Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeBearLLM: A Prior Knowledge-Enhanced Bearing Health Management Framework with Unified Vibration Signal Representation
We propose a bearing health management framework leveraging large language models (BearLLM), a novel multimodal model that unifies multiple bearing-related tasks by processing user prompts and vibration signals. Specifically, we introduce a prior knowledge-enhanced unified vibration signal representation to handle various working conditions across multiple datasets. This involves adaptively sampling the vibration signals based on the sampling rate of the sensor, incorporating the frequency domain to unify input dimensions, and using a fault-free reference signal as an auxiliary input. To extract features from vibration signals, we first train a fault classification network, then convert and align the extracted features into word embedding, and finally concatenate these with text embedding as input to an LLM. To evaluate the performance of the proposed method, we constructed the first large-scale multimodal bearing health management (MBHM) dataset, including paired vibration signals and textual descriptions. With our unified vibration signal representation, BearLLM using one set of pre-trained weights achieves state-of-the-art performance on nine publicly available fault diagnosis benchmarks, outperforming specific methods designed for individual datasets. We provide a dataset, our model, and code to inspire future research on building more capable industrial multimodal models (https://github.com/hatton613/BearLLM).
Quadratic Time-Frequency Analysis of Vibration Signals for Diagnosing Bearing Faults
Diagnosis of bearing faults is paramount to reducing maintenance costs and operational breakdowns. Bearing faults are primary contributors to machine vibrations, and analyzing their signal morphology offers insights into their health status. Unfortunately, existing approaches are optimized for controlled environments, neglecting realistic conditions such as time-varying rotational speeds and the vibration's non-stationary nature. This paper presents a fusion of time-frequency analysis and deep learning techniques to diagnose bearing faults under time-varying speeds and varying noise levels. First, we formulate the bearing fault-induced vibrations and discuss the link between their non-stationarity and the bearing's inherent and operational parameters. We also elucidate quadratic time-frequency distributions and validate their effectiveness in resolving distinctive dynamic patterns associated with different bearing faults. Based on this, we design a time-frequency convolutional neural network (TF-CNN) to diagnose various faults in rolling-element bearings. Our experimental findings undeniably demonstrate the superior performance of TF-CNN in comparison to recently developed techniques. They also assert its versatility in capturing fault-relevant non-stationary features that couple with speed changes and show its exceptional resilience to noise, consistently surpassing competing methods across various signal-to-noise ratios and performance metrics. Altogether, the TF-CNN achieves substantial accuracy improvements up to 15%, in severe noise conditions.
Real-Time Vibration-Based Bearing Fault Diagnosis Under Time-Varying Speed Conditions
Detection of rolling-element bearing faults is crucial for implementing proactive maintenance strategies and for minimizing the economic and operational consequences of unexpected failures. However, many existing techniques are developed and tested under strictly controlled conditions, limiting their adaptability to the diverse and dynamic settings encountered in practical applications. This paper presents an efficient real-time convolutional neural network (CNN) for diagnosing multiple bearing faults under various noise levels and time-varying rotational speeds. Additionally, we propose a novel Fisher-based spectral separability analysis (SSA) method to elucidate the effectiveness of the designed CNN model. We conducted experiments on both healthy bearings and bearings afflicted with inner race, outer race, and roller ball faults. The experimental results show the superiority of our model over the current state-of-the-art approach in three folds: it achieves substantial accuracy gains of up to 15.8%, it is robust to noise with high performance across various signal-to-noise ratios, and it runs in real-time with processing durations five times less than acquisition. Additionally, by using the proposed SSA technique, we offer insights into the model's performance and underscore its effectiveness in tackling real-world challenges.
An ensemble of convolution-based methods for fault detection using vibration signals
This paper focuses on solving a fault detection problem using multivariate time series of vibration signals collected from planetary gearboxes in a test rig. Various traditional machine learning and deep learning methods have been proposed for multivariate time-series classification, including distance-based, functional data-oriented, feature-driven, and convolution kernel-based methods. Recent studies have shown using convolution kernel-based methods like ROCKET, and 1D convolutional neural networks with ResNet and FCN, have robust performance for multivariate time-series data classification. We propose an ensemble of three convolution kernel-based methods and show its efficacy on this fault detection problem by outperforming other approaches and achieving an accuracy of more than 98.8\%.
Towards a Universal Vibration Analysis Dataset: A Framework for Transfer Learning in Predictive Maintenance and Structural Health Monitoring
ImageNet has become a reputable resource for transfer learning, allowing the development of efficient ML models with reduced training time and data requirements. However, vibration analysis in predictive maintenance, structural health monitoring, and fault diagnosis, lacks a comparable large-scale, annotated dataset to facilitate similar advancements. To address this, a dataset framework is proposed that begins with bearing vibration data as an initial step towards creating a universal dataset for vibration-based spectrogram analysis for all machinery. The initial framework includes a collection of bearing vibration signals from various publicly available datasets. To demonstrate the advantages of this framework, experiments were conducted using a deep learning architecture, showing improvements in model performance when pre-trained on bearing vibration data and fine-tuned on a smaller, domain-specific dataset. These findings highlight the potential to parallel the success of ImageNet in visual computing but for vibration analysis. For future work, this research will include a broader range of vibration signals from multiple types of machinery, emphasizing spectrogram-based representations of the data. Each sample will be labeled according to machinery type, operational status, and the presence or type of faults, ensuring its utility for supervised and unsupervised learning tasks. Additionally, a framework for data preprocessing, feature extraction, and model training specific to vibration data will be developed. This framework will standardize methodologies across the research community, allowing for collaboration and accelerating progress in predictive maintenance, structural health monitoring, and related fields. By mirroring the success of ImageNet in visual computing, this dataset has the potential to improve the development of intelligent systems in industrial applications.
Explaining Deep Neural Networks for Bearing Fault Detection with Vibration Concepts
Concept-based explanation methods, such as Concept Activation Vectors, are potent means to quantify how abstract or high-level characteristics of input data influence the predictions of complex deep neural networks. However, applying them to industrial prediction problems is challenging as it is not immediately clear how to define and access appropriate concepts for individual use cases and specific data types. In this work, we investigate how to leverage established concept-based explanation techniques in the context of bearing fault detection with deep neural networks trained on vibration signals. Since bearings are prevalent in almost every rotating equipment, ensuring the reliability of intransparent fault detection models is crucial to prevent costly repairs and downtimes of industrial machinery. Our evaluations demonstrate that explaining opaque models in terms of vibration concepts enables human-comprehensible and intuitive insights about their inner workings, but the underlying assumptions need to be carefully validated first.
Fault Analysis And Predictive Maintenance Of Induction Motor Using Machine Learning
Induction motors are one of the most crucial electrical equipment and are extensively used in industries in a wide range of applications. This paper presents a machine learning model for the fault detection and classification of induction motor faults by using three phase voltages and currents as inputs. The aim of this work is to protect vital electrical components and to prevent abnormal event progression through early detection and diagnosis. This work presents a fast forward artificial neural network model to detect some of the commonly occurring electrical faults like overvoltage, under voltage, single phasing, unbalanced voltage, overload, ground fault. A separate model free monitoring system wherein the motor itself acts like a sensor is presented and the only monitored signals are the input given to the motor. Limits for current and voltage values are set for the faulty and healthy conditions, which is done by a classifier. Real time data from a 0.33 HP induction motor is used to train and test the neural network. The model so developed analyses the voltage and current values given at a particular instant and classifies the data into no fault or the specific fault. The model is then interfaced with a real motor to accurately detect and classify the faults so that further necessary action can be taken.
