Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCRUXEval-X: A Benchmark for Multilingual Code Reasoning, Understanding and Execution
Code benchmarks such as HumanEval are widely adopted to evaluate Large Language Models' (LLMs) coding capabilities. However, there is an unignorable programming language bias in existing code benchmarks -- over 95% code generation benchmarks are dominated by Python, leaving the LLMs' capabilities in other programming languages such as Java and C/C++ unknown. Moreover, coding task bias is also crucial. Most benchmarks focus on code generation capability, while benchmarks for code reasoning (given input, reasoning output; and given output, reasoning input), an essential coding capability, are insufficient. Yet, constructing multi-lingual benchmarks can be expensive and labor-intensive, and codes in contest websites such as Leetcode suffer from data contamination during training. To fill this gap, we propose CRUXEVAL-X, a multi-lingual code reasoning benchmark that contains 19 programming languages. It comprises at least 600 subjects for each language, along with 19K content-consistent tests in total. In particular, the construction pipeline of CRUXEVAL-X works in a fully automated and test-guided manner, which iteratively generates and repairs based on execution feedback. Also, to cross language barriers (e.g., dynamic/static type systems in Python/C++), we formulated various transition rules between language pairs to facilitate translation. Our intensive evaluation of 24 representative LLMs reveals the correlation between language pairs. For example, TypeScript and JavaScript show a significant positive correlation, while Racket has less correlation with other languages. More interestingly, even a model trained solely on Python can achieve at most 34.4% Pass@1 in other languages, revealing the cross-language generalization of LLMs.
Genetic Instruct: Scaling up Synthetic Generation of Coding Instructions for Large Language Models
Large Language Models (LLMs) rely on instruction samples for alignment, but creating these datasets poses challenges, particularly in expert-dependent tasks like coding, which can be cost-prohibitive. One approach to mitigate these challenges is synthesizing data using another LLM. In this paper, we introduce a scalable method for generating synthetic instructions to enhance the code generation capability of LLMs. The proposed algorithm, Genetic-Instruct, mimics evolutionary processes, utilizing self-instruction to create numerous synthetic samples from a limited number of seeds. Genetic-Instruct is designed for efficient scaling of the generation process. Fine-tuning multiple coding LLMs with the synthetic samples demonstrates a significant improvement in their code generation accuracy compared to the baselines.
ChartMimic: Evaluating LMM's Cross-Modal Reasoning Capability via Chart-to-Code Generation
We introduce a new benchmark, ChartMimic, aimed at assessing the visually-grounded code generation capabilities of large multimodal models (LMMs). ChartMimic utilizes information-intensive visual charts and textual instructions as inputs, requiring LMMs to generate the corresponding code for chart rendering. ChartMimic includes 1,000 human-curated (figure, instruction, code) triplets, which represent the authentic chart use cases found in scientific papers across various domains(e.g., Physics, Computer Science, Economics, etc). These charts span 18 regular types and 4 advanced types, diversifying into 191 subcategories. Furthermore, we propose multi-level evaluation metrics to provide an automatic and thorough assessment of the output code and the rendered charts. Unlike existing code generation benchmarks, ChartMimic places emphasis on evaluating LMMs' capacity to harmonize a blend of cognitive capabilities, encompassing visual understanding, code generation, and cross-modal reasoning. The evaluation of 3 proprietary models and 11 open-weight models highlights the substantial challenges posed by ChartMimic. Even the advanced GPT-4V, Claude-3-opus only achieve an average score of 73.2 and 53.7, respectively, indicating significant room for improvement. We anticipate that ChartMimic will inspire the development of LMMs, advancing the pursuit of artificial general intelligence.
CRPE: Expanding The Reasoning Capability of Large Language Model for Code Generation
We introduce CRPE (Code Reasoning Process Enhancer), an innovative three-stage framework for data synthesis and model training that advances the development of sophisticated code reasoning capabilities in large language models (LLMs). Building upon existing system-1 models, CRPE addresses the fundamental challenge of enhancing LLMs' analytical and logical processing in code generation tasks. Our framework presents a methodologically rigorous yet implementable approach to cultivating advanced code reasoning abilities in language models. Through the implementation of CRPE, we successfully develop an enhanced COT-Coder that demonstrates marked improvements in code generation tasks. Evaluation results on LiveCodeBench (20240701-20240901) demonstrate that our COT-Coder-7B-StepDPO, derived from Qwen2.5-Coder-7B-Base, with a pass@1 accuracy of 21.88, exceeds all models with similar or even larger sizes. Furthermore, our COT-Coder-32B-StepDPO, based on Qwen2.5-Coder-32B-Base, exhibits superior performance with a pass@1 accuracy of 35.08, outperforming GPT4O on the benchmark. Overall, CRPE represents a comprehensive, open-source method that encompasses the complete pipeline from instruction data acquisition through expert code reasoning data synthesis, culminating in an autonomous reasoning enhancement mechanism.
BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions
Automated software engineering has been greatly empowered by the recent advances in Large Language Models (LLMs) for programming. While current benchmarks have shown that LLMs can perform various software engineering tasks like human developers, the majority of their evaluations are limited to short and self-contained algorithmic tasks. Solving challenging and practical programming tasks requires the capability of utilizing diverse function calls as tools to efficiently implement functionalities like data analysis and web development. In addition, using multiple tools to solve a task needs compositional reasoning by accurately understanding complex instructions. Fulfilling both of these characteristics can pose a great challenge for LLMs. To assess how well LLMs can solve challenging and practical programming tasks, we introduce Bench, a benchmark that challenges LLMs to invoke multiple function calls as tools from 139 libraries and 7 domains for 1,140 fine-grained programming tasks. To evaluate LLMs rigorously, each programming task encompasses 5.6 test cases with an average branch coverage of 99%. In addition, we propose a natural-language-oriented variant of Bench, Benchi, that automatically transforms the original docstrings into short instructions only with essential information. Our extensive evaluation of 60 LLMs shows that LLMs are not yet capable of following complex instructions to use function calls precisely, with scores up to 60%, significantly lower than the human performance of 97%. The results underscore the need for further advancements in this area.
CodeEditorBench: Evaluating Code Editing Capability of Large Language Models
Large Language Models (LLMs) for code are rapidly evolving, with code editing emerging as a critical capability. We introduce CodeEditorBench, an evaluation framework designed to rigorously assess the performance of LLMs in code editing tasks, including debugging, translating, polishing, and requirement switching. Unlike existing benchmarks focusing solely on code generation, CodeEditorBench emphasizes real-world scenarios and practical aspects of software development. We curate diverse coding challenges and scenarios from five sources, covering various programming languages, complexity levels, and editing tasks. Evaluation of 19 LLMs reveals that closed-source models (particularly Gemini-Ultra and GPT-4), outperform open-source models in CodeEditorBench, highlighting differences in model performance based on problem types and prompt sensitivities. CodeEditorBench aims to catalyze advancements in LLMs by providing a robust platform for assessing code editing capabilities. We will release all prompts and datasets to enable the community to expand the dataset and benchmark emerging LLMs. By introducing CodeEditorBench, we contribute to the advancement of LLMs in code editing and provide a valuable resource for researchers and practitioners.
JavaBench: A Benchmark of Object-Oriented Code Generation for Evaluating Large Language Models
Code generation benchmarks such as HumanEval are widely adopted to evaluate LLMs' capabilities. However, after consolidating the latest 24 benchmarks, we noticed three significant imbalances. First, imbalanced programming language. 95.8% of benchmarks involve Python, while only 5 benchmarks involve Java. Second, imbalanced code granularity. Function-/statement-level benchmarks account for over 83.3% of benchmarks. Only a mere handful extends to class-/project-levels, and all are limited to Python. Third, lacking advanced features. Existing benchmarks primarily assess basic coding skills, while overlooking advanced Object-Oriented Programming (OOP) features (i.e., encapsulation, inheritance, and polymorphism). To fill these gaps, we propose JavaBench, a project-level Java benchmark that exercises OOP features. It comprises four Java projects with 389 methods in 106 Java classes. The test coverage is up to 92%, and JavaBench is attested by 282 undergraduate students, reaching a 90.93/100 average score (i.e., pass rate against the test suite), ensuring the quality of documentation, code skeleton, and tests. To better evaluate LLM's capability against JavaBench, we introduce a systematic evaluation design covering three context settings and five synthesis strategies at two granularities using three hierarchical metrics. Our extensive experiment yields several interesting findings. First, we noticed that regarding project-level Java programming, LLMs are far behind undergraduate students (no project can be correctly completed by any studied LLMs, and at most 41.17% Pass@5 in a more relaxed evaluation). Second, using method signature as prompt context may strike an ideal balance for project-level code generation. JavaBench is publicly available at https://github.com/java-bench/JavaBench.
Quantizing Large Language Models for Code Generation: A Differentiated Replication
Large Language Models (LLMs) have shown an impressive capability in code generation and, specifically, to automatically implement requirements described in natural language. The LLM effectiveness generally increases with its size: The higher the number of LLM's trainable parameters the better its ability to implement code. However, when it comes to deploying LLM-based code generators, larger LLMs pose significant challenges related to their memory (and, consequently, carbon) footprint. A previous work by Wei et al. proposed to leverage quantization techniques to reduce the memory footprint of LLM-based code generators without substantially degrading their effectiveness. In short, they studied LLMs featuring up to 16B parameters, quantizing their precision from floating point 32 bits down to int 8 bits and showing their limited impact on code generation performance. Given the fast pace at which LLM capabilities and quantization techniques are evolving, in this work we present a differentiated replication of the work by Wei et al. in which we consider (i) on the one side, more recent and larger code-related LLMs, of up to 34B parameters; (ii) the latest advancements in model quantization techniques, which allow pushing the compression to the extreme quantization level of 2 bits per model parameter and; (iii) different types of calibration datasets to guide the quantization process, including code-specific ones. Our empirical evaluation reveals that the new frontier for LLM quantization is 4-bit precision, resulting in an average memory footprint reduction of 70% compared to the original model without observing any significant decrease in performance. Additionally, when the quantization becomes even more extreme (3 and 2 bits), a code-specific calibration dataset helps to limit the loss of performance.
From Symbolic Tasks to Code Generation: Diversification Yields Better Task Performers
Instruction tuning -- tuning large language models on instruction-output pairs -- is a promising technique for making models better adapted to the real world. Yet, the key factors driving the model's capability to understand and follow instructions not seen during training remain under-explored. Our investigation begins with a series of synthetic experiments within the theoretical framework of a Turing-complete algorithm called Markov algorithm, which allows fine-grained control over the instruction-tuning data. Generalization and robustness with respect to the training distribution emerge once a diverse enough set of tasks is provided, even though very few examples are provided for each task. We extend these initial results to a real-world application scenario of code generation and find that a more diverse instruction set, extending beyond code-related tasks, improves the performance of code generation. Our observations suggest that a more diverse semantic space for instruction-tuning sets greatly improves the model's ability to follow instructions and perform tasks.
Improving Natural Language Capability of Code Large Language Model
Code large language models (Code LLMs) have demonstrated remarkable performance in code generation. Nonetheless, most existing works focus on boosting code LLMs from the perspective of programming capabilities, while their natural language capabilities receive less attention. To fill this gap, we thus propose a novel framework, comprising two modules: AttentionExtractor, which is responsible for extracting key phrases from the user's natural language requirements, and AttentionCoder, which leverages these extracted phrases to generate target code to solve the requirement. This framework pioneers an innovative idea by seamlessly integrating code LLMs with traditional natural language processing tools. To validate the effectiveness of the framework, we craft a new code generation benchmark, called MultiNL-H, covering five natural languages. Extensive experimental results demonstrate the effectiveness of our proposed framework.
CYCLE: Learning to Self-Refine the Code Generation
Pre-trained code language models have achieved promising performance in code generation and improved the programming efficiency of human developers. However, their self-refinement capability is typically overlooked by the existing evaluations of code LMs, which focus only on the accuracy of the one-time prediction. For the cases when code LMs fail to implement the correct program, developers actually find it hard to debug and fix the faulty prediction since it is not written by the developers themselves. Unfortunately, our study reveals that code LMs cannot efficiently self-refine their faulty generations as well. In this paper, we propose CYCLE framework, learning to self-refine the faulty generation according to the available feedback, such as the execution results reported by the test suites. We evaluate CYCLE on three popular code generation benchmarks, HumanEval, MBPP, and APPS. The results reveal that CYCLE successfully maintains, sometimes improves, the quality of one-time code generation, while significantly improving the self-refinement capability of code LMs. We implement four variants of CYCLE with varied numbers of parameters across 350M, 1B, 2B, and 3B, and the experiments show that CYCLE consistently boosts the code generation performance, by up to 63.5%, across benchmarks and varied model sizes. We also notice that CYCLE outperforms code LMs that have 3times more parameters in self-refinement.
REPOEXEC: Evaluate Code Generation with a Repository-Level Executable Benchmark
The ability of CodeLLMs to generate executable and functionally correct code at the repository-level scale remains largely unexplored. We introduce RepoExec, a novel benchmark for evaluating code generation at the repository-level scale. RepoExec focuses on three main aspects: executability, functional correctness through automated test case generation with high coverage rate, and carefully crafted cross-file contexts to accurately generate code. Our work explores a controlled scenario where developers specify necessary code dependencies, challenging the model to integrate these accurately. Experiments show that while pretrained LLMs outperform instruction-tuned models in correctness, the latter excel in utilizing provided dependencies and demonstrating debugging capabilities. We also introduce a new instruction-tuned dataset that focuses on code dependencies and demonstrate that CodeLLMs fine-tuned on our dataset have a better capability to leverage these dependencies effectively. RepoExec aims to provide a comprehensive evaluation of code functionality and alignment with developer intent, paving the way for more reliable and applicable CodeLLMs in real-world scenarios. The dataset and source code can be found at~https://github.com/FSoft-AI4Code/RepoExec.
CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning
Program synthesis or code generation aims to generate a program that satisfies a problem specification. Recent approaches using large-scale pretrained language models (LMs) have shown promising results, yet they have some critical limitations. In particular, they often follow a standard supervised fine-tuning procedure to train a code generation model only from the pairs of natural-language problem descriptions and ground-truth programs. Such paradigm largely ignores some important but potentially useful signals in the problem specification such as unit tests, which thus often results in poor performance when solving complex unseen coding tasks. To address the limitations, we propose "CodeRL", a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning (RL). Specifically, during training, we treat the code-generating LM as an actor network, and introduce a critic network that is trained to predict the functional correctness of generated programs and provide dense feedback signals to the actor. During inference, we introduce a new generation procedure with a critical sampling strategy that allows a model to automatically regenerate programs based on feedback from example unit tests and critic scores. For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives, larger model sizes, and better pretraining data. Our method not only achieves new SOTA results on the challenging APPS benchmark, but also shows strong zero-shot transfer capability with new SOTA results on the simpler MBPP benchmark.
OriGen:Enhancing RTL Code Generation with Code-to-Code Augmentation and Self-Reflection
Recent studies have illuminated that Large Language Models (LLMs) exhibit substantial potential in the realm of RTL (Register Transfer Level) code generation, with notable advancements evidenced by commercial models such as GPT-4 and Claude3-Opus. Despite their proficiency, these commercial LLMs often raise concerns regarding privacy and security. Conversely, open-source LLMs, which offer solutions to these concerns, have inferior performance in RTL code generation tasks to commercial models due to the lack of highquality open-source RTL datasets. To address this issue, we introduce OriGen, a fully open-source framework featuring self-reflection capabilities and a dataset augmentation methodology for generating high-quality, large-scale RTL code. We propose a novel code-to-code augmentation methodology that leverages knowledge distillation to enhance the quality of the open-source RTL code datasets. Additionally, OriGen is capable of correcting syntactic errors by leveraging a self-reflection process based on feedback from the compiler. The self-reflection ability of the model is facilitated by a carefully constructed dataset, which comprises a comprehensive collection of samples. Experimental results demonstrate that OriGen remarkably outperforms other open-source alternatives in RTL code generation, surpassing the previous best-performing LLM by 9.8% on the VerilogEval-Human benchmark. Furthermore, OriGen exhibits superior capabilities in self-reflection and error rectification, surpassing GPT-4 by 18.1% on the benchmark designed to evaluate the capability of self-reflection.
AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data
Open-source Large Language Models (LLMs) and their specialized variants, particularly Code LLMs, have recently delivered impressive performance. However, previous Code LLMs are typically fine-tuned on single-source data with limited quality and diversity, which may insufficiently elicit the potential of pre-trained Code LLMs. In this paper, we present AlchemistCoder, a series of Code LLMs with enhanced code generation and generalization capabilities fine-tuned on multi-source data. To achieve this, we pioneer to unveil inherent conflicts among the various styles and qualities in multi-source code corpora and introduce data-specific prompts with hindsight relabeling, termed AlchemistPrompts, to harmonize different data sources and instruction-response pairs. Additionally, we propose incorporating the data construction process into the fine-tuning data as code comprehension tasks, including instruction evolution, data filtering, and code review. Extensive experiments demonstrate that AlchemistCoder holds a clear lead among all models of the same size (6.7B/7B) and rivals or even surpasses larger models (15B/33B/70B), showcasing the efficacy of our method in refining instruction-following capabilities and advancing the boundaries of code intelligence.
Horizon-Length Prediction: Advancing Fill-in-the-Middle Capabilities for Code Generation with Lookahead Planning
Fill-in-the-Middle (FIM) has become integral to code language models, enabling generation of missing code given both left and right contexts. However, the current FIM training paradigm, which reorders original training sequences and then performs regular next-token prediction (NTP), often leads to models struggling to generate content that aligns smoothly with the surrounding context. Crucially, while existing works rely on rule-based post-processing to circumvent this weakness, such methods are not practically usable in open-domain code completion tasks as they depend on restrictive, dataset-specific assumptions (e.g., generating the same number of lines as in the ground truth). Moreover, model performance on FIM tasks deteriorates significantly without these unrealistic assumptions. We hypothesize that NTP alone is insufficient for models to learn effective planning conditioned on the distant right context, a critical factor for successful code infilling. To overcome this, we propose Horizon-Length Prediction (HLP), a novel training objective that teaches models to predict the number of remaining middle tokens (i.e., horizon length) at each step. HLP advances FIM with lookahead planning, enabling models to inherently learn infilling boundaries for arbitrary left and right contexts without relying on dataset-specific post-processing. Our evaluation across different models and sizes shows that HLP significantly improves FIM performance by up to 24% relatively on diverse benchmarks, across file-level and repository-level, and without resorting to unrealistic post-processing methods. Furthermore, the enhanced planning capability gained through HLP boosts model performance on code reasoning. Importantly, HLP only incurs negligible training overhead and no additional inference cost, ensuring its practicality for real-world scenarios.
DOMAINEVAL: An Auto-Constructed Benchmark for Multi-Domain Code Generation
Code benchmarks such as HumanEval are widely adopted to evaluate the capabilities of Large Language Models (LLMs), providing insights into their strengths and weaknesses. However, current benchmarks primarily exercise LLMs' capability on common coding tasks (e.g., bubble sort, greatest common divisor), leaving domain-specific coding tasks (e.g., computation, system, cryptography) unexplored. To fill this gap, we propose a multi-domain code benchmark, DOMAINEVAL, designed to evaluate LLMs' coding capabilities thoroughly. Our pipeline works in a fully automated manner, enabling a push-bottom construction from code repositories into formatted subjects under study. Interesting findings are observed by evaluating 12 representative LLMs against DOMAINEVAL. We notice that LLMs are generally good at computation tasks while falling short on cryptography and system coding tasks. The performance gap can be as much as 68.94% (80.94% - 12.0%) in some LLMs. We also observe that generating more samples can increase the overall performance of LLMs, while the domain bias may even increase. The contributions of this study include a code generation benchmark dataset DOMAINEVAL, encompassing six popular domains, a fully automated pipeline for constructing code benchmarks, and an identification of the limitations of LLMs in code generation tasks based on their performance on DOMAINEVAL, providing directions for future research improvements. The leaderboard is available at https://domaineval.github.io/.
DiffQRCoder: Diffusion-based Aesthetic QR Code Generation with Scanning Robustness Guided Iterative Refinement
With the success of Diffusion Models for image generation, the technologies also have revolutionized the aesthetic Quick Response (QR) code generation. Despite significant improvements in visual attractiveness for the beautified codes, their scannabilities are usually sacrificed and thus hinder their practical uses in real-world scenarios. To address this issue, we propose a novel training-free Diffusion-based QR Code generator (DiffQRCoder) to effectively craft both scannable and visually pleasing QR codes. The proposed approach introduces Scanning-Robust Perceptual Guidance (SRPG), a new diffusion guidance for Diffusion Models to guarantee the generated aesthetic codes to obey the ground-truth QR codes while maintaining their attractiveness during the denoising process. Additionally, we present another post-processing technique, Scanning Robust Manifold Projected Gradient Descent (SR-MPGD), to further enhance their scanning robustness through iterative latent space optimization. With extensive experiments, the results demonstrate that our approach not only outperforms other compared methods in Scanning Success Rate (SSR) with better or comparable CLIP aesthetic score (CLIP-aes.) but also significantly improves the SSR of the ControlNet-only approach from 60% to 99%. The subjective evaluation indicates that our approach achieves promising visual attractiveness to users as well. Finally, even with different scanning angles and the most rigorous error tolerance settings, our approach robustly achieves over 95% SSR, demonstrating its capability for real-world applications. Our project page is available at https://jwliao1209.github.io/DiffQRCoder.
Self-Taught Optimizer (STOP): Recursively Self-Improving Code Generation
Several recent advances in AI systems (e.g., Tree-of-Thoughts and Program-Aided Language Models) solve problems by providing a "scaffolding" program that structures multiple calls to language models to generate better outputs. A scaffolding program is written in a programming language such as Python. In this work, we use a language-model-infused scaffolding program to improve itself. We start with a seed "improver" that improves an input program according to a given utility function by querying a language model several times and returning the best solution. We then run this seed improver to improve itself. Across a small set of downstream tasks, the resulting improved improver generates programs with significantly better performance than its seed improver. Afterward, we analyze the variety of self-improvement strategies proposed by the language model, including beam search, genetic algorithms, and simulated annealing. Since the language models themselves are not altered, this is not full recursive self-improvement. Nonetheless, it demonstrates that a modern language model, GPT-4 in our proof-of-concept experiments, is capable of writing code that can call itself to improve itself. We critically consider concerns around the development of self-improving technologies and evaluate the frequency with which the generated code bypasses a sandbox.
LLM4DS: Evaluating Large Language Models for Data Science Code Generation
The adoption of Large Language Models (LLMs) for code generation in data science offers substantial potential for enhancing tasks such as data manipulation, statistical analysis, and visualization. However, the effectiveness of these models in the data science domain remains underexplored. This paper presents a controlled experiment that empirically assesses the performance of four leading LLM-based AI assistants-Microsoft Copilot (GPT-4 Turbo), ChatGPT (o1-preview), Claude (3.5 Sonnet), and Perplexity Labs (Llama-3.1-70b-instruct)-on a diverse set of data science coding challenges sourced from the Stratacratch platform. Using the Goal-Question-Metric (GQM) approach, we evaluated each model's effectiveness across task types (Analytical, Algorithm, Visualization) and varying difficulty levels. Our findings reveal that all models exceeded a 50% baseline success rate, confirming their capability beyond random chance. Notably, only ChatGPT and Claude achieved success rates significantly above a 60% baseline, though none of the models reached a 70% threshold, indicating limitations in higher standards. ChatGPT demonstrated consistent performance across varying difficulty levels, while Claude's success rate fluctuated with task complexity. Hypothesis testing indicates that task type does not significantly impact success rate overall. For analytical tasks, efficiency analysis shows no significant differences in execution times, though ChatGPT tended to be slower and less predictable despite high success rates. This study provides a structured, empirical evaluation of LLMs in data science, delivering insights that support informed model selection tailored to specific task demands. Our findings establish a framework for future AI assessments, emphasizing the value of rigorous evaluation beyond basic accuracy measures.
TestBench: Evaluating Class-Level Test Case Generation Capability of Large Language Models
Software testing is a crucial phase in the software life cycle, helping identify potential risks and reduce maintenance costs. With the advancement of Large Language Models (LLMs), researchers have proposed an increasing number of LLM-based software testing techniques, particularly in the area of test case generation. Despite the growing interest, limited efforts have been made to thoroughly evaluate the actual capabilities of LLMs in this task. In this paper, we introduce TestBench, a benchmark for class-level LLM-based test case generation. We construct a dataset of 108 Java programs from 9 real-world, large-scale projects on GitHub, each representing a different thematic domain. We then design three distinct types of prompts based on context descriptions, including self-contained context, full context, and simple context. Besides, we propose a fine-grained evaluation framework that considers five aspects of test cases: syntactic correctness, compilation correctness, test correctness, code coverage rate, and defect detection rate. Furthermore, we propose a heuristic algorithm to repair erroneous test cases generated by LLMs. We evaluate CodeLlama-13b, GPT-3.5, and GPT-4 on the TestBench, and our experimental results indicate that larger models demonstrate a greater ability to effectively utilize contextual information, thus generating higher-quality test cases. Smaller models may struggle with the noise introduced by the extensive information contained within the full context. However, when using the simplified version, namely the simple context, which is derived from the full context via abstract syntax tree analysis, the performance of these models improves significantly. Our analysis highlights the current progress and pinpoints future directions to further enhance the effectiveness of models by handling contextual information for test case generation.
FEA-Bench: A Benchmark for Evaluating Repository-Level Code Generation for Feature Implementation
Implementing new features in repository-level codebases is a crucial application of code generation models. However, current benchmarks lack a dedicated evaluation framework for this capability. To fill this gap, we introduce FEA-Bench, a benchmark designed to assess the ability of large language models (LLMs) to perform incremental development within code repositories. We collect pull requests from 83 GitHub repositories and use rule-based and intent-based filtering to construct task instances focused on new feature development. Each task instance containing code changes is paired with relevant unit test files to ensure that the solution can be verified. The feature implementation requires LLMs to simultaneously possess code completion capabilities for new components and code editing abilities for other relevant parts in the code repository, providing a more comprehensive evaluation method of LLMs' automated software engineering capabilities. Experimental results show that LLMs perform significantly worse in the FEA-Bench, highlighting considerable challenges in such repository-level incremental code development.
Eliciting Instruction-tuned Code Language Models' Capabilities to Utilize Auxiliary Function for Code Generation
We study the code generation behavior of instruction-tuned models built on top of code pre-trained language models when they could access an auxiliary function to implement a function. We design several ways to provide auxiliary functions to the models by adding them to the query or providing a response prefix to incorporate the ability to utilize auxiliary functions with the instruction-following capability. Our experimental results show the effectiveness of combining the base models' auxiliary function utilization ability with the instruction following ability. In particular, the performance of adopting our approaches with the open-sourced language models surpasses that of the recent powerful proprietary language models, i.e., gpt-4o.
ITERTL: An Iterative Framework for Fine-tuning LLMs for RTL Code Generation
Recently, large language models (LLMs) have demonstrated excellent performance in understanding human instructions and generating code, which has inspired researchers to explore the feasibility of generating RTL code with LLMs. However, the existing approaches to fine-tune LLMs on RTL codes typically are conducted on fixed datasets, which do not fully stimulate the capability of LLMs and require large amounts of reference data. To mitigate these issues , we introduce a simple yet effective iterative training paradigm named ITERTL. During each iteration, samples are drawn from the model trained in the previous cycle. Then these new samples are employed for training in this loop. Through this iterative approach, the distribution mismatch between the model and the training samples is reduced. Additionally, the model is thus enabled to explore a broader generative space and receive more comprehensive feedback. Theoretical analyses are conducted to investigate the mechanism of the effectiveness. Experimental results show the model trained through our proposed approach can compete with and even outperform the state-of-the-art (SOTA) open-source model with nearly 37\% reference samples, achieving remarkable 42.9\% and 62.2\% pass@1 rate on two VerilogEval evaluation datasets respectively. While using the same amount of reference samples, our method can achieved a relative improvement of 16.9\% and 12.5\% in pass@1 compared to the non-iterative method. This study facilitates the application of LLMs for generating RTL code in practical scenarios with limited data.
The First Prompt Counts the Most! An Evaluation of Large Language Models on Iterative Example-based Code Generation
The capabilities of Large Language Models (LLMs) in code generation, particularly for implementing target functionalities from natural language descriptions, have been extensively studied. As an alternative form of natural language, input-output examples (I/O examples) provide an accessible, unambiguous, and flexible way to describe functionalities, but the diversity, sparseness, and incompleteness of I/O examples also place challenges on understanding and implementing requirements. Therefore, generating code from input-output examples (i.e., example-based code generation) provides a new perspective, allowing us to evaluate LLMs' capability to infer target functionalities from limited information and to process new-form requirements. However, related research about LLMs in example-based code generation remains largely unexplored. To fill this gap, this paper presents the first comprehensive study on example-based code generation using LLMs. To address the incorrectness caused by the incompleteness of I/O examples, we adopt an iterative evaluation framework and formalize the objective of example-based code generation as two sequential sub-objectives: generating code conforming to given examples and generating code that successfully implements the target functionalities from (iteratively) given examples. We assess six state-of-the-art LLMs using a new benchmark of 168 diverse target functionalities. The results demonstrate that when requirements were described using iterative I/O examples rather than natural language, the LLMs' score decreased by over 60%, indicating that example-based code generation remains challenging for the evaluated LLMs. More interestingly, the vast majority (even over 95%) of successfully implemented functionalities are achieved in the first round of iterations, suggesting that the LLMs struggle to effectively utilize the iteratively supplemented requirements.
DebugBench: Evaluating Debugging Capability of Large Language Models
Large Language Models (LLMs) have demonstrated exceptional coding capability. However, as another critical component of programming proficiency, the debugging capability of LLMs remains relatively unexplored. Previous evaluations of LLMs' debugging ability are significantly limited by the risk of data leakage, the scale of the dataset, and the variety of tested bugs. To overcome these deficiencies, we introduce `DebugBench', an LLM debugging benchmark consisting of 4,253 instances. It covers four major bug categories and 18 minor types in C++, Java, and Python. To construct DebugBench, we collect code snippets from the LeetCode community, implant bugs into source data with GPT-4, and assure rigorous quality checks. We evaluate two commercial and three open-source models in a zero-shot scenario. We find that (1) while closed-source models like GPT-4 exhibit inferior debugging performance compared to humans, open-source models such as Code Llama fail to attain any pass rate scores; (2) the complexity of debugging notably fluctuates depending on the bug category; (3) incorporating runtime feedback has a clear impact on debugging performance which is not always helpful. As an extension, we also compare LLM debugging and code generation, revealing a strong correlation between them for closed-source models. These findings will benefit the development of LLMs in debugging.
A Hazard Analysis Framework for Code Synthesis Large Language Models
Codex, a large language model (LLM) trained on a variety of codebases, exceeds the previous state of the art in its capacity to synthesize and generate code. Although Codex provides a plethora of benefits, models that may generate code on such scale have significant limitations, alignment problems, the potential to be misused, and the possibility to increase the rate of progress in technical fields that may themselves have destabilizing impacts or have misuse potential. Yet such safety impacts are not yet known or remain to be explored. In this paper, we outline a hazard analysis framework constructed at OpenAI to uncover hazards or safety risks that the deployment of models like Codex may impose technically, socially, politically, and economically. The analysis is informed by a novel evaluation framework that determines the capacity of advanced code generation techniques against the complexity and expressivity of specification prompts, and their capability to understand and execute them relative to human ability.
Turing Machine Evaluation for Large Language Model
With the rapid development and widespread application of Large Language Models (LLMs), rigorous evaluation has become particularly crucial. This research adopts a novel perspective, focusing on evaluating the core computational reasoning ability of LLMs, defined as the capacity of model to accurately understand rules, and execute logically computing operations. This capability assesses the reliability of LLMs as precise executors, and is critical to advanced tasks such as complex code generation and multi-step problem-solving. We propose an evaluation framework based on Universal Turing Machine (UTM) simulation. This framework requires LLMs to strictly follow instructions and track dynamic states, such as tape content and read/write head position, during multi-step computations. To enable standardized evaluation, we developed TMBench, a benchmark for systematically studying the computational reasoning capabilities of LLMs. TMBench provides several key advantages, including knowledge-agnostic evaluation, adjustable difficulty, foundational coverage through Turing machine encoding, and unlimited capacity for instance generation, ensuring scalability as models continue to evolve. We find that model performance on TMBench correlates strongly with performance on other recognized reasoning benchmarks (Pearson correlation coefficient is 0.73), clearly demonstrating that computational reasoning is a significant dimension for measuring the deep capabilities of LLMs. Code and data are available at https://github.com/HaitaoWuTJU/Turing-Machine-Bench.
