optimization, which refines the guidance scale by anchoring it to a reference trajectory. Experimental results on text-to-audio generation demonstrate that FlashAudio's one-step generation performance surpasses the diffusion-based models with hundreds of sampling steps on audio quality and enables a sampling speed of 400x faster than real-time on a single NVIDIA 4090Ti GPU. 7 authors · Oct 16, 2024
- VoiceTailor: Lightweight Plug-In Adapter for Diffusion-Based Personalized Text-to-Speech We propose VoiceTailor, a parameter-efficient speaker-adaptive text-to-speech (TTS) system, by equipping a pre-trained diffusion-based TTS model with a personalized adapter. VoiceTailor identifies pivotal modules that benefit from the adapter based on a weight change ratio analysis. We utilize Low-Rank Adaptation (LoRA) as a parameter-efficient adaptation method and incorporate the adapter into pivotal modules of the pre-trained diffusion decoder. To achieve powerful adaptation performance with few parameters, we explore various guidance techniques for speaker adaptation and investigate the best strategies to strengthen speaker information. VoiceTailor demonstrates comparable speaker adaptation performance to existing adaptive TTS models by fine-tuning only 0.25\% of the total parameters. VoiceTailor shows strong robustness when adapting to a wide range of real-world speakers, as shown in the demo. 6 authors · Aug 26, 2024
- Universal Score-based Speech Enhancement with High Content Preservation We propose UNIVERSE++, a universal speech enhancement method based on score-based diffusion and adversarial training. Specifically, we improve the existing UNIVERSE model that decouples clean speech feature extraction and diffusion. Our contributions are three-fold. First, we make several modifications to the network architecture, improving training stability and final performance. Second, we introduce an adversarial loss to promote learning high quality speech features. Third, we propose a low-rank adaptation scheme with a phoneme fidelity loss to improve content preservation in the enhanced speech. In the experiments, we train a universal enhancement model on a large scale dataset of speech degraded by noise, reverberation, and various distortions. The results on multiple public benchmark datasets demonstrate that UNIVERSE++ compares favorably to both discriminative and generative baselines for a wide range of qualitative and intelligibility metrics. 4 authors · Jun 17, 2024
- Wavehax: Aliasing-Free Neural Waveform Synthesis Based on 2D Convolution and Harmonic Prior for Reliable Complex Spectrogram Estimation Neural vocoders often struggle with aliasing in latent feature spaces, caused by time-domain nonlinear operations and resampling layers. Aliasing folds high-frequency components into the low-frequency range, making aliased and original frequency components indistinguishable and introducing two practical issues. First, aliasing complicates the waveform generation process, as the subsequent layers must address these aliasing effects, increasing the computational complexity. Second, it limits extrapolation performance, particularly in handling high fundamental frequencies, which degrades the perceptual quality of generated speech waveforms. This paper demonstrates that 1) time-domain nonlinear operations inevitably introduce aliasing but provide a strong inductive bias for harmonic generation, and 2) time-frequency-domain processing can achieve aliasing-free waveform synthesis but lacks the inductive bias for effective harmonic generation. Building on this insight, we propose Wavehax, an aliasing-free neural WAVEform generator that integrates 2D convolution and a HArmonic prior for reliable Complex Spectrogram estimation. Experimental results show that Wavehax achieves speech quality comparable to existing high-fidelity neural vocoders and exhibits exceptional robustness in scenarios requiring high fundamental frequency extrapolation, where aliasing effects become typically severe. Moreover, Wavehax requires less than 5% of the multiply-accumulate operations and model parameters compared to HiFi-GAN V1, while achieving over four times faster CPU inference speed. 4 authors · Nov 11, 2024
- On Scaling Contrastive Representations for Low-Resource Speech Recognition Recent advances in self-supervised learning through contrastive training have shown that it is possible to learn a competitive speech recognition system with as little as 10 minutes of labeled data. However, these systems are computationally expensive since they require pre-training followed by fine-tuning in a large parameter space. We explore the performance of such systems without fine-tuning by training a state-of-the-art speech recognizer on the fixed representations from the computationally demanding wav2vec 2.0 framework. We find performance to decrease without fine-tuning and, in the extreme low-resource setting, wav2vec 2.0 is inferior to its predecessor. In addition, we find that wav2vec 2.0 representations live in a low dimensional subspace and that decorrelating the features of the representations can stabilize training of the automatic speech recognizer. Finally, we propose a bidirectional extension to the original wav2vec framework that consistently improves performance. 5 authors · Feb 1, 2021