Fault Diagnosis on Induction Motor using Machine Learning and Signal Processing
The detection and identification of induction motor faults using machine learning and signal processing is a valuable approach to avoiding plant disturbances and shutdowns in the context of Industry 4.0. In this work, we present a study on the detection and identification of induction motor faults using machine learning and signal processing with MATLAB Simulink. We developed a model of a three-phase induction motor in MATLAB Simulink to generate healthy and faulty motor data. The data collected included stator currents, rotor currents, input power, slip, rotor speed, and efficiency. We generated four faults in the induction motor: open circuit fault, short circuit fault, overload, and broken rotor bars. We collected a total of 150,000 data points with a 60-40% ratio of healthy to faulty motor data. We applied Fast Fourier Transform (FFT) to detect and identify healthy and unhealthy conditions and added a distinctive feature in our data. The generated dataset was trained different machine learning models. On comparing the accuracy of the models on the test set, we concluded that the Decision Tree algorithm performed the best with an accuracy of about 92%. Our study contributes to the literature by providing a valuable approach to fault detection and classification with machine learning models for industrial applications.
Pseudo vs. True Defect Classification in Printed Circuits Boards using Wavelet Features
In recent years, Printed Circuit Boards (PCB) have become the backbone of a large number of consumer electronic devices leading to a surge in their production. This has made it imperative to employ automatic inspection systems to identify manufacturing defects in PCB before they are installed in the respective systems. An important task in this regard is the classification of defects as either true or pseudo defects, which decides if the PCB is to be re-manufactured or not. This work proposes a novel approach to detect most common defects in the PCBs. The problem has been approached by employing highly discriminative features based on multi-scale wavelet transform, which are further boosted by using a kernalized version of the support vector machines (SVM). A real world printed circuit board dataset has been used for quantitative analysis. Experimental results demonstrated the efficacy of the proposed method.
Time Series Diffusion Method: A Denoising Diffusion Probabilistic Model for Vibration Signal Generation
Diffusion models have demonstrated robust data generation capabilities in various research fields. In this paper, a Time Series Diffusion Method (TSDM) is proposed for vibration signal generation, leveraging the foundational principles of diffusion models. The TSDM uses an improved U-net architecture with attention block to effectively segment and extract features from one-dimensional time series data. It operates based on forward diffusion and reverse denoising processes for time-series generation. Experimental validation is conducted using single-frequency, multi-frequency datasets, and bearing fault datasets. The results show that TSDM can accurately generate the single-frequency and multi-frequency features in the time series and retain the basic frequency features for the diffusion generation results of the bearing fault series. Finally, TSDM is applied to the small sample fault diagnosis of three public bearing fault datasets, and the results show that the accuracy of small sample fault diagnosis of the three datasets is improved by 32.380%, 18.355% and 9.298% at most, respectively
Benchmarking Traditional Machine Learning and Deep Learning Models for Fault Detection in Power Transformers
Accurate diagnosis of power transformer faults is essential for ensuring the stability and safety of electrical power systems. This study presents a comparative analysis of conventional machine learning (ML) algorithms and deep learning (DL) algorithms for fault classification of power transformers. Using a condition-monitored dataset spanning 10 months, various gas concentration features were normalized and used to train five ML classifiers: Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Random Forest (RF), XGBoost, and Artificial Neural Network (ANN). In addition, four DL models were evaluated: Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), One-Dimensional Convolutional Neural Network (1D-CNN), and TabNet. Experimental results show that both ML and DL approaches performed comparably. The RF model achieved the highest ML accuracy at 86.82%, while the 1D-CNN model attained a close 86.30%.
CARE to Compare: A real-world dataset for anomaly detection in wind turbine data
Anomaly detection plays a crucial role in the field of predictive maintenance for wind turbines, yet the comparison of different algorithms poses a difficult task because domain specific public datasets are scarce. Many comparisons of different approaches either use benchmarks composed of data from many different domains, inaccessible data or one of the few publicly available datasets which lack detailed information about the faults. Moreover, many publications highlight a couple of case studies where fault detection was successful. With this paper we publish a high quality dataset that contains data from 36 wind turbines across 3 different wind farms as well as the most detailed fault information of any public wind turbine dataset as far as we know. The new dataset contains 89 years worth of real-world operating data of wind turbines, distributed across 44 labeled time frames for anomalies that led up to faults, as well as 51 time series representing normal behavior. Additionally, the quality of training data is ensured by turbine-status-based labels for each data point. Furthermore, we propose a new scoring method, called CARE (Coverage, Accuracy, Reliability and Earliness), which takes advantage of the information depth that is present in the dataset to identify a good all-around anomaly detection model. This score considers the anomaly detection performance, the ability to recognize normal behavior properly and the capability to raise as few false alarms as possible while simultaneously detecting anomalies early.
FD-LLM: Large Language Model for Fault Diagnosis of Machines
Large language models (LLMs) are effective at capturing complex, valuable conceptual representations from textual data for a wide range of real-world applications. However, in fields like Intelligent Fault Diagnosis (IFD), incorporating additional sensor data-such as vibration signals, temperature readings, and operational metrics-is essential but it is challenging to capture such sensor data information within traditional text corpora. This study introduces a novel IFD approach by effectively adapting LLMs to numerical data inputs for identifying various machine faults from time-series sensor data. We propose FD-LLM, an LLM framework specifically designed for fault diagnosis by formulating the training of the LLM as a multi-class classification problem. We explore two methods for encoding vibration signals: the first method uses a string-based tokenization technique to encode vibration signals into text representations, while the second extracts statistical features from both the time and frequency domains as statistical summaries of each signal. We assess the fault diagnosis capabilities of four open-sourced LLMs based on the FD-LLM framework, and evaluate the models' adaptability and generalizability under various operational conditions and machine components, namely for traditional fault diagnosis, cross-operational conditions, and cross-machine component settings. Our results show that LLMs such as Llama3 and Llama3-instruct demonstrate strong fault detection capabilities and significant adaptability across different operational conditions, outperforming state-of-the-art deep learning (DL) approaches in many cases.
A Fault Detection Scheme Utilizing Convolutional Neural Network for PV Solar Panels with High Accuracy
Solar energy is one of the most dependable renewable energy technologies, as it is feasible almost everywhere globally. However, improving the efficiency of a solar PV system remains a significant challenge. To enhance the robustness of the solar system, this paper proposes a trained convolutional neural network (CNN) based fault detection scheme to divide the images of photovoltaic modules. For binary classification, the algorithm classifies the input images of PV cells into two categories (i.e. faulty or normal). To further assess the network's capability, the defective PV cells are organized into shadowy, cracked, or dusty cells, and the model is utilized for multiple classifications. The success rate for the proposed CNN model is 91.1% for binary classification and 88.6% for multi-classification. Thus, the proposed trained CNN model remarkably outperforms the CNN model presented in a previous study which used the same datasets. The proposed CNN-based fault detection model is straightforward, simple and effective and could be applied in the fault detection of solar panel.