SQL-PaLM: Improved Large Language ModelAdaptation for Text-to-SQL
One impressive emergent capability of large language models (LLMs) is generation of code, including Structured Query Language (SQL) for databases. For the task of converting natural language text to SQL queries, Text-to-SQL, adaptation of LLMs is of paramount importance, both in in-context learning and fine-tuning settings, depending on the amount of adaptation data used. In this paper, we propose an LLM-based Text-to-SQL model SQL-PaLM, leveraging on PaLM-2, that pushes the state-of-the-art in both settings. Few-shot SQL-PaLM is based on an execution-based self-consistency prompting approach designed for Text-to-SQL, and achieves 77.3% in test-suite accuracy on Spider, which to our best knowledge is the first to outperform previous state-of-the-art with fine-tuning by a significant margin, 4%. Furthermore, we demonstrate that the fine-tuned SQL-PALM outperforms it further by another 1%. Towards applying SQL-PaLM to real-world scenarios we further evaluate its robustness on other challenging variants of Spider and demonstrate the superior generalization capability of SQL-PaLM. In addition, via extensive case studies, we demonstrate the impressive intelligent capabilities and various success enablers of LLM-based Text-to-SQL.
GoT: Unleashing Reasoning Capability of Multimodal Large Language Model for Visual Generation and Editing
Current image generation and editing methods primarily process textual prompts as direct inputs without reasoning about visual composition and explicit operations. We present Generation Chain-of-Thought (GoT), a novel paradigm that enables generation and editing through an explicit language reasoning process before outputting images. This approach transforms conventional text-to-image generation and editing into a reasoning-guided framework that analyzes semantic relationships and spatial arrangements. We define the formulation of GoT and construct large-scale GoT datasets containing over 9M samples with detailed reasoning chains capturing semantic-spatial relationships. To leverage the advantages of GoT, we implement a unified framework that integrates Qwen2.5-VL for reasoning chain generation with an end-to-end diffusion model enhanced by our novel Semantic-Spatial Guidance Module. Experiments show our GoT framework achieves excellent performance on both generation and editing tasks, with significant improvements over baselines. Additionally, our approach enables interactive visual generation, allowing users to explicitly modify reasoning steps for precise image adjustments. GoT pioneers a new direction for reasoning-driven visual generation and editing, producing images that better align with human intent. To facilitate future research, we make our datasets, code, and pretrained models publicly available at https://github.com/rongyaofang/GoT.
GoT-R1: Unleashing Reasoning Capability of MLLM for Visual Generation with Reinforcement Learning
Visual generation models have made remarkable progress in creating realistic images from text prompts, yet struggle with complex prompts that specify multiple objects with precise spatial relationships and attributes. Effective handling of such prompts requires explicit reasoning about the semantic content and spatial layout. We present GoT-R1, a framework that applies reinforcement learning to enhance semantic-spatial reasoning in visual generation. Building upon the Generation Chain-of-Thought approach, GoT-R1 enables models to autonomously discover effective reasoning strategies beyond predefined templates through carefully designed reinforcement learning. To achieve this, we propose a dual-stage multi-dimensional reward framework that leverages MLLMs to evaluate both the reasoning process and final output, enabling effective supervision across the entire generation pipeline. The reward system assesses semantic alignment, spatial accuracy, and visual quality in a unified approach. Experimental results demonstrate significant improvements on T2I-CompBench benchmark, particularly in compositional tasks involving precise spatial relationships and attribute binding. GoT-R1 advances the state-of-the-art in image generation by successfully transferring sophisticated reasoning capabilities to the visual generation domain. To facilitate future research, we make our code and pretrained models publicly available at https://github.com/gogoduan/GoT-R1.
L2CEval: Evaluating Language-to-Code Generation Capabilities of Large Language Models
Recently, large language models (LLMs), especially those that are pretrained on code, have demonstrated strong capabilities in generating programs from natural language inputs in a few-shot or even zero-shot manner. Despite promising results, there is a notable lack of a comprehensive evaluation of these models language-to-code generation capabilities. Existing studies often focus on specific tasks, model architectures, or learning paradigms, leading to a fragmented understanding of the overall landscape. In this work, we present L2CEval, a systematic evaluation of the language-to-code generation capabilities of LLMs on 7 tasks across the domain spectrum of semantic parsing, math reasoning and Python programming, analyzing the factors that potentially affect their performance, such as model size, pretraining data, instruction tuning, and different prompting methods. In addition to assessing model performance, we measure confidence calibration for the models and conduct human evaluations of the output programs. This enables us to identify and analyze the typical failure modes across various tasks and models. L2CEval offers a comprehensive understanding of the capabilities and limitations of LLMs in language-to-code generation. We also release the evaluation framework and all model outputs, hoping to lay the groundwork for further future research in this domain.
Quantifying Contamination in Evaluating Code Generation Capabilities of Language Models
While large language models have achieved remarkable performance on various code generation benchmarks, there have been growing concerns regarding potential contamination of these benchmarks as they may be leaked into pretraining and finetuning data. While recent work has investigated contamination in natural language generation and understanding tasks, there has been less extensive research into how data contamination impacts the evaluation of code generation, which is critical for understanding the robustness and reliability of LLMs in programming contexts. In this work, we perform a comprehensive study of data contamination of popular code generation benchmarks, and precisely quantify their overlap with pretraining corpus through both surface-level and semantic-level matching. In our experiments, we show that there are substantial overlap between popular code generation benchmarks and open training corpus, and models perform significantly better on the subset of the benchmarks where similar solutions are seen during training. We also conduct extensive analysis on the factors that affects model memorization and generalization, such as model size, problem difficulty, and question length. We release all resulting files from our matching pipeline for future research.
MHPP: Exploring the Capabilities and Limitations of Language Models Beyond Basic Code Generation
Recent advancements in large language models (LLMs) have greatly improved code generation, specifically at the function level. For instance, GPT-4 has achieved an 88.4% pass rate on HumanEval. However, this draws into question the adequacy of existing benchmarks in thoroughly assessing function-level code generation capabilities. Our study analyzed two common benchmarks, HumanEval and MBPP, and found that these might not thoroughly evaluate LLMs' code generation capacities due to limitations in quality, difficulty, and granularity. To resolve this, we introduce the Mostly Hard Python Problems (MHPP) dataset, consisting of 140 unique human-curated problems. By focusing on the combination of natural language and code reasoning, MHPP gauges LLMs' abilities to comprehend specifications and restrictions, engage in multi-step reasoning, and apply coding knowledge effectively. Initial evaluations of 22 LLMs using MHPP showed many high-performing models on HumanEval failed to achieve similar success on MHPP. Moreover, MHPP highlighted various previously undiscovered limitations within various LLMs, leading us to believe that it could pave the way for a better understanding of LLMs' capabilities and limitations. Dataset and code are available at https://github.com/SparksofAGI/MHPP.
Automated Code generation for Information Technology Tasks in YAML through Large Language Models
The recent improvement in code generation capabilities due to the use of large language models has mainly benefited general purpose programming languages. Domain specific languages, such as the ones used for IT Automation, have received far less attention, despite involving many active developers and being an essential component of modern cloud platforms. This work focuses on the generation of Ansible-YAML, a widely used markup language for IT Automation. We present Ansible Wisdom, a natural-language to Ansible-YAML code generation tool, aimed at improving IT automation productivity. Ansible Wisdom is a transformer-based model, extended by training with a new dataset containing Ansible-YAML. We also develop two novel performance metrics for YAML and Ansible to capture the specific characteristics of this domain. Results show that Ansible Wisdom can accurately generate Ansible script from natural language prompts with performance comparable or better than existing state of the art code generation models.
mHumanEval -- A Multilingual Benchmark to Evaluate Large Language Models for Code Generation
Recent advancements in large language models (LLMs) have significantly enhanced code generation from natural language prompts. The HumanEval Benchmark, developed by OpenAI, remains the most widely used code generation benchmark. However, this and other Code LLM benchmarks face critical limitations, particularly in task diversity, test coverage, and linguistic scope. Current evaluations primarily focus on English-to-Python conversion tasks with limited test cases, potentially overestimating model performance. While recent works have addressed test coverage and programming language (PL) diversity, code generation from low-resource language prompts remains largely unexplored. To address this gap, we introduce mHumanEval, an extended benchmark supporting prompts in over 200 natural languages. We employ established machine translation methods to compile the benchmark, coupled with a quality assurance process. Furthermore, we provide expert human translations for 15 diverse natural languages (NLs). We conclude by analyzing the multilingual code generation capabilities of state-of-the-art (SOTA) Code LLMs, offering insights into the current landscape of cross-lingual code generation.
CODESIM: Multi-Agent Code Generation and Problem Solving through Simulation-Driven Planning and Debugging
Large Language Models (LLMs) have made significant strides in code generation and problem solving. Current approaches employ external tool-based iterative debuggers that use compiler or other tool-based runtime feedback to refine coarse programs generated by various methods. However, the effectiveness of these approaches heavily relies on the quality of the initial code generation, which remains an open challenge. In this paper, we introduce CodeSim, a novel multi-agent code generation framework that comprehensively addresses the stages of program synthesis-planning, coding, and debugging-through a human-like perception approach. As human verifies their understanding of any algorithms through visual simulation, CodeSim uniquely features a method of plan verification and internal debugging through the step-by-step simulation of input/output. Extensive experiments across seven challenging competitive problem-solving and program synthesis benchmarks demonstrate CodeSim's remarkable code generation capabilities. Our framework achieves new state-of-the-art (pass@1) results-(HumanEval 95.1%, MBPP 90.7%, APPS 22%, and CodeContests 29.1%). Furthermore, our method shows potential for even greater enhancement when cascaded with external debuggers. To facilitate further research and development in this area, we have open-sourced our framework in this link (https://kagnlp.github.io/codesim.github.io/).
Assessing the Answerability of Queries in Retrieval-Augmented Code Generation
Thanks to unprecedented language understanding and generation capabilities of large language model (LLM), Retrieval-augmented Code Generation (RaCG) has recently been widely utilized among software developers. While this has increased productivity, there are still frequent instances of incorrect codes being provided. In particular, there are cases where plausible yet incorrect codes are generated for queries from users that cannot be answered with the given queries and API descriptions. This study proposes a task for evaluating answerability, which assesses whether valid answers can be generated based on users' queries and retrieved APIs in RaCG. Additionally, we build a benchmark dataset called Retrieval-augmented Code Generability Evaluation (RaCGEval) to evaluate the performance of models performing this task. Experimental results show that this task remains at a very challenging level, with baseline models exhibiting a low performance of 46.7%. Furthermore, this study discusses methods that could significantly improve performance.
MapCoder: Multi-Agent Code Generation for Competitive Problem Solving
Code synthesis, which requires a deep understanding of complex natural language problem descriptions, generation of code instructions for complex algorithms and data structures, and the successful execution of comprehensive unit tests, presents a significant challenge. While large language models (LLMs) demonstrate impressive proficiency in natural language processing, their performance in code generation tasks remains limited. In this paper, we introduce a new approach to code generation tasks leveraging multi-agent prompting that uniquely replicates the full cycle of program synthesis as observed in human developers. Our framework, MapCoder, consists of four LLM agents specifically designed to emulate the stages of this cycle: recalling relevant examples, planning, code generation, and debugging. After conducting thorough experiments, with multiple LLM ablations and analyses across eight challenging competitive problem-solving and program synthesis benchmarks, MapCoder showcases remarkable code generation capabilities, achieving new state-of-the-art results (pass@1) on HumanEval (93.9%), MBPP (83.1%), APPS (22.0%), CodeContests (28.5%), and xCodeEval (45.3%). Moreover, our method consistently delivers superior performance across various programming languages and varying problem difficulties. We open-source our framework at https://github.com/Md-Ashraful-Pramanik/MapCoder.
Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective
Code generation aims to understand the problem description and generate corresponding code snippets, where existing works generally decompose such complex tasks into intermediate steps by prompting strategies, such as Chain-of-Thought and its variants. While these studies have achieved some success, their effectiveness is highly dependent on the capabilities of advanced Large Language Models (LLMs) such as GPT-4, particularly in terms of API calls, which significantly limits their practical applicability. Consequently, how to enhance the code generation capabilities of small and medium-scale code LLMs without significantly increasing training costs is an appealing challenge. In this paper, we suggest that code comments are the natural logic pivot between natural language and code language and propose using comments to boost the code generation ability of code LLMs. Concretely, we propose MANGO (comMents As Natural loGic pivOts), including a comment contrastive training strategy and a corresponding logical comment decoding strategy. Experiments are performed on HumanEval and MBPP, utilizing StarCoder and WizardCoder as backbone models, and encompassing model parameter sizes between 3B and 7B. The results indicate that MANGO significantly improves the code pass rate based on the strong baselines. Meanwhile, the robustness of the logical comment decoding strategy is notably higher than the Chain-of-thoughts prompting. The code is publicly available at https://github.com/pppa2019/Mango.
DevEval: Evaluating Code Generation in Practical Software Projects
How to evaluate Large Language Models (LLMs) in code generation is an open question. Many benchmarks have been proposed but are inconsistent with practical software projects, e.g., unreal program distributions, insufficient dependencies, and small-scale project contexts. Thus, the capabilities of LLMs in practical projects are still unclear. In this paper, we propose a new benchmark named DevEval, aligned with Developers' experiences in practical projects. DevEval is collected through a rigorous pipeline, containing 2,690 samples from 119 practical projects and covering 10 domains. Compared to previous benchmarks, DevEval aligns to practical projects in multiple dimensions, e.g., real program distributions, sufficient dependencies, and enough-scale project contexts. We assess five popular LLMs on DevEval (e.g., gpt-4, gpt-3.5-turbo, CodeLLaMa, and StarCoder) and reveal their actual abilities in code generation. For instance, the highest Pass@1 of gpt-3.5-turbo only is 42 in our experiments. We also discuss the challenges and future directions of code generation in practical projects. We open-source DevEval and hope it can facilitate the development of code generation in practical projects.
Where Are Large Language Models for Code Generation on GitHub?
The increasing use of Large Language Models (LLMs) in software development has garnered significant attention from researchers assessing the quality of the code they generate. However, much of the research focuses on controlled datasets such as HumanEval, which fail to adequately represent how developers actually utilize LLMs' code generation capabilities or clarify the characteristics of LLM-generated code in real-world development scenarios. To bridge this gap, our study investigates the characteristics of LLM-generated code and its corresponding projects hosted on GitHub. Our findings reveal several key insights: (1) ChatGPT and Copilot are the most frequently utilized for generating code on GitHub. In contrast, there is very little code generated by other LLMs on GitHub. (2) Projects containing ChatGPT/Copilot-generated code are often small and less known, led by individuals or small teams. Despite this, most projects are continuously evolving and improving. (3) ChatGPT/Copilot is mainly utilized for generating Python, Java, and TypeScript scripts for data processing and transformation. C/C++ and JavaScript code generation focuses on algorithm and data structure implementation and user interface code. Most ChatGPT/Copilot-generated code snippets are relatively short and exhibit low complexity. (4) Compared to human-written code, ChatGPT/Copilot-generated code exists in a small proportion of projects and generally undergoes fewer modifications. Additionally, modifications due to bugs are even fewer, ranging from just 3% to 8% across different languages. (5) Most comments on ChatGPT/Copilot-generated code lack detailed information, often only stating the code's origin without mentioning prompts, human modifications, or testing status. Based on these findings, we discuss the implications for researchers and practitioners.
CodeReviewQA: The Code Review Comprehension Assessment for Large Language Models
State-of-the-art large language models (LLMs) have demonstrated impressive code generation capabilities but struggle with real-world software engineering tasks, such as revising source code to address code reviews, hindering their practical use. Code review comments are often implicit, ambiguous, and colloquial, requiring models to grasp both code and human intent. This challenge calls for evaluating large language models' ability to bridge both technical and conversational contexts. While existing work has employed the automated code refinement (ACR) task to resolve these comments, current evaluation methods fall short, relying on text matching metrics that provide limited insight into model failures and remain susceptible to training data contamination. To address these limitations, we introduce a novel evaluation benchmark, CodeReviewQA that enables us to conduct fine-grained assessment of model capabilities and mitigate data contamination risks. In CodeReviewQA, we decompose the generation task of code refinement into three essential reasoning steps: change type recognition (CTR), change localisation (CL), and solution identification (SI). Each step is reformulated as multiple-choice questions with varied difficulty levels, enabling precise assessment of model capabilities, while mitigating data contamination risks. Our comprehensive evaluation spans 72 recently released large language models on 900 manually curated, high-quality examples across nine programming languages. Our results show that CodeReviewQA is able to expose specific model weaknesses in code review comprehension, disentangled from their generative automated code refinement results.
CodeJudge-Eval: Can Large Language Models be Good Judges in Code Understanding?
Recent advancements in large language models (LLMs) have showcased impressive code generation capabilities, primarily evaluated through language-to-code benchmarks. However, these benchmarks may not fully capture a model's code understanding abilities. We introduce CodeJudge-Eval (CJ-Eval), a novel benchmark designed to assess LLMs' code understanding abilities from the perspective of code judging rather than code generation. CJ-Eval challenges models to determine the correctness of provided code solutions, encompassing various error types and compilation issues. By leveraging a diverse set of problems and a fine-grained judging system, CJ-Eval addresses the limitations of traditional benchmarks, including the potential memorization of solutions. Evaluation of 12 well-known LLMs on CJ-Eval reveals that even state-of-the-art models struggle, highlighting the benchmark's ability to probe deeper into models' code understanding abilities. Our benchmark will be available at https://github.com/CodeLLM-Research/CodeJudge-Eval.
Rewriting the Code: A Simple Method for Large Language Model Augmented Code Search
In code search, the Generation-Augmented Retrieval (GAR) framework, which generates exemplar code snippets to augment queries, has emerged as a promising strategy to address the principal challenge of modality misalignment between code snippets and natural language queries, particularly with the demonstrated code generation capabilities of Large Language Models (LLMs). Nevertheless, our preliminary investigations indicate that the improvements conferred by such an LLM-augmented framework are somewhat constrained. This limitation could potentially be ascribed to the fact that the generated codes, albeit functionally accurate, frequently display a pronounced stylistic deviation from the ground truth code in the codebase. In this paper, we extend the foundational GAR framework and propose a simple yet effective method that additionally Rewrites the Code (ReCo) within the codebase for style normalization. Experimental results demonstrate that ReCo significantly boosts retrieval accuracy across sparse (up to 35.7%), zero-shot dense (up to 27.6%), and fine-tuned dense (up to 23.6%) retrieval settings in diverse search scenarios. To further elucidate the advantages of ReCo and stimulate research in code style normalization, we introduce Code Style Similarity, the first metric tailored to quantify stylistic similarities in code. Notably, our empirical findings reveal the inadequacy of existing metrics in capturing stylistic nuances.
MMCode: Evaluating Multi-Modal Code Large Language Models with Visually Rich Programming Problems
Programming often involves converting detailed and complex specifications into code, a process during which developers typically utilize visual aids to more effectively convey concepts. While recent developments in Large Multimodal Models have demonstrated remarkable abilities in visual reasoning and mathematical tasks, there is little work on investigating whether these models can effectively interpret visual elements for code generation. To this end, we present MMCode, the first multi-modal coding dataset for evaluating algorithmic problem-solving skills in visually rich contexts. MMCode contains 3,548 questions and 6,620 images collected from real-world programming challenges harvested from 10 code competition websites, presenting significant challenges due to the extreme demand for reasoning abilities. Our experiment results show that current state-of-the-art models struggle to solve these problems. The results highlight the lack of powerful vision-code models, and we hope MMCode can serve as an inspiration for future works in this domain. The data and code are publicly available at https://github.com/happylkx/MMCode.
How Well Do LLMs Generate Code for Different Application Domains? Benchmark and Evaluation
Recently, an increasing number of AI-driven programming assistants powered by code LLMs have been integrated into various real-world software development environments, significantly boosting developer productivity. However, existing code generation benchmarks primarily focus on general-purpose scenarios, leaving the code generation performance of LLMs for specific application domains largely unknown. In this paper, we introduce a new benchmark, MultiCodeBench, to fill this gap. MultiCodeBench comprises 2,400 programming tasks, covering 12 popular software development domains and 15 programming languages. Specifically, we perform in-depth research to identify these 12 application domains. Given that each domain may involve multiple technical frameworks, and that different frameworks present distinct challenges in the coding process, we categorize the commonly used frameworks and platforms within each domain. We then sample programming problems from GitHub repositories related to these subdomains. To ensure the quality of the tasks and mitigate data leakage issues, we invite annotators to rewrite the docstrings for each task in MultiCodeBench. Additionally, we build a static analysis-based dependency parsing tool to extract the dependencies in the ground truth for each task, enabling deeper performance analysis. Through extensive experiments on MultiCodeBench with eleven representative mainstream LLMs, we reveal the code generation performance of the LLMs across different application domains, providing practical insights for developers in downstream fields when selecting LLMs. Furthermore, we analyze the reasons behind the models' failures in completing software application development tasks, offering guidance for model developers to enhance domain-specific code generation capabilities.
Does Few-Shot Learning Help LLM Performance in Code Synthesis?
Large language models (LLMs) have made significant strides at code generation through improved model design, training, and chain-of-thought. However, prompt-level optimizations remain an important yet under-explored aspect of LLMs for coding. This work focuses on the few-shot examples present in most code generation prompts, offering a systematic study on whether few-shot examples improve LLM's coding capabilities, which few-shot examples have the largest impact, and how to select impactful examples. Our work offers 2 approaches for selecting few-shot examples, a model-free method, CODEEXEMPLAR-FREE, and a model-based method, CODEEXEMPLAR-BASED. The 2 methods offer a trade-off between improved performance and reliance on training data and interpretability. Both methods significantly improve CodeLlama's coding ability across the popular HumanEval+ coding benchmark. In summary, our work provides valuable insights into how to pick few-shot examples in code generation prompts to improve LLM code generation capabilities.
Rewriting Pre-Training Data Boosts LLM Performance in Math and Code
The performance of large language models (LLMs) in program synthesis and mathematical reasoning is fundamentally limited by the quality of their pre-training corpora. We introduce two openly licensed datasets, released under the Llama 3.3 Community License, that significantly enhance LLM performance by systematically rewriting public data. SwallowCode (approximately 16.1 billion tokens) refines Python snippets from The-Stack-v2 through a novel four-stage pipeline: syntax validation, pylint-based style filtering, and a two-stage LLM rewriting process that enforces style conformity and transforms snippets into self-contained, algorithmically efficient examples. Unlike prior methods that rely on exclusionary filtering or limited transformations, our transform-and-retain approach upgrades low-quality code, maximizing data utility. SwallowMath (approximately 2.3 billion tokens) enhances Finemath-4+ by removing boilerplate, restoring context, and reformatting solutions into concise, step-by-step explanations. Within a fixed 50 billion token training budget, continual pre-training of Llama-3.1-8B with SwallowCode boosts pass@1 by +17.0 on HumanEval and +17.7 on HumanEval+ compared to Stack-Edu, surpassing the baseline model's code generation capabilities. Similarly, substituting SwallowMath yields +12.4 accuracy on GSM8K and +7.6 on MATH. Ablation studies confirm that each pipeline stage contributes incrementally, with rewriting delivering the largest gains. All datasets, prompts, and checkpoints are publicly available, enabling reproducible research and advancing LLM pre-training for specialized domains.
ChiseLLM: Unleashing the Power of Reasoning LLMs for Chisel Agile Hardware Development
The growing demand for Domain-Specific Architecture (DSA) has driven the development of Agile Hardware Development Methodology (AHDM). Hardware Construction Language (HCL) like Chisel offers high-level abstraction features, making it an ideal language for HCL-Based AHDM. While Large Language Models (LLMs) excel in code generation tasks, they still face challenges with Chisel generation, particularly regarding syntax correctness and design variability. Recent reasoning models have significantly enhanced code generation capabilities through test-time scaling techniques. However, we found that reasoning models without domain adaptation cannot bring substantial benefits to Chisel code generation tasks. This paper presents ChiseLLM, a solution comprising data processing and transformation, prompt-guided reasoning trace synthesis, and domain-adapted model training. We constructed high-quality datasets from public RTL code resources and guided the model to adopt structured thinking patterns through prompt enhancement methods. Experiments demonstrate that our ChiseLLM-7B and ChiseLLM-32B models improved syntax correctness by 18.85% and 26.32% respectively over base models, while increasing variability design ability by 47.58% compared to baseline reasoning models. Our datasets and models are publicly available, providing high-performance, cost-effective models for HCL-Based AHDM, and offering an effective baseline for future research. Github repository: https://github.com/observerw/ChiseLLM
ScratchEval: Are GPT-4o Smarter than My Child? Evaluating Large Multimodal Models with Visual Programming Challenges
Recent advancements in large multimodal models (LMMs) have showcased impressive code generation capabilities, primarily evaluated through image-to-code benchmarks. However, these benchmarks are limited to specific visual programming scenarios where the logic reasoning and the multimodal understanding capacities are split apart. To fill this gap, we propose ScratchEval, a novel benchmark designed to evaluate the visual programming reasoning ability of LMMs. ScratchEval is based on Scratch, a block-based visual programming language widely used in children's programming education. By integrating visual elements and embedded programming logic, ScratchEval requires the model to process both visual information and code structure, thereby comprehensively evaluating its programming intent understanding ability. Our evaluation approach goes beyond the traditional image-to-code mapping and focuses on unified logical thinking and problem-solving abilities, providing a more comprehensive and challenging framework for evaluating the visual programming ability of LMMs. ScratchEval not only fills the gap in existing evaluation methods, but also provides new insights for the future development of LMMs in the field of visual programming. Our benchmark can be accessed at https://github.com/HKBUNLP/ScratchEval .
IRIS: LLM-Assisted Static Analysis for Detecting Security Vulnerabilities
Software is prone to security vulnerabilities. Program analysis tools to detect them have limited effectiveness in practice due to their reliance on human labeled specifications. Large language models (or LLMs) have shown impressive code generation capabilities but they cannot do complex reasoning over code to detect such vulnerabilities especially since this task requires whole-repository analysis. We propose IRIS, a neuro-symbolic approach that systematically combines LLMs with static analysis to perform whole-repository reasoning for security vulnerability detection. Specifically, IRIS leverages LLMs to infer taint specifications and perform contextual analysis, alleviating needs for human specifications and inspection. For evaluation, we curate a new dataset, CWE-Bench-Java, comprising 120 manually validated security vulnerabilities in real-world Java projects. A state-of-the-art static analysis tool CodeQL detects only 27 of these vulnerabilities whereas IRIS with GPT-4 detects 55 (+28) and improves upon CodeQL's average false discovery rate by 5% points. Furthermore, IRIS identifies 4 previously unknown vulnerabilities which cannot be found by existing tools. IRIS is available publicly at https://github.com/iris-sast/iris.
InterCode: Standardizing and Benchmarking Interactive Coding with Execution Feedback
Humans write code in a fundamentally interactive manner and rely on constant execution feedback to correct errors, resolve ambiguities, and decompose tasks. While LLMs have recently exhibited promising coding capabilities, current coding benchmarks mostly consider a static instruction-to-code sequence transduction process, which has the potential for error propagation and a disconnect between the generated code and its final execution environment. To address this gap, we introduce InterCode, a lightweight, flexible, and easy-to-use framework of interactive coding as a standard reinforcement learning (RL) environment, with code as actions and execution feedback as observations. Our framework is language and platform agnostic, uses self-contained Docker environments to provide safe and reproducible execution, and is compatible out-of-the-box with traditional seq2seq coding methods, while enabling the development of new methods for interactive code generation. We use InterCode to create two interactive code environments with Bash and SQL as action spaces, leveraging data from the static Spider and NL2Bash datasets. We demonstrate InterCode's viability as a testbed by evaluating multiple state-of-the-art LLMs configured with different prompting strategies such as ReAct and Plan & Solve. Our results showcase the benefits of interactive code generation and demonstrate that InterCode can serve as a challenging benchmark for advancing code understanding and generation capabilities. InterCode is designed to be easily extensible and can even be used to incorporate new tasks such as Capture the Flag, a popular coding puzzle that is inherently multi-step and involves multiple programming languages. Project site with code and data: https://intercode-benchmark.github.io
Qwen2.5-Coder Technical Report
In this report, we introduce the Qwen2.5-Coder series, a significant upgrade from its predecessor, CodeQwen1.5. This series includes two models: Qwen2.5-Coder-1.5B and Qwen2.5-Coder-7B. As a code-specific model, Qwen2.5-Coder is built upon the Qwen2.5 architecture and continues pretrained on a vast corpus of over 5.5 trillion tokens. Through meticulous data cleaning, scalable synthetic data generation, and balanced data mixing, Qwen2.5-Coder demonstrates impressive code generation capabilities while retaining general versatility. The model has been evaluated on a wide range of code-related tasks, achieving state-of-the-art (SOTA) performance across more than 10 benchmarks, including code generation, completion, reasoning, and repair, consistently outperforming larger models of the same model size. We believe that the release of the Qwen2.5-Coder series will not only push the boundaries of research in code intelligence but also, through its permissive licensing, encourage broader adoption by developers in real-world applications.
TurtleBench: A Visual Programming Benchmark in Turtle Geometry
Humans have the ability to reason about geometric patterns in images and scenes from a young age. However, developing large multimodal models (LMMs) capable of similar reasoning remains a challenge, highlighting the need for robust evaluation methods to assess these capabilities. We introduce \Turtle, a benchmark designed to evaluate LMMs' capacity to interpret geometric patterns -- given visual examples, textual instructions, or both -- and generate precise code outputs. Inspired by turtle geometry, a notion used to teach children foundational coding and geometric concepts, TurtleBench features tasks with patterned shapes that have underlying algorithmic logic. Our evaluation reveals that leading LMMs struggle significantly with these tasks, with GPT-4o achieving only 19\% accuracy on the simplest tasks and few-shot prompting only marginally improves their performance (<2%). \Turtle highlights the gap between human and AI performance in intuitive and visual geometrical understanding, setting the stage for future research in this area. \Turtle stands as one of the few benchmarks to evaluate the integration of visual understanding and code generation capabilities in LMMs, setting the stage for future research. Code and Dataset for this paper is provided here: https://github.com/sinaris76/TurtleBench{https://github.com/sinaris76/TurtleBench}
LLM-SR: Scientific Equation Discovery via Programming with Large Language Models
Mathematical equations have been unreasonably effective in describing complex natural phenomena across various scientific disciplines. However, discovering such insightful equations from data presents significant challenges due to the necessity of navigating extremely high-dimensional combinatorial and nonlinear hypothesis spaces. Traditional methods of equation discovery largely focus on extracting equations from data alone, often neglecting the rich domain-specific prior knowledge that scientists typically depend on. To bridge this gap, we introduce LLM-SR, a novel approach that leverages the extensive scientific knowledge and robust code generation capabilities of Large Language Models (LLMs) to discover scientific equations from data in an efficient manner. Specifically, LLM-SR treats equations as programs with mathematical operators and combines LLMs' scientific priors with evolutionary search over equation programs. The LLM iteratively proposes new equation skeletons, drawing from its physical understanding, which are then optimized against data to estimate skeleton parameters. We demonstrate LLM-SR's effectiveness across three diverse scientific domains, where it discovers physically accurate equations that provide significantly better fits to in-domain and out-of-domain data compared to the well-established equation discovery baselines
$\mathcal{B}$-Coder: Value-Based Deep Reinforcement Learning for Program Synthesis
Program synthesis aims to create accurate, executable code from natural language descriptions. This field has leveraged the power of reinforcement learning (RL) in conjunction with large language models (LLMs), significantly enhancing code generation capabilities. This integration focuses on directly optimizing functional correctness, transcending conventional supervised losses. While current literature predominantly favors policy-based algorithms, attributes of program synthesis suggest a natural compatibility with value-based methods. This stems from rich collection of off-policy programs developed by human programmers, and the straightforward verification of generated programs through automated unit testing (i.e. easily obtainable rewards in RL language). Diverging from the predominant use of policy-based algorithms, our work explores the applicability of value-based approaches, leading to the development of our B-Coder (pronounced Bellman coder). Yet, training value-based methods presents challenges due to the enormous search space inherent to program synthesis. To this end, we propose an initialization protocol for RL agents utilizing pre-trained LMs and a conservative Bellman operator to reduce training complexities. Moreover, we demonstrate how to leverage the learned value functions as a dual strategy to post-process generated programs. Our empirical evaluations demonstrated B-Coder's capability in achieving state-of-the-art performance compared with policy-based methods. Remarkably, this achievement is reached with minimal reward engineering effort, highlighting the effectiveness of value-based RL, independent of reward designs.
Reasoning Runtime Behavior of a Program with LLM: How Far Are We?
Large language models for code (i.e., code LLMs) have shown strong code understanding and generation capabilities. To evaluate the capabilities of code LLMs in various aspects, many benchmarks have been proposed (e.g., HumanEval and ClassEval). Code reasoning is one of the most essential abilities of code LLMs, but existing benchmarks for code reasoning are not sufficient. Typically, they focus on predicting the input and output of a program, ignoring the evaluation of the intermediate behavior during program execution, as well as the logical consistency (e.g., the model should not give the correct output if the prediction of execution path is wrong) when performing the reasoning. To address these problems, in this paper, we propose a framework, namely REval, for evaluating code reasoning abilities and consistency of code LLMs with program execution. We utilize existing code benchmarks and adapt them to new benchmarks within our framework. A large-scale empirical study is conducted and most LLMs show unsatisfactory performance on both Runtime Behavior Reasoning (i.e., an average accuracy of 44.4%) and Incremental Consistency Evaluation (i.e., an average IC score of 10.3). Evaluation results of current code LLMs reflect the urgent need for the community to strengthen the code reasoning capability of code LLMs. Our code, data, and \newname leaderboard are available at https://r-eval.github.io.