1 DiffPoseTalk: Speech-Driven Stylistic 3D Facial Animation and Head Pose Generation via Diffusion Models The generation of stylistic 3D facial animations driven by speech poses a significant challenge as it requires learning a many-to-many mapping between speech, style, and the corresponding natural facial motion. However, existing methods either employ a deterministic model for speech-to-motion mapping or encode the style using a one-hot encoding scheme. Notably, the one-hot encoding approach fails to capture the complexity of the style and thus limits generalization ability. In this paper, we propose DiffPoseTalk, a generative framework based on the diffusion model combined with a style encoder that extracts style embeddings from short reference videos. During inference, we employ classifier-free guidance to guide the generation process based on the speech and style. We extend this to include the generation of head poses, thereby enhancing user perception. Additionally, we address the shortage of scanned 3D talking face data by training our model on reconstructed 3DMM parameters from a high-quality, in-the-wild audio-visual dataset. Our extensive experiments and user study demonstrate that our approach outperforms state-of-the-art methods. The code and dataset will be made publicly available. 8 authors · Sep 30, 2023
- Guided-TTS: A Diffusion Model for Text-to-Speech via Classifier Guidance We propose Guided-TTS, a high-quality text-to-speech (TTS) model that does not require any transcript of target speaker using classifier guidance. Guided-TTS combines an unconditional diffusion probabilistic model with a separately trained phoneme classifier for classifier guidance. Our unconditional diffusion model learns to generate speech without any context from untranscribed speech data. For TTS synthesis, we guide the generative process of the diffusion model with a phoneme classifier trained on a large-scale speech recognition dataset. We present a norm-based scaling method that reduces the pronunciation errors of classifier guidance in Guided-TTS. We show that Guided-TTS achieves a performance comparable to that of the state-of-the-art TTS model, Grad-TTS, without any transcript for LJSpeech. We further demonstrate that Guided-TTS performs well on diverse datasets including a long-form untranscribed dataset. 3 authors · Nov 23, 2021
- Generalized Interpolating Discrete Diffusion While state-of-the-art language models achieve impressive results through next-token prediction, they have inherent limitations such as the inability to revise already generated tokens. This has prompted exploration of alternative approaches such as discrete diffusion. However, masked diffusion, which has emerged as a popular choice due to its simplicity and effectiveness, reintroduces this inability to revise words. To overcome this, we generalize masked diffusion and derive the theoretical backbone of a family of general interpolating discrete diffusion (GIDD) processes offering greater flexibility in the design of the noising processes. Leveraging a novel diffusion ELBO, we achieve compute-matched state-of-the-art performance in diffusion language modeling. Exploiting GIDD's flexibility, we explore a hybrid approach combining masking and uniform noise, leading to improved sample quality and unlocking the ability for the model to correct its own mistakes, an area where autoregressive models notoriously have struggled. Our code and models are open-source: https://github.com/dvruette/gidd/ 6 authors · Mar 6
- SingVisio: Visual Analytics of Diffusion Model for Singing Voice Conversion In this study, we present SingVisio, an interactive visual analysis system that aims to explain the diffusion model used in singing voice conversion. SingVisio provides a visual display of the generation process in diffusion models, showcasing the step-by-step denoising of the noisy spectrum and its transformation into a clean spectrum that captures the desired singer's timbre. The system also facilitates side-by-side comparisons of different conditions, such as source content, melody, and target timbre, highlighting the impact of these conditions on the diffusion generation process and resulting conversions. Through comprehensive evaluations, SingVisio demonstrates its effectiveness in terms of system design, functionality, explainability, and user-friendliness. It offers users of various backgrounds valuable learning experiences and insights into the diffusion model for singing voice conversion. 6 authors · Feb 19, 2024
- DRVC: A Framework of Any-to-Any Voice Conversion with Self-Supervised Learning Any-to-any voice conversion problem aims to convert voices for source and target speakers, which are out of the training data. Previous works wildly utilize the disentangle-based models. The disentangle-based model assumes the speech consists of content and speaker style information and aims to untangle them to change the style information for conversion. Previous works focus on reducing the dimension of speech to get the content information. But the size is hard to determine to lead to the untangle overlapping problem. We propose the Disentangled Representation Voice Conversion (DRVC) model to address the issue. DRVC model is an end-to-end self-supervised model consisting of the content encoder, timbre encoder, and generator. Instead of the previous work for reducing speech size to get content, we propose a cycle for restricting the disentanglement by the Cycle Reconstruct Loss and Same Loss. The experiments show there is an improvement for converted speech on quality and voice similarity. 5 authors · Feb 22, 2022