Empirical and Experimental Insights into Machine Learning-Based Defect Classification in Semiconductor Wafers
This survey paper offers a comprehensive review of methodologies utilizing machine learning (ML) classification techniques for identifying wafer defects in semiconductor manufacturing. Despite the growing body of research demonstrating the effectiveness of ML in wafer defect identification, there is a noticeable absence of comprehensive reviews on this subject. This survey attempts to fill this void by amalgamating available literature and providing an in-depth analysis of the advantages, limitations, and potential applications of various ML classification algorithms in the realm of wafer defect detection. An innovative taxonomy of methodologies that we present provides a detailed classification of algorithms into more refined categories and techniques. This taxonomy follows a three-tier structure, starting from broad methodology categories and ending with specific techniques. It aids researchers in comprehending the complex relationships between different algorithms and their techniques. We employ a rigorous empirical and experimental evaluation to rank these varying techniques. For the empirical evaluation, we assess techniques based on a set of five criteria. The experimental evaluation ranks the algorithms employing the same techniques, sub-categories, and categories. Also the paper illuminates the future prospects of ML classification techniques for wafer defect identification, underscoring potential advancements and opportunities for further research in this field
Machine Learning for UAV Propeller Fault Detection based on a Hybrid Data Generation Model
This paper describes the development of an on-board data-driven system that can monitor and localize the fault in a quadrotor unmanned aerial vehicle (UAV) and at the same time, evaluate the degree of damage of the fault under real scenarios. To achieve offline training data generation, a hybrid approach is proposed for the development of a virtual data-generative model using a combination of data-driven models as well as well-established dynamic models that describe the kinematics of the UAV. To effectively represent the drop in performance of a faulty propeller, a variation of the deep neural network, a LSTM network is proposed. With the RPM of the propeller as input and based on the fault condition of the propeller, the proposed propeller model estimates the resultant torque and thrust. Then, flight datasets of the UAV under various fault scenarios are generated via simulation using the developed data-generative model. Lastly, a fault classifier using a CNN model is proposed to identify as well as evaluate the degree of damage to the damaged propeller. The scope of this paper focuses on the identification of faulty propellers and classification of the fault level for quadrotor UAVs using RPM as well as flight data. Doing so allows for early minor fault detection to prevent serious faults from occurring if the fault is left unrepaired. To further validate the workability of this approach outside of simulation, a real-flight test is conducted indoors. The real flight data is collected and a simulation to real sim-real test is conducted. Due to the imperfections in the build of our experimental UAV, a slight calibration approach to our simulation model is further proposed and the experimental results obtained show that our trained model can identify the location of propeller fault as well as the degree/type of damage. Currently, the diagnosis accuracy on the testing set is over 80%.
On Generalizations of Some Distance Based Classifiers for HDLSS Data
In high dimension, low sample size (HDLSS) settings, classifiers based on Euclidean distances like the nearest neighbor classifier and the average distance classifier perform quite poorly if differences between locations of the underlying populations get masked by scale differences. To rectify this problem, several modifications of these classifiers have been proposed in the literature. However, existing methods are confined to location and scale differences only, and often fail to discriminate among populations differing outside of the first two moments. In this article, we propose some simple transformations of these classifiers resulting into improved performance even when the underlying populations have the same location and scale. We further propose a generalization of these classifiers based on the idea of grouping of variables. The high-dimensional behavior of the proposed classifiers is studied theoretically. Numerical experiments with a variety of simulated examples as well as an extensive analysis of real data sets exhibit advantages of the proposed methods.
Comparison of Clustering Algorithms for Statistical Features of Vibration Data Sets
Vibration-based condition monitoring systems are receiving increasing attention due to their ability to accurately identify different conditions by capturing dynamic features over a broad frequency range. However, there is little research on clustering approaches in vibration data and the resulting solutions are often optimized for a single data set. In this work, we present an extensive comparison of the clustering algorithms K-means clustering, OPTICS, and Gaussian mixture model clustering (GMM) applied to statistical features extracted from the time and frequency domains of vibration data sets. Furthermore, we investigate the influence of feature combinations, feature selection using principal component analysis (PCA), and the specified number of clusters on the performance of the clustering algorithms. We conducted this comparison in terms of a grid search using three different benchmark data sets. Our work showed that averaging (Mean, Median) and variance-based features (Standard Deviation, Interquartile Range) performed significantly better than shape-based features (Skewness, Kurtosis). In addition, K-means outperformed GMM slightly for these data sets, whereas OPTICS performed significantly worse. We were also able to show that feature combinations as well as PCA feature selection did not result in any significant performance improvements. With an increase in the specified number of clusters, clustering algorithms performed better, although there were some specific algorithmic restrictions.
Data augmentation and feature selection for automatic model recommendation in computational physics
Classification algorithms have recently found applications in computational physics for the selection of numerical methods or models adapted to the environment and the state of the physical system. For such classification tasks, labeled training data come from numerical simulations and generally correspond to physical fields discretized on a mesh. Three challenging difficulties arise: the lack of training data, their high dimensionality, and the non-applicability of common data augmentation techniques to physics data. This article introduces two algorithms to address these issues, one for dimensionality reduction via feature selection, and one for data augmentation. These algorithms are combined with a wide variety of classifiers for their evaluation. When combined with a stacking ensemble made of six multilayer perceptrons and a ridge logistic regression, they enable reaching an accuracy of 90% on our classification problem for nonlinear structural mechanics.
Enhancing Power Quality Event Classification with AI Transformer Models
Recently, there has been a growing interest in utilizing machine learning for accurate classification of power quality events (PQEs). However, most of these studies are performed assuming an ideal situation, while in reality, we can have measurement noise, DC offset, and variations in the voltage signal's amplitude and frequency. Building on the prior PQE classification works using deep learning, this paper proposes a deep-learning framework that leverages attention-enabled Transformers as a tool to accurately classify PQEs under the aforementioned considerations. The proposed framework can operate directly on the voltage signals with no need for a separate feature extraction or calculation phase. Our results show that the proposed framework outperforms recently proposed learning-based techniques. It can accurately classify PQEs under the aforementioned conditions with an accuracy varying between 99.81%-91.43% depending on the signal-to-noise ratio, DC offsets, and variations in the signal amplitude and frequency.
Analysis and Applications of Deep Learning with Finite Samples in Full Life-Cycle Intelligence of Nuclear Power Generation
The advent of Industry 4.0 has precipitated the incorporation of Artificial Intelligence (AI) methods within industrial contexts, aiming to realize intelligent manufacturing, operation as well as maintenance, also known as industrial intelligence. However, intricate industrial milieus, particularly those relating to energy exploration and production, frequently encompass data characterized by long-tailed class distribution, sample imbalance, and domain shift. These attributes pose noteworthy challenges to data-centric Deep Learning (DL) techniques, crucial for the realization of industrial intelligence. The present study centers on the intricate and distinctive industrial scenarios of Nuclear Power Generation (NPG), meticulously scrutinizing the application of DL techniques under the constraints of finite data samples. Initially, the paper expounds on potential employment scenarios for AI across the full life-cycle of NPG. Subsequently, we delve into an evaluative exposition of DL's advancement, grounded in the finite sample perspective. This encompasses aspects such as small-sample learning, few-shot learning, zero-shot learning, and open-set recognition, also referring to the unique data characteristics of NPG. The paper then proceeds to present two specific case studies. The first revolves around the automatic recognition of zirconium alloy metallography, while the second pertains to open-set recognition for signal diagnosis of machinery sensors. These cases, spanning the entirety of NPG's life-cycle, are accompanied by constructive outcomes and insightful deliberations. By exploring and applying DL methodologies within the constraints of finite sample availability, this paper not only furnishes a robust technical foundation but also introduces a fresh perspective toward the secure and efficient advancement and exploitation of this advanced energy source.
ToyADMOS2: Another dataset of miniature-machine operating sounds for anomalous sound detection under domain shift conditions
This paper proposes a new large-scale dataset called "ToyADMOS2" for anomaly detection in machine operating sounds (ADMOS). As did for our previous ToyADMOS dataset, we collected a large number of operating sounds of miniature machines (toys) under normal and anomaly conditions by deliberately damaging them but extended with providing controlled depth of damages in anomaly samples. Since typical application scenarios of ADMOS often require robust performance under domain-shift conditions, the ToyADMOS2 dataset is designed for evaluating systems under such conditions. The released dataset consists of two sub-datasets for machine-condition inspection: fault diagnosis of machines with geometrically fixed tasks and fault diagnosis of machines with moving tasks. Domain shifts are represented by introducing several differences in operating conditions, such as the use of the same machine type but with different machine models and parts configurations, different operating speeds, microphone arrangements, etc. Each sub-dataset contains over 27 k samples of normal machine-operating sounds and over 8 k samples of anomalous sounds recorded with five to eight microphones. The dataset is freely available for download at https://github.com/nttcslab/ToyADMOS2-dataset and https://doi.org/10.5281/zenodo.4580270.