CodeShell Technical Report
Code large language models mark a pivotal breakthrough in artificial intelligence. They are specifically crafted to understand and generate programming languages, significantly boosting the efficiency of coding development workflows. In this technical report, we present CodeShell-Base, a seven billion-parameter foundation model with 8K context length, showcasing exceptional proficiency in code comprehension. By incorporating Grouped-Query Attention and Rotary Positional Embedding into GPT-2, CodeShell-Base integrates the structural merits of StarCoder and CodeLlama and forms its unique architectural design. We then carefully built a comprehensive data pre-processing process, including similar data deduplication, perplexity-based data filtering, and model-based data filtering. Through this process, We have curated 100 billion high-quality pre-training data from GitHub. Benefiting from the high-quality data, CodeShell-Base outperforms CodeLlama in Humaneval after training on just 500 billion tokens (5 epochs). We have conducted extensive experiments across multiple language datasets, including Python, Java, and C++, and the results indicate that our model possesses robust foundational capabilities in code comprehension and generation.
CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation
With the rapid advancement of Large Language Models (LLMs), the demand for robust instruction-following capabilities in code generation tasks has grown significantly. Code generation not only facilitates faster prototyping and automated testing, but also augments developer efficiency through improved maintainability and reusability of code. In this paper, we introduce CodeIF, the first benchmark specifically designed to assess the abilities of LLMs to adhere to task-oriented instructions within diverse code generation scenarios. CodeIF encompasses a broad range of tasks, including function synthesis, error debugging, algorithmic refactoring, and code explanation, thereby providing a comprehensive suite to evaluate model performance across varying complexity levels and programming domains. We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks. The experimental results offer valuable insights into how well current models align with human instructions, as well as the extent to which they can generate consistent, maintainable, and contextually relevant code. Our findings not only underscore the critical role that instruction-following LLMs can play in modern software development, but also illuminate pathways for future research aimed at enhancing their adaptability, reliability, and overall effectiveness in automated code generation.
GitChameleon: Unmasking the Version-Switching Capabilities of Code Generation Models
The rapid evolution of software libraries presents a significant challenge for code generation models, which must adapt to frequent version updates while maintaining compatibility with previous versions. Existing code completion benchmarks often overlook this dynamic aspect, and the one that does consider it relies on static code prediction tasks without execution-based evaluation, offering a limited perspective on a model's practical usability. To address this gap, we introduce \GitChameleon{}, a novel, manually curated dataset comprising 116 Python code completion problems, each conditioned on specific library versions and accompanied by executable unit tests. is designed to rigorously assess the ability of modern large language models (LLMs) to generate version-specific code that is not only syntactically correct but also functionally accurate upon execution. Our comprehensive evaluations reveal that state-of-the-art LLMs struggle with this task; for instance, GPT-4o achieves a pass@10 of only 39.9\% (43.7\% when provided with error feedback), highlighting the complexity of the problem and the limitations of current models. By providing an execution-based benchmark that emphasizes the dynamic nature of code libraries, serves as a critical tool to advance the development of more adaptable and reliable code generation models. For facilitation for further exploration of version-conditioned code generation, we make our code repository publicly accessible at https://github.com/NizarIslah/GitChameleon.
Code Generation and Algorithmic Problem Solving Using Llama 3.1 405B
Code generation by Llama 3.1 models, such as Meta's Llama 3.1 405B, represents a significant advancement in the field of artificial intelligence, particularly in natural language processing and programming automation. This paper explores the capabilities and applications of Llama-driven code generation, highlighting its ability to translate natural language prompts into executable code across multiple programming languages. Key features include contextual awareness, multi-language support, and enhanced debugging and optimization functionalities. By examining these aspects, we illustrate how Llama can serve as a versatile tool for developers of all skill levels, improving productivity and efficiency in software development. The potential implications for education, industry, and the future of coding practices are also discussed, underscoring the transformative impact of AI in programming. Experimentation shows that while Llama 3.1 405B performs well with simple algorithmic and data structure based problems, it still struggles with problems on Quantum Computing, Bioinformatics, and Artificial Intelligence.
Private-Library-Oriented Code Generation with Large Language Models
Large language models (LLMs), such as Codex and GPT-4, have recently showcased their remarkable code generation abilities, facilitating a significant boost in coding efficiency. This paper will delve into utilizing LLMs for code generation in private libraries, as they are widely employed in everyday programming. Despite their remarkable capabilities, generating such private APIs poses a formidable conundrum for LLMs, as they inherently lack exposure to these private libraries during pre-training. To address this challenge, we propose a novel framework that emulates the process of programmers writing private code. This framework comprises two modules: APIFinder first retrieves potentially useful APIs from API documentation; and APICoder then leverages these retrieved APIs to generate private code. Specifically, APIFinder employs vector retrieval techniques and allows user involvement in the retrieval process. For APICoder, it can directly utilize off-the-shelf code generation models. To further cultivate explicit proficiency in invoking APIs from prompts, we continuously pre-train a reinforced version of APICoder, named CodeGenAPI. Our goal is to train the above two modules on vast public libraries, enabling generalization to private ones. Meanwhile, we create four private library benchmarks, including TorchDataEval, TorchDataComplexEval, MonkeyEval, and BeatNumEval, and meticulously handcraft test cases for each benchmark to support comprehensive evaluations. Numerous experiments on the four benchmarks consistently affirm the effectiveness of our approach. Furthermore, deeper analysis is also conducted to glean additional insights.
Guided Code Generation with LLMs: A Multi-Agent Framework for Complex Code Tasks
Large Language Models (LLMs) have shown remarkable capabilities in code generation tasks, yet they face significant limitations in handling complex, long-context programming challenges and demonstrating complex compositional reasoning abilities. This paper introduces a novel agentic framework for ``guided code generation'' that tries to address these limitations through a deliberately structured, fine-grained approach to code generation tasks. Our framework leverages LLMs' strengths as fuzzy searchers and approximate information retrievers while mitigating their weaknesses in long sequential reasoning and long-context understanding. Empirical evaluation using OpenAI's HumanEval benchmark with Meta's Llama 3.1 8B model (int4 precision) demonstrates a 23.79\% improvement in solution accuracy compared to direct one-shot generation. Our results indicate that structured, guided approaches to code generation can significantly enhance the practical utility of LLMs in software development while overcoming their inherent limitations in compositional reasoning and context handling.
CodeElo: Benchmarking Competition-level Code Generation of LLMs with Human-comparable Elo Ratings
With the increasing code reasoning capabilities of existing large language models (LLMs) and breakthroughs in reasoning models like OpenAI o1 and o3, there is a growing need to develop more challenging and comprehensive benchmarks that effectively test their sophisticated competition-level coding abilities. Existing benchmarks, like LiveCodeBench and USACO, fall short due to the unavailability of private test cases, lack of support for special judges, and misaligned execution environments. To bridge this gap, we introduce CodeElo, a standardized competition-level code generation benchmark that effectively addresses all these challenges for the first time. CodeElo benchmark is mainly based on the official CodeForces platform and tries to align with the platform as much as possible. We compile the recent six months of contest problems on CodeForces with detailed information such as contest divisions, problem difficulty ratings, and problem algorithm tags. We introduce a unique judging method in which problems are submitted directly to the platform and develop a reliable Elo rating calculation system that aligns with the platform and is comparable with human participants but has lower variance. By testing on our CodeElo, we provide the Elo ratings of 30 existing popular open-source and 3 proprietary LLMs for the first time. The results show that o1-mini and QwQ-32B-Preview stand out significantly, achieving Elo ratings of 1578 and 1261, respectively, while other models struggle even with the easiest problems, placing in the lowest 20 percent among all human participants. Detailed analysis experiments are also conducted to provide insights into performance across algorithms and comparisons between using C++ and Python, which can suggest directions for future studies.
HelloBench: Evaluating Long Text Generation Capabilities of Large Language Models
In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks (e.g., long-context understanding), and many benchmarks have been proposed. However, we observe that long text generation capabilities are not well investigated. Therefore, we introduce the Hierarchical Long Text Generation Benchmark (HelloBench), a comprehensive, in-the-wild, and open-ended benchmark to evaluate LLMs' performance in generating long text. Based on Bloom's Taxonomy, HelloBench categorizes long text generation tasks into five subtasks: open-ended QA, summarization, chat, text completion, and heuristic text generation. Besides, we propose Hierarchical Long Text Evaluation (HelloEval), a human-aligned evaluation method that significantly reduces the time and effort required for human evaluation while maintaining a high correlation with human evaluation. We have conducted extensive experiments across around 30 mainstream LLMs and observed that the current LLMs lack long text generation capabilities. Specifically, first, regardless of whether the instructions include explicit or implicit length constraints, we observe that most LLMs cannot generate text that is longer than 4000 words. Second, we observe that while some LLMs can generate longer text, many issues exist (e.g., severe repetition and quality degradation). Third, to demonstrate the effectiveness of HelloEval, we compare HelloEval with traditional metrics (e.g., ROUGE, BLEU, etc.) and LLM-as-a-Judge methods, which show that HelloEval has the highest correlation with human evaluation. We release our code in https://github.com/Quehry/HelloBench.
CodeAgent: Enhancing Code Generation with Tool-Integrated Agent Systems for Real-World Repo-level Coding Challenges
Large Language Models (LLMs) have shown promise in automated code generation but typically excel only in simpler tasks such as generating standalone code units. Real-world software development, however, often involves complex code repositories (named repo) with complex dependencies and extensive documentation. To fill this gap, our research pivots towards evaluating LLMs in a more realistic setting -- real-world repo-level code generation. We introduce CodeAgentBench, a manually curated benchmark for repo-level code generation. This benchmark comprises five high-quality Python projects, encompassing a total of 101 samples. We assess nine leading LLMs on repo-level tasks and observe a decline in their performance. To tackle this, we present CodeAgent, a novel LLM-based agent framework that employs external tools for effective repo-level code generation. CodeAgent integrates five programming tools, enabling interaction with software artifacts for information retrieval, code symbol navigation, and code testing. We implement four agent strategies to optimize these tools' usage. Our experiments on CodeAgentBench show that CodeAgent enhances LLM performance significantly, with improvements ranging from 18.1\% to 250\%. Further tests on the HumanEval benchmark confirm CodeAgent's adaptability and efficacy across various code generation tasks. Notably, CodeAgent outperforms commercial products like Github Copilot, showcasing superior accuracy and efficiency. These results demonstrate CodeAgent's robust capabilities in code generation, highlighting its potential for real-world repo-level coding challenges.
WebApp1K: A Practical Code-Generation Benchmark for Web App Development
We introduce WebApp1K, a practical code-generation benchmark to measure LLM ability to develop web apps. This benchmark aims to calibrate LLM output and aid the models to progressively improve code correctness and functionality. The benchmark is lightweight and easy to run. We present the initial version of WebApp1K, and share our findings of running the benchmark against the latest frontier LLMs. First, open source LLMs deliver impressive performance, closely trailing behind GPT-4o and Claude 3.5. Second, model size has strong correlation with code correctness. Third, no prompting techniques have been found to lift performance either universally to all models, or significantly to a single model.
Test-Driven Development for Code Generation
Recent Large Language Models (LLMs) have demonstrated significant capabilities in generating code snippets directly from problem statements. This increasingly automated process mirrors traditional human-led software development, where code is often written in response to a requirement. Historically, Test-Driven Development (TDD) has proven its merit, requiring developers to write tests before the functional code, ensuring alignment with the initial problem statements. Applying TDD principles to LLM-based code generation offers one distinct benefit: it enables developers to verify the correctness of generated code against predefined tests. This paper investigates if and how TDD can be incorporated into AI-assisted code-generation processes. We experimentally evaluate our hypothesis that providing LLMs like GPT-4 and Llama 3 with tests in addition to the problem statements enhances code generation outcomes. We experimented with established function-level code generation benchmarks such as MBPP and HumanEval. Our results consistently demonstrate that including test cases leads to higher success in solving programming challenges. We assert that TDD is a promising paradigm for helping ensure that the code generated by LLMs effectively captures the requirements.
Outcome-Refining Process Supervision for Code Generation
Large Language Models have demonstrated remarkable capabilities in code generation, yet they often struggle with complex programming tasks that require deep algorithmic reasoning. While process supervision through learned reward models shows promise in guiding reasoning steps, it requires expensive training data and suffers from unreliable evaluation. We propose Outcome-Refining Process Supervision, a novel paradigm that treats outcome refinement itself as the process to be supervised. Our framework leverages concrete execution signals to ground the supervision of reasoning steps, while using tree-structured exploration to maintain multiple solution trajectories simultaneously. Experiments demonstrate that our approach enables even smaller models to achieve high success accuracy and performance metrics on competitive programming tasks, creates more reliable verification than traditional reward models without requiring training PRMs. Our approach achieves significant improvements across 5 models and 3 datasets: an average of 26.9% increase in correctness and 42.2% in efficiency. The results suggest that providing structured reasoning space with concrete verification signals is crucial for solving complex programming tasks. We open-source all our code and data at: https://github.com/zhuohaoyu/ORPS
Demystifying GPT Self-Repair for Code Generation
Large Language Models (LLMs) have shown remarkable aptitude in code generation but still struggle on challenging programming tasks. Self-repair -- in which the model debugs and fixes mistakes in its own code -- has recently become a popular way to boost performance in these settings. However, only very limited studies on how and when self-repair works effectively exist in the literature, and one might wonder to what extent a model is really capable of providing accurate feedback on why the code is wrong when that code was generated by the same model. In this paper, we analyze GPT-3.5 and GPT-4's ability to perform self-repair on APPS, a challenging dataset consisting of diverse coding challenges. To do so, we first establish a new evaluation strategy dubbed pass@t that measures the pass rate of the tasks against the total number of tokens sampled from the model, enabling a fair comparison to purely sampling-based approaches. With this evaluation strategy, we find that the effectiveness of self-repair is only seen in GPT-4. We also observe that self-repair is bottlenecked by the feedback stage; using GPT-4 to give feedback on the programs generated by GPT-3.5 and using expert human programmers to give feedback on the programs generated by GPT-4, we unlock significant performance gains.
Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation with Large Language Models
Large Language Models (LLMs) possess impressive capabilities to generate meaningful code snippets given natural language intents in zero-shot, i.e., without the need for specific fine-tuning. In the perspective of unleashing their full potential, prior work has demonstrated the benefits of fine-tuning the models to task-specific data. However, fine-tuning process demands heavy computational costs and is intractable when resources are scarce, especially for models with billions of parameters. In light of these challenges, previous studies explored In-Context Learning (ICL) as an effective strategy to generate contextually appropriate code without fine-tuning. However, it operates at inference time and does not involve learning task-specific parameters, potentially limiting the model's performance on downstream tasks. In this context, we foresee that Parameter-Efficient Fine-Tuning (PEFT) techniques carry a high potential for efficiently specializing LLMs to task-specific data. In this paper, we deliver a comprehensive study of LLMs with the impact of PEFT techniques under the automated code generation scenario. Our experimental results reveal the superiority and potential of such techniques over ICL on a wide range of LLMs in reducing the computational burden and improving performance. Therefore, the study opens opportunities for broader applications of PEFT in software engineering scenarios.
Self-Infilling Code Generation
This work introduces a general code generation framework that incorporates infilling operations into auto-regressive decoding. Our approach capitalizes on the observation that recent code language models with infilling capabilities can perform self-infilling: whereas infilling operations aim to fill in the middle based on a predefined prefix and suffix, self-infilling sequentially generates both such surrounding context and the infilled content. We utilize this feature to develop an infilling-augmented decoding process that facilitates non-monotonic generation. This approach allows for postponing the generation of uncertain code snippets until a definitive suffix is established, leading to improved control over the generation sequence. In addition, it facilitates a looping mechanism, which can iteratively update and synchronize each piece of generation in a cyclic manner. Extensive experiments are conducted to demonstrate that our proposed decoding process is effective in enhancing regularity and quality across several code generation benchmarks.
Testing LLMs on Code Generation with Varying Levels of Prompt Specificity
Large language models (LLMs) have demonstrated unparalleled prowess in mimicking human-like text generation and processing. Among the myriad of applications that benefit from LLMs, automated code generation is increasingly promising. The potential to transform natural language prompts into executable code promises a major shift in software development practices and paves the way for significant reductions in manual coding efforts and the likelihood of human-induced errors. This paper reports the results of a study that evaluates the performance of various LLMs, such as Bard, ChatGPT-3.5, ChatGPT-4, and Claude-2, in generating Python for coding problems. We focus on how levels of prompt specificity impact the accuracy, time efficiency, and space efficiency of the generated code. A benchmark of 104 coding problems, each with four types of prompts with varying degrees of tests and specificity, was employed to examine these aspects comprehensively. Our results indicate significant variations in performance across different LLMs and prompt types, and its key contribution is to reveal the ideal prompting strategy for creating accurate Python functions. This study lays the groundwork for further research in LLM capabilities and suggests practical implications for utilizing LLMs in automated code generation tasks and test-driven development.
OpenCodeInterpreter: Integrating Code Generation with Execution and Refinement
The introduction of large language models has significantly advanced code generation. However, open-source models often lack the execution capabilities and iterative refinement of advanced systems like the GPT-4 Code Interpreter. To address this, we introduce OpenCodeInterpreter, a family of open-source code systems designed for generating, executing, and iteratively refining code. Supported by Code-Feedback, a dataset featuring 68K multi-turn interactions, OpenCodeInterpreter integrates execution and human feedback for dynamic code refinement. Our comprehensive evaluation of OpenCodeInterpreter across key benchmarks such as HumanEval, MBPP, and their enhanced versions from EvalPlus reveals its exceptional performance. Notably, OpenCodeInterpreter-33B achieves an accuracy of 83.2 (76.4) on the average (and plus versions) of HumanEval and MBPP, closely rivaling GPT-4's 84.2 (76.2) and further elevates to 91.6 (84.6) with synthesized human feedback from GPT-4. OpenCodeInterpreter brings the gap between open-source code generation models and proprietary systems like GPT-4 Code Interpreter.
A Survey On Large Language Models For Code Generation
Large Language Models (LLMs) have demonstrated their remarkable capabilities in numerous fields. This survey focuses on how LLMs empower users, regardless of their technical background, to use human languages to automatically generate executable code. We begin with understanding LLMs' limitations and challenges in automated code generation. Subsequently, we review various fine-tuning techniques designed to enhance both the performance and adaptability of LLMs in code generation tasks. We then review the existing metrics and benchmarks for evaluations to assess model performance based on fine-tuning techniques. Finally, we explore the applications of LLMs (e.g. CodeLlama, GitHub Copilot, ToolGen) in code generation tasks to illustrate their roles and functionalities. This survey provides a comprehensive overview of LLMs for code generation, helps researchers in diverse fields better understand the current state-of-the-art technologies, and offers the potential of effectively leveraging LLMs for code generation tasks.
$\mathbb{USCD}$: Improving Code Generation of LLMs by Uncertainty-Aware Selective Contrastive Decoding
Large language models (LLMs) have shown remarkable capabilities in code generation. However, the effects of hallucinations (e.g., output noise) make it particularly challenging for LLMs to generate high-quality code in one pass. In this work, we propose a simple and effective uncertainty-aware selective contrastive decoding (USCD) mechanism to improve the quality of one-pass code generation in LLMs and reduce the impact of output noise. To be specific, we first elaborately designed a negative prompt (namely lame prompt) to output noise by removing input-output examples from the standard few-shot prompt. Our preliminary study shows that the Jensen-Shannon divergence (JS divergence) between token distribution uncertainty and the output noise is relatively low (approximately 0.25), indicating their high relevance. Then, we selectively eliminate output noise induced by lame prompts based on the uncertainty of the prediction distribution from the standard prompt. Notably, our proposed plug-and-play mechanism is an inference-only method, enjoying appealing flexibility. Extensive experiments on widely used benchmarks, e.g., HumanEval, MBPP, and MultiPL-E, upon several LLMs (i.e., Inocder-6b, CodeLlama-7b, WizardCoder-15b, StarCoder, and Llama2-7b), demonstrate that our proposed USCD significantly improves one-pass code generation, with an average pass@1 scores increase of 16.59\%. We will release code and data on GitHub.
CodeT: Code Generation with Generated Tests
The task of generating code solutions for a given programming problem can benefit from the use of pre-trained language models such as Codex, which can produce multiple diverse samples. However, a major challenge for this task is to select the most appropriate solution from the multiple samples generated by the pre-trained language models. A natural way to evaluate the quality and correctness of a code solution is to run it against a set of test cases, but the manual creation of such test cases is often costly and time-consuming. In this paper, we propose a novel method, CodeT, that leverages the same pre-trained language models to automatically generate test cases for the code samples, thus reducing the human effort and increasing the coverage of the test scenarios. CodeT then executes the code samples using the generated test cases, and performs a dual execution agreement, which considers both the consistency of the outputs against the generated test cases and the agreement of the outputs with other code samples. We conduct comprehensive experiments on four benchmarks, HumanEval, MBPP, APPS and CodeContests, using five different pre-trained language models with varying sizes and capabilities. Our results show that CodeT can significantly improve the performance of code solution selection over previous methods, achieving remarkable and consistent gains across different models and benchmarks. For instance, CodeT improves the pass@1 metric on HumanEval to 65.8%, which represents an absolute improvement of 18.8% over the code-davinci-002 model, and an absolute improvement of more than 20% over the previous state-of-the-art results.
CodeMMLU: A Multi-Task Benchmark for Assessing Code Understanding Capabilities of CodeLLMs
Recent advancements in Code Large Language Models (CodeLLMs) have predominantly focused on open-ended code generation tasks, often neglecting the critical aspect of code understanding and comprehension. To bridge this gap, we present CodeMMLU, a comprehensive multiple-choice question-answer benchmark designed to evaluate the depth of software and code understanding in LLMs. CodeMMLU includes over 10,000 questions sourced from diverse domains, encompassing tasks such as code analysis, defect detection, and software engineering principles across multiple programming languages. Unlike traditional benchmarks, CodeMMLU assesses models's ability to reason about code rather than merely generate it, providing deeper insights into their grasp of complex software concepts and systems. Our extensive evaluation reveals that even state-of-the-art models face significant challenges with CodeMMLU, highlighting deficiencies in comprehension beyond code generation. By underscoring the crucial relationship between code understanding and effective generation, CodeMMLU serves as a vital resource for advancing AI-assisted software development, ultimately aiming to create more reliable and capable coding assistants.
CodeArena: A Collective Evaluation Platform for LLM Code Generation
Large Language Models (LLMs) have reshaped code generation by synergizing their exceptional comprehension of natural language and programming syntax, thereby substantially boosting developer productivity. These advancements have prompted numerous efforts to quantitatively evaluate their coding capabilities. However, persistent challenges, such as benchmark leakage, data dissipation, and limited system accessibility, continue to impede a timely and accurate assessment. To address these limitations, we introduce CodeArena, an online evaluation framework tailored for LLM code generation. The key innovation is a collective evaluation mechanism, which dynamically recalibrates individual model scores based on the holistic performance of all participating models, mitigating score biases caused by widespread benchmark leakage. In addition, CodeArena ensures open access to all submitted solutions and test cases and provides automation-friendly APIs to streamline the code evaluation workflow. Our main contributions are: (1) a collective evaluation system for unbiased assessment, (2) a public repository of solutions and test cases, and (3) automation-ready APIs for seamless integration.
Improving ChatGPT Prompt for Code Generation
Automated code generation can be a powerful technique for software development, significantly reducing developers' efforts and time required to create new code by generating it automatically based on requirements. Recently, OpenAI's language model ChatGPT has emerged as a powerful tool for generating human-like responses to a wide range of textual inputs (i.e., prompts), including those related to code generation. However, the effectiveness of ChatGPT for code generation is not well understood, and the generation performance could be heavily influenced by the choice of prompt. To answer these questions, we conducted experiments using the CodeXGlue dataset to evaluate ChatGPT's capabilities for two code generation tasks, including text-to-code and code-to-code generation. We designed prompts by leveraging the chain-of-thought strategy with multi-step optimizations. Our results showed that by carefully designing prompts to guide ChatGPT, the generation performance can be improved substantially. We also analyzed the factors that influenced the prompt design and provided insights that could guide future research.
ReasoningV: Efficient Verilog Code Generation with Adaptive Hybrid Reasoning Model
Large Language Models (LLMs) have advanced Verilog code generation significantly, yet face challenges in data quality, reasoning capabilities, and computational efficiency. This paper presents ReasoningV, a novel model employing a hybrid reasoning strategy that integrates trained intrinsic capabilities with dynamic inference adaptation for Verilog code generation. Our framework introduces three complementary innovations: (1) ReasoningV-5K, a high-quality dataset of 5,000 functionally verified instances with reasoning paths created through multi-dimensional filtering of PyraNet samples; (2) a two-stage training approach combining parameter-efficient fine-tuning for foundational knowledge with full-parameter optimization for enhanced reasoning; and (3) an adaptive reasoning mechanism that dynamically adjusts reasoning depth based on problem complexity, reducing token consumption by up to 75\% while preserving performance. Experimental results demonstrate ReasoningV's effectiveness with a pass@1 accuracy of 57.8\% on VerilogEval-human, achieving performance competitive with leading commercial models like Gemini-2.0-flash (59.5\%) and exceeding the previous best open-source model by 10.4 percentage points. ReasoningV offers a more reliable and accessible pathway for advancing AI-driven hardware design automation, with our model, data, and code available at https://github.com/BUAA-CLab/ReasoningV.
Prism: Dynamic and Flexible Benchmarking of LLMs Code Generation with Monte Carlo Tree Search
The rapid advancement of Large Language Models (LLMs) has outpaced traditional evaluation methods. Static benchmarks fail to capture the depth and breadth of LLM capabilities and eventually become obsolete, while most dynamic approaches either rely too heavily on LLM-based evaluation or remain constrained by predefined test sets. We introduce Prism, a flexible, dynamic benchmarking framework designed for comprehensive LLM assessment. Prism builds on three key components: (1) a tree-based state representation that models evaluation as a Markov Decision Process, (2) a Monte Carlo Tree Search algorithm adapted to uncover challenging evaluation scenarios, and (3) a multi-agent evaluation pipeline that enables simultaneous assessment of diverse capabilities. To ensure robust evaluation, Prism integrates structural measurements of tree exploration patterns with performance metrics across difficulty levels, providing detailed diagnostics of error patterns, test coverage, and solution approaches. Through extensive experiments on five state-of-the-art LLMs, we analyze how model architecture and scale influence code generation performance across varying task difficulties. Our results demonstrate Prism's effectiveness as a dynamic benchmark that evolves with model advancements while offering deeper insights into their limitations.
Towards Advancing Code Generation with Large Language Models: A Research Roadmap
Recently, we have witnessed the rapid development of large language models, which have demonstrated excellent capabilities in the downstream task of code generation. However, despite their potential, LLM-based code generation still faces numerous technical and evaluation challenges, particularly when embedded in real-world development. In this paper, we present our vision for current research directions, and provide an in-depth analysis of existing studies on this task. We propose a six-layer vision framework that categorizes code generation process into distinct phases, namely Input Phase, Orchestration Phase, Development Phase, and Validation Phase. Additionally, we outline our vision workflow, which reflects on the currently prevalent frameworks. We systematically analyse the challenges faced by large language models, including those LLM-based agent frameworks, in code generation tasks. With these, we offer various perspectives and actionable recommendations in this area. Our aim is to provide guidelines for improving the reliability, robustness and usability of LLM-based code generation systems. Ultimately, this work seeks to address persistent challenges and to provide practical suggestions for a more pragmatic LLM-based solution for future code generation endeavors.
Beyond Correctness: Benchmarking Multi-dimensional Code Generation for Large Language Models
In recent years, researchers have proposed numerous benchmarks to evaluate the impressive coding capabilities of large language models (LLMs). However, existing benchmarks primarily focus on assessing the correctness of code generated by LLMs, while neglecting other critical dimensions that also significantly impact code quality. Therefore, this paper proposes the RACE benchmark, which comprehensively evaluates the quality of code generated by LLMs across 4 dimensions: Readability, mAintainability, Correctness, and Efficiency. Specifically, considering the demand-dependent nature of dimensions beyond correctness, we design various types of user requirements for each dimension to assess the model's ability to generate correct code that also meets user demands. We evaluate 18 representative LLMs on RACE and find that: 1) the current LLMs' ability to generate high-quality code on demand does not yet meet the requirements of software development; 2) readability serves as a critical indicator of the overall quality of generated code; 3) most LLMs exhibit an inherent preference for specific coding style. These findings can help researchers gain a deeper understanding of the coding capabilities of current LLMs and shed light on future directions for model improvement.
HumanEval Pro and MBPP Pro: Evaluating Large Language Models on Self-invoking Code Generation
We introduce self-invoking code generation, a new task designed to evaluate the progressive reasoning and problem-solving capabilities of LLMs. In this task, models are presented with a base problem and a related, more complex problem. They must solve the base problem and then utilize its solution to address the more complex one. This work features three key contributions. First, we propose a general recipe for generating more challenging versions of existing benchmarks, resulting in three new benchmarks: HumanEval Pro, MBPP Pro, and BigCodeBench-Lite Pro, specifically designed to assess LLMs on self-invoking code generation. Second, from the analysis of experimental results over twenty LLMs on our benchmarks, we have two important observations: (i) Most LLMs excel in traditional code generation benchmarks like HumanEval and MBPP, but their performance declines on self-invoking tasks. For example, o1-mini achieves 96.2% pass@1 on HumanEval but only 76.2% on HumanEval Pro. (ii) On self-invoking code generation task, the instruction-tuned models demonstrate only marginal improvements compared to the base models. Third, we disclose the types of failure modes that exist in our evaluation results. All these results underscore the need for further advancements in self-invoking code generation tasks and provide a new direction for future research on enhancing LLMs' code reasoning capabilities.
ChartCoder: Advancing Multimodal Large Language Model for Chart-to-Code Generation
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in chart understanding tasks. However, interpreting charts with textual descriptions often leads to information loss, as it fails to fully capture the dense information embedded in charts. In contrast, parsing charts into code provides lossless representations that can effectively contain all critical details. Although existing open-source MLLMs have achieved success in chart understanding tasks, they still face two major challenges when applied to chart-to-code tasks.: (1) Low executability and poor restoration of chart details in the generated code and (2) Lack of large-scale and diverse training data. To address these challenges, we propose ChartCoder, the first dedicated chart-to-code MLLM, which leverages Code LLMs as the language backbone to enhance the executability of the generated code. Furthermore, we introduce Chart2Code-160k, the first large-scale and diverse dataset for chart-to-code generation, and propose the Snippet-of-Thought (SoT) method, which transforms direct chart-to-code generation data into step-by-step generation. Experiments demonstrate that ChartCoder, with only 7B parameters, surpasses existing open-source MLLMs on chart-to-code benchmarks, achieving superior chart restoration and code excitability. Our code will be available at https://github.com/thunlp/ChartCoder.
Enhancing Code LLMs with Reinforcement Learning in Code Generation: A Survey
With the rapid evolution of large language models (LLM), reinforcement learning (RL) has emerged as a pivotal technique for code generation and optimization in various domains. This paper presents a systematic survey of the application of RL in code optimization and generation, highlighting its role in enhancing compiler optimization, resource allocation, and the development of frameworks and tools. Subsequent sections first delve into the intricate processes of compiler optimization, where RL algorithms are leveraged to improve efficiency and resource utilization. The discussion then progresses to the function of RL in resource allocation, emphasizing register allocation and system optimization. We also explore the burgeoning role of frameworks and tools in code generation, examining how RL can be integrated to bolster their capabilities. This survey aims to serve as a comprehensive resource for researchers and practitioners interested in harnessing the power of RL to advance code generation and optimization techniques.
VersiCode: Towards Version-controllable Code Generation
Significant research has focused on improving the performance of large language model on code-related tasks due to their practical importance. Although performance is typically evaluated using public benchmark datasets, the existing datasets do not account for the concept of version, which is crucial in professional software development. In this paper, we introduce VersiCode, the first comprehensive dataset designed to assess the ability of large language models to generate verifiable code for specific library versions. VersiCode encompasses 300 libraries across more than 2,000 versions spanning 9 years. We design two dedicated evaluation tasks: version-specific code completion (VSCC) and version-aware code editing (VACE). Comprehensive experiments are conducted to benchmark the performance of LLMs, revealing the challenging nature of these tasks and VersiCode, that even state-of-the-art LLMs struggle to generate version-correct code. This dataset, together with the proposed tasks, sheds light on LLMs' capabilities and limitations in handling version-specific code generation, and opens up an important new area of research for further investigation. The resources can be found at https://github.com/wutong8023/VersiCode.