1 FLowHigh: Towards Efficient and High-Quality Audio Super-Resolution with Single-Step Flow Matching Audio super-resolution is challenging owing to its ill-posed nature. Recently, the application of diffusion models in audio super-resolution has shown promising results in alleviating this challenge. However, diffusion-based models have limitations, primarily the necessity for numerous sampling steps, which causes significantly increased latency when synthesizing high-quality audio samples. In this paper, we propose FLowHigh, a novel approach that integrates flow matching, a highly efficient generative model, into audio super-resolution. We also explore probability paths specially tailored for audio super-resolution, which effectively capture high-resolution audio distributions, thereby enhancing reconstruction quality. The proposed method generates high-fidelity, high-resolution audio through a single-step sampling process across various input sampling rates. The experimental results on the VCTK benchmark dataset demonstrate that FLowHigh achieves state-of-the-art performance in audio super-resolution, as evaluated by log-spectral distance and ViSQOL while maintaining computational efficiency with only a single-step sampling process. 3 authors · Jan 8
19 High Fidelity Text-Guided Music Generation and Editing via Single-Stage Flow Matching We introduce a simple and efficient text-controllable high-fidelity music generation and editing model. It operates on sequences of continuous latent representations from a low frame rate 48 kHz stereo variational auto encoder codec that eliminates the information loss drawback of discrete representations. Based on a diffusion transformer architecture trained on a flow-matching objective the model can generate and edit diverse high quality stereo samples of variable duration, with simple text descriptions. We also explore a new regularized latent inversion method for zero-shot test-time text-guided editing and demonstrate its superior performance over naive denoising diffusion implicit model (DDIM) inversion for variety of music editing prompts. Evaluations are conducted on both objective and subjective metrics and demonstrate that the proposed model is not only competitive to the evaluated baselines on a standard text-to-music benchmark - quality and efficiency-wise - but also outperforms previous state of the art for music editing when combined with our proposed latent inversion. Samples are available at https://melodyflow.github.io. 12 authors · Jul 4, 2024
8 Simplified and Generalized Masked Diffusion for Discrete Data Masked (or absorbing) diffusion is actively explored as an alternative to autoregressive models for generative modeling of discrete data. However, existing work in this area has been hindered by unnecessarily complex model formulations and unclear relationships between different perspectives, leading to suboptimal parameterization, training objectives, and ad hoc adjustments to counteract these issues. In this work, we aim to provide a simple and general framework that unlocks the full potential of masked diffusion models. We show that the continuous-time variational objective of masked diffusion models is a simple weighted integral of cross-entropy losses. Our framework also enables training generalized masked diffusion models with state-dependent masking schedules. When evaluated by perplexity, our models trained on OpenWebText surpass prior diffusion language models at GPT-2 scale and demonstrate superior performance on 4 out of 5 zero-shot language modeling tasks. Furthermore, our models vastly outperform previous discrete diffusion models on pixel-level image modeling, achieving 2.78~(CIFAR-10) and 3.42 (ImageNet 64times64) bits per dimension that are comparable or better than autoregressive models of similar sizes. 5 authors · Jun 6, 2024
- WESPER: Zero-shot and Realtime Whisper to Normal Voice Conversion for Whisper-based Speech Interactions Recognizing whispered speech and converting it to normal speech creates many possibilities for speech interaction. Because the sound pressure of whispered speech is significantly lower than that of normal speech, it can be used as a semi-silent speech interaction in public places without being audible to others. Converting whispers to normal speech also improves the speech quality for people with speech or hearing impairments. However, conventional speech conversion techniques do not provide sufficient conversion quality or require speaker-dependent datasets consisting of pairs of whispered and normal speech utterances. To address these problems, we propose WESPER, a zero-shot, real-time whisper-to-normal speech conversion mechanism based on self-supervised learning. WESPER consists of a speech-to-unit (STU) encoder, which generates hidden speech units common to both whispered and normal speech, and a unit-to-speech (UTS) decoder, which reconstructs speech from the encoded speech units. Unlike the existing methods, this conversion is user-independent and does not require a paired dataset for whispered and normal speech. The UTS decoder can reconstruct speech in any target speaker's voice from speech units, and it requires only an unlabeled target speaker's speech data. We confirmed that the quality of the speech converted from a whisper was improved while preserving its natural prosody. Additionally, we confirmed the effectiveness of the proposed approach to perform speech reconstruction for people with speech or hearing disabilities. (project page: http://lab.rekimoto.org/projects/wesper ) 1 authors · Mar 2, 2023
2 Accelerating Diffusion-Based Text-to-Audio Generation with Consistency Distillation Diffusion models power a vast majority of text-to-audio (TTA) generation methods. Unfortunately, these models suffer from slow inference speed due to iterative queries to the underlying denoising network, thus unsuitable for scenarios with inference time or computational constraints. This work modifies the recently proposed consistency distillation framework to train TTA models that require only a single neural network query. In addition to incorporating classifier-free guidance into the distillation process, we leverage the availability of generated audio during distillation training to fine-tune the consistency TTA model with novel loss functions in the audio space, such as the CLAP score. Our objective and subjective evaluation results on the AudioCaps dataset show that consistency models retain diffusion models' high generation quality and diversity while reducing the number of queries by a factor of 400. 5 authors · Sep 19, 2023