The Optimality of Kernel Classifiers in Sobolev Space
Kernel methods are widely used in machine learning, especially for classification problems. However, the theoretical analysis of kernel classification is still limited. This paper investigates the statistical performances of kernel classifiers. With some mild assumptions on the conditional probability eta(x)=P(Y=1mid X=x), we derive an upper bound on the classification excess risk of a kernel classifier using recent advances in the theory of kernel regression. We also obtain a minimax lower bound for Sobolev spaces, which shows the optimality of the proposed classifier. Our theoretical results can be extended to the generalization error of overparameterized neural network classifiers. To make our theoretical results more applicable in realistic settings, we also propose a simple method to estimate the interpolation smoothness of 2eta(x)-1 and apply the method to real datasets.
Prediction Error-based Classification for Class-Incremental Learning
Class-incremental learning (CIL) is a particularly challenging variant of continual learning, where the goal is to learn to discriminate between all classes presented in an incremental fashion. Existing approaches often suffer from excessive forgetting and imbalance of the scores assigned to classes that have not been seen together during training. In this study, we introduce a novel approach, Prediction Error-based Classification (PEC), which differs from traditional discriminative and generative classification paradigms. PEC computes a class score by measuring the prediction error of a model trained to replicate the outputs of a frozen random neural network on data from that class. The method can be interpreted as approximating a classification rule based on Gaussian Process posterior variance. PEC offers several practical advantages, including sample efficiency, ease of tuning, and effectiveness even when data are presented one class at a time. Our empirical results show that PEC performs strongly in single-pass-through-data CIL, outperforming other rehearsal-free baselines in all cases and rehearsal-based methods with moderate replay buffer size in most cases across multiple benchmarks.
Identification of synoptic weather types over Taiwan area with multiple classifiers
In this study, a novel machine learning approach was used to classify three types of synoptic weather events in Taiwan area from 2001 to 2010. We used reanalysis data with three machine learning algorithms to recognize weather systems and evaluated their performance. Overall, the classifiers successfully identified 52-83% of weather events (hit rate), which is higher than the performance of traditional objective methods. The results showed that the machine learning approach gave low false alarm rate in general, while the support vector machine (SVM) with more principal components of reanalysis data had higher hit rate on all tested weather events. The sensitivity tests of grid data resolution indicated that the differences between the high- and low-resolution datasets are limited, which implied that the proposed method can achieve reasonable performance in weather forecasting with minimal resources. By identifying daily weather systems in historical reanalysis data, this method can be used to study long-term weather changes, to monitor climatological-scale variations, and to provide a better estimate of climate projections. Furthermore, this method can also serve as an alternative to model output statistics and potentially be used for synoptic weather forecasting.
Autoregressive Hidden Markov Models with partial knowledge on latent space applied to aero-engines prognostics
[This paper was initially published in PHME conference in 2016, selected for further publication in International Journal of Prognostics and Health Management.] This paper describes an Autoregressive Partially-hidden Markov model (ARPHMM) for fault detection and prognostics of equipments based on sensors' data. It is a particular dynamic Bayesian network that allows to represent the dynamics of a system by means of a Hidden Markov Model (HMM) and an autoregressive (AR) process. The Markov chain assumes that the system is switching back and forth between internal states while the AR process ensures a temporal coherence on sensor measurements. A sound learning procedure of standard ARHMM based on maximum likelihood allows to iteratively estimate all parameters simultaneously. This paper suggests a modification of the learning procedure considering that one may have prior knowledge about the structure which becomes partially hidden. The integration of the prior is based on the Theory of Weighted Distributions which is compatible with the Expectation-Maximization algorithm in the sense that the convergence properties are still satisfied. We show how to apply this model to estimate the remaining useful life based on health indicators. The autoregressive parameters can indeed be used for prediction while the latent structure can be used to get information about the degradation level. The interest of the proposed method for prognostics and health assessment is demonstrated on CMAPSS datasets.
Upper Limb Movement Recognition utilising EEG and EMG Signals for Rehabilitative Robotics
Upper limb movement classification, which maps input signals to the target activities, is a key building block in the control of rehabilitative robotics. Classifiers are trained for the rehabilitative system to comprehend the desires of the patient whose upper limbs do not function properly. Electromyography (EMG) signals and Electroencephalography (EEG) signals are used widely for upper limb movement classification. By analysing the classification results of the real-time EEG and EMG signals, the system can understand the intention of the user and predict the events that one would like to carry out. Accordingly, it will provide external help to the user. However, the noise in the real-time EEG and EMG data collection process contaminates the effectiveness of the data, which undermines classification performance. Moreover, not all patients process strong EMG signals due to muscle damage and neuromuscular disorder. To address these issues, this paper explores different feature extraction techniques and machine learning and deep learning models for EEG and EMG signals classification and proposes a novel decision-level multisensor fusion technique to integrate EEG signals with EMG signals. This system retrieves effective information from both sources to understand and predict the desire of the user, and thus aid. By testing out the proposed technique on a publicly available WAY-EEG-GAL dataset, which contains EEG and EMG signals that were recorded simultaneously, we manage to conclude the feasibility and effectiveness of the novel system.
Error Detection and Constraint Recovery in Hierarchical Multi-Label Classification without Prior Knowledge
Recent advances in Hierarchical Multi-label Classification (HMC), particularly neurosymbolic-based approaches, have demonstrated improved consistency and accuracy by enforcing constraints on a neural model during training. However, such work assumes the existence of such constraints a-priori. In this paper, we relax this strong assumption and present an approach based on Error Detection Rules (EDR) that allow for learning explainable rules about the failure modes of machine learning models. We show that these rules are not only effective in detecting when a machine learning classifier has made an error but also can be leveraged as constraints for HMC, thereby allowing the recovery of explainable constraints even if they are not provided. We show that our approach is effective in detecting machine learning errors and recovering constraints, is noise tolerant, and can function as a source of knowledge for neurosymbolic models on multiple datasets, including a newly introduced military vehicle recognition dataset.
California Earthquake Dataset for Machine Learning and Cloud Computing
The San Andreas Fault system, known for its frequent seismic activity, provides an extensive dataset for earthquake studies. The region's well-instrumented seismic networks have been crucial in advancing research on earthquake statistics, physics, and subsurface Earth structures. In recent years, earthquake data from California has become increasingly valuable for deep learning applications, such as Generalized Phase Detection (GPD) for phase detection and polarity determination, and PhaseNet for phase arrival-time picking. The continuous accumulation of data, particularly those manually labeled by human analysts, serves as an essential resource for advancing both regional and global deep learning models. To support the continued development of machine learning and data mining studies, we have compiled a unified California Earthquake Event Dataset (CEED) that integrates seismic records from the Northern California Earthquake Data Center (NCEDC) and the Southern California Earthquake Data Center (SCEDC). The dataset includes both automatically and manually determined parameters such as earthquake origin time, source location, P/S phase arrivals, first-motion polarities, and ground motion intensity measurements. The dataset is organized in an event-based format organized by year spanning from 2000 to 2024, facilitating cross-referencing with event catalogs and enabling continuous updates in future years. This comprehensive open-access dataset is designed to support diverse applications including developing deep learning models, creating enhanced catalog products, and research into earthquake processes, fault zone structures, and seismic risks.
AnomalyNCD: Towards Novel Anomaly Class Discovery in Industrial Scenarios
Recently, multi-class anomaly classification has garnered increasing attention. Previous methods directly cluster anomalies but often struggle due to the lack of anomaly-prior knowledge. Acquiring this knowledge faces two issues: the non-prominent and weak-semantics anomalies. In this paper, we propose AnomalyNCD, a multi-class anomaly classification network compatible with different anomaly detection methods. To address the non-prominence of anomalies, we design main element binarization (MEBin) to obtain anomaly-centered images, ensuring anomalies are learned while avoiding the impact of incorrect detections. Next, to learn anomalies with weak semantics, we design mask-guided representation learning, which focuses on isolated anomalies guided by masks and reduces confusion from erroneous inputs through corrected pseudo labels. Finally, to enable flexible classification at both region and image levels, we develop a region merging strategy that determines the overall image category based on the classified anomaly regions. Our method outperforms the state-of-the-art works on the MVTec AD and MTD datasets. Compared with the current methods, AnomalyNCD combined with zero-shot anomaly detection method achieves a 10.8% F_1 gain, 8.8% NMI gain, and 9.5% ARI gain on MVTec AD, and 12.8% F_1 gain, 5.7% NMI gain, and 10.8% ARI gain on MTD. Code is available at https://github.com/HUST-SLOW/AnomalyNCD.