Retrieval-Augmented Code Generation for Universal Information Extraction
Information Extraction (IE) aims to extract structural knowledge (e.g., entities, relations, events) from natural language texts, which brings challenges to existing methods due to task-specific schemas and complex text expressions. Code, as a typical kind of formalized language, is capable of describing structural knowledge under various schemas in a universal way. On the other hand, Large Language Models (LLMs) trained on both codes and texts have demonstrated powerful capabilities of transforming texts into codes, which provides a feasible solution to IE tasks. Therefore, in this paper, we propose a universal retrieval-augmented code generation framework based on LLMs, called Code4UIE, for IE tasks. Specifically, Code4UIE adopts Python classes to define task-specific schemas of various structural knowledge in a universal way. By so doing, extracting knowledge under these schemas can be transformed into generating codes that instantiate the predefined Python classes with the information in texts. To generate these codes more precisely, Code4UIE adopts the in-context learning mechanism to instruct LLMs with examples. In order to obtain appropriate examples for different tasks, Code4UIE explores several example retrieval strategies, which can retrieve examples semantically similar to the given texts. Extensive experiments on five representative IE tasks across nine datasets demonstrate the effectiveness of the Code4UIE framework.
A Comparative Study of Code Generation using ChatGPT 3.5 across 10 Programming Languages
Large Language Models (LLMs) are advanced Artificial Intelligence (AI) systems that have undergone extensive training using large datasets in order to understand and produce language that closely resembles that of humans. These models have reached a level of proficiency where they are capable of successfully completing university exams across several disciplines and generating functional code to handle novel problems. This research investigates the coding proficiency of ChatGPT 3.5, a LLM released by OpenAI in November 2022, which has gained significant recognition for its impressive text generating and code creation capabilities. The skill of the model in creating code snippets is evaluated across 10 various programming languages and 4 different software domains. Based on the findings derived from this research, major unexpected behaviors and limitations of the model have been identified. This study aims to identify potential areas for development and examine the ramifications of automated code generation on the evolution of programming languages and on the tech industry.
Plot2Code: A Comprehensive Benchmark for Evaluating Multi-modal Large Language Models in Code Generation from Scientific Plots
The remarkable progress of Multi-modal Large Language Models (MLLMs) has attracted significant attention due to their superior performance in visual contexts. However, their capabilities in turning visual figure to executable code, have not been evaluated thoroughly. To address this, we introduce Plot2Code, a comprehensive visual coding benchmark designed for a fair and in-depth assessment of MLLMs. We carefully collect 132 manually selected high-quality matplotlib plots across six plot types from publicly available matplotlib galleries. For each plot, we carefully offer its source code, and an descriptive instruction summarized by GPT-4. This approach enables Plot2Code to extensively evaluate MLLMs' code capabilities across various input modalities. Furthermore, we propose three automatic evaluation metrics, including code pass rate, text-match ratio, and GPT-4V overall rating, for a fine-grained assessment of the output code and rendered images. Instead of simply judging pass or fail, we employ GPT-4V to make an overall judgement between the generated and reference images, which has been shown to be consistent with human evaluation. The evaluation results, which include analyses of 14 MLLMs such as the proprietary GPT-4V, Gemini-Pro, and the open-sourced Mini-Gemini, highlight the substantial challenges presented by Plot2Code. With Plot2Code, we reveal that most existing MLLMs struggle with visual coding for text-dense plots, heavily relying on textual instruction. We hope that the evaluation results from Plot2Code on visual coding will guide the future development of MLLMs. All data involved with Plot2Code are available at https://huggingface.co/datasets/TencentARC/Plot2Code.
On the Effectiveness of Large Language Models in Domain-Specific Code Generation
Large language models (LLMs) such as ChatGPT have shown remarkable capabilities in code generation. Despite their great success, their effectiveness within particular domains (e.g., web development) necessitates further evaluation. In this study, we conduct an empirical study of domain-specific code generation with LLMs. We demonstrate that LLMs exhibit sub-optimal performance in generating domain-specific code, due to their limited proficiency in utilizing domain-specific libraries. We further observe that incorporating API knowledge as prompts can empower LLMs to generate more professional code. Based on these findings, we further investigate how to efficiently incorporate API knowledge into the code generation process. We experiment with three strategies for incorporating domain knowledge, namely, external knowledge inquirer, chain-of-thought prompting, and chain-of-thought fine-tuning. We refer to these strategies as a new code generation approach called DomCoder. Experimental results show that all strategies of DomCoder lead to improvement in the effectiveness of domain-specific code generation under certain settings. The results also show that there is still ample room for further improvement, based on which we suggest possible future works.
Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for Code Generation
Large language models (LLMs) have showcased remarkable prowess in code generation. However, automated code generation is still challenging since it requires a high-level semantic mapping between natural language requirements and codes. Most existing LLMs-based approaches for code generation rely on decoder-only causal language models often treate codes merely as plain text tokens, i.e., feeding the requirements as a prompt input, and outputing code as flat sequence of tokens, potentially missing the rich semantic features inherent in source code. To bridge this gap, this paper proposes the "Semantic Chain-of-Thought" approach to intruduce semantic information of code, named SeCoT. Our motivation is that the semantic information of the source code (\eg data flow and control flow) describes more precise program execution behavior, intention and function. By guiding LLM consider and integrate semantic information, we can achieve a more granular understanding and representation of code, enhancing code generation accuracy. Meanwhile, while traditional techniques leveraging such semantic information require complex static or dynamic code analysis to obtain features such as data flow and control flow, SeCoT demonstrates that this process can be fully automated via the intrinsic capabilities of LLMs (i.e., in-context learning), while being generalizable and applicable to challenging domains. While SeCoT can be applied with different LLMs, this paper focuses on the powerful GPT-style models: ChatGPT(close-source model) and WizardCoder(open-source model). The experimental study on three popular DL benchmarks (i.e., HumanEval, HumanEval-ET and MBPP) shows that SeCoT can achieves state-of-the-art performance, greatly improving the potential for large models and code generation.
MultiPL-E: A Scalable and Extensible Approach to Benchmarking Neural Code Generation
Large language models have demonstrated the ability to generate both natural language and programming language text. Such models open up the possibility of multi-language code generation: could code generation models generalize knowledge from one language to another? Although contemporary code generation models can generate semantically correct Python code, little is known about their abilities with other languages. We propose MultiPL-E, a system for translating unit test-driven code generation benchmarks to new languages. We create the first massively multilingual code generation benchmark by using MultiPL-E to translate two popular Python code generation benchmarks to 18 additional programming languages. We use MultiPL-E to extend the HumanEval benchmark and MBPP benchmark to 18 languages that encompass a range of programming paradigms and popularity. Using these new parallel benchmarks, we evaluate the multi-language performance of three state-of-the-art code generation models: Codex, CodeGen, and InCoder. We find that Codex matches or even exceeds its performance on Python for several other languages. The range of programming languages represented in MultiPL-E allow us to explore the impact of language frequency and language features on model performance. Finally, the MultiPL-E approach of compiling code generation benchmarks to new programming languages is both scalable and extensible, making it straightforward to evaluate new models, benchmarks, and languages.
Tests as Prompt: A Test-Driven-Development Benchmark for LLM Code Generation
We introduce WebApp1K, a novel benchmark for evaluating large language models (LLMs) in test-driven development (TDD) tasks, where test cases serve as both prompt and verification for code generation. Unlike traditional approaches relying on natural language prompts, our benchmark emphasizes the ability of LLMs to interpret and implement functionality directly from test cases, reflecting real-world software development practices. Comprising 1000 diverse challenges across 20 application domains, the benchmark evaluates LLMs on their ability to generate compact, functional code under the constraints of context length and multi-feature complexity. Our findings highlight instruction following and in-context learning as critical capabilities for TDD success, surpassing the importance of general coding proficiency or pretraining knowledge. Through comprehensive evaluation of 19 frontier models, we reveal performance bottlenecks, such as instruction loss in long prompts, and provide a detailed error analysis spanning multiple root causes. This work underscores the practical value of TDD-specific benchmarks and lays the foundation for advancing LLM capabilities in rigorous, application-driven coding scenarios.
CodeTree: Agent-guided Tree Search for Code Generation with Large Language Models
Pre-trained on massive amounts of code and text data, large language models (LLMs) have demonstrated remarkable achievements in performing code generation tasks. With additional execution-based feedback, these models can act as agents with capabilities to self-refine and improve generated code autonomously. However, on challenging coding tasks with extremely large search space, current agentic approaches still struggle with multi-stage planning, generating, and debugging. To address this problem, we propose CodeTree, a framework for LLM agents to efficiently explore the search space in different stages of the code generation process. Specifically, we adopted a unified tree structure to explicitly explore different coding strategies, generate corresponding coding solutions, and subsequently refine the solutions. In each stage, critical decision-making (ranking, termination, expanding) of the exploration process is guided by both the environmental execution-based feedback and LLM-agent-generated feedback. We comprehensively evaluated CodeTree on 7 code generation benchmarks and demonstrated the significant performance gains of CodeTree against strong baselines. Using GPT-4o as the base model, we consistently achieved top results of 95.1 on HumanEval, 98.7 on MBPP, and 43.0 on CodeContests. On the challenging SWEBench benchmark, our approach led to significant performance gains.
InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models
Large Language Models for code (code LLMs) have witnessed tremendous progress in recent years. With the rapid development of code LLMs, many popular evaluation benchmarks, such as HumanEval, DS-1000, and MBPP, have emerged to measure the performance of code LLMs with a particular focus on code generation tasks. However, they are insufficient to cover the full range of expected capabilities of code LLMs, which span beyond code generation to answering diverse coding-related questions. To fill this gap, we propose InfiBench, the first large-scale freeform question-answering (QA) benchmark for code to our knowledge, comprising 234 carefully selected high-quality Stack Overflow questions that span across 15 programming languages. InfiBench uses four types of model-free automatic metrics to evaluate response correctness where domain experts carefully concretize the criterion for each question. We conduct a systematic evaluation for over 100 latest code LLMs on InfiBench, leading to a series of novel and insightful findings. Our detailed analyses showcase potential directions for further advancement of code LLMs. InfiBench is fully open source and continuously expanding to foster more scientific and systematic practices for code LLM evaluation.
The KoLMogorov Test: Compression by Code Generation
Compression is at the heart of intelligence. A theoretically optimal way to compress any sequence of data is to find the shortest program that outputs that sequence and then halts. However, such 'Kolmogorov compression' is uncomputable, and code generating LLMs struggle to approximate this theoretical ideal, as it requires reasoning, planning and search capabilities beyond those of current models. In this work, we introduce the KoLMogorov-Test (KT), a compression-as-intelligence test for code generating LLMs. In KT a model is presented with a sequence of data at inference time, and asked to generate the shortest program that produces the sequence. We identify several benefits of KT for both evaluation and training: an essentially infinite number of problem instances of varying difficulty is readily available, strong baselines already exist, the evaluation metric (compression) cannot be gamed, and pretraining data contamination is highly unlikely. To evaluate current models, we use audio, text, and DNA data, as well as sequences produced by random synthetic programs. Current flagship models perform poorly - both GPT4-o and Llama-3.1-405B struggle on our natural and synthetic sequences. On our synthetic distribution, we are able to train code generation models with lower compression rates than previous approaches. Moreover, we show that gains on synthetic data generalize poorly to real data, suggesting that new innovations are necessary for additional gains on KT.
AutoDroid-V2: Boosting SLM-based GUI Agents via Code Generation
Large language models (LLMs) have brought exciting new advances to mobile UI agents, a long-standing research field that aims to complete arbitrary natural language tasks through mobile UI interactions. However, existing UI agents usually demand high reasoning capabilities of powerful large models that are difficult to be deployed locally on end-users' devices, which raises huge concerns about user privacy and centralized serving cost. One way to reduce the required model size is to customize a smaller domain-specific model with high-quality training data, e.g. large-scale human demonstrations of diverse types of apps and tasks, while such datasets are extremely difficult to obtain. Inspired by the remarkable coding abilities of recent small language models (SLMs), we propose to convert the UI task automation problem to a code generation problem, which can be effectively solved by an on-device SLM and efficiently executed with an on-device code interpreter. Unlike normal coding tasks that can be extensively pretrained with public datasets, generating UI automation code is challenging due to the diversity, complexity, and variability of target apps. Therefore, we adopt a document-centered approach that automatically builds fine-grained API documentation for each app and generates diverse task samples based on this documentation. By guiding the agent with the synthetic documents and task samples, it learns to generate precise and efficient scripts to complete unseen tasks. Based on detailed comparisons with state-of-the-art mobile UI agents, our approach effectively improves the mobile task automation with significantly higher success rates and lower latency/token consumption. Code will be open-sourced.
A Survey on Large Language Models for Code Generation
Large Language Models (LLMs) have garnered remarkable advancements across diverse code-related tasks, known as Code LLMs, particularly in code generation that generates source code with LLM from natural language descriptions. This burgeoning field has captured significant interest from both academic researchers and industry professionals due to its practical significance in software development, e.g., GitHub Copilot. Despite the active exploration of LLMs for a variety of code tasks, either from the perspective of natural language processing (NLP) or software engineering (SE) or both, there is a noticeable absence of a comprehensive and up-to-date literature review dedicated to LLM for code generation. In this survey, we aim to bridge this gap by providing a systematic literature review that serves as a valuable reference for researchers investigating the cutting-edge progress in LLMs for code generation. We introduce a taxonomy to categorize and discuss the recent developments in LLMs for code generation, covering aspects such as data curation, latest advances, performance evaluation, and real-world applications. In addition, we present a historical overview of the evolution of LLMs for code generation and offer an empirical comparison using the widely recognized HumanEval and MBPP benchmarks to highlight the progressive enhancements in LLM capabilities for code generation. We identify critical challenges and promising opportunities regarding the gap between academia and practical development. Furthermore, we have established a dedicated resource website (https://codellm.github.io) to continuously document and disseminate the most recent advances in the field.
Boldly Going Where No Benchmark Has Gone Before: Exposing Bias and Shortcomings in Code Generation Evaluation
Motivated by the increasing popularity of code generation from human descriptions using large language models (LLMs), several benchmarks have been proposed to assess the capabilities of existing and emerging models. This study presents a large-scale human evaluation of HumanEval and MBPP, two widely used benchmarks for Python code generation, focusing on their diversity and difficulty. Our findings reveal a significant bias towards a limited number of programming concepts, with negligible or no representation of most concepts. Additionally, we identify a concerningly high proportion of easy programming questions, potentially leading to an overestimation of model performance on code generation tasks.
SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation
Large language models demonstrate exceptional performance in simple code generation tasks but still face challenges in tackling complex problems. These challenges may stem from insufficient reasoning and problem decomposition capabilities. To address this issue, we propose a reasoning-augmented data generation process, SRA-MCTS, which guides the model to autonomously generate high-quality intermediate reasoning paths. This creates a positive feedback loop, enabling continuous improvement. Our method operates entirely through the model itself without requiring additional supervision. By synthesizing natural language reasoning paths and translating them into executable code, the approach ensures analytical accuracy and enhances the success rate in solving complex tasks. Experimental results show that, even without additional supervisory signals, our method achieves performance improvements across different model scales, demonstrating the significant potential of self-improvement in small models. Furthermore, the method remains robust when traditional Chain-of-Thought (CoT) approaches exhibit performance degradation, with notable improvements observed in diversity metrics such as pass@10. We encourage further exploration of reasoning processes within training data to enhance the ability of language models to address complex problems. Our code and data are public at https://github.com/DIRECT-BIT/SRA-MCTS.
Revisit Self-Debugging with Self-Generated Tests for Code Generation
Large language models (LLMs) have shown significant advancements in code generation, but still face challenges on tasks beyond their basic capabilities. Recently, the notion of self-debugging has been proposed to boost the performance of code generation by leveraging execution feedback from tests. Despite its promise, the availability of high-quality tests in real-world scenarios is limited. In this context, self-debugging with self-generated tests is a promising solution but lacks a full exploration of its limitations and practical potential. Therefore, we investigate its efficacy on diverse programming problems. To deepen our understanding, we propose two distinct paradigms for the process: post-execution and in-execution self-debugging. Within the scope of self-contained Python programming tasks, we find that post-execution self-debugging struggles on basic problems but shows potential for improvement on competitive ones, due to the bias introduced by self-generated tests. On the other hand, in-execution self-debugging enables LLMs to mitigate the bias by solely leveraging intermediate states during execution, thereby enhancing code generation.
i-Code Studio: A Configurable and Composable Framework for Integrative AI
Artificial General Intelligence (AGI) requires comprehensive understanding and generation capabilities for a variety of tasks spanning different modalities and functionalities. Integrative AI is one important direction to approach AGI, through combining multiple models to tackle complex multimodal tasks. However, there is a lack of a flexible and composable platform to facilitate efficient and effective model composition and coordination. In this paper, we propose the i-Code Studio, a configurable and composable framework for Integrative AI. The i-Code Studio orchestrates multiple pre-trained models in a finetuning-free fashion to conduct complex multimodal tasks. Instead of simple model composition, the i-Code Studio provides an integrative, flexible, and composable setting for developers to quickly and easily compose cutting-edge services and technologies tailored to their specific requirements. The i-Code Studio achieves impressive results on a variety of zero-shot multimodal tasks, such as video-to-text retrieval, speech-to-speech translation, and visual question answering. We also demonstrate how to quickly build a multimodal agent based on the i-Code Studio that can communicate and personalize for users.
CodeDPO: Aligning Code Models with Self Generated and Verified Source Code
Code generation models have shown significant potential for programming tasks. However, existing training methods like supervised fine-tuning face key limitations: they do not effectively teach models to prioritize correct over incorrect solutions in ambiguous situations, nor do they effectively optimize the runtime efficiency of the generated code. To address these challenges, we propose CodeDPO, a framework that integrates preference learning into code generation to improve two key code preference factors: code correctness and efficiency. CodeDPO employs a novel dataset construction method, utilizing a self-generation-and-validation mechanism that simultaneously generates and evaluates code and test cases. The underlying assumption is that test cases executable by multiple code snippets provide more reliable validation, and code that passes more tests is more likely to be correct. Through this self-validation process, our PageRank-inspired algorithm iteratively updates the ranking score of each code snippet, ultimately creating a code preference optimization dataset based on correctness and efficiency. CodeDPO is flexible and scalable, generating diverse preference optimization data without depending on external resources. Through comprehensive evaluations of five widely used benchmarks, CodeDPO demonstrates significant improvements in correctness and efficiency compared to existing methods. Our experiments prove that CodeDPO enhances the capabilities of LLMs in code generation and provides a robust foundation for conducting code preference optimization in more complex and challenging real-world scenarios.
TritonBench: Benchmarking Large Language Model Capabilities for Generating Triton Operators
Triton, a high-level Python-like language designed for building efficient GPU kernels, is widely adopted in deep learning frameworks due to its portability, flexibility, and accessibility. However, programming and parallel optimization still require considerable trial and error from Triton developers. Despite advances in large language models (LLMs) for conventional code generation, these models struggle to generate accurate, performance-optimized Triton code, as they lack awareness of its specifications and the complexities of GPU programming. More critically, there is an urgent need for systematic evaluations tailored to Triton. In this work, we introduce TritonBench, the first comprehensive benchmark for Triton operator generation. TritonBench features two evaluation channels: a curated set of 184 real-world operators from GitHub and a collection of operators aligned with PyTorch interfaces. Unlike conventional code benchmarks prioritizing functional correctness, TritonBench also profiles efficiency performance on widely deployed GPUs aligned with industry applications. Our study reveals that current state-of-the-art code LLMs struggle to generate efficient Triton operators, highlighting a significant gap in high-performance code generation. TritonBench will be available at https://github.com/thunlp/TritonBench.
Granite Code Models: A Family of Open Foundation Models for Code Intelligence
Large Language Models (LLMs) trained on code are revolutionizing the software development process. Increasingly, code LLMs are being integrated into software development environments to improve the productivity of human programmers, and LLM-based agents are beginning to show promise for handling complex tasks autonomously. Realizing the full potential of code LLMs requires a wide range of capabilities, including code generation, fixing bugs, explaining and documenting code, maintaining repositories, and more. In this work, we introduce the Granite series of decoder-only code models for code generative tasks, trained with code written in 116 programming languages. The Granite Code models family consists of models ranging in size from 3 to 34 billion parameters, suitable for applications ranging from complex application modernization tasks to on-device memory-constrained use cases. Evaluation on a comprehensive set of tasks demonstrates that Granite Code models consistently reaches state-of-the-art performance among available open-source code LLMs. The Granite Code model family was optimized for enterprise software development workflows and performs well across a range of coding tasks (e.g. code generation, fixing and explanation), making it a versatile all around code model. We release all our Granite Code models under an Apache 2.0 license for both research and commercial use.
Every Sample Matters: Leveraging Mixture-of-Experts and High-Quality Data for Efficient and Accurate Code LLM
Recent advancements in code large language models (LLMs) have demonstrated remarkable capabilities in code generation and understanding. It is still challenging to build a code LLM with comprehensive performance yet ultimate efficiency. Many attempts have been released in the open source community to break the trade-off between performance and efficiency, such as the Qwen Coder series and the DeepSeek Coder series. This paper introduces yet another attempt in this area, namely Ling-Coder-Lite. We leverage the efficient Mixture-of-Experts (MoE) architecture along with a set of high-quality data curation methods (especially those based on program analytics) to build an efficient yet powerful code LLM. Ling-Coder-Lite exhibits on-par performance on 12 representative coding benchmarks compared to state-of-the-art models of similar size, such as Qwen2.5-Coder-7B and DeepSeek-Coder-V2-Lite, while offering competitive latency and throughput. In practice, we achieve a 50\% reduction in deployment resources compared to the similar-sized dense model without performance loss. To facilitate further research and development in this area, we open-source our models as well as a substantial portion of high-quality data for the annealing and post-training stages. The models and data can be accessed at~https://huggingface.co/inclusionAI/Ling-Coder-lite.
UnitCoder: Scalable Iterative Code Synthesis with Unit Test Guidance
Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, yet code generation remains a major challenge. Current approaches for obtaining high-quality code data primarily focus on (i) collecting large-scale pre-training data and (ii) synthesizing instruction data through prompt engineering with powerful models. While pre-training data faces quality consistency issues, instruction-based synthesis suffers from limited instruction diversity and inherent biases of LLMs. To address this gap, we introduce UnitCoder, a systematic pipeline leveraging model-generated unit tests to both guide and validate the code generation process. Combined with large-scale package-based retrieval from pre-training corpus, we generate a dataset of 500K+ verifiable programs containing diverse API calls. Evaluations on multiple Python benchmarks (BigCodeBench, HumanEval, MBPP) demonstrate that models fine-tuned on our synthetic data exhibit consistent performance improvements. Notably, Llama3.1-8B and InternLM2.5-7B improve from 31\% and 28\% to 40\% and 39\% success rates on BigCodeBench, respectively. Our work presents a scalable approach that leverages model-generated unit tests to guide the synthesis of high-quality code data from pre-training corpora, demonstrating the potential for producing diverse and high-quality post-training data at scale. All code and data will be released (https://github.com).
IRCoder: Intermediate Representations Make Language Models Robust Multilingual Code Generators
Code understanding and generation have fast become some of the most popular applications of language models (LMs). Nonetheless, research on multilingual aspects of Code-LMs (i.e., LMs for code generation) such as cross-lingual transfer between different programming languages, language-specific data augmentation, and post-hoc LM adaptation, alongside exploitation of data sources other than the original textual content, has been much sparser than for their natural language counterparts. In particular, most mainstream Code-LMs have been pre-trained on source code files alone. In this work, we investigate the prospect of leveraging readily available compiler intermediate representations (IR) - shared across programming languages - to improve the multilingual capabilities of Code-LMs and facilitate cross-lingual transfer. To this end, we first compile SLTrans, a parallel dataset consisting of nearly 4M self-contained source code files coupled with respective intermediate representations. Next, starting from various base Code-LMs (ranging in size from 1.1B to 7.3B parameters), we carry out continued causal language modelling training on SLTrans, forcing the Code-LMs to (1) learn the IR language and (2) align the IR constructs with respective constructs of various programming languages. Our resulting models, dubbed IRCoder, display sizeable and consistent gains across a wide variety of code generation tasks and metrics, including prompt robustness, multilingual code completion, code understanding, and instruction following.
WizardCoder: Empowering Code Large Language Models with Evol-Instruct
Code Large Language Models (Code LLMs), such as StarCoder, have demonstrated exceptional performance in code-related tasks. However, most existing models are solely pre-trained on extensive raw code data without instruction fine-tuning. In this paper, we introduce WizardCoder, which empowers Code LLMs with complex instruction fine-tuning, by adapting the Evol-Instruct method to the domain of code. Through comprehensive experiments on four prominent code generation benchmarks, namely HumanEval, HumanEval+, MBPP, and DS-1000, we unveil the exceptional capabilities of our model. It surpasses all other open-source Code LLMs by a substantial margin. Moreover, our model even outperforms the largest closed LLMs, Anthropic's Claude and Google's Bard, on HumanEval and HumanEval+. Our code, model weights, and data are public at https://github.com/nlpxucan/WizardLM
A Performance Study of LLM-Generated Code on Leetcode
This study evaluates the efficiency of code generation by Large Language Models (LLMs) and measures their performance against human-crafted solutions using a dataset from Leetcode. We compare 18 LLMs, considering factors such as model temperature and success rate, and their impact on code performance. This research introduces a novel method for measuring and comparing the speed of LLM-generated code, revealing that LLMs produce code with comparable performance, irrespective of the adopted LLM. We also find that LLMs are capable of generating code that is, on average, more efficient than the code written by humans. The paper further discusses the use of Leetcode as a benchmarking dataset, the limitations imposed by potential data contamination, and the platform's measurement reliability. We believe that our findings contribute to a better understanding of LLM capabilities in code generation and set the stage for future optimizations in the field.
LLM Augmented LLMs: Expanding Capabilities through Composition
Foundational models with billions of parameters which have been trained on large corpora of data have demonstrated non-trivial skills in a variety of domains. However, due to their monolithic structure, it is challenging and expensive to augment them or impart new skills. On the other hand, due to their adaptation abilities, several new instances of these models are being trained towards new domains and tasks. In this work, we study the problem of efficient and practical composition of existing foundation models with more specific models to enable newer capabilities. To this end, we propose CALM -- Composition to Augment Language Models -- which introduces cross-attention between models to compose their representations and enable new capabilities. Salient features of CALM are: (i) Scales up LLMs on new tasks by 're-using' existing LLMs along with a few additional parameters and data, (ii) Existing model weights are kept intact, and hence preserves existing capabilities, and (iii) Applies to diverse domains and settings. We illustrate that augmenting PaLM2-S with a smaller model trained on low-resource languages results in an absolute improvement of up to 13\% on tasks like translation into English and arithmetic reasoning for low-resource languages. Similarly, when PaLM2-S is augmented with a code-specific model, we see a relative improvement of 40\% over the base model for code generation and explanation tasks -- on-par with fully fine-tuned counterparts.
How Difficulty-Aware Staged Reinforcement Learning Enhances LLMs' Reasoning Capabilities: A Preliminary Experimental Study
Enhancing the reasoning capabilities of Large Language Models (LLMs) with efficiency and scalability remains a fundamental challenge in artificial intelligence research. This paper presents a rigorous experimental investigation into how difficulty-aware staged reinforcement learning (RL) strategies can substantially improve LLM reasoning performance. Through systematic analysis, we demonstrate that strategically selecting training data according to well-defined difficulty levels markedly enhances RL optimization. Moreover, we introduce a staged training methodology, progressively exposing models to increasingly challenging tasks, further amplifying reasoning capabilities. Our findings reveal significant cross-domain benefits when simultaneously training models on mathematical reasoning and code generation tasks. Notably, our proposed approach enables a 1.5B parameter model to achieve an accuracy of 42.3\% on the AIME-2024 benchmark, 89.5\% on the MATH-500 benchmark. These results underscore the efficacy of our method in advancing the reasoning proficiency of LLMs. We will open-source our datasets on GitHub and Hugging Face.
CodeSteer: Symbolic-Augmented Language Models via Code/Text Guidance
Existing methods fail to effectively steer Large Language Models (LLMs) between textual reasoning and code generation, leaving symbolic computing capabilities underutilized. We introduce CodeSteer, an effective method for guiding LLM code/text generation. We construct a comprehensive benchmark SymBench comprising 37 symbolic tasks with adjustable complexity and also synthesize datasets of 12k multi-round guidance/generation trajectories and 5.5k guidance comparison pairs. We fine-tune the Llama-3-8B model with a newly designed multi-round supervised fine-tuning (SFT) and direct preference optimization (DPO). The resulting model, CodeSteerLLM, augmented with the proposed symbolic and self-answer checkers, effectively guides the code/text generation of larger models. Augmenting GPT-4o with CodeSteer raises its average performance score from 53.3 to 86.4, even outperforming the existing best LLM OpenAI o1 (82.7), o1-preview (74.8), and DeepSeek R1 (76.8) across all 37 tasks (28 seen, 9 unseen). Trained for GPT-4o, CodeSteer demonstrates superior generalizability, providing an average 41.8 performance boost on Claude, Mistral, and GPT-3.5. CodeSteer-guided LLMs fully harness symbolic computing to maintain strong performance on highly complex tasks. Models, Datasets, and Codes are available at https://github.com/yongchao98/CodeSteer-v1.0.
An Empirical Study of NetOps Capability of Pre-Trained Large Language Models
Large language models (LLMs) can respond to human language queries and have shown powerful potential applications in network operations (NetOps). Thanks to the large amount of commonsense knowledge inherent, LLMs achieve much better inference accuracy than traditional models and emerge with strong abilities in generalization, reasoning, and code generation. These abilities may have a crucial boost to automated and intelligent NetOps. However, it remains under-explored how well LLMs perform in various NetOps tasks. In this work, we make a systematic assessment of the capabilities, strengths, and limitations of selected LLMs in the field of NetOps. The evaluation is conducted on a collection of 5,732 questions about NetOps, encompassing 26 publicly available general-domain LLMs, including ChatGPT, LLaMA, Falcon, etc. We also finetune some of these LLMs with our collected NetOps corpus and evaluate the resulting models. The evaluation method follows the widely adopted benchmarks for general-domain LLMs, combined with Chain-of-Thought Prompts and Retrieval-Augmented Generation. The results show that only GPT-4 achieves high accuracy equivalent to passing the NetOps certification exam for humans, while all the other LLMs have much lower accuracy. However, some open models like LLaMA 2 still demonstrate significant potential. Furthermore, we evaluate the impact of factors such as model parameters, prompt engineering, instruction fine-tuning etc. This work shall be treated as the initial effort to systematic evaluation of LLMs in NetOps, and a more rigorous study is required for production use. The evaluation code and dataset will be released to benefit future research.
ProjectTest: A Project-level LLM Unit Test Generation Benchmark and Impact of Error Fixing Mechanisms
Unit test generation has become a promising and important use case of LLMs. However, existing evaluation benchmarks for assessing LLM unit test generation capabilities focus on function- or class-level code rather than more practical and challenging project-level codebases. To address such limitation, we propose ProjectTest, a project-level benchmark for unit test generation covering Python, Java, and JavaScript. ProjectTest features 20 moderate-sized and high-quality projects per language. We evaluate nine frontier LLMs on ProjectTest and the results show that all frontier LLMs tested exhibit moderate performance on ProjectTest on Python and Java, highlighting the difficulty of ProjectTest. We also conduct a thorough error analysis, which shows that even frontier LLMs, such as Claude-3.5-Sonnet, have significant basic yet critical errors, including compilation and cascade errors. Motivated by this observation, we further evaluate all frontier LLMs under manual error-fixing and self-error-fixing scenarios to assess their potential when equipped with error-fixing mechanisms. Our code and dataset is available at https://github.com/YiboWANG214/ProjectTest{ProjectTest}.
SinkLoRA: Enhanced Efficiency and Chat Capabilities for Long-Context Large Language Models
Extending the functionality of the Transformer model to accommodate longer sequence lengths has become a critical challenge. This extension is crucial not only for improving tasks such as language translation and long-context processing but also for enabling novel applications like chatbots, code generation, and multimedia content creation. The primary obstacle is the self-attention mechanism, which scales quadratically with sequence length in terms of computation time and memory requirements. LongLoRA proposed shifted sparse attention (S\(^2\)-Attn), effectively enabling context extension and leading to non-trivial computation savings with similar performance to fine-tuning with vanilla attention. However, LongLoRA is still not as efficient as vanilla attention, reaching only 39\% of the perplexity improvement compared to full attention. This inefficiency is due to the cyclic shift applied within different attention head patterns, causing either chaos in the attention head structure or unnecessary information exchange between token groups. To address these issues, We propose SinkLoRA, which features better work partitioning. Specifically, (1) we developed SF-Attn with a segmentation and reassembly algorithm to proportionally return cyclically shifted groups of attention heads to their un-shifted state together with global attention of "sink attention tokens", achieving 92\% of the perplexity improvement compared to full attention after fine tuning, and (2) applied a SOTA KV cache compression algorithm H_2O to accelerate inference. Furthermore, We conducted supervised fine-tuning with SinkLoRA using a self collected LongAlpaca-plus dataset. All our code, models, datasets, and demos are available at https://github.com/Dexter-GT-86/SinkLoRA.