10 SoloAudio: Target Sound Extraction with Language-oriented Audio Diffusion Transformer In this paper, we introduce SoloAudio, a novel diffusion-based generative model for target sound extraction (TSE). Our approach trains latent diffusion models on audio, replacing the previous U-Net backbone with a skip-connected Transformer that operates on latent features. SoloAudio supports both audio-oriented and language-oriented TSE by utilizing a CLAP model as the feature extractor for target sounds. Furthermore, SoloAudio leverages synthetic audio generated by state-of-the-art text-to-audio models for training, demonstrating strong generalization to out-of-domain data and unseen sound events. We evaluate this approach on the FSD Kaggle 2018 mixture dataset and real data from AudioSet, where SoloAudio achieves the state-of-the-art results on both in-domain and out-of-domain data, and exhibits impressive zero-shot and few-shot capabilities. Source code and demos are released. 6 authors · Sep 12, 2024 2
2 Diffusion Models as Masked Audio-Video Learners Over the past several years, the synchronization between audio and visual signals has been leveraged to learn richer audio-visual representations. Aided by the large availability of unlabeled videos, many unsupervised training frameworks have demonstrated impressive results in various downstream audio and video tasks. Recently, Masked Audio-Video Learners (MAViL) has emerged as a state-of-the-art audio-video pre-training framework. MAViL couples contrastive learning with masked autoencoding to jointly reconstruct audio spectrograms and video frames by fusing information from both modalities. In this paper, we study the potential synergy between diffusion models and MAViL, seeking to derive mutual benefits from these two frameworks. The incorporation of diffusion into MAViL, combined with various training efficiency methodologies that include the utilization of a masking ratio curriculum and adaptive batch sizing, results in a notable 32% reduction in pre-training Floating-Point Operations (FLOPS) and an 18% decrease in pre-training wall clock time. Crucially, this enhanced efficiency does not compromise the model's performance in downstream audio-classification tasks when compared to MAViL's performance. 5 authors · Oct 5, 2023
3 Make-An-Audio 2: Temporal-Enhanced Text-to-Audio Generation Large diffusion models have been successful in text-to-audio (T2A) synthesis tasks, but they often suffer from common issues such as semantic misalignment and poor temporal consistency due to limited natural language understanding and data scarcity. Additionally, 2D spatial structures widely used in T2A works lead to unsatisfactory audio quality when generating variable-length audio samples since they do not adequately prioritize temporal information. To address these challenges, we propose Make-an-Audio 2, a latent diffusion-based T2A method that builds on the success of Make-an-Audio. Our approach includes several techniques to improve semantic alignment and temporal consistency: Firstly, we use pre-trained large language models (LLMs) to parse the text into structured <event & order> pairs for better temporal information capture. We also introduce another structured-text encoder to aid in learning semantic alignment during the diffusion denoising process. To improve the performance of variable length generation and enhance the temporal information extraction, we design a feed-forward Transformer-based diffusion denoiser. Finally, we use LLMs to augment and transform a large amount of audio-label data into audio-text datasets to alleviate the problem of scarcity of temporal data. Extensive experiments show that our method outperforms baseline models in both objective and subjective metrics, and achieves significant gains in temporal information understanding, semantic consistency, and sound quality. 10 authors · May 29, 2023 1
- A unified one-shot prosody and speaker conversion system with self-supervised discrete speech units We present a unified system to realize one-shot voice conversion (VC) on the pitch, rhythm, and speaker attributes. Existing works generally ignore the correlation between prosody and language content, leading to the degradation of naturalness in converted speech. Additionally, the lack of proper language features prevents these systems from accurately preserving language content after conversion. To address these issues, we devise a cascaded modular system leveraging self-supervised discrete speech units as language representation. These discrete units provide duration information essential for rhythm modeling. Our system first extracts utterance-level prosody and speaker representations from the raw waveform. Given the prosody representation, a prosody predictor estimates pitch, energy, and duration for each discrete unit in the utterance. A synthesizer further reconstructs speech based on the predicted prosody, speaker representation, and discrete units. Experiments show that our system outperforms previous approaches in naturalness, intelligibility, speaker transferability, and prosody transferability. Code and samples are publicly available. 3 authors · Nov 11, 2022