Conformal Prediction via Regression-as-Classification
Conformal prediction (CP) for regression can be challenging, especially when the output distribution is heteroscedastic, multimodal, or skewed. Some of the issues can be addressed by estimating a distribution over the output, but in reality, such approaches can be sensitive to estimation error and yield unstable intervals.~Here, we circumvent the challenges by converting regression to a classification problem and then use CP for classification to obtain CP sets for regression.~To preserve the ordering of the continuous-output space, we design a new loss function and make necessary modifications to the CP classification techniques.~Empirical results on many benchmarks shows that this simple approach gives surprisingly good results on many practical problems.
Examining the Source of Defects from a Mechanical Perspective for 3D Anomaly Detection
In this paper, we explore a novel approach to 3D anomaly detection (AD) that goes beyond merely identifying anomalies based on structural characteristics. Our primary perspective is that most anomalies arise from unpredictable defective forces originating from both internal and external sources. To address these anomalies, we seek out opposing forces that can help correct them. Therefore, we introduce the Mechanics Complementary Model-based Framework for the 3D-AD task (MC4AD), which generates internal and external corrective forces for each point. We first propose a Diverse Anomaly-Generation (DA-Gen) module designed to simulate various types of anomalies. Next, we present the Corrective Force Prediction Network (CFP-Net), which uses complementary representations for point-level analysis to simulate the different contributions from internal and external corrective forces. To ensure the corrective forces are constrained effectively, we have developed a combined loss function that includes a new symmetric loss and an overall loss. Notably, we implement a Hierarchical Quality Control (HQC) strategy based on a three-way decision process and contribute a dataset titled Anomaly-IntraVariance, which incorporates intraclass variance to evaluate our model. As a result, the proposed MC4AD has been proven effective through theory and experimentation. The experimental results demonstrate that our approach yields nine state-of-the-art performances, achieving optimal results with minimal parameters and the fastest inference speed across five existing datasets, in addition to the proposed Anomaly-IntraVariance dataset. The source is available at https://github.com/hzzzzzhappy/MC4AD
Paying Attention to Astronomical Transients: Introducing the Time-series Transformer for Photometric Classification
Future surveys such as the Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will observe an order of magnitude more astrophysical transient events than any previous survey before. With this deluge of photometric data, it will be impossible for all such events to be classified by humans alone. Recent efforts have sought to leverage machine learning methods to tackle the challenge of astronomical transient classification, with ever improving success. Transformers are a recently developed deep learning architecture, first proposed for natural language processing, that have shown a great deal of recent success. In this work we develop a new transformer architecture, which uses multi-head self attention at its core, for general multi-variate time-series data. Furthermore, the proposed time-series transformer architecture supports the inclusion of an arbitrary number of additional features, while also offering interpretability. We apply the time-series transformer to the task of photometric classification, minimising the reliance of expert domain knowledge for feature selection, while achieving results comparable to state-of-the-art photometric classification methods. We achieve a logarithmic-loss of 0.507 on imbalanced data in a representative setting using data from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). Moreover, we achieve a micro-averaged receiver operating characteristic area under curve of 0.98 and micro-averaged precision-recall area under curve of 0.87.
Triad: Empowering LMM-based Anomaly Detection with Vision Expert-guided Visual Tokenizer and Manufacturing Process
Although recent methods have tried to introduce large multimodal models (LMMs) into industrial anomaly detection (IAD), their generalization in the IAD field is far inferior to that for general purposes. We summarize the main reasons for this gap into two aspects. On one hand, general-purpose LMMs lack cognition of defects in the visual modality, thereby failing to sufficiently focus on defect areas. Therefore, we propose to modify the AnyRes structure of the LLaVA model, providing the potential anomalous areas identified by existing IAD models to the LMMs. On the other hand, existing methods mainly focus on identifying defects by learning defect patterns or comparing with normal samples, yet they fall short of understanding the causes of these defects. Considering that the generation of defects is closely related to the manufacturing process, we propose a manufacturing-driven IAD paradigm. An instruction-tuning dataset for IAD (InstructIAD) and a data organization approach for Chain-of-Thought with manufacturing (CoT-M) are designed to leverage the manufacturing process for IAD. Based on the above two modifications, we present Triad, a novel LMM-based method incorporating an expert-guided region-of-interest tokenizer and manufacturing process for industrial anomaly detection. Extensive experiments show that our Triad not only demonstrates competitive performance against current LMMs but also achieves further improved accuracy when equipped with manufacturing processes. Source code, training data, and pre-trained models will be publicly available at https://github.com/tzjtatata/Triad.
Automating Microservices Test Failure Analysis using Kubernetes Cluster Logs
Kubernetes is a free, open-source container orchestration system for deploying and managing Docker containers that host microservices. Kubernetes cluster logs help in determining the reason for the failure. However, as systems become more complex, identifying failure reasons manually becomes more difficult and time-consuming. This study aims to identify effective and efficient classification algorithms to automatically determine the failure reason. We compare five classification algorithms, Support Vector Machines, K-Nearest Neighbors, Random Forest, Gradient Boosting Classifier, and Multilayer Perceptron. Our results indicate that Random Forest produces good accuracy while requiring fewer computational resources than other algorithms.
CSE: Surface Anomaly Detection with Contrastively Selected Embedding
Detecting surface anomalies of industrial materials poses a significant challenge within a myriad of industrial manufacturing processes. In recent times, various methodologies have emerged, capitalizing on the advantages of employing a network pre-trained on natural images for the extraction of representative features. Subsequently, these features are subjected to processing through a diverse range of techniques including memory banks, normalizing flow, and knowledge distillation, which have exhibited exceptional accuracy. This paper revisits approaches based on pre-trained features by introducing a novel method centered on target-specific embedding. To capture the most representative features of the texture under consideration, we employ a variant of a contrastive training procedure that incorporates both artificially generated defective samples and anomaly-free samples during training. Exploiting the intrinsic properties of surfaces, we derived a meaningful representation from the defect-free samples during training, facilitating a straightforward yet effective calculation of anomaly scores. The experiments conducted on the MVTEC AD and TILDA datasets demonstrate the competitiveness of our approach compared to state-of-the-art methods.
Foundation Models for Time Series: A Survey
Transformer-based foundation models have emerged as a dominant paradigm in time series analysis, offering unprecedented capabilities in tasks such as forecasting, anomaly detection, classification, trend analysis and many more time series analytical tasks. This survey provides a comprehensive overview of the current state of the art pre-trained foundation models, introducing a novel taxonomy to categorize them across several dimensions. Specifically, we classify models by their architecture design, distinguishing between those leveraging patch-based representations and those operating directly on raw sequences. The taxonomy further includes whether the models provide probabilistic or deterministic predictions, and whether they are designed to work with univariate time series or can handle multivariate time series out of the box. Additionally, the taxonomy encompasses model scale and complexity, highlighting differences between lightweight architectures and large-scale foundation models. A unique aspect of this survey is its categorization by the type of objective function employed during training phase. By synthesizing these perspectives, this survey serves as a resource for researchers and practitioners, providing insights into current trends and identifying promising directions for future research in transformer-based time series modeling.