A Survey on Large Language Models with some Insights on their Capabilities and Limitations
The rapid advancement of artificial intelligence, particularly with the development of Large Language Models (LLMs) built on the transformer architecture, has redefined the capabilities of natural language processing. These models now exhibit remarkable performance across various language-related tasks, such as text generation, question answering, translation, and summarization, often rivaling human-like comprehension. More intriguingly, LLMs have demonstrated emergent abilities extending beyond their core functions, showing proficiency in tasks like commonsense reasoning, code generation, and arithmetic. This survey paper explores the foundational components, scaling mechanisms, and architectural strategies that drive these capabilities. Emphasizing models like GPT and LLaMA, we analyze the impact of exponential data and computational growth on LLM performance, while also addressing the trade-offs associated with scaling. We also examine LLM applications across sectors, such as healthcare, finance, education, and law, highlighting their adaptability and potential to solve domain-specific challenges. Central to this work are the questions of how LLMs generalize across diverse tasks, exhibit planning, and reasoning abilities, and whether these emergent abilities can be systematically elicited or enhanced. In particular, we provide some insights into the CoT (Chain of Thought) and PoT (Plan of Thought) abilities within LLMs, focusing on how pre-training data influences their emergence. Additionally, we investigate LLM-modulo frameworks that integrate external systems, allowing LLMs to handle complex, dynamic tasks. By analyzing these factors, this paper aims to foster the ongoing discussion on the capabilities and limits of LLMs, promoting their responsible development and application in novel and increasingly complex environments.
PaLM: Scaling Language Modeling with Pathways
Large language models have been shown to achieve remarkable performance across a variety of natural language tasks using few-shot learning, which drastically reduces the number of task-specific training examples needed to adapt the model to a particular application. To further our understanding of the impact of scale on few-shot learning, we trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways Language Model PaLM. We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient training across multiple TPU Pods. We demonstrate continued benefits of scaling by achieving state-of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks. On a number of these tasks, PaLM 540B achieves breakthrough performance, outperforming the finetuned state-of-the-art on a suite of multi-step reasoning tasks, and outperforming average human performance on the recently released BIG-bench benchmark. A significant number of BIG-bench tasks showed discontinuous improvements from model scale, meaning that performance steeply increased as we scaled to our largest model. PaLM also has strong capabilities in multilingual tasks and source code generation, which we demonstrate on a wide array of benchmarks. We additionally provide a comprehensive analysis on bias and toxicity, and study the extent of training data memorization with respect to model scale. Finally, we discuss the ethical considerations related to large language models and discuss potential mitigation strategies.
LLM4VV: Developing LLM-Driven Testsuite for Compiler Validation
Large language models (LLMs) are a new and powerful tool for a wide span of applications involving natural language and demonstrate impressive code generation abilities. In this paper, we explore the capabilitity of state-of-the-art LLMs, including closed-source options like OpenAI GPT-4 and open-source alternatives like Meta AI Codellama, to automatically generate tests and use these tests to validate and verify compiler implementations of a directive-based programming paradigm, OpenACC. Our approach entails exploring various prompt engineering techniques including a code template, retrieval-augmented generation (RAG) with code template, expressive prompt using RAG with code template, one-shot example, and RAG with one-shot example. This paper focusses on (a) exploring the capabilities of the latest LLMs for code generation, (b) investigating prompt and fine tuning methods, and (c) analyzing the outcome of LLMs generated tests
GenCodeSearchNet: A Benchmark Test Suite for Evaluating Generalization in Programming Language Understanding
Language models can serve as a valuable tool for software developers to increase productivity. Large generative models can be used for code generation and code completion, while smaller encoder-only models are capable of performing code search tasks using natural language queries.These capabilities are heavily influenced by the quality and diversity of the available training data. Source code datasets used for training usually focus on the most popular languages and testing is mostly conducted on the same distributions, often overlooking low-resource programming languages. Motivated by the NLP generalization taxonomy proposed by Hupkes et.\,al., we propose a new benchmark dataset called GenCodeSearchNet (GeCS) which builds upon existing natural language code search datasets to systemically evaluate the programming language understanding generalization capabilities of language models. As part of the full dataset, we introduce a new, manually curated subset StatCodeSearch that focuses on R, a popular but so far underrepresented programming language that is often used by researchers outside the field of computer science. For evaluation and comparison, we collect several baseline results using fine-tuned BERT-style models and GPT-style large language models in a zero-shot setting.
Large Language Model-Brained GUI Agents: A Survey
GUIs have long been central to human-computer interaction, providing an intuitive and visually-driven way to access and interact with digital systems. The advent of LLMs, particularly multimodal models, has ushered in a new era of GUI automation. They have demonstrated exceptional capabilities in natural language understanding, code generation, and visual processing. This has paved the way for a new generation of LLM-brained GUI agents capable of interpreting complex GUI elements and autonomously executing actions based on natural language instructions. These agents represent a paradigm shift, enabling users to perform intricate, multi-step tasks through simple conversational commands. Their applications span across web navigation, mobile app interactions, and desktop automation, offering a transformative user experience that revolutionizes how individuals interact with software. This emerging field is rapidly advancing, with significant progress in both research and industry. To provide a structured understanding of this trend, this paper presents a comprehensive survey of LLM-brained GUI agents, exploring their historical evolution, core components, and advanced techniques. We address research questions such as existing GUI agent frameworks, the collection and utilization of data for training specialized GUI agents, the development of large action models tailored for GUI tasks, and the evaluation metrics and benchmarks necessary to assess their effectiveness. Additionally, we examine emerging applications powered by these agents. Through a detailed analysis, this survey identifies key research gaps and outlines a roadmap for future advancements in the field. By consolidating foundational knowledge and state-of-the-art developments, this work aims to guide both researchers and practitioners in overcoming challenges and unlocking the full potential of LLM-brained GUI agents.
The Future of AI: Exploring the Potential of Large Concept Models
The field of Artificial Intelligence (AI) continues to drive transformative innovations, with significant progress in conversational interfaces, autonomous vehicles, and intelligent content creation. Since the launch of ChatGPT in late 2022, the rise of Generative AI has marked a pivotal era, with the term Large Language Models (LLMs) becoming a ubiquitous part of daily life. LLMs have demonstrated exceptional capabilities in tasks such as text summarization, code generation, and creative writing. However, these models are inherently limited by their token-level processing, which restricts their ability to perform abstract reasoning, conceptual understanding, and efficient generation of long-form content. To address these limitations, Meta has introduced Large Concept Models (LCMs), representing a significant shift from traditional token-based frameworks. LCMs use concepts as foundational units of understanding, enabling more sophisticated semantic reasoning and context-aware decision-making. Given the limited academic research on this emerging technology, our study aims to bridge the knowledge gap by collecting, analyzing, and synthesizing existing grey literature to provide a comprehensive understanding of LCMs. Specifically, we (i) identify and describe the features that distinguish LCMs from LLMs, (ii) explore potential applications of LCMs across multiple domains, and (iii) propose future research directions and practical strategies to advance LCM development and adoption.
o3-mini vs DeepSeek-R1: Which One is Safer?
The irruption of DeepSeek-R1 constitutes a turning point for the AI industry in general and the LLMs in particular. Its capabilities have demonstrated outstanding performance in several tasks, including creative thinking, code generation, maths and automated program repair, at apparently lower execution cost. However, LLMs must adhere to an important qualitative property, i.e., their alignment with safety and human values. A clear competitor of DeepSeek-R1 is its American counterpart, OpenAI's o3-mini model, which is expected to set high standards in terms of performance, safety and cost. In this paper we conduct a systematic assessment of the safety level of both, DeepSeek-R1 (70b version) and OpenAI's o3-mini (beta version). To this end, we make use of our recently released automated safety testing tool, named ASTRAL. By leveraging this tool, we automatically and systematically generate and execute a total of 1260 unsafe test inputs on both models. After conducting a semi-automated assessment of the outcomes provided by both LLMs, the results indicate that DeepSeek-R1 is highly unsafe as compared to OpenAI's o3-mini. Based on our evaluation, DeepSeek-R1 answered unsafely to 11.98% of the executed prompts whereas o3-mini only to 1.19%.
MojoBench: Language Modeling and Benchmarks for Mojo
The recently introduced Mojo programming language (PL) by Modular, has received significant attention in the scientific community due to its claimed significant speed boost over Python. Despite advancements in code Large Language Models (LLMs) across various PLs, Mojo remains unexplored in this context. To address this gap, we introduce MojoBench, the first framework for Mojo code generation. MojoBench includes HumanEval-Mojo, a benchmark dataset designed for evaluating code LLMs on Mojo, and Mojo-Coder, the first LLM pretrained and finetuned for Mojo code generation, which supports instructions in 5 natural languages (NLs). Our results show that Mojo-Coder achieves a 30-35% performance improvement over leading models like GPT-4o and Claude-3.5-Sonnet. Furthermore, we provide insights into LLM behavior with underrepresented and unseen PLs, offering potential strategies for enhancing model adaptability. MojoBench contributes to our understanding of LLM capabilities and limitations in emerging programming paradigms fostering more robust code generation systems.
Efficiently Serving LLM Reasoning Programs with Certaindex
The rapid evolution of large language models (LLMs) has unlocked their capabilities in advanced reasoning tasks like mathematical problem-solving, code generation, and legal analysis. Central to this progress are inference-time reasoning algorithms, which refine outputs by exploring multiple solution paths, at the cost of increasing compute demands and response latencies. Existing serving systems fail to adapt to the scaling behaviors of these algorithms or the varying difficulty of queries, leading to inefficient resource use and unmet latency targets. We present Dynasor, a system that optimizes inference-time compute for LLM reasoning queries. Unlike traditional engines, Dynasor tracks and schedules requests within reasoning queries and uses Certaindex, a proxy that measures statistical reasoning progress based on model certainty, to guide compute allocation dynamically. Dynasor co-adapts scheduling with reasoning progress: it allocates more compute to hard queries, reduces compute for simpler ones, and terminates unpromising queries early, balancing accuracy, latency, and cost. On diverse datasets and algorithms, Dynasor reduces compute by up to 50% in batch processing and sustaining 3.3x higher query rates or 4.7x tighter latency SLOs in online serving.
P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs
Recent advancements in large language models (LLMs) showcase varied multilingual capabilities across tasks like translation, code generation, and reasoning. Previous assessments often limited their scope to fundamental natural language processing (NLP) or isolated capability-specific tasks. To alleviate this drawback, we aim to present a comprehensive multilingual multitask benchmark. First, we present a pipeline for selecting available and reasonable benchmarks from massive ones, addressing the oversight in previous work regarding the utility of these benchmarks, i.e., their ability to differentiate between models being evaluated. Leveraging this pipeline, we introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets. Furthermore, P-MMEval delivers consistent language coverage across various datasets and provides parallel samples. Finally, we conduct extensive experiments on representative multilingual model series to compare performances across models, analyze dataset effectiveness, examine prompt impacts on model performances, and explore the relationship between multilingual performances and factors such as tasks, model sizes, and languages. These insights offer valuable guidance for future research. The dataset is available at https://huggingface.co/datasets/Qwen/P-MMEval.
Tabular Embedding Model (TEM): Finetuning Embedding Models For Tabular RAG Applications
In recent times Large Language Models have exhibited tremendous capabilities, especially in the areas of mathematics, code generation and general-purpose reasoning. However for specialized domains especially in applications that require parsing and analyzing large chunks of numeric or tabular data even state-of-the-art (SOTA) models struggle. In this paper, we introduce a new approach to solving domain-specific tabular data analysis tasks by presenting a unique RAG workflow that mitigates the scalability issues of existing tabular LLM solutions. Specifically, we present Tabular Embedding Model (TEM), a novel approach to fine-tune embedding models for tabular Retrieval-Augmentation Generation (RAG) applications. Embedding models form a crucial component in the RAG workflow and even current SOTA embedding models struggle as they are predominantly trained on textual datasets and thus underperform in scenarios involving complex tabular data. The evaluation results showcase that our approach not only outperforms current SOTA embedding models in this domain but also does so with a notably smaller and more efficient model structure.
BenchMAX: A Comprehensive Multilingual Evaluation Suite for Large Language Models
Previous multilingual benchmarks focus primarily on simple understanding tasks, but for large language models(LLMs), we emphasize proficiency in instruction following, reasoning, long context understanding, code generation, and so on. However, measuring these advanced capabilities across languages is underexplored. To address the disparity, we introduce BenchMAX, a multi-way multilingual evaluation benchmark that allows for fair comparisons of these important abilities across languages. To maintain high quality, three distinct native-speaking annotators independently annotate each sample within all tasks after the data was machine-translated from English into 16 other languages. Additionally, we present a novel translation challenge stemming from dataset construction. Extensive experiments on BenchMAX reveal varying effectiveness of core capabilities across languages, highlighting performance gaps that cannot be bridged by simply scaling up model size. BenchMAX serves as a comprehensive multilingual evaluation platform, providing a promising test bed to promote the development of multilingual language models. The dataset and code are publicly accessible.
Is GPT-4 a Good Data Analyst?
As large language models (LLMs) have demonstrated their powerful capabilities in plenty of domains and tasks, including context understanding, code generation, language generation, data storytelling, etc., many data analysts may raise concerns if their jobs will be replaced by AI. This controversial topic has drawn a lot of attention in public. However, we are still at a stage of divergent opinions without any definitive conclusion. Motivated by this, we raise the research question of "is GPT-4 a good data analyst?" in this work and aim to answer it by conducting head-to-head comparative studies. In detail, we regard GPT-4 as a data analyst to perform end-to-end data analysis with databases from a wide range of domains. We propose a framework to tackle the problems by carefully designing the prompts for GPT-4 to conduct experiments. We also design several task-specific evaluation metrics to systematically compare the performance between several professional human data analysts and GPT-4. Experimental results show that GPT-4 can achieve comparable performance to humans. We also provide in-depth discussions about our results to shed light on further studies before we reach the conclusion that GPT-4 can replace data analysts.
TRACE: A Comprehensive Benchmark for Continual Learning in Large Language Models
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety. However, the continual learning aspect of these aligned LLMs has been largely overlooked. Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs, owing to both their simplicity and the models' potential exposure during instruction tuning. In this paper, we introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs. TRACE consists of 8 distinct datasets spanning challenging tasks including domain-specific tasks, multilingual capabilities, code generation, and mathematical reasoning. All datasets are standardized into a unified format, allowing for effortless automatic evaluation of LLMs. Our experiments show that after training on TRACE, aligned LLMs exhibit significant declines in both general ability and instruction-following capabilities. For example, the accuracy of llama2-chat 13B on gsm8k dataset declined precipitously from 28.8\% to 2\% after training on our datasets. This highlights the challenge of finding a suitable tradeoff between achieving performance on specific tasks while preserving the original prowess of LLMs. Empirical findings suggest that tasks inherently equipped with reasoning paths contribute significantly to preserving certain capabilities of LLMs against potential declines. Motivated by this, we introduce the Reasoning-augmented Continual Learning (RCL) approach. RCL integrates task-specific cues with meta-rationales, effectively reducing catastrophic forgetting in LLMs while expediting convergence on novel tasks.
When Do Program-of-Thoughts Work for Reasoning?
In the realm of embodied artificial intelligence, the reasoning capabilities of Large Language Models (LLMs) play a pivotal role. Although there are effective methods like program-of-thought prompting for LLMs which uses programming language to tackle complex reasoning tasks, the specific impact of code data on the improvement of reasoning capabilities remains under-explored. To address this gap, we propose complexity-impacted reasoning score (CIRS), which combines structural and logical attributes, to measure the correlation between code and reasoning abilities. Specifically, we use the abstract syntax tree to encode the structural information and calculate logical complexity by considering the difficulty and the cyclomatic complexity. Through an empirical analysis, we find not all code data of complexity can be learned or understood by LLMs. Optimal level of complexity is critical to the improvement of reasoning abilities by program-aided prompting. Then we design an auto-synthesizing and stratifying algorithm, and apply it to instruction generation for mathematical reasoning and code data filtering for code generation tasks. Extensive results demonstrates the effectiveness of our proposed approach. Code will be integrated into the EasyInstruct framework at https://github.com/zjunlp/EasyInstruct.
o1-Coder: an o1 Replication for Coding
The technical report introduces O1-CODER, an attempt to replicate OpenAI's o1 model with a focus on coding tasks. It integrates reinforcement learning (RL) and Monte Carlo Tree Search (MCTS) to enhance the model's System-2 thinking capabilities. The framework includes training a Test Case Generator (TCG) for standardized code testing, using MCTS to generate code data with reasoning processes, and iteratively fine-tuning the policy model to initially produce pseudocode, followed by the generation of the full code. The report also addresses the opportunities and challenges in deploying o1-like models in real-world applications, suggesting transitioning to the System-2 paradigm and highlighting the imperative for environment state updates. Updated model progress and experimental results will be reported in subsequent versions. All source code, curated datasets, as well as the derived models will be disclosed at https://github.com/ADaM-BJTU/O1-CODER .
The Power of Personality: A Human Simulation Perspective to Investigate Large Language Model Agents
Large language models (LLMs) excel in both closed tasks (including problem-solving, and code generation) and open tasks (including creative writing), yet existing explanations for their capabilities lack connections to real-world human intelligence. To fill this gap, this paper systematically investigates LLM intelligence through the lens of ``human simulation'', addressing three core questions: (1) How do personality traits affect problem-solving in closed tasks? (2) How do traits shape creativity in open tasks? (3) How does single-agent performance influence multi-agent collaboration? By assigning Big Five personality traits to LLM agents and evaluating their performance in single- and multi-agent settings, we reveal that specific traits significantly influence reasoning accuracy (closed tasks) and creative output (open tasks). Furthermore, multi-agent systems exhibit collective intelligence distinct from individual capabilities, driven by distinguishing combinations of personalities. We demonstrate that LLMs inherently simulate human behavior through next-token prediction, mirroring human language, decision-making, and collaborative dynamics.
Co-Evolving LLM Coder and Unit Tester via Reinforcement Learning
We propose CURE, a novel reinforcement learning framework with a dedicated reward design that co-evolves coding and unit test generation capabilities based on their interaction outcomes, without any ground-truth code as supervision. This approach enables flexible and scalable training and allows the unit tester to learn directly from the coder's mistakes. Our derived ReasonFlux-Coder-7B and 14B models improve code generation accuracy by 5.3% and Best-of-N accuracy by 9.0% after optimization on Qwen2.5-Instruct models, outperforming similarly sized Qwen-Coder, DeepSeek-Coder, and Seed-Coder. They naturally extend to downstream tasks such as test-time scaling and agentic coding-achieving a 8.1% improvement over the base model. For the long-CoT model, our ReasonFlux-Coder-4B consistently outperforms Qwen3-4B while achieving 64.8% inference efficiency in unit test generation. Notably, we also find that our model can serve as an effective reward model for reinforcement learning on base models. Project: https://github.com/Gen-Verse/CURE
Instruction Fusion: Advancing Prompt Evolution through Hybridization
The fine-tuning of Large Language Models (LLMs) specialized in code generation has seen notable advancements through the use of open-domain coding queries. Despite the successes, existing methodologies like Evol-Instruct encounter performance limitations, impeding further enhancements in code generation tasks. This paper examines the constraints of existing prompt evolution techniques and introduces a novel approach, Instruction Fusion (IF). IF innovatively combines two distinct prompts through a hybridization process, thereby enhancing the evolution of training prompts for code LLMs. Our experimental results reveal that the proposed novel method effectively addresses the shortcomings of prior methods, significantly improving the performance of Code LLMs across five code generation benchmarks, namely HumanEval, HumanEval+, MBPP, MBPP+ and MultiPL-E, which underscore the effectiveness of Instruction Fusion in advancing the capabilities of LLMs in code generation.
Exploring the Capabilities of LLMs for Code Change Related Tasks
Developers deal with code-change-related tasks daily, e.g., reviewing code. Pre-trained code and code-change-oriented models have been adapted to help developers with such tasks. Recently, large language models (LLMs) have shown their effectiveness in code-related tasks. However, existing LLMs for code focus on general code syntax and semantics rather than the differences between two code versions. Thus, it is an open question how LLMs perform on code-change-related tasks. To answer this question, we conduct an empirical study using \textgreater 1B parameters LLMs on three code-change-related tasks, i.e., code review generation, commit message generation, and just-in-time comment update, with in-context learning (ICL) and parameter-efficient fine-tuning (PEFT, including LoRA and prefix-tuning). We observe that the performance of LLMs is poor without examples and generally improves with examples, but more examples do not always lead to better performance. LLMs tuned with LoRA have comparable performance to the state-of-the-art small pre-trained models. Larger models are not always better, but Llama~2 and Code~Llama families are always the best. The best LLMs outperform small pre-trained models on the code changes that only modify comments and perform comparably on other code changes. We suggest future work should focus more on guiding LLMs to learn the knowledge specific to the changes related to code rather than comments for code-change-related tasks.
RedCode: Risky Code Execution and Generation Benchmark for Code Agents
With the rapidly increasing capabilities and adoption of code agents for AI-assisted coding, safety concerns, such as generating or executing risky code, have become significant barriers to the real-world deployment of these agents. To provide comprehensive and practical evaluations on the safety of code agents, we propose RedCode, a benchmark for risky code execution and generation: (1) RedCode-Exec provides challenging prompts that could lead to risky code execution, aiming to evaluate code agents' ability to recognize and handle unsafe code. We provide a total of 4,050 risky test cases in Python and Bash tasks with diverse input formats including code snippets and natural text. They covers 25 types of critical vulnerabilities spanning 8 domains (e.g., websites, file systems). We provide Docker environments and design corresponding evaluation metrics to assess their execution results. (2) RedCode-Gen provides 160 prompts with function signatures and docstrings as input to assess whether code agents will follow instructions to generate harmful code or software. Our empirical findings, derived from evaluating three agent frameworks based on 19 LLMs, provide insights into code agents' vulnerabilities. For instance, evaluations on RedCode-Exec show that agents are more likely to reject executing risky operations on the operating system, but are less likely to reject executing technically buggy code, indicating high risks. Risky operations described in natural text lead to a lower rejection rate than those in code format. Additionally, evaluations on RedCode-Gen show that more capable base models and agents with stronger overall coding abilities, such as GPT4, tend to produce more sophisticated and effective harmful software. Our findings highlight the need for stringent safety evaluations for diverse code agents. Our dataset and code are available at https://github.com/AI-secure/RedCode.
Learning to Solve and Verify: A Self-Play Framework for Code and Test Generation
Recent advances in large language models (LLMs) have improved their performance on coding benchmarks. However, improvement is plateauing due to the exhaustion of readily available high-quality data. Prior work has shown the potential of synthetic self-instruct data, but naively training on a model's own outputs can cause error accumulation, especially in coding tasks, where generalization may collapse due to overly simple or erroneous training data, highlighting the need for rigorous quality checks on synthetic data. In this work, we explore an effective approach whereby the model itself verifies the correctness of its own data. We thus propose Sol-Ver, a self-play solver-verifier framework that jointly improves a single model's code and test generation capacity. By iteratively refining code (LLM-as-a-solver) and tests (LLM-as-a-verifier) together, we boost both capabilities without relying on human annotations or larger teacher models. Experiments with the Llama 3.1 8B model demonstrate substantial performance enhancements, achieving average relative improvements of 19.63% in code generation and 17.49% in test generation on MBPP and LiveCodeBench.
CodeScope: An Execution-based Multilingual Multitask Multidimensional Benchmark for Evaluating LLMs on Code Understanding and Generation
Large Language Models (LLMs) have demonstrated remarkable performance on coding related tasks, particularly on assisting humans in programming and facilitating programming automation. However, existing benchmarks for evaluating the code understanding and generation capacities of LLMs suffer from severe limitations. First, most benchmarks are deficient as they focus on a narrow range of popular programming languages and specific tasks, whereas the real-world software development scenarios show dire need to implement systems with multilingual programming environments to satisfy diverse requirements. Practical programming practices also strongly expect multi-task settings for testing coding capabilities of LLMs comprehensively and robustly. Second, most benchmarks also fail to consider the actual executability and the consistency of execution results of the generated code. To bridge these gaps between existing benchmarks and expectations from practical applications, we introduce CodeScope, an execution-based, multilingual, multi-task, multi-dimensional evaluation benchmark for comprehensively gauging LLM capabilities on coding tasks. CodeScope covers 43 programming languages and 8 coding tasks. It evaluates the coding performance of LLMs from three dimensions (perspectives): difficulty, efficiency, and length. To facilitate execution-based evaluations of code generation, we develop MultiCodeEngine, an automated code execution engine that supports 14 programming languages. Finally, we systematically evaluate and analyze 8 mainstream LLMs on CodeScope tasks and demonstrate the superior breadth and challenges of CodeScope for evaluating LLMs on code understanding and generation tasks compared to other benchmarks. The CodeScope benchmark and datasets are publicly available at https://github.com/WeixiangYAN/CodeScope.
Multi-Agent Collaboration for Multilingual Code Instruction Tuning
Recent advancement in code understanding and generation demonstrates that code LLMs fine-tuned on a high-quality instruction dataset can gain powerful capabilities to address wide-ranging code-related tasks. However, most previous existing methods mainly view each programming language in isolation and ignore the knowledge transfer among different programming languages. To bridge the gap among different programming languages, we introduce a novel multi-agent collaboration framework to enhance multilingual instruction tuning for code LLMs, where multiple language-specific intelligent agent components with generation memory work together to transfer knowledge from one language to another efficiently and effectively. Specifically, we first generate the language-specific instruction data from the code snippets and then provide the generated data as the seed data for language-specific agents. Multiple language-specific agents discuss and collaborate to formulate a new instruction and its corresponding solution (A new programming language or existing programming language), To further encourage the cross-lingual transfer, each agent stores its generation history as memory and then summarizes its merits and faults. Finally, the high-quality multilingual instruction data is used to encourage knowledge transfer among different programming languages to train Qwen2.5-xCoder. Experimental results on multilingual programming benchmarks demonstrate the superior performance of Qwen2.5-xCoder in sharing common knowledge, highlighting its potential to reduce the cross-lingual gap.
MetaChain: A Fully-Automated and Zero-Code Framework for LLM Agents
Large Language Model (LLM) Agents have demonstrated remarkable capabilities in task automation and intelligent decision-making, driving the widespread adoption of agent development frameworks such as LangChain and AutoGen. However, these frameworks predominantly serve developers with extensive technical expertise - a significant limitation considering that only 0.03 % of the global population possesses the necessary programming skills. This stark accessibility gap raises a fundamental question: Can we enable everyone, regardless of technical background, to build their own LLM agents using natural language alone? To address this challenge, we introduce MetaChain-a Fully-Automated and highly Self-Developing framework that enables users to create and deploy LLM agents through Natural Language Alone. Operating as an autonomous Agent Operating System, MetaChain comprises four key components: i) Agentic System Utilities, ii) LLM-powered Actionable Engine, iii) Self-Managing File System, and iv) Self-Play Agent Customization module. This lightweight yet powerful system enables efficient and dynamic creation and modification of tools, agents, and workflows without coding requirements or manual intervention. Beyond its code-free agent development capabilities, MetaChain also serves as a versatile multi-agent system for General AI Assistants. Comprehensive evaluations on the GAIA benchmark demonstrate MetaChain's effectiveness in generalist multi-agent tasks, surpassing existing state-of-the-art methods. Furthermore, MetaChain's Retrieval-Augmented Generation (RAG)-related capabilities have shown consistently superior performance compared to many alternative LLM-based solutions.
CityGPT: Empowering Urban Spatial Cognition of Large Language Models
Large language models(LLMs) with powerful language generation and reasoning capabilities have already achieved success in many domains, e.g., math and code generation. However, due to the lacking of physical world's corpus and knowledge during training, they usually fail to solve many real-life tasks in the urban space. In this paper, we propose CityGPT, a systematic framework for enhancing the capability of LLMs on understanding urban space and solving the related urban tasks by building a city-scale world model in the model. First, we construct a diverse instruction tuning dataset CityInstruction for injecting urban knowledge and enhancing spatial reasoning capability effectively. By using a mixture of CityInstruction and general instruction data, we fine-tune various LLMs (e.g., ChatGLM3-6B, Qwen1.5 and LLama3 series) to enhance their capability without sacrificing general abilities. To further validate the effectiveness of proposed methods, we construct a comprehensive benchmark CityEval to evaluate the capability of LLMs on diverse urban scenarios and problems. Extensive evaluation results demonstrate that small LLMs trained with CityInstruction can achieve competitive performance with commercial LLMs in the comprehensive evaluation of CityEval. The source codes are openly accessible to the research community via https://github.com/tsinghua-fib-lab/CityGPT.
SoTaNa: The Open-Source Software Development Assistant
Software development plays a crucial role in driving innovation and efficiency across modern societies. To meet the demands of this dynamic field, there is a growing need for an effective software development assistant. However, existing large language models represented by ChatGPT suffer from limited accessibility, including training data and model weights. Although other large open-source models like LLaMA have shown promise, they still struggle with understanding human intent. In this paper, we present SoTaNa, an open-source software development assistant. SoTaNa utilizes ChatGPT to generate high-quality instruction-based data for the domain of software engineering and employs a parameter-efficient fine-tuning approach to enhance the open-source foundation model, LLaMA. We evaluate the effectiveness of in answering Stack Overflow questions and demonstrate its capabilities. Additionally, we discuss its capabilities in code summarization and generation, as well as the impact of varying the volume of generated data on model performance. Notably, SoTaNa can run on a single GPU, making it accessible to a broader range of researchers. Our code, model weights, and data are public at https://github.com/DeepSoftwareAnalytics/SoTaNa.
Agent That Debugs: Dynamic State-Guided Vulnerability Repair
In recent years, more vulnerabilities have been discovered every day, while manual vulnerability repair requires specialized knowledge and is time-consuming. As a result, many detected or even published vulnerabilities remain unpatched, thereby increasing the exposure of software systems to attacks. Recent advancements in agents based on Large Language Models have demonstrated their increasing capabilities in code understanding and generation, which can be promising to achieve automated vulnerability repair. However, the effectiveness of agents based on static information retrieval is still not sufficient for patch generation. To address the challenge, we propose a program repair agent called VulDebugger that fully utilizes both static and dynamic context, and it debugs programs in a manner akin to humans. The agent inspects the actual state of the program via the debugger and infers expected states via constraints that need to be satisfied. By continuously comparing the actual state with the expected state, it deeply understands the root causes of the vulnerabilities and ultimately accomplishes repairs. We experimentally evaluated VulDebugger on 50 real-life projects. With 60.00% successfully fixed, VulDebugger significantly outperforms state-of-the-art approaches for vulnerability repair.
ComplexVCoder: An LLM-Driven Framework for Systematic Generation of Complex Verilog Code
Recent advances have demonstrated the promising capabilities of large language models (LLMs) in generating register-transfer level (RTL) code, such as Verilog. However, existing LLM-based frameworks still face significant challenges in accurately handling the complexity of real-world RTL designs, particularly those that are large-scale and involve multi-level module instantiations. To address this issue, we present ComplexVCoder, an open-source LLM-driven framework that enhances both the generation quality and efficiency of complex Verilog code. Specifically, we introduce a two-stage generation mechanism, which leverages an intermediate representation to enable a more accurate and structured transition from natural language descriptions to intricate Verilog designs. In addition, we introduce a rule-based alignment method and a domain-specific retrieval-augmented generation (RAG) to further improve the correctness of the synthesized code by incorporating relevant design knowledge during generation. To evaluate our approach, we construct a comprehensive dataset comprising 55 complex Verilog designs derived from real-world implementations. We also release an open-source benchmark suite for systematically assessing the quality of auto-generated RTL code together with the ComplexVCoder framework. Experimental results show that ComplexVCoder outperforms SOTA frameworks such as CodeV and RTLCoder by 14.6% and 22.2%, respectively, in terms of function correctness on complex Verilog benchmarks. Furthermore, ComplexVcoder achieves comparable generation performances in terms of functionality correctness using a lightweight 32B model (Qwen2.5), rivaling larger-scale models such as GPT-3.5 and DeepSeek-V3.
BiGR: Harnessing Binary Latent Codes for Image Generation and Improved Visual Representation Capabilities
We introduce BiGR, a novel conditional image generation model using compact binary latent codes for generative training, focusing on enhancing both generation and representation capabilities. BiGR is the first conditional generative model that unifies generation and discrimination within the same framework. BiGR features a binary tokenizer, a masked modeling mechanism, and a binary transcoder for binary code prediction. Additionally, we introduce a novel entropy-ordered sampling method to enable efficient image generation. Extensive experiments validate BiGR's superior performance in generation quality, as measured by FID-50k, and representation capabilities, as evidenced by linear-probe accuracy. Moreover, BiGR showcases zero-shot generalization across various vision tasks, enabling applications such as image inpainting, outpainting, editing, interpolation, and enrichment, without the need for structural modifications. Our findings suggest that BiGR unifies generative and discriminative tasks effectively, paving the way for further advancements in the field.
CoMo: Controllable Motion Generation through Language Guided Pose Code Editing
Text-to-motion models excel at efficient human motion generation, but existing approaches lack fine-grained controllability over the generation process. Consequently, modifying subtle postures within a motion or inserting new actions at specific moments remains a challenge, limiting the applicability of these methods in diverse scenarios. In light of these challenges, we introduce CoMo, a Controllable Motion generation model, adept at accurately generating and editing motions by leveraging the knowledge priors of large language models (LLMs). Specifically, CoMo decomposes motions into discrete and semantically meaningful pose codes, with each code encapsulating the semantics of a body part, representing elementary information such as "left knee slightly bent". Given textual inputs, CoMo autoregressively generates sequences of pose codes, which are then decoded into 3D motions. Leveraging pose codes as interpretable representations, an LLM can directly intervene in motion editing by adjusting the pose codes according to editing instructions. Experiments demonstrate that CoMo achieves competitive performance in motion generation compared to state-of-the-art models while, in human studies, CoMo substantially surpasses previous work in motion editing abilities.
Scaling Text-Rich Image Understanding via Code-Guided Synthetic Multimodal Data Generation
Reasoning about images with rich text, such as charts and documents, is a critical application of vision-language models (VLMs). However, VLMs often struggle in these domains due to the scarcity of diverse text-rich vision-language data. To address this challenge, we present CoSyn, a framework that leverages the coding capabilities of text-only large language models (LLMs) to automatically create synthetic text-rich multimodal data. Given input text describing a target domain (e.g., "nutrition fact labels"), CoSyn prompts an LLM to generate code (Python, HTML, LaTeX, etc.) for rendering synthetic images. With the underlying code as textual representations of the synthetic images, CoSyn can generate high-quality instruction-tuning data, again relying on a text-only LLM. Using CoSyn, we constructed a dataset comprising 400K images and 2.7M rows of vision-language instruction-tuning data. Comprehensive experiments on seven benchmarks demonstrate that models trained on our synthetic data achieve state-of-the-art performance among competitive open-source models, including Llama 3.2, and surpass proprietary models such as GPT-4V and Gemini 1.5 Flash. Furthermore, CoSyn can produce synthetic pointing data, enabling VLMs to ground information within input images, showcasing its potential for developing multimodal agents capable of acting in real-world environments.
Robust Learning of Diverse Code Edits
Software engineering activities frequently involve edits to existing code. However, contemporary code language models (LMs) lack the ability to handle diverse types of code-edit requirements. In this work, we attempt to overcome this shortcoming through (1) a novel synthetic data generation pipeline and (2) a robust model adaptation algorithm. Starting with seed code examples and diverse editing criteria, our pipeline generates high-quality samples comprising original and modified code, along with natural language instructions in different styles and verbosity. Today's code LMs come bundled with strong abilities, such as code generation and instruction following, which should not be lost due to fine-tuning. To ensure this, we propose a novel adaptation algorithm, SeleKT, that (a) leverages a dense gradient-based step to identify the weights that are most important for code editing, and (b) does a sparse projection onto the base model to avoid overfitting. Using our approach, we obtain a new series of models NextCoder (adapted from QwenCoder-2.5) that achieves strong results on five code-editing benchmarks, outperforming comparable size models and even several larger ones. We show the generality of our approach on two model families (DeepSeekCoder and QwenCoder), compare against other fine-tuning approaches, and demonstrate robustness by showing retention of code generation abilities post adaptation.
Evaluation of OpenAI Codex for HPC Parallel Programming Models Kernel Generation
We evaluate AI-assisted generative capabilities on fundamental numerical kernels in high-performance computing (HPC), including AXPY, GEMV, GEMM, SpMV, Jacobi Stencil, and CG. We test the generated kernel codes for a variety of language-supported programming models, including (1) C++ (e.g., OpenMP [including offload], OpenACC, Kokkos, SyCL, CUDA, and HIP), (2) Fortran (e.g., OpenMP [including offload] and OpenACC), (3) Python (e.g., numba, Numba, cuPy, and pyCUDA), and (4) Julia (e.g., Threads, CUDA.jl, AMDGPU.jl, and KernelAbstractions.jl). We use the GitHub Copilot capabilities powered by OpenAI Codex available in Visual Studio Code as of April 2023 to generate a vast amount of implementations given simple <kernel> + <programming model> + <optional hints> prompt variants. To quantify and compare the results, we propose a proficiency metric around the initial 10 suggestions given for each prompt. Results suggest that the OpenAI Codex outputs for C++ correlate with the adoption and maturity of programming models. For example, OpenMP and CUDA score really high, whereas HIP is still lacking. We found that prompts from either a targeted language such as Fortran or the more general-purpose Python can benefit from adding code keywords, while Julia prompts perform acceptably well for its mature programming models (e.g., Threads and CUDA.jl). We expect for these benchmarks to provide a point of reference for each programming model's community. Overall, understanding the convergence of large language models, AI, and HPC is crucial due to its rapidly evolving nature and how it is redefining human-computer interactions.
Security Attacks on LLM-based Code Completion Tools
The rapid development of large language models (LLMs) has significantly advanced code completion capabilities, giving rise to a new generation of LLM-based Code Completion Tools (LCCTs). Unlike general-purpose LLMs, these tools possess unique workflows, integrating multiple information sources as input and prioritizing code suggestions over natural language interaction, which introduces distinct security challenges. Additionally, LCCTs often rely on proprietary code datasets for training, raising concerns about the potential exposure of sensitive data. This paper exploits these distinct characteristics of LCCTs to develop targeted attack methodologies on two critical security risks: jailbreaking and training data extraction attacks. Our experimental results expose significant vulnerabilities within LCCTs, including a 99.4% success rate in jailbreaking attacks on GitHub Copilot and a 46.3% success rate on Amazon Q. Furthermore, We successfully extracted sensitive user data from GitHub Copilot, including 54 real email addresses and 314 physical addresses associated with GitHub usernames. Our study also demonstrates that these code-based attack methods are effective against general-purpose LLMs, such as the GPT series, highlighting a broader security misalignment in the handling of code by modern LLMs. These findings underscore critical security challenges associated with LCCTs and suggest essential directions for strengthening their security frameworks. The example code and attack samples from our research are provided at https://github.com/Sensente/Security-Attacks-on-LCCTs.
ObscuraCoder: Powering Efficient Code LM Pre-Training Via Obfuscation Grounding
Language models (LMs) have become a staple of the code-writing toolbox. Their pre-training recipe has, however, remained stagnant over recent years, barring the occasional changes in data sourcing and filtering strategies. In particular, research exploring modifications to Code-LMs' pre-training objectives, geared towards improving data efficiency and better disentangling between syntax and semantics, has been noticeably sparse, especially compared with corresponding efforts in natural language LMs. In this work, we examine grounding on obfuscated code as a means of helping Code-LMs look beyond the surface-form syntax and enhance their pre-training sample efficiency. To this end, we compile ObscuraX, a dataset of approximately 55M source and obfuscated code pairs in seven languages. Subsequently, we pre-train ObscuraCoder models, ranging in size from 255M to 2.8B parameters, on a 272B-token corpus that includes ObscuraX and demonstrate that our obfuscation-based pre-training recipe leads to consistent improvements in Code-LMs' abilities compared to both vanilla autoregressive pre-training as well as existing de-obfuscation (DOBF) objectives. ObscuraCoder demonstrates sizeable gains across multiple tests of syntactic and semantic code understanding, along with improved capabilities in multilingual code completion, multilingual code commit summarization, and multi-purpose library-oriented code generation.
Scene Co-pilot: Procedural Text to Video Generation with Human in the Loop
Video generation has achieved impressive quality, but it still suffers from artifacts such as temporal inconsistency and violation of physical laws. Leveraging 3D scenes can fundamentally resolve these issues by providing precise control over scene entities. To facilitate the easy generation of diverse photorealistic scenes, we propose Scene Copilot, a framework combining large language models (LLMs) with a procedural 3D scene generator. Specifically, Scene Copilot consists of Scene Codex, BlenderGPT, and Human in the loop. Scene Codex is designed to translate textual user input into commands understandable by the 3D scene generator. BlenderGPT provides users with an intuitive and direct way to precisely control the generated 3D scene and the final output video. Furthermore, users can utilize Blender UI to receive instant visual feedback. Additionally, we have curated a procedural dataset of objects in code format to further enhance our system's capabilities. Each component works seamlessly together to support users in generating desired 3D scenes. Extensive experiments demonstrate the capability of our framework in customizing 3D scenes and video generation.
Eureka: Human-Level Reward Design via Coding Large Language Models
Large Language Models (LLMs) have excelled as high-level semantic planners for sequential decision-making tasks. However, harnessing them to learn complex low-level manipulation tasks, such as dexterous pen spinning, remains an open problem. We bridge this fundamental gap and present Eureka, a human-level reward design algorithm powered by LLMs. Eureka exploits the remarkable zero-shot generation, code-writing, and in-context improvement capabilities of state-of-the-art LLMs, such as GPT-4, to perform evolutionary optimization over reward code. The resulting rewards can then be used to acquire complex skills via reinforcement learning. Without any task-specific prompting or pre-defined reward templates, Eureka generates reward functions that outperform expert human-engineered rewards. In a diverse suite of 29 open-source RL environments that include 10 distinct robot morphologies, Eureka outperforms human experts on 83% of the tasks, leading to an average normalized improvement of 52%. The generality of Eureka also enables a new gradient-free in-context learning approach to reinforcement learning from human feedback (RLHF), readily incorporating human inputs to improve the quality and the safety of the generated rewards without model updating. Finally, using Eureka rewards in a curriculum learning setting, we demonstrate for the first time, a simulated Shadow Hand capable of performing pen spinning tricks, adeptly manipulating a pen in circles at rapid speed.
AdaPlanner: Adaptive Planning from Feedback with Language Models
Large language models (LLMs) have recently demonstrated the potential in acting as autonomous agents for sequential decision-making tasks. However, most existing methods either take actions greedily without planning or rely on static plans that are not adaptable to environmental feedback. Consequently, the sequential decision-making performance of LLM agents degenerates with problem complexity and plan horizons increase. We propose a closed-loop approach, AdaPlanner, which allows the LLM agent to refine its self-generated plan adaptively in response to environmental feedback. In AdaPlanner, the LLM agent adaptively refines its plan from feedback with both in-plan and out-of-plan refinement strategies. To mitigate hallucination, we develop a code-style LLM prompt structure that facilitates plan generation across a variety of tasks, environments, and agent capabilities. Furthermore, we propose a skill discovery mechanism that leverages successful plans as few-shot exemplars, enabling the agent to plan and refine with fewer task demonstrations. Our experiments in the ALFWorld and MiniWoB++ environments demonstrate that AdaPlanner outperforms state-of-the-art baselines by 3.73% and 4.11% while utilizing 2x and 600x fewer samples, respectively.
The potential of LLMs for coding with low-resource and domain-specific programming languages
This paper presents a study on the feasibility of using large language models (LLM) for coding with low-resource and domain-specific programming languages that typically lack the amount of data required for effective LLM processing techniques. This study focuses on the econometric scripting language named hansl of the open-source software gretl and employs a proprietary LLM based on GPT-3.5. Our findings suggest that LLMs can be a useful tool for writing, understanding, improving, and documenting gretl code, which includes generating descriptive docstrings for functions and providing precise explanations for abstract and poorly documented econometric code. While the LLM showcased promoting docstring-to-code translation capability, we also identify some limitations, such as its inability to improve certain sections of code and to write accurate unit tests. This study is a step towards leveraging the power of LLMs to facilitate software development in low-resource programming languages and ultimately to lower barriers to entry for their adoption.
An Empirical Study of Retrieval-Augmented Code Generation: Challenges and Opportunities
Code generation aims to automatically generate code snippets of specific programming language according to natural language descriptions. The continuous advancements in deep learning, particularly pre-trained models, have empowered the code generation task to achieve remarkable performance. One main challenge of pre-trained models for code generation is the semantic gap between natural language requirements and source code. To address the issue, prior studies typically adopt a retrieval-augmented framework for the task, where the similar code snippets collected by a retrieval process can be leveraged to help understand the requirements and provide guidance for the generation process. However, there is a lack of systematic study on the application of this framework for code generation, including the impact of the final generated results and the specific usage of the framework. In this paper, we choose three popular pre-trained code models, namely CodeGen, UniXcoder, and CodeT5, to assess the impact of the quality and utilization of retrieved code on the retrieval-augmented framework. Our analysis shows that the retrieval-augmented framework is beneficial for improving the performance of the existing pre-trained models. We also provide suggestions on the utilization of the retrieval-augmented code generation framework: BM25 and Sequential Integration Fusion are recommended due to their convenience and superior performance. Sketch Filling Fusion, which extracts a sketch of relevant code, could help the model improve its performance further. Additionally, we conduct experiments to investigate the influence of the retrieval-augmented framework on large language models for code generation, showing the effectiveness of the framework, and we discuss the trade-off between performance improvement and computational costs in each phase within the framework.
CodeCoR: An LLM-Based Self-Reflective Multi-Agent Framework for Code Generation
Code generation aims to produce code that fulfills requirements written in natural languages automatically. Large language Models (LLMs) like ChatGPT have demonstrated promising effectiveness in this area. Nonetheless, these LLMs often fail to ensure the syntactic and semantic correctness of the generated code. Recently, researchers proposed multi-agent frameworks that guide LLMs with different prompts to analyze programming tasks, generate code, perform testing in a sequential workflow. However, the performance of the workflow is not robust as the code generation depends on the performance of each agent. To address this challenge, we propose CodeCoR, a self-reflective multi-agent framework that evaluates the effectiveness of each agent and their collaborations. Specifically, for a given task description, four agents in CodeCoR generate prompts, code, test cases, and repair advice, respectively. Each agent generates more than one output and prunes away the low-quality ones. The generated code is tested in the local environment: the code that fails to pass the generated test cases is sent to the repair agent and the coding agent re-generates the code based on repair advice. Finally, the code that passes the most number of generated test cases is returned to users. Our experiments on four widely used datasets, HumanEval, HumanEval-ET, MBPP, and MBPP-ET, demonstrate that CodeCoR significantly outperforms existing baselines (e.g., CodeCoT and MapCoder), achieving an average Pass@1 score of 77.8%.
Empowering AI to Generate Better AI Code: Guided Generation of Deep Learning Projects with LLMs
While large language models (LLMs) have been widely applied to code generation, they struggle with generating entire deep learning projects, which are characterized by complex structures, longer functions, and stronger reliance on domain knowledge than general-purpose code. An open-domain LLM often lacks coherent contextual guidance and domain expertise for specific projects, making it challenging to produce complete code that fully meets user requirements. In this paper, we propose a novel planning-guided code generation method, DLCodeGen, tailored for generating deep learning projects. DLCodeGen predicts a structured solution plan, offering global guidance for LLMs to generate the project. The generated plan is then leveraged to retrieve semantically analogous code samples and subsequently abstract a code template. To effectively integrate these multiple retrieval-augmented techniques, a comparative learning mechanism is designed to generate the final code. We validate the effectiveness of our approach on a dataset we build for deep learning code generation. Experimental results demonstrate that DLCodeGen outperforms other baselines, achieving improvements of 9.7% in CodeBLEU and 3.6% in human evaluation metrics.
PERC: Plan-As-Query Example Retrieval for Underrepresented Code Generation
Code generation with large language models has shown significant promise, especially when employing retrieval-augmented generation (RAG) with few-shot examples. However, selecting effective examples that enhance generation quality remains a challenging task, particularly when the target programming language (PL) is underrepresented. In this study, we present two key findings: (1) retrieving examples whose presented algorithmic plans can be referenced for generating the desired behavior significantly improves generation accuracy, and (2) converting code into pseudocode effectively captures such algorithmic plans, enhancing retrieval quality even when the source and the target PLs are different. Based on these findings, we propose Plan-as-query Example Retrieval for few-shot prompting in Code generation (PERC), a novel framework that utilizes algorithmic plans to identify and retrieve effective examples. We validate the effectiveness of PERC through extensive experiments on the CodeContests, HumanEval and MultiPL-E benchmarks: PERC consistently outperforms the state-of-the-art RAG methods in code generation, both when the source and target programming languages match or differ, highlighting its adaptability and robustness in diverse coding environments.
Large Language Models are Few-Shot Summarizers: Multi-Intent Comment Generation via In-Context Learning
Code comment generation aims at generating natural language descriptions for a code snippet to facilitate developers' program comprehension activities. Despite being studied for a long time, a bottleneck for existing approaches is that given a code snippet, they can only generate one comment while developers usually need to know information from diverse perspectives such as what is the functionality of this code snippet and how to use it. To tackle this limitation, this study empirically investigates the feasibility of utilizing large language models (LLMs) to generate comments that can fulfill developers' diverse intents. Our intuition is based on the facts that (1) the code and its pairwise comment are used during the pre-training process of LLMs to build the semantic connection between the natural language and programming language, and (2) comments in the real-world projects, which are collected for the pre-training, usually contain different developers' intents. We thus postulate that the LLMs can already understand the code from different perspectives after the pre-training. Indeed, experiments on two large-scale datasets demonstrate the rationale of our insights: by adopting the in-context learning paradigm and giving adequate prompts to the LLM (e.g., providing it with ten or more examples), the LLM can significantly outperform a state-of-the-art supervised learning approach on generating comments with multiple intents. Results also show that customized strategies for constructing the prompts and post-processing strategies for reranking the results can both boost the LLM's performances, which shed light on future research directions for using LLMs to achieve comment generation.
An Empirical Study of Using Large Language Models for Unit Test Generation
A code generation model generates code by taking a prompt from a code comment, existing code, or a combination of both. Although code generation models (e.g. GitHub Copilot) are increasingly being adopted in practice, it is unclear whether they can successfully be used for unit test generation without fine-tuning. We investigated how well three generative models (Codex, GPT-3.5-Turbo, and StarCoder) can generate test cases to fill this gap. We used two benchmarks (HumanEval and Evosuite SF110) to investigate the context generation's effect in the unit test generation process. We evaluated the models based on compilation rates, test correctness, coverage, and test smells. We found that the Codex model achieved above 80% coverage for the HumanEval dataset, but no model had more than 2% coverage for the EvoSuite SF110 benchmark. The generated tests also suffered from test smells, such as Duplicated Asserts and Empty Tests.
Test-Case-Driven Programming Understanding in Large Language Models for Better Code Generation
Code generation is to automatically generate source code conforming to a given programming specification, which has received extensive attention especially with the development of large language models (LLMs). Due to the inherent difficulty of code generation, the code generated by LLMs may be also not aligned with the specification. To improve the perfor mance of LLMs in code generation, some Chain of Thought (CoT) techniques have been proposed to guide LLMs for programming understanding before code generation. However, they are still hard to figure out complicated programming logic according to the (concise) specification, leadingto unsatisfactory code generation performance. In this work, we propose the first test-case-driven CoT technique, called TCoT, to further enhance the ability of LLMs in code generation. It understands the programming specification from the novel perspective of test cases, which is aligned with human practice by using examples to understand complicated problems. Due to the existence of the expected output specified in a test case, TCoT can instantly check the correctness of the programming understanding and then refine it to be as correct as possible before code generation. In this way, it is more likely to generate correct code. Our evaluation on 6 datasets and 14 baselines demonstrates the effectiveness of TCoT. For example, TCoT improves ChatGPT by 13.93%~69.44% in terms of Pass@1 (measuring the ratio of programming problems for which the generated code passes all test cases), and outperforms the existing CoT technique with the improvement of 12.14%~53.72% in terms of Pass@1.
Bugs in Large Language Models Generated Code: An Empirical Study
Large Language Models (LLMs) for code have gained significant attention recently. They can generate code in different programming languages based on provided prompts, fulfilling a long-lasting dream in Software Engineering (SE), i.e., automatic code generation. Similar to human-written code, LLM-generated code is prone to bugs, and these bugs have not yet been thoroughly examined by the community. Given the increasing adoption of LLM-based code generation tools (e.g., GitHub Copilot) in SE activities, it is critical to understand the characteristics of bugs contained in code generated by LLMs. This paper examines a sample of 333 bugs collected from code generated using three leading LLMs (i.e., CodeGen, PanGu-Coder, and Codex) and identifies the following 10 distinctive bug patterns: Misinterpretations, Syntax Error, Silly Mistake, Prompt-biased code, Missing Corner Case, Wrong Input Type, Hallucinated Object, Wrong Attribute, Incomplete Generation, and Non-Prompted Consideration. The bug patterns are presented in the form of a taxonomy. The identified bug patterns are validated using an online survey with 34 LLM practitioners and researchers. The surveyed participants generally asserted the significance and prevalence of the bug patterns. Researchers and practitioners can leverage these findings to develop effective quality assurance techniques for LLM-generated code. This study sheds light on the distinctive characteristics of LLM-generated code.
ReCode: Robustness Evaluation of Code Generation Models
Code generation models have achieved impressive performance. However, they tend to be brittle as slight edits to a prompt could lead to very different generations; these robustness properties, critical for user experience when deployed in real-life applications, are not well understood. Most existing works on robustness in text or code tasks have focused on classification, while robustness in generation tasks is an uncharted area and to date there is no comprehensive benchmark for robustness in code generation. In this paper, we propose ReCode, a comprehensive robustness evaluation benchmark for code generation models. We customize over 30 transformations specifically for code on docstrings, function and variable names, code syntax, and code format. They are carefully designed to be natural in real-life coding practice, preserve the original semantic meaning, and thus provide multifaceted assessments of a model's robustness performance. With human annotators, we verified that over 90% of the perturbed prompts do not alter the semantic meaning of the original prompt. In addition, we define robustness metrics for code generation models considering the worst-case behavior under each type of perturbation, taking advantage of the fact that executing the generated code can serve as objective evaluation. We demonstrate ReCode on SOTA models using HumanEval, MBPP, as well as function completion tasks derived from them. Interesting observations include: better robustness for CodeGen over InCoder and GPT-J; models are most sensitive to syntax perturbations; more challenging robustness evaluation on MBPP over HumanEval.
Personalised Distillation: Empowering Open-Sourced LLMs with Adaptive Learning for Code Generation
With the rise of powerful closed-sourced LLMs (ChatGPT, GPT-4), there are increasing interests in distilling the capabilies of close-sourced LLMs to smaller open-sourced LLMs. Previous distillation methods usually prompt ChatGPT to generate a set of instructions and answers, for the student model to learn. However, such standard distillation approach neglects the merits and conditions of the student model. Inspired by modern teaching principles, we design a personalised distillation process, in which the student attempts to solve a task first, then the teacher provides an adaptive refinement for the student to improve. Instead of feeding the student with teacher's prior, personalised distillation enables personalised learning for the student model, as it only learns on examples it makes mistakes upon and learns to improve its own solution. On code generation, personalised distillation consistently outperforms standard distillation with only one third of the data. With only 2.5-3K personalised examples that incur a data-collection cost of 4-6$, we boost CodeGen-mono-16B by 7% to achieve 36.4% pass@1 and StarCoder by 12.2% to achieve 45.8% pass@1 on HumanEval.
EffiBench: Benchmarking the Efficiency of Automatically Generated Code
Code generation models have increasingly become integral to aiding software development, offering assistance in tasks such as code completion, debugging, and code translation. Although current research has thoroughly examined the correctness of code produced by code generation models, a vital aspect, i.e., the efficiency of the generated code, has often been neglected. This paper presents EffiBench, a benchmark with 1,000 efficiency-critical coding problems for assessing the efficiency of code generated by code generation models. EffiBench contains a diverse set of LeetCode coding problems. Each problem is paired with an executable human-written canonical solution. With EffiBench, we empirically examine the capability of 21 Large Language Models (13 open-sourced and 8 closed-sourced) in generating efficient code. The results demonstrate that GPT-4-turbo generates the most efficient code, significantly outperforming Palm-2-chat-bison, Claude-instant-1, Gemini-pro, GPT-4, and GPT-3.5. Nevertheless, its code efficiency is still worse than the efficiency of human-written canonical solutions. In particular, the average and worst execution time of GPT-4-turbo generated code is 1.69 and 45.49 times that of the canonical solutions.
Security Weaknesses of Copilot Generated Code in GitHub
Modern code generation tools, utilizing AI models like Large Language Models (LLMs), have gained popularity for producing functional code. However, their usage presents security challenges, often resulting in insecure code merging into the code base. Evaluating the quality of generated code, especially its security, is crucial. While prior research explored various aspects of code generation, the focus on security has been limited, mostly examining code produced in controlled environments rather than real-world scenarios. To address this gap, we conducted an empirical study, analyzing code snippets generated by GitHub Copilot from GitHub projects. Our analysis identified 452 snippets generated by Copilot, revealing a high likelihood of security issues, with 32.8% of Python and 24.5% of JavaScript snippets affected. These issues span 38 different Common Weakness Enumeration (CWE) categories, including significant ones like CWE-330: Use of Insufficiently Random Values, CWE-78: OS Command Injection, and CWE-94: Improper Control of Generation of Code. Notably, eight CWEs are among the 2023 CWE Top-25, highlighting their severity. Our findings confirm that developers should be careful when adding code generated by Copilot and should also run appropriate security checks as they accept the suggested code. It also shows that practitioners should cultivate corresponding security awareness and skills.
On Evaluating the Efficiency of Source Code Generated by LLMs
Recent years have seen the remarkable capabilities of large language models (LLMs) for code generation. Different from existing work that evaluate the correctness of the code generated by LLMs, we propose to further evaluate its efficiency. More efficient code can lead to higher performance and execution efficiency of programs and software completed by LLM-assisted programming. First, we evaluate the efficiency of the code generated by LLMs on two benchmarks, HumanEval and MBPP. Then, we choose a set of programming problems from the online judge platform LeetCode to conduct a more difficult evaluation. Finally, we explore several prompts that would enable LLMs to generate more efficient code.
Competition-Level Code Generation with AlphaCode
Programming is a powerful and ubiquitous problem-solving tool. Developing systems that can assist programmers or even generate programs independently could make programming more productive and accessible, yet so far incorporating innovations in AI has proven challenging. Recent large-scale language models have demonstrated an impressive ability to generate code, and are now able to complete simple programming tasks. However, these models still perform poorly when evaluated on more complex, unseen problems that require problem-solving skills beyond simply translating instructions into code. For example, competitive programming problems which require an understanding of algorithms and complex natural language remain extremely challenging. To address this gap, we introduce AlphaCode, a system for code generation that can create novel solutions to these problems that require deeper reasoning. In simulated evaluations on recent programming competitions on the Codeforces platform, AlphaCode achieved on average a ranking of top 54.3% in competitions with more than 5,000 participants. We found that three key components were critical to achieve good and reliable performance: (1) an extensive and clean competitive programming dataset for training and evaluation, (2) large and efficient-to-sample transformer-based architectures, and (3) large-scale model sampling to explore the search space, followed by filtering based on program behavior to a small set of submissions.
SURGE: On the Potential of Large Language Models as General-Purpose Surrogate Code Executors
Large language models (LLMs) have demonstrated remarkable capabilities in code-related tasks, such as code understanding and code generation. However, an equally important yet underexplored question is whether LLMs can serve as general-purpose surrogate code executors, to predict the output and behavior of a program without actually running it. To systematically investigate this capability, we introduce SURGE, a comprehensive benchmark covering eight key aspects: multi-language programming tasks, competition-level programming problems, repository-level code analysis, high-cost scientific computing, time-complexity-intensive algorithms, buggy code analysis, programs dependent on specific compilers or execution environments, and formal mathematical proof verification. We evaluate multiple open-source and proprietary LLMs on SURGE and conduct a scaling study to analyze the impact of model size and training data scale on surrogate execution accuracy. Additionally, we categorize model prediction errors and explore potential areas for improvement. Our findings indicate that while LLMs can predict code execution results in certain cases, they exhibit limitations in general-purpose surrogate execution. This study provides empirical insights into the feasibility of using LLMs as surrogate code executors. Code and dataset are released at https://github.com/Imbernoulli/SURGE.
LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code
Large Language Models (LLMs) applied to code-related applications have emerged as a prominent field, attracting significant interest from both academia and industry. However, as new and improved LLMs are developed, existing evaluation benchmarks (e.g., HumanEval, MBPP) are no longer sufficient for assessing their capabilities. In this work, we propose LiveCodeBench, a comprehensive and contamination-free evaluation of LLMs for code, which continuously collects new problems over time from contests across three competition platforms, namely LeetCode, AtCoder, and CodeForces. Notably, our benchmark also focuses on a broader range of code related capabilities, such as self-repair, code execution, and test output prediction, beyond just code generation. Currently, LiveCodeBench hosts four hundred high-quality coding problems that were published between May 2023 and February 2024. We have evaluated 9 base LLMs and 20 instruction-tuned LLMs on LiveCodeBench. We present empirical findings on contamination, holistic performance comparisons, potential overfitting in existing benchmarks as well as individual model comparisons. We will release all prompts and model completions for further community analysis, along with a general toolkit for adding new scenarios and model
Effi-Code: Unleashing Code Efficiency in Language Models
As the use of large language models (LLMs) for code generation becomes more prevalent in software development, it is critical to enhance both the efficiency and correctness of the generated code. Existing methods and models primarily focus on the correctness of LLM-generated code, ignoring efficiency. In this work, we present Effi-Code, an approach to enhancing code generation in LLMs that can improve both efficiency and correctness. We introduce a Self-Optimization process based on Overhead Profiling that leverages open-source LLMs to generate a high-quality dataset of correct and efficient code samples. This dataset is then used to fine-tune various LLMs. Our method involves the iterative refinement of generated code, guided by runtime performance metrics and correctness checks. Extensive experiments demonstrate that models fine-tuned on the Effi-Code show significant improvements in both code correctness and efficiency across task types. For example, the pass@1 of DeepSeek-Coder-6.7B-Instruct generated code increases from 43.3\% to 76.8\%, and the average execution time for the same correct tasks decreases by 30.5\%. Effi-Code offers a scalable and generalizable approach to improving code generation in AI systems, with potential applications in software development, algorithm design, and computational problem-solving. The source code of Effi-Code was released in https://github.com/huangd1999/Effi-Code.
ClassEval: A Manually-Crafted Benchmark for Evaluating LLMs on Class-level Code Generation
In this work, we make the first attempt to evaluate LLMs in a more challenging code generation scenario, i.e. class-level code generation. We first manually construct the first class-level code generation benchmark ClassEval of 100 class-level Python code generation tasks with approximately 500 person-hours. Based on it, we then perform the first study of 11 state-of-the-art LLMs on class-level code generation. Based on our results, we have the following main findings. First, we find that all existing LLMs show much worse performance on class-level code generation compared to on standalone method-level code generation benchmarks like HumanEval; and the method-level coding ability cannot equivalently reflect the class-level coding ability among LLMs. Second, we find that GPT-4 and GPT-3.5 still exhibit dominate superior than other LLMs on class-level code generation, and the second-tier models includes Instruct-Starcoder, Instruct-Codegen, and Wizardcoder with very similar performance. Third, we find that generating the entire class all at once (i.e. holistic generation strategy) is the best generation strategy only for GPT-4 and GPT-3.5, while method-by-method generation (i.e. incremental and compositional) is better strategies for the other models with limited ability of understanding long instructions and utilizing the middle information. Lastly, we find the limited model ability of generating method-dependent code and discuss the frequent error types in generated classes. Our benchmark is available at https://github.com/FudanSELab/ClassEval.
CoderEval: A Benchmark of Pragmatic Code Generation with Generative Pre-trained Models
Code generation models based on the pre-training and fine-tuning paradigm have been increasingly attempted by both academia and industry, resulting in well-known industrial models such as Codex, CodeGen, and PanGu-Coder. To evaluate the effectiveness of these models, multiple existing benchmarks are proposed, including only cases of generating a standalone function, i.e., a function that may invoke or access only built-in functions and standard libraries. However, non-standalone functions, which typically are not included in the existing benchmarks, constitute more than 70% of the functions in popular open-source projects, and evaluating models' effectiveness on standalone functions cannot reflect these models' effectiveness on pragmatic code generation scenarios. To help bridge the preceding gap, in this paper, we propose a benchmark named CoderEval, consisting of 230 Python and 230 Java code generation tasks carefully curated from popular real-world open-source projects and a self-contained execution platform to automatically assess the functional correctness of generated code. CoderEval supports code generation tasks from six levels of context dependency, where context refers to code elements such as types, APIs, variables, and consts defined outside the function under generation but within the dependent third-party libraries, current class, file, or project. CoderEval can be used to evaluate the effectiveness of models in generating code beyond only standalone functions. By evaluating three code generation models on CoderEval, we find that the effectiveness of these models in generating standalone functions is substantially higher than that in generating non-standalone functions. Our analysis highlights the current progress and pinpoints future directions to further improve a model's effectiveness by leveraging contextual information for pragmatic code generation.