Wafer Map Defect Patterns Semi-Supervised Classification Using Latent Vector Representation
As the globalization of semiconductor design and manufacturing processes continues, the demand for defect detection during integrated circuit fabrication stages is becoming increasingly critical, playing a significant role in enhancing the yield of semiconductor products. Traditional wafer map defect pattern detection methods involve manual inspection using electron microscopes to collect sample images, which are then assessed by experts for defects. This approach is labor-intensive and inefficient. Consequently, there is a pressing need to develop a model capable of automatically detecting defects as an alternative to manual operations. In this paper, we propose a method that initially employs a pre-trained VAE model to obtain the fault distribution information of the wafer map. This information serves as guidance, combined with the original image set for semi-supervised model training. During the semi-supervised training, we utilize a teacher-student network for iterative learning. The model presented in this paper is validated on the benchmark dataset WM-811K wafer dataset. The experimental results demonstrate superior classification accuracy and detection performance compared to state-of-the-art models, fulfilling the requirements for industrial applications. Compared to the original architecture, we have achieved significant performance improvement.
Domain-independent detection of known anomalies
One persistent obstacle in industrial quality inspection is the detection of anomalies. In real-world use cases, two problems must be addressed: anomalous data is sparse and the same types of anomalies need to be detected on previously unseen objects. Current anomaly detection approaches can be trained with sparse nominal data, whereas domain generalization approaches enable detecting objects in previously unseen domains. Utilizing those two observations, we introduce the hybrid task of domain generalization on sparse classes. To introduce an accompanying dataset for this task, we present a modification of the well-established MVTec AD dataset by generating three new datasets. In addition to applying existing methods for benchmark, we design two embedding-based approaches, Spatial Embedding MLP (SEMLP) and Labeled PatchCore. Overall, SEMLP achieves the best performance with an average image-level AUROC of 87.2 % vs. 80.4 % by MIRO. The new and openly available datasets allow for further research to improve industrial anomaly detection.
Identifying Incorrect Classifications with Balanced Uncertainty
Uncertainty estimation is critical for cost-sensitive deep-learning applications (i.e. disease diagnosis). It is very challenging partly due to the inaccessibility of uncertainty groundtruth in most datasets. Previous works proposed to estimate the uncertainty from softmax calibration, Monte Carlo sampling, subjective logic and so on. However, these existing methods tend to be over-confident about their predictions with unreasonably low overall uncertainty, which originates from the imbalance between positive (correct classifications) and negative (incorrect classifications) samples. For this issue, we firstly propose the distributional imbalance to model the imbalance in uncertainty estimation as two kinds of distribution biases, and secondly propose Balanced True Class Probability (BTCP) framework, which learns an uncertainty estimator with a novel Distributional Focal Loss (DFL) objective. Finally, we evaluate the BTCP in terms of failure prediction and out-of-distribution (OOD) detection on multiple datasets. The experimental results show that BTCP outperforms other uncertainty estimation methods especially in identifying incorrect classifications.
A Review of Deep Learning with Special Emphasis on Architectures, Applications and Recent Trends
Deep learning has solved a problem that as little as five years ago was thought by many to be intractable - the automatic recognition of patterns in data; and it can do so with accuracy that often surpasses human beings. It has solved problems beyond the realm of traditional, hand-crafted machine learning algorithms and captured the imagination of practitioners trying to make sense out of the flood of data that now inundates our society. As public awareness of the efficacy of DL increases so does the desire to make use of it. But even for highly trained professionals it can be daunting to approach the rapidly increasing body of knowledge produced by experts in the field. Where does one start? How does one determine if a particular model is applicable to their problem? How does one train and deploy such a network? A primer on the subject can be a good place to start. With that in mind, we present an overview of some of the key multilayer ANNs that comprise DL. We also discuss some new automatic architecture optimization protocols that use multi-agent approaches. Further, since guaranteeing system uptime is becoming critical to many computer applications, we include a section on using neural networks for fault detection and subsequent mitigation. This is followed by an exploratory survey of several application areas where DL has emerged as a game-changing technology: anomalous behavior detection in financial applications or in financial time-series forecasting, predictive and prescriptive analytics, medical image processing and analysis and power systems research. The thrust of this review is to outline emerging areas of application-oriented research within the DL community as well as to provide a reference to researchers seeking to use it in their work for what it does best: statistical pattern recognition with unparalleled learning capacity with the ability to scale with information.
AnomalyBERT: Self-Supervised Transformer for Time Series Anomaly Detection using Data Degradation Scheme
Mechanical defects in real situations affect observation values and cause abnormalities in multivariate time series, such as sensor values or network data. To perceive abnormalities in such data, it is crucial to understand the temporal context and interrelation between variables simultaneously. The anomaly detection task for time series, especially for unlabeled data, has been a challenging problem, and we address it by applying a suitable data degradation scheme to self-supervised model training. We define four types of synthetic outliers and propose the degradation scheme in which a portion of input data is replaced with one of the synthetic outliers. Inspired by the self-attention mechanism, we design a Transformer-based architecture to recognize the temporal context and detect unnatural sequences with high efficiency. Our model converts multivariate data points into temporal representations with relative position bias and yields anomaly scores from these representations. Our method, AnomalyBERT, shows a great capability of detecting anomalies contained in complex time series and surpasses previous state-of-the-art methods on five real-world benchmarks. Our code is available at https://github.com/Jhryu30/AnomalyBERT.
ECGformer: Leveraging transformer for ECG heartbeat arrhythmia classification
An arrhythmia, also known as a dysrhythmia, refers to an irregular heartbeat. There are various types of arrhythmias that can originate from different areas of the heart, resulting in either a rapid, slow, or irregular heartbeat. An electrocardiogram (ECG) is a vital diagnostic tool used to detect heart irregularities and abnormalities, allowing experts to analyze the heart's electrical signals to identify intricate patterns and deviations from the norm. Over the past few decades, numerous studies have been conducted to develop automated methods for classifying heartbeats based on ECG data. In recent years, deep learning has demonstrated exceptional capabilities in tackling various medical challenges, particularly with transformers as a model architecture for sequence processing. By leveraging the transformers, we developed the ECGformer model for the classification of various arrhythmias present in electrocardiogram data. We assessed the suggested approach using the MIT-BIH and PTB datasets. ECG heartbeat arrhythmia classification results show that the proposed method is highly effective.
First-shot anomaly sound detection for machine condition monitoring: A domain generalization baseline
This paper provides a baseline system for First-shot-compliant unsupervised anomaly detection (ASD) for machine condition monitoring. First-shot ASD does not allow systems to do machine-type dependent hyperparameter tuning or tool ensembling based on the performance metric calculated with the grand truth. To show benchmark performance for First-shot ASD, this paper proposes an anomaly sound detection system that works on the domain generalization task in the Detection and Classification of Acoustic Scenes and Events (DCASE) 2022 Challenge Task 2: "Unsupervised Anomalous Sound Detection for Machine Condition Monitoring Applying Domain Generalization Technique" while complying with the First-shot requirements introduced in the DCASE 2023 Challenge Task 2 (DCASE2023T2). A simple autoencoder based implementation combined with selective Mahalanobis metric is implemented as a baseline system. The performance evaluation is conducted to set the target benchmark for the forthcoming DCASE2023T2. Source code of the baseline system will be available on GitHub: https://github.com/nttcslab/dcase2023_task2_baseline_ae .
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Detecting test samples drawn sufficiently far away from the training distribution statistically or adversarially is a fundamental requirement for deploying a good classifier in many real-world machine learning applications. However, deep neural networks with the softmax classifier are known to produce highly overconfident posterior distributions even for such abnormal samples. In this paper, we propose a simple yet effective method for detecting any abnormal samples, which is applicable to any pre-trained softmax neural classifier. We obtain the class conditional Gaussian distributions with respect to (low- and upper-level) features of the deep models under Gaussian discriminant analysis, which result in a confidence score based on the Mahalanobis distance. While most prior methods have been evaluated for detecting either out-of-distribution or adversarial samples, but not both, the proposed method achieves the state-of-the-art performances for both cases in our experiments. Moreover, we found that our proposed method is more robust in harsh cases, e.g., when the training dataset has noisy labels or small number of samples. Finally, we show that the proposed method enjoys broader usage by applying it to class-incremental learning: whenever out-of-distribution samples are detected, our classification rule can incorporate new classes well without further training deep models.