An Exploratory Study on Fine-Tuning Large Language Models for Secure Code Generation
AI-powered coding assistants such as GitHub Copilot and OpenAI ChatGPT have achieved notable success in automating code generation. However, these tools rely on pre-trained Large Language Models (LLMs) that are typically trained on human-written code sourced from open-source project hosting sites like GitHub, which often contains inherent security vulnerabilities. These vulnerabilities may then be mirrored in the code generated by these LLMs, a critical risk revealed and highlighted by recent empirical studies. In this work, we present an exploratory study on whether fine-tuning pre-trained LLMs on datasets of vulnerability-fixing commits can promote secure code generation. We explored two parameter-efficient fine-tuning techniques (LoRa and IA3) on two pre-trained LLMs for code generation. We crawled a fine-tuning dataset (14,622 C and C++ files) for secure code generation by collecting code fixes of confirmed vulnerabilities from open-source repositories. Our evaluation dataset comprises 52 vulnerability scenarios designed to cover the top most dangerous C and C++ Common Weakness Enumerations (CWEs). Each scenario is a prompt that may induce LLMs to generate vulnerable code. Our exploration reveals that fine-tuning LLMs can improve secure code generation by 6.4% in C language and 5.4% in C++ language. We further experimented with fine-tuning LLMs using different versions of the collected secure code dataset (block, function, and line). We found that fine-tuning with function-level and block-level datasets achieves the best secure code generation performance, compared to the alternatives (file-level and line-level).
Lyra: A Benchmark for Turducken-Style Code Generation
Recently, neural techniques have been used to generate source code automatically. While promising for declarative languages, these approaches achieve much poorer performance on datasets for imperative languages. Since a declarative language is typically embedded in an imperative language (i.e., the turducken-style programming) in real-world software development, the promising results on declarative languages can hardly lead to significant reduction of manual software development efforts. In this paper, we define a new code generation task: given a natural language comment, this task aims to generate a program in a base imperative language with an embedded declarative language. To our knowledge, this is the first turducken-style code generation task. For this task, we present Lyra: a dataset in Python with embedded SQL. This dataset contains 2,000 carefully annotated database manipulation programs from real-world projects. Each program is paired with both a Chinese comment and an English comment. In our experiment, we adopted Transformer, BERT-style, and GPT-style models as baselines. In the best setting, the generation performance of GPT-style models is better than others, where the AST exact matching accuracy is 24% and 25.5% when using Chinese and English comments, respectively. Therefore, we believe that Lyra provides a new challenge for code generation. Yet, overcoming this challenge may significantly boost the applicability of code generation techniques for real-world software development.
ToolCoder: Teach Code Generation Models to use API search tools
Automatically generating source code from natural language descriptions has been a growing field of research in recent years. However, current large-scale code generation models often encounter difficulties when selecting appropriate APIs for specific contexts. These models may generate APIs that do not meet requirements or refer to non-existent APIs in third-party libraries, especially for lesser-known or private libraries. Inspired by the process of human developers using tools to search APIs, we propose ToolCoder, a novel approach that integrates API search tools with existing models to assist in code generation and API selection. To teach our model to use tools, we introduce an automated data annotation method using ChatGPT to add tool usage information into the source code data and fine-tune code generation models. During inference, we integrate API search tools into the generation process so that our model can automatically use the search tool to get suggestions when selecting an API. Our experimental results demonstrate that ToolCoder exhibits excellent performance and generalization across five public and private library code generation benchmarks, with at least 6.21\% improvement on average pass@1 metrics and 9.64\% improvement on average pass@10 metrics compared to state-of-the-art methods. Furthermore, we show that our relatively small ToolCoder model is comparable to one of the current best models, GPT-3.5, highlighting the potential of incorporating programming tools into the code generation process.
ConAIR:Consistency-Augmented Iterative Interaction Framework to Enhance the Reliability of Code Generation
Code generation techniques generate code snippets automatically based on the problem requirements in natural language. Recently, large language models (LLMs) achieve the SOTA performance on code generation. However, LLMs still struggle at times to generate accurate code, which diminishes their promised efficiency as developers must spend significant effort evaluating and debugging the generated code. To improve the reliability and quality of the generated codes, researchers propose to leverage Consistency to obtain a better code based on generating and ranking multiple candidates. The existing approach is problematic as Consistency thinks a code is better when (1) the code pass more tests (inter-consistency) (2) more codes share the same behavior (intra-consistency). However, because the tests are also generated by LLMs, they could be wrong as well. As a result, majority voting based on testing results is unreliable. Relying solely on consistency is insufficient to address this issue; integrating user feedback is essential for effectively guiding consistency. We show that with minimal human effort, performance can be significantly enhanced. We propose Consistency-Augmented Iterative Interaction Framework to Enhance the Reliability of Code Generation, ConAIR, which is an approach that aims to improve the performance of a code generator through two distinctive ingredients, i.e., (1) lightweight user effort for validating the correctness of selected tests; and (2) a dynamic strategy for ranking, localizing and correcting multiple tests and codes. Overall, we propose a lightweight interaction framework that incorporates user feedback to correct identified tests and guide the iterative process. The iteration rounds are only 4 in average with the help of consistency. With only lightweight human efforts, we can achieve an improvement of 33% towards the base model.
ScienceAgentBench: Toward Rigorous Assessment of Language Agents for Data-Driven Scientific Discovery
The advancements of language language models (LLMs) have piqued growing interest in developing LLM-based language agents to automate scientific discovery end-to-end, which has sparked both excitement and skepticism about the true capabilities of such agents. In this work, we argue that for an agent to fully automate scientific discovery, it must be able to complete all essential tasks in the workflow. Thus, we call for rigorous assessment of agents on individual tasks in a scientific workflow before making bold claims on end-to-end automation. To this end, we present ScienceAgentBench, a new benchmark for evaluating language agents for data-driven scientific discovery. To ensure the scientific authenticity and real-world relevance of our benchmark, we extract 102 tasks from 44 peer-reviewed publications in four disciplines and engage nine subject matter experts to validate them. We unify the target output for every task to a self-contained Python program file and employ an array of evaluation metrics to examine the generated programs, execution results, and costs. Each task goes through multiple rounds of manual validation by annotators and subject matter experts to ensure its annotation quality and scientific plausibility. We also propose two effective strategies to mitigate data contamination concerns. Using our benchmark, we evaluate five open-weight and proprietary LLMs, each with three frameworks: direct prompting, OpenHands, and self-debug. Given three attempts for each task, the best-performing agent can only solve 32.4% of the tasks independently and 34.3% with expert-provided knowledge. These results underscore the limited capacities of current language agents in generating code for data-driven discovery, let alone end-to-end automation for scientific research.
SecBench: A Comprehensive Multi-Dimensional Benchmarking Dataset for LLMs in Cybersecurity
Evaluating Large Language Models (LLMs) is crucial for understanding their capabilities and limitations across various applications, including natural language processing and code generation. Existing benchmarks like MMLU, C-Eval, and HumanEval assess general LLM performance but lack focus on specific expert domains such as cybersecurity. Previous attempts to create cybersecurity datasets have faced limitations, including insufficient data volume and a reliance on multiple-choice questions (MCQs). To address these gaps, we propose SecBench, a multi-dimensional benchmarking dataset designed to evaluate LLMs in the cybersecurity domain. SecBench includes questions in various formats (MCQs and short-answer questions (SAQs)), at different capability levels (Knowledge Retention and Logical Reasoning), in multiple languages (Chinese and English), and across various sub-domains. The dataset was constructed by collecting high-quality data from open sources and organizing a Cybersecurity Question Design Contest, resulting in 44,823 MCQs and 3,087 SAQs. Particularly, we used the powerful while cost-effective LLMs to (1). label the data and (2). constructing a grading agent for automatic evaluation of SAQs. Benchmarking results on 16 SOTA LLMs demonstrate the usability of SecBench, which is arguably the largest and most comprehensive benchmark dataset for LLMs in cybersecurity. More information about SecBench can be found at our website, and the dataset can be accessed via the artifact link.
Design2Code: How Far Are We From Automating Front-End Engineering?
Generative AI has made rapid advancements in recent years, achieving unprecedented capabilities in multimodal understanding and code generation. This can enable a new paradigm of front-end development, in which multimodal LLMs might directly convert visual designs into code implementations. In this work, we formalize this as a Design2Code task and conduct comprehensive benchmarking. Specifically, we manually curate a benchmark of 484 diverse real-world webpages as test cases and develop a set of automatic evaluation metrics to assess how well current multimodal LLMs can generate the code implementations that directly render into the given reference webpages, given the screenshots as input. We also complement automatic metrics with comprehensive human evaluations. We develop a suite of multimodal prompting methods and show their effectiveness on GPT-4V and Gemini Pro Vision. We further finetune an open-source Design2Code-18B model that successfully matches the performance of Gemini Pro Vision. Both human evaluation and automatic metrics show that GPT-4V performs the best on this task compared to other models. Moreover, annotators think GPT-4V generated webpages can replace the original reference webpages in 49% of cases in terms of visual appearance and content; and perhaps surprisingly, in 64% of cases GPT-4V generated webpages are considered better than the original reference webpages. Our fine-grained break-down metrics indicate that open-source models mostly lag in recalling visual elements from the input webpages and in generating correct layout designs, while aspects like text content and coloring can be drastically improved with proper finetuning.
Knowledge Fusion of Large Language Models
While training large language models (LLMs) from scratch can generate models with distinct functionalities and strengths, it comes at significant costs and may result in redundant capabilities. Alternatively, a cost-effective and compelling approach is to merge existing pre-trained LLMs into a more potent model. However, due to the varying architectures of these LLMs, directly blending their weights is impractical. In this paper, we introduce the notion of knowledge fusion for LLMs, aimed at combining the capabilities of existing LLMs and transferring them into a single LLM. By leveraging the generative distributions of source LLMs, we externalize their collective knowledge and unique strengths, thereby potentially elevating the capabilities of the target model beyond those of any individual source LLM. We validate our approach using three popular LLMs with different architectures--Llama-2, MPT, and OpenLLaMA--across various benchmarks and tasks. Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation. Our code, model weights, and data are public at https://github.com/fanqiwan/FuseLLM.
Mini-DALLE3: Interactive Text to Image by Prompting Large Language Models
The revolution of artificial intelligence content generation has been rapidly accelerated with the booming text-to-image (T2I) diffusion models. Within just two years of development, it was unprecedentedly of high-quality, diversity, and creativity that the state-of-the-art models could generate. However, a prevalent limitation persists in the effective communication with these popular T2I models, such as Stable Diffusion, using natural language descriptions. This typically makes an engaging image hard to obtain without expertise in prompt engineering with complex word compositions, magic tags, and annotations. Inspired by the recently released DALLE3 - a T2I model directly built-in ChatGPT that talks human language, we revisit the existing T2I systems endeavoring to align human intent and introduce a new task - interactive text to image (iT2I), where people can interact with LLM for interleaved high-quality image generation/edit/refinement and question answering with stronger images and text correspondences using natural language. In addressing the iT2I problem, we present a simple approach that augments LLMs for iT2I with prompting techniques and off-the-shelf T2I models. We evaluate our approach for iT2I in a variety of common-used scenarios under different LLMs, e.g., ChatGPT, LLAMA, Baichuan, and InternLM. We demonstrate that our approach could be a convenient and low-cost way to introduce the iT2I ability for any existing LLMs and any text-to-image models without any training while bringing little degradation on LLMs' inherent capabilities in, e.g., question answering and code generation. We hope this work could draw broader attention and provide inspiration for boosting user experience in human-machine interactions alongside the image quality of the next-generation T2I systems.
CAT-LM: Training Language Models on Aligned Code And Tests
Testing is an integral part of the software development process. Yet, writing tests is time-consuming and therefore often neglected. Classical test generation tools such as EvoSuite generate behavioral test suites by optimizing for coverage, but tend to produce tests that are hard to understand. Language models trained on code can generate code that is highly similar to that written by humans, but current models are trained to generate each file separately, as is standard practice in natural language processing, and thus fail to consider the code-under-test context when producing a test file. In this work, we propose the Aligned Code And Tests Language Model (CAT-LM), a GPT-style language model with 2.7 Billion parameters, trained on a corpus of Python and Java projects. We utilize a novel pretraining signal that explicitly considers the mapping between code and test files when available. We also drastically increase the maximum sequence length of inputs to 8,192 tokens, 4x more than typical code generation models, to ensure that the code context is available to the model when generating test code. We analyze its usefulness for realistic applications, showing that sampling with filtering (e.g., by compilability, coverage) allows it to efficiently produce tests that achieve coverage similar to ones written by developers while resembling their writing style. By utilizing the code context, CAT-LM generates more valid tests than even much larger language models trained with more data (CodeGen 16B and StarCoder) and substantially outperforms a recent test-specific model (TeCo) at test completion. Overall, our work highlights the importance of incorporating software-specific insights when training language models for code and paves the way to more powerful automated test generation.
Vulnerability Handling of AI-Generated Code -- Existing Solutions and Open Challenges
The increasing use of generative Artificial Intelligence (AI) in modern software engineering, particularly Large Language Models (LLMs) for code generation, has transformed professional software development by boosting productivity and automating development processes. This adoption, however, has highlighted a significant issue: the introduction of security vulnerabilities into the code. These vulnerabilities result, e.g., from flaws in the training data that propagate into the generated code, creating challenges in disclosing them. Traditional vulnerability handling processes often involve extensive manual review. Applying such traditional processes to AI-generated code is challenging. AI-generated code may include several vulnerabilities, possibly in slightly different forms as developers might not build on already implemented code but prompt similar tasks. In this work, we explore the current state of LLM-based approaches for vulnerability handling, focusing on approaches for vulnerability detection, localization, and repair. We provide an overview of recent progress in this area and highlight open challenges that must be addressed in order to establish a reliable and scalable vulnerability handling process of AI-generated code.
Multi-Turn Code Generation Through Single-Step Rewards
We address the problem of code generation from multi-turn execution feedback. Existing methods either generate code without feedback or use complex, hierarchical reinforcement learning to optimize multi-turn rewards. We propose a simple yet scalable approach, muCode, that solves multi-turn code generation using only single-step rewards. Our key insight is that code generation is a one-step recoverable MDP, where the correct code can be recovered from any intermediate code state in a single turn. muCode iteratively trains both a generator to provide code solutions conditioned on multi-turn execution feedback and a verifier to score the newly generated code. Experimental evaluations show that our approach achieves significant improvements over the state-of-the-art baselines. We provide analysis of the design choices of the reward models and policy, and show the efficacy of muCode at utilizing the execution feedback. Our code is available at https://github.com/portal-cornell/muCode.
CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis
Program synthesis strives to generate a computer program as a solution to a given problem specification, expressed with input-output examples or natural language descriptions. The prevalence of large language models advances the state-of-the-art for program synthesis, though limited training resources and data impede open access to such models. To democratize this, we train and release a family of large language models up to 16.1B parameters, called CODEGEN, on natural language and programming language data, and open source the training library JAXFORMER. We show the utility of the trained model by demonstrating that it is competitive with the previous state-of-the-art on zero-shot Python code generation on HumanEval. We further investigate the multi-step paradigm for program synthesis, where a single program is factorized into multiple prompts specifying subproblems. To this end, we construct an open benchmark, Multi-Turn Programming Benchmark (MTPB), consisting of 115 diverse problem sets that are factorized into multi-turn prompts. Our analysis on MTPB shows that the same intent provided to CODEGEN in multi-turn fashion significantly improves program synthesis over that provided as a single turn. We make the training library JAXFORMER and model checkpoints available as open source contribution: https://github.com/salesforce/CodeGen.
Incorporating External Knowledge through Pre-training for Natural Language to Code Generation
Open-domain code generation aims to generate code in a general-purpose programming language (such as Python) from natural language (NL) intents. Motivated by the intuition that developers usually retrieve resources on the web when writing code, we explore the effectiveness of incorporating two varieties of external knowledge into NL-to-code generation: automatically mined NL-code pairs from the online programming QA forum StackOverflow and programming language API documentation. Our evaluations show that combining the two sources with data augmentation and retrieval-based data re-sampling improves the current state-of-the-art by up to 2.2% absolute BLEU score on the code generation testbed CoNaLa. The code and resources are available at https://github.com/neulab/external-knowledge-codegen.
Crystal: Illuminating LLM Abilities on Language and Code
Large Language Models (LLMs) specializing in code generation (which are also often referred to as code LLMs), e.g., StarCoder and Code Llama, play increasingly critical roles in various software development scenarios. It is also crucial for code LLMs to possess both code generation and natural language abilities for many specific applications, such as code snippet retrieval using natural language or code explanations. The intricate interaction between acquiring language and coding skills complicates the development of strong code LLMs. Furthermore, there is a lack of thorough prior studies on the LLM pretraining strategy that mixes code and natural language. In this work, we propose a pretraining strategy to enhance the integration of natural language and coding capabilities within a single LLM. Specifically, it includes two phases of training with appropriately adjusted code/language ratios. The resulting model, Crystal, demonstrates remarkable capabilities in both domains. Specifically, it has natural language and coding performance comparable to that of Llama 2 and Code Llama, respectively. Crystal exhibits better data efficiency, using 1.4 trillion tokens compared to the more than 2 trillion tokens used by Llama 2 and Code Llama. We verify our pretraining strategy by analyzing the training process and observe consistent improvements in most benchmarks. We also adopted a typical application adaptation phase with a code-centric data mixture, only to find that it did not lead to enhanced performance or training efficiency, underlining the importance of a carefully designed data recipe. To foster research within the community, we commit to open-sourcing every detail of the pretraining, including our training datasets, code, loggings and 136 checkpoints throughout the training.
COFFE: A Code Efficiency Benchmark for Code Generation
Code generation has largely improved development efficiency in the era of large language models (LLMs). With the ability to follow instructions, current LLMs can be prompted to generate code solutions given detailed descriptions in natural language. Many research efforts are being devoted to improving the correctness of LLM-generated code, and many benchmarks are proposed to evaluate the correctness comprehensively. Despite the focus on correctness, the time efficiency of LLM-generated code solutions is under-explored. Current correctness benchmarks are not suitable for time efficiency evaluation since their test cases cannot well distinguish the time efficiency of different code solutions. Besides, the current execution time measurement is not stable and comprehensive, threatening the validity of the time efficiency evaluation. To address the challenges in the time efficiency evaluation of code generation, we propose COFFE, a code generation benchmark for evaluating the time efficiency of LLM-generated code solutions. COFFE contains 398 and 358 problems for function-level and file-level code generation, respectively. To improve the distinguishability, we design a novel stressful test case generation approach with contracts and two new formats of test cases to improve the accuracy of generation. For the time evaluation metric, we propose efficienct@k based on CPU instruction count to ensure a stable and solid comparison between different solutions. We evaluate 14 popular LLMs on COFFE and identify four findings. Based on the findings, we draw some implications for LLM researchers and software practitioners to facilitate future research and usage of LLMs in code generation.
A Lightweight Framework for High-Quality Code Generation
In recent years, the use of automated source code generation utilizing transformer-based generative models has expanded, and these models can generate functional code according to the requirements of the developers. However, recent research revealed that these automatically generated source codes can contain vulnerabilities and other quality issues. Despite researchers' and practitioners' attempts to enhance code generation models, retraining and fine-tuning large language models is time-consuming and resource-intensive. Thus, we describe FRANC, a lightweight framework for recommending more secure and high-quality source code derived from transformer-based code generation models. FRANC includes a static filter to make the generated code compilable with heuristics and a quality-aware ranker to sort the code snippets based on a quality score. Moreover, the framework uses prompt engineering to fix persistent quality issues. We evaluated the framework with five Python and Java code generation models and six prompt datasets, including a newly created one in this work (SOEval). The static filter improves 9% to 46% Java suggestions and 10% to 43% Python suggestions regarding compilability. The average improvement over the NDCG@10 score for the ranking system is 0.0763, and the repairing techniques repair the highest 80% of prompts. FRANC takes, on average, 1.98 seconds for Java; for Python, it takes 0.08 seconds.
DolphCoder: Echo-Locating Code Large Language Models with Diverse and Multi-Objective Instruction Tuning
Code Large Language Models (Code LLMs) have demonstrated outstanding performance in code-related tasks. Several instruction tuning approaches have been proposed to boost the code generation performance of pre-trained Code LLMs. In this paper, we introduce a diverse instruction model (DolphCoder) with self-evaluating for code generation. It learns diverse instruction targets and combines a code evaluation objective to enhance its code generation ability. Our model achieves superior performance on the HumanEval and MBPP benchmarks, demonstrating new insights for future code instruction tuning work. Our key findings are: (1) Augmenting more diverse responses with distinct reasoning paths increases the code capability of LLMs. (2) Improving one's ability to evaluate the correctness of code solutions also enhances their ability to create it.
Examination of Code generated by Large Language Models
Large language models (LLMs), such as ChatGPT and Copilot, are transforming software development by automating code generation and, arguably, enable rapid prototyping, support education, and boost productivity. Therefore, correctness and quality of the generated code should be on par with manually written code. To assess the current state of LLMs in generating correct code of high quality, we conducted controlled experiments with ChatGPT and Copilot: we let the LLMs generate simple algorithms in Java and Python along with the corresponding unit tests and assessed the correctness and the quality (coverage) of the generated (test) codes. We observed significant differences between the LLMs, between the languages, between algorithm and test codes, and over time. The present paper reports these results together with the experimental methods allowing repeated and comparable assessments for more algorithms, languages, and LLMs over time.
The Program Testing Ability of Large Language Models for Code
Recent development of large language models (LLMs) for code like CodeX and CodeT5+ demonstrates tremendous promise in achieving code intelligence. Their ability of synthesizing code that completes a program for performing a pre-defined task has been intensively tested and verified on benchmark datasets including HumanEval and MBPP. Yet, evaluation of these LLMs from more perspectives (than just program synthesis) is also anticipated, considering their broad scope of applications in software engineering. In this paper, we explore the ability of LLMs for testing programs/code. By performing thorough analyses of recent LLMs for code in program testing, we show a series of intriguing properties of these models and demonstrate how program testing ability of LLMs can be improved. Following recent work which utilizes generated test cases to enhance program synthesis, we further leverage our findings in improving the quality of the synthesized programs and show +11.77% and +4.22% higher code pass rates on HumanEval+ comparing with the GPT-3.5-turbo baseline and the recent state-of-the-art, respectively.
B4: Towards Optimal Assessment of Plausible Code Solutions with Plausible Tests
Selecting the best code solution from multiple generated ones is an essential task in code generation, which can be achieved by using some reliable validators (e.g., developer-written test cases) for assistance. Since reliable test cases are not always available and can be expensive to build in practice, researchers propose to automatically generate test cases to assess code solutions. However, when both code solutions and test cases are plausible and not reliable, selecting the best solution becomes challenging. Although some heuristic strategies have been proposed to tackle this problem, they lack a strong theoretical guarantee and it is still an open question whether an optimal selection strategy exists. Our work contributes in two ways. First, we show that within a Bayesian framework, the optimal selection strategy can be defined based on the posterior probability of the observed passing states between solutions and tests. The problem of identifying the best solution is then framed as an integer programming problem. Second, we propose an efficient approach for approximating this optimal (yet uncomputable) strategy, where the approximation error is bounded by the correctness of prior knowledge. We then incorporate effective prior knowledge to tailor code generation tasks. Both theoretical and empirical studies confirm that existing heuristics are limited in selecting the best solutions with plausible test cases. Our proposed approximated optimal strategy B4 significantly surpasses existing heuristics in selecting code solutions generated by large language models (LLMs) with LLM-generated tests, achieving a relative performance improvement by up to 50% over the strongest heuristic and 246% over the random selection in the most challenging scenarios. Our code is publicly available at https://github.com/ZJU-CTAG/B4.
Self-collaboration Code Generation via ChatGPT
Although Large Language Models (LLMs) have demonstrated remarkable code-generation ability, they still struggle with complex tasks. In real-world software development, humans usually tackle complex tasks through collaborative teamwork, a strategy that significantly controls development complexity and enhances software quality. Inspired by this, we present a self-collaboration framework for code generation employing LLMs, exemplified by ChatGPT. Specifically, through role instructions, 1) Multiple LLMs act as distinct ``experts'', each responsible for a specific subtask within a complex task; 2) Specify the way to collaborate and interact, so that different roles form a virtual team to facilitate each other's work, ultimately the virtual team addresses code generation tasks collaboratively without the need for human intervention. To effectively organize and manage this virtual team, we incorporate software-development methodology into the framework. Thus, we assemble an elementary team consisting of three ChatGPT roles (i.e., analyst, coder, and tester) responsible for software development's analysis, coding, and testing stages. We conduct comprehensive experiments on various code-generation benchmarks. Experimental results indicate that self-collaboration code generation relatively improves 29.9%-47.1% Pass@1 compared to direct code generation, achieving state-of-the-art performance and even surpassing GPT-4. Moreover, we showcase that self-collaboration could potentially enable LLMs to efficiently handle complex real-world tasks that are not readily solved by direct code generation, as evidenced in case study.
AceCoder: Utilizing Existing Code to Enhance Code Generation
Large Language Models (LLMs) have shown great success in code generation. LLMs take as the input a prompt and output the code. A key question is how to make prompts (i.e., Prompting Techniques). Existing prompting techniques are designed for natural language generation and have low accuracy in code generation. In this paper, we propose a new prompting technique named AceCoder. Our motivation is that code generation meets two unique challenges (i.e., requirement understanding and code implementation). AceCoder contains two novel mechanisms (i.e., guided code generation and example retrieval) to solve these challenges. (1) Guided code generation asks LLMs first to analyze requirements and output an intermediate preliminary (e.g., test cases). The preliminary is used to clarify requirements and tell LLMs "what to write". (2) Example retrieval selects similar programs as examples in prompts, which provide lots of relevant content (e.g., algorithms, APIs) and teach LLMs "how to write". We apply AceCoder to three LLMs (e.g., Codex) and evaluate it on three public benchmarks using the Pass@k. Results show that AceCoder can significantly improve the performance of LLMs on code generation. (1) In terms of Pass@1, AceCoder outperforms the state-of-the-art baseline by up to 56.4% in MBPP, 70.7% in MBJP, and 88.4% in MBJSP. (2) AceCoder is effective in LLMs with different sizes (i.e., 6B to 13B) and different languages (i.e., Python, Java, and JavaScript). (3) Human evaluation shows human developers prefer programs from AceCoder.
Code Agents are State of the Art Software Testers
Rigorous software testing is crucial for developing and maintaining high-quality code, making automated test generation a promising avenue for both improving software quality and boosting the effectiveness of code generation methods. However, while code generation with Large Language Models (LLMs) is an extraordinarily active research area, test generation remains relatively unexplored. We address this gap and investigate the capability of LLM-based Code Agents for formalizing user issues into test cases. To this end, we propose a novel benchmark based on popular GitHub repositories, containing real-world issues, ground-truth patches, and golden tests. We find that LLMs generally perform surprisingly well at generating relevant test cases with Code Agents designed for code repair exceeding the performance of systems designed specifically for test generation. Further, as test generation is a similar but more structured task than code generation, it allows for a more fine-grained analysis using fail-to-pass rate and coverage metrics, providing a dual metric for analyzing systems designed for code repair. Finally, we find that generated tests are an effective filter for proposed code fixes, doubling the precision of SWE-Agent.
What's Wrong with Your Code Generated by Large Language Models? An Extensive Study
The increasing development of large language models (LLMs) in code generation has drawn significant attention among researchers. To enhance LLM-based code generation ability, current efforts are predominantly directed towards collecting high-quality datasets and leveraging diverse training technologies. However, there is a notable lack of comprehensive studies examining the limitations and boundaries of these existing methods. To bridge this gap, we conducted an extensive empirical study evaluating the performance of three leading closed-source LLMs and four popular open-source LLMs on three commonly used benchmarks. Our investigation, which evaluated the length, cyclomatic complexity and API number of the generated code, revealed that these LLMs face challenges in generating successful code for more complex problems, and tend to produce code that is shorter yet more complicated as compared to canonical solutions. Additionally, we developed a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types. Furthermore, to better understand the performance of LLMs in real-world projects, we manually created a real-world benchmark comprising 140 code generation tasks. Our analysis highlights distinct differences in bug distributions between actual scenarios and existing benchmarks. Finally, we propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback. Experimental results demonstrate that our approach can significantly mitigate bugs and increase the passing rate by 29.2% after two iterations, indicating substantial potential for LLMs to handle more complex problems.
Bias Assessment and Mitigation in LLM-based Code Generation
Utilizing state-of-the-art Large Language Models (LLMs), automatic code generation models play a pivotal role in enhancing the productivity and efficiency of software development coding procedures. As the adoption of LLMs becomes more widespread in software coding ecosystems, a pressing issue has emerged: does the generated code contain social biases, such as those related to age, gender, and race? This issue concerns the integrity, fairness, and ethical foundation of software applications that depend on the code generated by these models, yet is under-explored in the literature. This paper presents a novel bias assessment framework that is specifically designed for code generation tasks. Based on this framework, we conduct an extensive evaluation on the bias of nine state-of-the-art LLM-based code generation models. Our findings reveal that first, 31.45\% to 79.93\% code functions generated by our evaluated code generation models are biased, and 9.68\% to 37.37\% code functions' functionality are affected by the bias, which means biases not only exist in code generation models but in some cases, directly affect the functionality of the generated code, posing risks of unintended and possibly harmful software behaviors. To mitigate bias from code generation models, we propose three mitigation strategies, which can decrease the biased code ratio to a very low level of 0.4\% to 4.57\%.
GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability
Evaluating and enhancing the general capabilities of large language models (LLMs) has been an important research topic. Graph is a common data structure in the real world, and understanding graph data is a crucial part for advancing general intelligence. To evaluate and enhance the graph understanding abilities of LLMs, in this paper, we propose a benchmark named GraphInstruct, which comprehensively includes 21 classical graph reasoning tasks, providing diverse graph generation pipelines and detailed reasoning steps. Based on GraphInstruct, we further construct GraphLM through efficient instruction-tuning, which shows prominent graph understanding capability. In order to enhance the LLM with graph reasoning capability as well, we propose a step mask training strategy, and construct a model named GraphLM+. As one of the pioneering efforts to enhance the graph understanding and reasoning abilities of LLMs, extensive experiments have demonstrated the superiority of GraphLM and GraphLM+ over other LLMs. We look forward to more researchers exploring the potential of LLMs in the graph data mining domain through GraphInstruct. Our code for generating GraphInstruct is released publicly at: https://github.com/CGCL-codes/GraphInstruct.
Neural Theorem Proving: Generating and Structuring Proofs for Formal Verification
Formally verifying properties of software code has been a highly desirable task, especially with the emergence of LLM-generated code. In the same vein, they provide an interesting avenue for the exploration of formal verification and mechanistic interpretability. Since the introduction of code-specific models, despite their successes in generating code in Lean4 and Isabelle, the task of generalized theorem proving still remains far from being fully solved and will be a benchmark for reasoning capability in LLMs. In this work, we introduce a framework that generates whole proofs in a formal language to be used within systems that utilize the power of built-in tactics and off-the-shelf automated theorem provers. Our framework includes 3 components: generating natural language statements of the code to be verified, an LLM that generates formal proofs for the given statement, and a module employing heuristics for building the final proof. To train the LLM, we employ a 2-stage fine-tuning process, where we first use SFT-based training to enable the model to generate syntactically correct Isabelle code and then RL-based training that encourages the model to generate proofs verified by a theorem prover. We validate our framework using the miniF2F-test benchmark and the Isabelle proof assistant and design a use case to verify the correctness of the AWS S3 bucket access policy code. We also curate a dataset based on the FVEL\textnormal{ER} dataset for future training tasks.
UniGenCoder: Merging Seq2Seq and Seq2Tree Paradigms for Unified Code Generation
Deep learning-based code generation has completely transformed the way developers write programs today. Existing approaches to code generation have focused either on the Sequence-to-Sequence paradigm, which generates target code as a sequence of tokens, or the Sequence-to-Tree paradigm, which outputs code as a sequence of actions. While these two paradigms are intuitively complementary, their combination has not been previously explored. By comparing the code generated under these two paradigms, we find that integrating them holds significant potential. In this paper, we propose UniGenCoder for code-related generation tasks, which consists of a shared encoder, a shared decoder with a minimal set of additional parameters to unify two paradigms, and a selector that dynamically chooses optimal paradigm for each instance. Also, during the model training, we first perform the multi-task learning and distillation strategies to facilitate knowledge transfer between two paradigms, and then leverage contrastive learning to train the selector. Experimental results on the text-to-code and code-to-code generation tasks demonstrate the effectiveness of our proposed model. We release our code at https://github.com/DeepLearnXMU/UniGenCoder.
Comparing Human and LLM Generated Code: The Jury is Still Out!
Much is promised in relation to AI-supported software development. However, there has been limited evaluation effort in the research domain aimed at validating the true utility of such techniques, especially when compared to human coding outputs. We bridge this gap, where a benchmark dataset comprising 72 distinct software engineering tasks is used to compare the effectiveness of large language models (LLMs) and human programmers in producing Python software code. GPT-4 is used as a representative LLM, where for the code generated by humans and this LLM, we evaluate code quality and adherence to Python coding standards, code security and vulnerabilities, code complexity and functional correctness. We use various static analysis benchmarks, including Pylint, Radon, Bandit and test cases. Among the notable outcomes, results show that human-generated code recorded higher ratings for adhering to coding standards than GPT-4. We observe security flaws in code generated by both humans and GPT-4, however, code generated by humans shows a greater variety of problems, but GPT-4 code included more severe outliers. Our results show that although GPT-4 is capable of producing coding solutions, it frequently produces more complex code that may need more reworking to ensure maintainability. On the contrary however, our outcomes show that a higher number of test cases passed for code generated by GPT-4 across a range of tasks than code that was generated by humans. That said, GPT-4 frequently struggles with complex problem-solving that involve in-depth domain knowledge. This study highlights the potential utility of LLMs for supporting software development, however, tasks requiring comprehensive, innovative or unconventional solutions, and careful debugging and error correction seem to be better developed by human programmers. We plot an agenda for the software engineering community.
Large Language Models Are State-of-the-Art Evaluators of Code Generation
Recent advancements in the field of natural language generation have facilitated the use of large language models to assess the quality of generated text. Although these models have shown promising results in tasks such as machine translation and summarization, their applicability in code generation tasks remains limited without human involvement. The complexity of programming concepts required for such tasks makes it difficult to develop evaluation metrics that align with human judgment. Token-matching-based metrics, such as BLEU, have demonstrated weak correlations with human practitioners in code generation tasks. Moreover, the utilization of human-written test suites to evaluate functional correctness can be challenging in domains with low resources. To overcome these obstacles, we propose a new evaluation framework based on the GPT-3.5 (GPT-3.5-turbo), for code generation assessments. Our framework addresses the limitations of existing approaches by achieving superior correlations with functional correctness and human preferences, without the need for test oracles or references. We evaluate the efficacy of our framework on two different tasks and four programming languages, comparing its performance with the state-of-the-art CodeBERTScore metric, which relies on a pre-trained model. Our results demonstrate that our framework surpasses CodeBERTScore, delivering high levels of accuracy and consistency across various programming languages and tasks. We also make our evaluation framework and datasets available to the public at https://github.com/terryyz/llm-code-eval, encouraging further research in the evaluation of code generation.
CodeRAG-Bench: Can Retrieval Augment Code Generation?
While language models (LMs) have proven remarkably adept at generating code, many programs are challenging for LMs to generate using their parametric knowledge alone. Providing external contexts such as library documentation can facilitate generating accurate and functional code. Despite the success of retrieval-augmented generation (RAG) in various text-oriented tasks, its potential for improving code generation remains under-explored. In this work, we conduct a systematic, large-scale analysis by asking: in what scenarios can retrieval benefit code generation models? and what challenges remain? We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks, including basic programming, open-domain, and repository-level problems. We aggregate documents from five sources for models to retrieve contexts: competition solutions, online tutorials, library documentation, StackOverflow posts, and GitHub repositories. We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources. While notable gains are made in final code generation by retrieving high-quality contexts across various settings, our analysis reveals room for improvement -- current retrievers still struggle to fetch useful contexts especially with limited lexical overlap, and generators fail to improve with limited context lengths or abilities to integrate additional contexts. We hope CodeRAG-Bench serves as an effective testbed to encourage further development of advanced code-oriented RAG methods.
Skill Discovery for Software Scripting Automation via Offline Simulations with LLMs
Scripting interfaces enable users to automate tasks and customize software workflows, but creating scripts traditionally requires programming expertise and familiarity with specific APIs, posing barriers for many users. While Large Language Models (LLMs) can generate code from natural language queries, runtime code generation is severely limited due to unverified code, security risks, longer response times, and higher computational costs. To bridge the gap, we propose an offline simulation framework to curate a software-specific skillset, a collection of verified scripts, by exploiting LLMs and publicly available scripting guides. Our framework comprises two components: (1) task creation, using top-down functionality guidance and bottom-up API synergy exploration to generate helpful tasks; and (2) skill generation with trials, refining and validating scripts based on execution feedback. To efficiently navigate the extensive API landscape, we introduce a Graph Neural Network (GNN)-based link prediction model to capture API synergy, enabling the generation of skills involving underutilized APIs and expanding the skillset's diversity. Experiments with Adobe Illustrator demonstrate that our framework significantly improves automation success rates, reduces response time, and saves runtime token costs compared to traditional runtime code generation. This is the first attempt to use software scripting interfaces as a testbed for LLM-based systems, highlighting the advantages of leveraging execution feedback in a controlled environment and offering valuable insights into aligning AI capabilities with user needs in specialized software domains.
AgentCoder: Multi-Agent-based Code Generation with Iterative Testing and Optimisation
The advancement of natural language processing (NLP) has been significantly boosted by the development of transformer-based large language models (LLMs). These models have revolutionized NLP tasks, particularly in code generation, aiding developers in creating software with enhanced efficiency. Despite their advancements, challenges in balancing code snippet generation with effective test case generation and execution persist. To address these issues, this paper introduces Multi-Agent Assistant Code Generation (AgentCoder), a novel solution comprising a multi-agent framework with specialized agents: the programmer agent, the test designer agent, and the test executor agent. During the coding procedure, the programmer agent will focus on the code generation and refinement based on the test executor agent's feedback. The test designer agent will generate test cases for the generated code, and the test executor agent will run the code with the test cases and write the feedback to the programmer. This collaborative system ensures robust code generation, surpassing the limitations of single-agent models and traditional methodologies. Our extensive experiments on 9 code generation models and 12 enhancement approaches showcase AgentCoder's superior performance over existing code generation models and prompt engineering techniques across various benchmarks. For example, AgentCoder achieves 77.4% and 89.1% pass@1 in HumanEval-ET and MBPP-ET with GPT-3.5, while SOTA baselines obtain only 69.5% and 63.0%.
Iterative Refinement of Project-Level Code Context for Precise Code Generation with Compiler Feedback
Large Language Models (LLMs) have shown remarkable progress in automated code generation. Yet, LLM-generated code may contain errors in API usage, class, data structure, or missing project-specific information. As much of this project-specific context cannot fit into the prompts of LLMs, we must find ways to allow the model to explore the project-level code context. We present CoCoGen, a new code generation approach that uses compiler feedback to improve the LLM-generated code. CoCoGen first leverages static analysis to identify mismatches between the generated code and the project's context. It then iteratively aligns and fixes the identified errors using information extracted from the code repository. We integrate CoCoGen with two representative LLMs, i.e., GPT-3.5-Turbo and Code Llama (13B), and apply it to Python code generation. Experimental results show that CoCoGen significantly improves the vanilla LLMs by over 80% in generating code dependent on the project context and consistently outperforms the existing retrieval-based code generation baselines.
Self-planning Code Generation with Large Language Models
Although large language models have demonstrated impressive ability in code generation, they are still struggling to address the complicated intent provided by humans. It is widely acknowledged that humans typically employ planning to decompose complex problems and schedule the solution steps prior to implementation. Thus we introduce planning into code generation to help the model understand complex intent and reduce the difficulty of problem solving. This paper proposes a self-planning code generation method with large language model, which consists of two phases, namely planning phase and implementation phase. Specifically, in the planning phase, the language model plans out the solution steps from the intent combined with in-context learning. Then it enters the implementation phase, where the model generates code step by step, guided by the solution steps. The effectiveness of self-planning code generation has been rigorously evaluated on multiple code generation datasets and the results have demonstrated a marked superiority over naive direct generation approaches with language model. The improvement in performance is substantial, highlighting the significance of self-planning in code generation tasks.
Knowledge Graph Based Repository-Level Code Generation
Recent advancements in Large Language Models (LLMs) have transformed code generation from natural language queries. However, despite their extensive knowledge and ability to produce high-quality code, LLMs often struggle with contextual accuracy, particularly in evolving codebases. Current code search and retrieval methods frequently lack robustness in both the quality and contextual relevance of retrieved results, leading to suboptimal code generation. This paper introduces a novel knowledge graph-based approach to improve code search and retrieval leading to better quality of code generation in the context of repository-level tasks. The proposed approach represents code repositories as graphs, capturing structural and relational information for enhanced context-aware code generation. Our framework employs a hybrid approach for code retrieval to improve contextual relevance, track inter-file modular dependencies, generate more robust code and ensure consistency with the existing codebase. We benchmark the proposed approach on the Evolutionary Code Benchmark (EvoCodeBench) dataset, a repository-level code generation benchmark, and demonstrate that our method significantly outperforms the baseline approach. These findings suggest that knowledge graph based code generation could advance robust, context-sensitive coding assistance tools.
Code Generation with AlphaCodium: From Prompt Engineering to Flow Engineering
Code generation problems differ from common natural language problems - they require matching the exact syntax of the target language, identifying happy paths and edge cases, paying attention to numerous small details in the problem spec, and addressing other code-specific issues and requirements. Hence, many of the optimizations and tricks that have been successful in natural language generation may not be effective for code tasks. In this work, we propose a new approach to code generation by LLMs, which we call AlphaCodium - a test-based, multi-stage, code-oriented iterative flow, that improves the performances of LLMs on code problems. We tested AlphaCodium on a challenging code generation dataset called CodeContests, which includes competitive programming problems from platforms such as Codeforces. The proposed flow consistently and significantly improves results. On the validation set, for example, GPT-4 accuracy (pass@5) increased from 19% with a single well-designed direct prompt to 44% with the AlphaCodium flow. Many of the principles and best practices acquired in this work, we believe, are broadly applicable to general code generation tasks. Full implementation is available at: https://github.com/Codium-ai/AlphaCodium
AutoDev: Automated AI-Driven Development
The landscape of software development has witnessed a paradigm shift with the advent of AI-powered assistants, exemplified by GitHub Copilot. However, existing solutions are not leveraging all the potential capabilities available in an IDE such as building, testing, executing code, git operations, etc. Therefore, they are constrained by their limited capabilities, primarily focusing on suggesting code snippets and file manipulation within a chat-based interface. To fill this gap, we present AutoDev, a fully automated AI-driven software development framework, designed for autonomous planning and execution of intricate software engineering tasks. AutoDev enables users to define complex software engineering objectives, which are assigned to AutoDev's autonomous AI Agents to achieve. These AI agents can perform diverse operations on a codebase, including file editing, retrieval, build processes, execution, testing, and git operations. They also have access to files, compiler output, build and testing logs, static analysis tools, and more. This enables the AI Agents to execute tasks in a fully automated manner with a comprehensive understanding of the contextual information required. Furthermore, AutoDev establishes a secure development environment by confining all operations within Docker containers. This framework incorporates guardrails to ensure user privacy and file security, allowing users to define specific permitted or restricted commands and operations within AutoDev. In our evaluation, we tested AutoDev on the HumanEval dataset, obtaining promising results with 91.5% and 87.8% of Pass@1 for code generation and test generation respectively, demonstrating its effectiveness in automating software engineering tasks while maintaining a secure and user-controlled development environment.
Fault-Aware Neural Code Rankers
Large language models (LLMs) have demonstrated an impressive ability to generate code for various programming tasks. In many instances, LLMs can generate a correct program for a task when given numerous trials. Consequently, a recent trend is to do large scale sampling of programs using a model and then filtering/ranking the programs based on the program execution on a small number of known unit tests to select one candidate solution. However, these approaches assume that the unit tests are given and assume the ability to safely execute the generated programs (which can do arbitrary dangerous operations such as file manipulations). Both of the above assumptions are impractical in real-world software development. In this paper, we propose CodeRanker, a neural ranker that can predict the correctness of a sampled program without executing it. Our CodeRanker is fault-aware i.e., it is trained to predict different kinds of execution information such as predicting the exact compile/runtime error type (e.g., an IndexError or a TypeError). We show that CodeRanker can significantly increase the pass@1 accuracy of various code generation models (including Codex, GPT-Neo, GPT-J) on APPS, HumanEval and MBPP datasets.
GenX: Mastering Code and Test Generation with Execution Feedback
Recent advancements in language modeling have enabled the translation of natural language into code, and the use of execution feedback to improve code generation. However, these methods often rely heavily on pre-existing test cases, which may not always be available or comprehensive. In this work, we propose a novel approach that concurrently trains a code generation model and a test generation model, utilizing execution feedback to refine and enhance the performance of both. We introduce two strategies for test and code data augmentation and a new scoring function for code and test ranking. We experiment on the APPS dataset and demonstrate that our approach can effectively generate and augment test cases, filter and synthesize correct code solutions, and rank the quality of generated code and tests. The results demonstrate that our models, when iteratively trained with an increasing number of test cases and code solutions, outperform those trained on the original dataset.
Automatic Detection of LLM-generated Code: A Case Study of Claude 3 Haiku
Using Large Language Models (LLMs) has gained popularity among software developers for generating source code. However, the use of LLM-generated code can introduce risks of adding suboptimal, defective, and vulnerable code. This makes it necessary to devise methods for the accurate detection of LLM-generated code. Toward this goal, we perform a case study of Claude 3 Haiku (or Claude 3 for brevity) on CodeSearchNet dataset. We divide our analyses into two parts: function-level and class-level. We extract 22 software metric features, such as Code Lines and Cyclomatic Complexity, for each level of granularity. We then analyze code snippets generated by Claude 3 and their human-authored counterparts using the extracted features to understand how unique the code generated by Claude 3 is. In the following step, we use the unique characteristics of Claude 3-generated code to build Machine Learning (ML) models and identify which features of the code snippets make them more detectable by ML models. Our results indicate that Claude 3 tends to generate longer functions, but shorter classes than humans, and this characteristic can be used to detect Claude 3-generated code with ML models with 82% and 66% accuracies for function-level and class-level snippets, respectively.
Can Large Language Models Write Parallel Code?
Large Language Models are becoming an increasingly popular tool for software development. Their ability to model and generate source code has been demonstrated in a variety of contexts, including code completion, summarization, translation, and lookup. However, they often struggle to generate code for more complex tasks. In this paper, we explore the ability of state-of-the-art language models to generate parallel code. We propose a benchmark, PCGBench, consisting of a set of 420 tasks for evaluating the ability of language models to generate parallel code, and we evaluate the performance of several state-of-the-art open- and closed-source language models on these tasks. We introduce novel metrics for comparing parallel code generation performance and use them to explore how well each LLM performs on various parallel programming models and computational problem types.
AskIt: Unified Programming Interface for Programming with Large Language Models
In the evolving landscape of software development, Large Language Models (LLMs) exhibit a unique phenomenon known as emergent abilities, demonstrating adeptness across numerous tasks, from text summarization to code generation. While these abilities open up novel avenues in software design and crafting, their incorporation presents substantial challenges. Developers grapple with decisions surrounding the direct embedding of LLMs within applications versus employing them for code generation. Moreover, effective prompt design becomes a critical concern, given the necessity of data extraction from natural language outputs. To address these intricacies, this paper introduces AskIt, a domain-specific language (DSL) specifically designed for LLMs. AskIt simplifies LLM integration, offering type-guided output control, template-based function definitions, and a unified interface that diminishes the distinction between LLM-based code generation and application integration. Furthermore, through Programming by Example (PBE), AskIt harnesses the power of few-shot learning at the programming language level. Our evaluations underscore AskIt's potency. Across 50 tasks, AskIt generated concise prompts for the given tasks, achieving a 16.14% reduction in prompt length relative to benchmarks. Additionally, by enabling the transition from direct LLM application usage to function generation, AskIt achieved significant speedups, as observed in our GSM8K benchmark experiments. Through these advancements, AskIt streamlines the integration of LLMs in software development, offering a more efficient, versatile approach for leveraging emergent abilities. The implementations of AskIt in TypeScript and Python are available at https://github.com/katsumiok/ts-askit and https://github.com/katsumiok/pyaskit, respectively.
LLM-Powered Code Vulnerability Repair with Reinforcement Learning and Semantic Reward
In software development, the predominant emphasis on functionality often supersedes security concerns, a trend gaining momentum with AI-driven automation tools like GitHub Copilot. These tools significantly improve developers' efficiency in functional code development. Nevertheless, it remains a notable concern that such tools are also responsible for creating insecure code, predominantly because of pre-training on publicly available repositories with vulnerable code. Moreover, developers are called the "weakest link in the chain" since they have very minimal knowledge of code security. Although existing solutions provide a reasonable solution to vulnerable code, they must adequately describe and educate the developers on code security to ensure that the security issues are not repeated. Therefore we introduce a multipurpose code vulnerability analysis system SecRepair, powered by a large language model, CodeGen2 assisting the developer in identifying and generating fixed code along with a complete description of the vulnerability with a code comment. Our innovative methodology uses a reinforcement learning paradigm to generate code comments augmented by a semantic reward mechanism. Inspired by how humans fix code issues, we propose an instruction-based dataset suitable for vulnerability analysis with LLMs. We further identify zero-day and N-day vulnerabilities in 6 Open Source IoT Operating Systems on GitHub. Our findings underscore that incorporating reinforcement learning coupled with semantic reward augments our model's performance, thereby fortifying its capacity to address code vulnerabilities with improved efficacy.
SkCoder: A Sketch-based Approach for Automatic Code Generation
Recently, deep learning techniques have shown great success in automatic code generation. Inspired by the code reuse, some researchers propose copy-based approaches that can copy the content from similar code snippets to obtain better performance. Practically, human developers recognize the content in the similar code that is relevant to their needs, which can be viewed as a code sketch. The sketch is further edited to the desired code. However, existing copy-based approaches ignore the code sketches and tend to repeat the similar code without necessary modifications, which leads to generating wrong results. In this paper, we propose a sketch-based code generation approach named SkCoder to mimic developers' code reuse behavior. Given a natural language requirement, SkCoder retrieves a similar code snippet, extracts relevant parts as a code sketch, and edits the sketch into the desired code. Our motivations are that the extracted sketch provides a well-formed pattern for telling models "how to write". The post-editing further adds requirement-specific details to the sketch and outputs the complete code. We conduct experiments on two public datasets and a new dataset collected by this work. We compare our approach to 20 baselines using 5 widely used metrics. Experimental results show that (1) SkCoder can generate more correct programs, and outperforms the state-of-the-art - CodeT5-base by 30.30%, 35.39%, and 29.62% on three datasets. (2) Our approach is effective to multiple code generation models and improves them by up to 120.1% in Pass@1. (3) We investigate three plausible code sketches and discuss the importance of sketches. (4) We manually evaluate the generated code and prove the superiority of our SkCoder in three aspects.
Measuring Coding Challenge Competence With APPS
While programming is one of the most broadly applicable skills in modern society, modern machine learning models still cannot code solutions to basic problems. Despite its importance, there has been surprisingly little work on evaluating code generation, and it can be difficult to accurately assess code generation performance rigorously. To meet this challenge, we introduce APPS, a benchmark for code generation. Unlike prior work in more restricted settings, our benchmark measures the ability of models to take an arbitrary natural language specification and generate satisfactory Python code. Similar to how companies assess candidate software developers, we then evaluate models by checking their generated code on test cases. Our benchmark includes 10,000 problems, which range from having simple one-line solutions to being substantial algorithmic challenges. We fine-tune large language models on both GitHub and our training set, and we find that the prevalence of syntax errors is decreasing exponentially as models improve. Recent models such as GPT-Neo can pass approximately 20% of the test cases of introductory problems, so we find that machine learning models are now beginning to learn how to code. As the social significance of automatic code generation increases over the coming years, our benchmark can provide an important measure for tracking advancements.
CodeGeeX: A Pre-Trained Model for Code Generation with Multilingual Evaluations on HumanEval-X
Large pre-trained code generation models, such as OpenAI Codex, can generate syntax- and function-correct code, making the coding of programmers more productive and our pursuit of artificial general intelligence closer. In this paper, we introduce CodeGeeX, a multilingual model with 13 billion parameters for code generation. CodeGeeX is pre-trained on 850 billion tokens of 23 programming languages as of June 2022. Our extensive experiments suggest that CodeGeeX outperforms multilingual code models of similar scale for both the tasks of code generation and translation on HumanEval-X. Building upon HumanEval (Python only), we develop the HumanEval-X benchmark for evaluating multilingual models by hand-writing the solutions in C++, Java, JavaScript, and Go. In addition, we build CodeGeeX-based extensions on Visual Studio Code, JetBrains, and Cloud Studio, generating 4.7 billion tokens for tens of thousands of active users per week. Our user study demonstrates that CodeGeeX can help to increase coding efficiency for 83.4% of its users. Finally, CodeGeeX is publicly accessible and in Sep. 2022, we open-sourced its code, model weights (the version of 850B tokens), API, extensions, and HumanEval-X at https://github.com/THUDM/CodeGeeX.
Neural Machine Translation for Code Generation
Neural machine translation (NMT) methods developed for natural language processing have been shown to be highly successful in automating translation from one natural language to another. Recently, these NMT methods have been adapted to the generation of program code. In NMT for code generation, the task is to generate output source code that satisfies constraints expressed in the input. In the literature, a variety of different input scenarios have been explored, including generating code based on natural language description, lower-level representations such as binary or assembly (neural decompilation), partial representations of source code (code completion and repair), and source code in another language (code translation). In this paper we survey the NMT for code generation literature, cataloging the variety of methods that have been explored according to input and output representations, model architectures, optimization techniques used, data sets, and evaluation methods. We discuss the limitations of existing methods and future research directions
MPCODER: Multi-user Personalized Code Generator with Explicit and Implicit Style Representation Learning
Large Language Models (LLMs) have demonstrated great potential for assisting developers in their daily development. However, most research focuses on generating correct code, how to use LLMs to generate personalized code has seldom been investigated. To bridge this gap, we proposed MPCoder (Multi-user Personalized Code Generator) to generate personalized code for multiple users. To better learn coding style features, we utilize explicit coding style residual learning to capture the syntax code style standards and implicit style learning to capture the semantic code style conventions. We train a multi-user style adapter to better differentiate the implicit feature representations of different users through contrastive learning, ultimately enabling personalized code generation for multiple users. We further propose a novel evaluation metric for estimating similarities between codes of different coding styles. The experimental results show the effectiveness of our approach for this novel task.
The Impact of Prompt Programming on Function-Level Code Generation
Large Language Models (LLMs) are increasingly used by software engineers for code generation. However, limitations of LLMs such as irrelevant or incorrect code have highlighted the need for prompt programming (or prompt engineering) where engineers apply specific prompt techniques (e.g., chain-of-thought or input-output examples) to improve the generated code. Despite this, the impact of different prompt techniques -- and their combinations -- on code generation remains underexplored. In this study, we introduce CodePromptEval, a dataset of 7072 prompts designed to evaluate five prompt techniques (few-shot, persona, chain-of-thought, function signature, list of packages) and their effect on the correctness, similarity, and quality of complete functions generated by three LLMs (GPT-4o, Llama3, and Mistral). Our findings show that while certain prompt techniques significantly influence the generated code, combining multiple techniques does not necessarily improve the outcome. Additionally, we observed a trade-off between correctness and quality when using prompt techniques. Our dataset and replication package enable future research on improving LLM-generated code and evaluating new prompt techniques.
Generate and Pray: Using SALLMS to Evaluate the Security of LLM Generated Code
With the growing popularity of Large Language Models (e.g. GitHub Copilot, ChatGPT, etc.) in software engineers' daily practices, it is important to ensure that the code generated by these tools is not only functionally correct but also free of vulnerabilities. Although LLMs can help developers to be more productive, prior empirical studies have shown that LLMs can generate insecure code. There are two contributing factors to the insecure code generation. First, existing datasets used to evaluate Large Language Models (LLMs) do not adequately represent genuine software engineering tasks sensitive to security. Instead, they are often based on competitive programming challenges or classroom-type coding tasks. In real-world applications, the code produced is integrated into larger codebases, introducing potential security risks. There's a clear absence of benchmarks that focus on evaluating the security of the generated code. Second, existing evaluation metrics primarily focus on the functional correctness of the generated code while ignoring security considerations. Metrics such as pass@k gauge the probability of obtaining the correct code in the top k suggestions. Other popular metrics like BLEU, CodeBLEU, ROUGE, and METEOR similarly emphasize functional accuracy, neglecting security implications. In light of these research gaps, in this paper, we described SALLM, a framework to benchmark LLMs' abilities to generate secure code systematically. This framework has three major components: a novel dataset of security-centric Python prompts, an evaluation environment to test the generated code, and novel metrics to evaluate the models' performance from the perspective of secure code generation.
Benchmarking the Communication Competence of Code Generation for LLMs and LLM Agent
Large language models (LLMs) have significantly improved their ability to perform tasks in the field of code generation. However, there is still a gap between LLMs being capable coders and being top-tier software engineers. Based on the observation that top-level software engineers often ask clarifying questions to reduce ambiguity in both requirements and coding solutions, we argue that the same should be applied to LLMs for code generation tasks. In this work, we conducted an empirical study on the benchmark and analysis of the communication skills of LLMs for code generation. We define communication skills of LLMs as ``being able to ask clarifying questions when the description of the code generation problem has issues''. We created a new benchmark, HumanEvalComm, by modifying problem descriptions according to three issues: inconsistency, ambiguity, incompleteness. We defined new evaluation metrics such as Communication Rate and Good Question Rate, and then experimented on HumanEvalComm with different Code LLMs, and a new LLM agent approach, Okanagan, to identify and ask questions in ambiguous parts from code and descriptions for further refining the generated code. Finally, we discussed evaluation results by comparing Code LLMs and Okanagan with our findings.
The Fault in our Stars: Quality Assessment of Code Generation Benchmarks
Large Language Models (LLMs) are gaining popularity among software engineers. A crucial aspect of developing effective code generation LLMs is to evaluate these models using a robust benchmark. Evaluation benchmarks with quality issues can provide a false sense of performance. In this work, we conduct the first-of-its-kind study of the quality of prompts within benchmarks used to compare the performance of different code generation models. To conduct this study, we analyzed 3,566 prompts from 9 code generation benchmarks to identify quality issues in them. We also investigated whether fixing the identified quality issues in the benchmarks' prompts affects a model's performance. We also studied memorization issues of the evaluation dataset, which can put into question a benchmark's trustworthiness. We found that code generation evaluation benchmarks mainly focused on Python and coding exercises and had very limited contextual dependencies to challenge the model. These datasets and the developers' prompts suffer from quality issues like spelling and grammatical errors, unclear sentences to express developers' intent, and not using proper documentation style. Fixing all these issues in the benchmarks can lead to a better performance for Python code generation, but not a significant improvement was observed for Java code generation. We also found evidence that GPT-3.5-Turbo and CodeGen-2.5 models may have data contamination issues.
Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation
For a complicated algorithm, its implementation by a human programmer usually starts with outlining a rough control flow followed by iterative enrichments, eventually yielding carefully generated syntactic structures and variables in a hierarchy. However, state-of-the-art large language models generate codes in a single pass, without intermediate warm-ups to reflect the structured thought process of "outline-then-detail". Inspired by the recent success of chain-of-thought prompting, we propose ChainCoder, a program synthesis language model that generates Python code progressively, i.e. from coarse to fine in multiple passes. We first decompose source code into layout frame components and accessory components via abstract syntax tree parsing to construct a hierarchical representation. We then reform our prediction target into a multi-pass objective, each pass generates a subsequence, which is concatenated in the hierarchy. Finally, a tailored transformer architecture is leveraged to jointly encode the natural language descriptions and syntactically aligned I/O data samples. Extensive evaluations show that ChainCoder outperforms state-of-the-arts, demonstrating that our progressive generation eases the reasoning procedure and guides the language model to generate higher-quality solutions. Our codes are available at: https://github.com/VITA-Group/ChainCoder.
Seed-CTS: Unleashing the Power of Tree Search for Superior Performance in Competitive Coding Tasks
Competition-level code generation tasks pose significant challenges for current state-of-the-art large language models (LLMs). For example, on the LiveCodeBench-Hard dataset, models such as O1-Mini and O1-Preview achieve pass@1 rates of only 0.366 and 0.143, respectively. While tree search techniques have proven effective in domains like mathematics and general coding, their potential in competition-level code generation remains under-explored. In this work, we propose a novel token-level tree search method specifically designed for code generation. Leveraging Qwen2.5-Coder-32B-Instruct, our approach achieves a pass rate of 0.305 on LiveCodeBench-Hard, surpassing the pass@100 performance of GPT4o-0513 (0.245). Furthermore, by integrating Chain-of-Thought (CoT) prompting, we improve our method's performance to 0.351, approaching O1-Mini's pass@1 rate. To ensure reproducibility, we report the average number of generations required per problem by our tree search method on the test set. Our findings underscore the potential of tree search to significantly enhance performance on competition-level code generation tasks. This opens up new possibilities for large-scale synthesis of challenging code problems supervised fine-tuning (SFT) data, advancing competition-level code generation tasks.
Shellcode_IA32: A Dataset for Automatic Shellcode Generation
We take the first step to address the task of automatically generating shellcodes, i.e., small pieces of code used as a payload in the exploitation of a software vulnerability, starting from natural language comments. We assemble and release a novel dataset (Shellcode_IA32), consisting of challenging but common assembly instructions with their natural language descriptions. We experiment with standard methods in neural machine translation (NMT) to establish baseline performance levels on this task.
If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code Empowers Large Language Models to Serve as Intelligent Agents
The prominent large language models (LLMs) of today differ from past language models not only in size, but also in the fact that they are trained on a combination of natural language and formal language (code). As a medium between humans and computers, code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity. In this survey, we present an overview of the various benefits of integrating code into LLMs' training data. Specifically, beyond enhancing LLMs in code generation, we observe that these unique properties of code help (i) unlock the reasoning ability of LLMs, enabling their applications to a range of more complex natural language tasks; (ii) steer LLMs to produce structured and precise intermediate steps, which can then be connected to external execution ends through function calls; and (iii) take advantage of code compilation and execution environment, which also provides diverse feedback for model improvement. In addition, we trace how these profound capabilities of LLMs, brought by code, have led to their emergence as intelligent agents (IAs) in situations where the ability to understand instructions, decompose goals, plan and execute actions, and refine from feedback are crucial to their success on downstream tasks. Finally, we present several key challenges and future directions of empowering LLMs with code.
Code Execution with Pre-trained Language Models
Code execution is a fundamental aspect of programming language semantics that reflects the exact behavior of the code. However, most pre-trained models for code intelligence ignore the execution trace and only rely on source code and syntactic structures. In this paper, we investigate how well pre-trained models can understand and perform code execution. We develop a mutation-based data augmentation technique to create a large-scale and realistic Python dataset and task for code execution, which challenges existing models such as Codex. We then present CodeExecutor, a Transformer model that leverages code execution pre-training and curriculum learning to enhance its semantic comprehension. We evaluate CodeExecutor on code execution and show its promising performance and limitations. We also demonstrate its potential benefits for code intelligence tasks such as zero-shot code-to-code search and text-to-code generation. Our analysis provides insights into the learning and generalization abilities of pre-trained models for code execution.
Iterative Self-Training for Code Generation via Reinforced Re-Ranking
Generating high-quality code that solves complex programming tasks is challenging, especially with current decoder-based models that produce highly stochastic outputs. In code generation, even minor errors can easily break the entire solution. Leveraging multiple sampled solutions can significantly improve the overall output quality. One effective way to enhance code generation is by pairing a code generation model with a reranker model, which selects the best solution from the generated samples. We propose a novel iterative self-training approach for self-training reranker models using Proximal Policy Optimization (PPO), aimed at improving both reranking accuracy and the overall code generation process. Unlike traditional PPO approaches, where the focus is on optimizing a generative model with a reward model, our approach emphasizes the development of a robust reward/reranking model. This model improves the quality of generated code through reranking and addresses problems and errors that the reward model might overlook during PPO alignment with the reranker. Our method iteratively refines the training dataset by re-evaluating outputs, identifying high-scoring negative examples, and incorporating them into the training loop, that boosting model performance. Our evaluation on the MultiPL-E dataset demonstrates that our 13.4B parameter model outperforms a 33B model in code generation quality while being three times faster. Moreover, it achieves performance comparable to GPT-4 and surpasses it in one programming language.
Don't Transform the Code, Code the Transforms: Towards Precise Code Rewriting using LLMs
Tools for rewriting, refactoring and optimizing code should be fast and correct. Large language models (LLMs), by their nature, possess neither of these qualities. Yet, there remains tremendous opportunity in using LLMs to improve code. We explore the use of LLMs not to transform code, but to code transforms. We propose a chain-of-thought approach to synthesizing code transformations from a small number of input/output code examples that incorporates execution and feedback. Unlike the direct rewrite approach, LLM-generated transformations are easy to inspect, debug, and validate. The logic of the rewrite is explicitly coded and easy to adapt. The compute required to run code transformations is minute compared to that of LLM rewriting. We test our approach on 16 Python code transformations and find that LLM- generated transforms are perfectly precise for 7 of them and less imprecise than direct LLM rewriting on the others. We hope to encourage further research to improving the precision of LLM code rewriting.