VSFormer: Value and Shape-Aware Transformer with Prior-Enhanced Self-Attention for Multivariate Time Series Classification
Multivariate time series classification is a crucial task in data mining, attracting growing research interest due to its broad applications. While many existing methods focus on discovering discriminative patterns in time series, real-world data does not always present such patterns, and sometimes raw numerical values can also serve as discriminative features. Additionally, the recent success of Transformer models has inspired many studies. However, when applying to time series classification, the self-attention mechanisms in Transformer models could introduce classification-irrelevant features, thereby compromising accuracy. To address these challenges, we propose a novel method, VSFormer, that incorporates both discriminative patterns (shape) and numerical information (value). In addition, we extract class-specific prior information derived from supervised information to enrich the positional encoding and provide classification-oriented self-attention learning, thereby enhancing its effectiveness. Extensive experiments on all 30 UEA archived datasets demonstrate the superior performance of our method compared to SOTA models. Through ablation studies, we demonstrate the effectiveness of the improved encoding layer and the proposed self-attention mechanism. Finally, We provide a case study on a real-world time series dataset without discriminative patterns to interpret our model.
TSCMamba: Mamba Meets Multi-View Learning for Time Series Classification
Time series classification (TSC) on multivariate time series is a critical problem. We propose a novel multi-view approach integrating frequency-domain and time-domain features to provide complementary contexts for TSC. Our method fuses continuous wavelet transform spectral features with temporal convolutional or multilayer perceptron features. We leverage the Mamba state space model for efficient and scalable sequence modeling. We also introduce a novel tango scanning scheme to better model sequence relationships. Experiments on 10 standard benchmark datasets demonstrate our approach achieves an average 6.45% accuracy improvement over state-of-the-art TSC models.
Analytical Derivation and Comparison of Alarm Similarity Measures
An industrial process includes many devices, variables, and sub-processes that are physically or electronically interconnected. These interconnections imply some level of correlation between different process variables. Since most of the alarms in a process plant are defined on process variables, alarms are also correlated. However, this can be a nuisance to operators, for one fault might trigger a, sometimes large, number of alarms. So, it is essential to find and correct correlated alarms. In this paper, we study different methods and techniques proposed to measure correlation or similarity between alarms. The similarity indices are first analytically calculated and then studied and compared. The results are also validated using Monte-Carlo simulation.
Multimodal Sleep Stage and Sleep Apnea Classification Using Vision Transformer: A Multitask Explainable Learning Approach
Sleep is an essential component of human physiology, contributing significantly to overall health and quality of life. Accurate sleep staging and disorder detection are crucial for assessing sleep quality. Studies in the literature have proposed PSG-based approaches and machine-learning methods utilizing single-modality signals. However, existing methods often lack multimodal, multilabel frameworks and address sleep stages and disorders classification separately. In this paper, we propose a 1D-Vision Transformer for simultaneous classification of sleep stages and sleep disorders. Our method exploits the sleep disorders' correlation with specific sleep stage patterns and performs a simultaneous identification of a sleep stage and sleep disorder. The model is trained and tested using multimodal-multilabel sensory data (including photoplethysmogram, respiratory flow, and respiratory effort signals). The proposed method shows an overall accuracy (cohen's Kappa) of 78% (0.66) for five-stage sleep classification and 74% (0.58) for sleep apnea classification. Moreover, we analyzed the encoder attention weights to clarify our models' predictions and investigate the influence different features have on the models' outputs. The result shows that identified patterns, such as respiratory troughs and peaks, make a higher contribution to the final classification process.
HDC-MiniROCKET: Explicit Time Encoding in Time Series Classification with Hyperdimensional Computing
Classification of time series data is an important task for many application domains. One of the best existing methods for this task, in terms of accuracy and computation time, is MiniROCKET. In this work, we extend this approach to provide better global temporal encodings using hyperdimensional computing (HDC) mechanisms. HDC (also known as Vector Symbolic Architectures, VSA) is a general method to explicitly represent and process information in high-dimensional vectors. It has previously been used successfully in combination with deep neural networks and other signal processing algorithms. We argue that the internal high-dimensional representation of MiniROCKET is well suited to be complemented by the algebra of HDC. This leads to a more general formulation, HDC-MiniROCKET, where the original algorithm is only a special case. We will discuss and demonstrate that HDC-MiniROCKET can systematically overcome catastrophic failures of MiniROCKET on simple synthetic datasets. These results are confirmed by experiments on the 128 datasets from the UCR time series classification benchmark. The extension with HDC can achieve considerably better results on datasets with high temporal dependence without increasing the computational effort for inference.
Generalizable Decision Boundaries: Dualistic Meta-Learning for Open Set Domain Generalization
Domain generalization (DG) is proposed to deal with the issue of domain shift, which occurs when statistical differences exist between source and target domains. However, most current methods do not account for a common realistic scenario where the source and target domains have different classes. To overcome this deficiency, open set domain generalization (OSDG) then emerges as a more practical setting to recognize unseen classes in unseen domains. An intuitive approach is to use multiple one-vs-all classifiers to define decision boundaries for each class and reject the outliers as unknown. However, the significant class imbalance between positive and negative samples often causes the boundaries biased towards positive ones, resulting in misclassification for known samples in the unseen target domain. In this paper, we propose a novel meta-learning-based framework called dualistic MEta-learning with joint DomaIn-Class matching (MEDIC), which considers gradient matching towards inter-domain and inter-class splits simultaneously to find a generalizable boundary balanced for all tasks. Experimental results demonstrate that MEDIC not only outperforms previous methods in open set scenarios, but also maintains competitive close set generalization ability at the same time. Our code is available at https://github.com/zzwdx/MEDIC.
Improve Representation for Imbalanced Regression through Geometric Constraints
In representation learning, uniformity refers to the uniform feature distribution in the latent space (i.e., unit hypersphere). Previous work has shown that improving uniformity contributes to the learning of under-represented classes. However, most of the previous work focused on classification; the representation space of imbalanced regression remains unexplored. Classification-based methods are not suitable for regression tasks because they cluster features into distinct groups without considering the continuous and ordered nature essential for regression. In a geometric aspect, we uniquely focus on ensuring uniformity in the latent space for imbalanced regression through two key losses: enveloping and homogeneity. The enveloping loss encourages the induced trace to uniformly occupy the surface of a hypersphere, while the homogeneity loss ensures smoothness, with representations evenly spaced at consistent intervals. Our method integrates these geometric principles into the data representations via a Surrogate-driven Representation Learning (SRL) framework. Experiments with real-world regression and operator learning tasks highlight the importance of uniformity in imbalanced regression and validate the efficacy of our geometry-based loss functions.
Trustworthy Long-Tailed Classification
Classification on long-tailed distributed data is a challenging problem, which suffers from serious class-imbalance and accordingly unpromising performance especially on tail classes. Recently, the ensembling based methods achieve the state-of-the-art performance and show great potential. However, there are two limitations for current methods. First, their predictions are not trustworthy for failure-sensitive applications. This is especially harmful for the tail classes where the wrong predictions is basically frequent. Second, they assign unified numbers of experts to all samples, which is redundant for easy samples with excessive computational cost. To address these issues, we propose a Trustworthy Long-tailed Classification (TLC) method to jointly conduct classification and uncertainty estimation to identify hard samples in a multi-expert framework. Our TLC obtains the evidence-based uncertainty (EvU) and evidence for each expert, and then combines these uncertainties and evidences under the Dempster-Shafer Evidence Theory (DST). Moreover, we propose a dynamic expert engagement to reduce the number of engaged experts for easy samples and achieve efficiency while maintaining promising performances. Finally, we conduct comprehensive experiments on the tasks of classification, tail detection, OOD detection and failure prediction. The experimental results show that the proposed TLC outperforms existing methods and is trustworthy with reliable uncertainty.
SMOTE: Synthetic Minority Over-sampling Technique
An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
POND: Multi-Source Time Series Domain Adaptation with Information-Aware Prompt Tuning
Time series domain adaptation stands as a pivotal and intricate challenge with diverse applications, including but not limited to human activity recognition, sleep stage classification, and machine fault diagnosis. Despite the numerous domain adaptation techniques proposed to tackle this complex problem, they primarily focus on domain adaptation from a single source domain. Yet, it is more crucial to investigate domain adaptation from multiple domains due to the potential for greater improvements. To address this, three important challenges need to be overcome: 1). The lack of exploration to utilize domain-specific information for domain adaptation, 2). The difficulty to learn domain-specific information that changes over time, and 3). The difficulty to evaluate learned domain-specific information. In order to tackle these challenges simultaneously, in this paper, we introduce PrOmpt-based domaiN Discrimination (POND), the first framework to utilize prompts for time series domain adaptation. Specifically, to address Challenge 1, we extend the idea of prompt tuning to time series analysis and learn prompts to capture common and domain-specific information from all source domains. To handle Challenge 2, we introduce a conditional module for each source domain to generate prompts from time series input data. For Challenge 3, we propose two criteria to select good prompts, which are used to choose the most suitable source domain for domain adaptation. The efficacy and robustness of our proposed POND model are extensively validated through experiments across 50 scenarios encompassing four datasets. Experimental results demonstrate that our proposed POND model outperforms all state-of-the-art comparison methods by up to 66% on the F1-score.
Association rule mining with earthquake data collected from Turkiye region
Earthquakes are evaluated among the most destructive disasters for human beings, as also experienced for Turkiye region. Data science has the property of discovering hidden patterns in case a sufficient volume of data is supplied. Time dependency of events, specifically being defined by co-occurrence in a specific time window, may be handled as an associate rule mining task such as a market-basket analysis application. In this regard, we assumed each day's seismic activity as a single basket of events, leading to discovering the association patterns between these events. Consequently, this study presents the most prominent association rules for the earthquakes recorded in Turkiye region in the last 5 years, each year presented separately. Results indicate statistical inference with events recorded from regions of various distances, which could be further verified with geologic evidence from the field. As a result, we believe that the current study may form a statistical basis for the future works with the aid of machine learning algorithm performed for associate rule mining.
On Invariance Penalties for Risk Minimization
The Invariant Risk Minimization (IRM) principle was first proposed by Arjovsky et al. [2019] to address the domain generalization problem by leveraging data heterogeneity from differing experimental conditions. Specifically, IRM seeks to find a data representation under which an optimal classifier remains invariant across all domains. Despite the conceptual appeal of IRM, the effectiveness of the originally proposed invariance penalty has recently been brought into question. In particular, there exists counterexamples for which that invariance penalty can be arbitrarily small for non-invariant data representations. We propose an alternative invariance penalty by revisiting the Gramian matrix of the data representation. We discuss the role of its eigenvalues in the relationship between the risk and the invariance penalty, and demonstrate that it is ill-conditioned for said counterexamples. The proposed approach is guaranteed to recover an invariant representation for linear settings under mild non-degeneracy conditions. Its effectiveness is substantiated by experiments on DomainBed and InvarianceUnitTest, two extensive test beds for domain generalization.
Proving the Potential of Skeleton Based Action Recognition to Automate the Analysis of Manual Processes
In manufacturing sectors such as textiles and electronics, manual processes are a fundamental part of production. The analysis and monitoring of the processes is necessary for efficient production design. Traditional methods for analyzing manual processes are complex, expensive, and inflexible. Compared to established approaches such as Methods-Time-Measurement (MTM), machine learning (ML) methods promise: Higher flexibility, self-sufficient & permanent use, lower costs. In this work, based on a video stream, the current motion class in a manual assembly process is detected. With information on the current motion, Key-Performance-Indicators (KPIs) can be derived easily. A skeleton-based action recognition approach is taken, as this field recently shows major success in machine vision tasks. For skeleton-based action recognition in manual assembly, no sufficient pre-work could be found. Therefore, a ML pipeline is developed, to enable extensive research on different (pre-) processing methods and neural nets. Suitable well generalizing approaches are found, proving the potential of ML to enhance analyzation of manual processes. Models detect the current motion, performed by an operator in manual assembly, but the results can be transferred to all kinds of manual processes.
Description and Discussion on DCASE 2023 Challenge Task 2: First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring
We present the task description of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2023 Challenge Task 2: ``First-shot unsupervised anomalous sound detection (ASD) for machine condition monitoring''. The main goal is to enable rapid deployment of ASD systems for new kinds of machines without the need for hyperparameter tuning. In the past ASD tasks, developed methods tuned hyperparameters for each machine type, as the development and evaluation datasets had the same machine types. However, collecting normal and anomalous data as the development dataset can be infeasible in practice. In 2023 Task 2, we focus on solving the first-shot problem, which is the challenge of training a model on a completely novel machine type. Specifically, (i) each machine type has only one section (a subset of machine type) and (ii) machine types in the development and evaluation datasets are completely different. Analysis of 86 submissions from 23 teams revealed that the keys to outperform baselines were: 1) sampling techniques for dealing with class imbalances across different domains and attributes, 2) generation of synthetic samples for robust detection, and 3) use of multiple large pre-trained models to extract meaningful embeddings for the anomaly detector.
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
We consider the two related problems of detecting if an example is misclassified or out-of-distribution. We present a simple baseline that utilizes probabilities from softmax distributions. Correctly classified examples tend to have greater maximum softmax probabilities than erroneously classified and out-of-distribution examples, allowing for their detection. We assess performance by defining several tasks in computer vision, natural language processing, and automatic speech recognition, showing the effectiveness of this baseline across all. We then show the baseline can sometimes be surpassed, demonstrating the room for future research on these underexplored detection tasks.
CLASSify: A Web-Based Tool for Machine Learning
Machine learning classification problems are widespread in bioinformatics, but the technical knowledge required to perform model training, optimization, and inference can prevent researchers from utilizing this technology. This article presents an automated tool for machine learning classification problems to simplify the process of training models and producing results while providing informative visualizations and insights into the data. This tool supports both binary and multiclass classification problems, and it provides access to a variety of models and methods. Synthetic data can be generated within the interface to fill missing values, balance class labels, or generate entirely new datasets. It also provides support for feature evaluation and generates explainability scores to indicate which features influence the output the most. We present CLASSify, an open-source tool for simplifying the user experience of solving classification problems without the need for knowledge of machine learning.
Double-Weighting for Covariate Shift Adaptation
Supervised learning is often affected by a covariate shift in which the marginal distributions of instances (covariates x) of training and testing samples p_tr(x) and p_te(x) are different but the label conditionals coincide. Existing approaches address such covariate shift by either using the ratio p_te(x)/p_tr(x) to weight training samples (reweighted methods) or using the ratio p_tr(x)/p_te(x) to weight testing samples (robust methods). However, the performance of such approaches can be poor under support mismatch or when the above ratios take large values. We propose a minimax risk classification (MRC) approach for covariate shift adaptation that avoids such limitations by weighting both training and testing samples. In addition, we develop effective techniques that obtain both sets of weights and generalize the conventional kernel mean matching method. We provide novel generalization bounds for our method that show a significant increase in the effective sample size compared with reweighted methods. The proposed method also achieves enhanced classification performance in both synthetic and empirical experiments.
Machine Learning Methods for the Design and Operation of Liquid Rocket Engines -- Research Activities at the DLR Institute of Space Propulsion
The last years have witnessed an enormous interest in the use of artificial intelligence methods, especially machine learning algorithms. This also has a major impact on aerospace engineering in general, and the design and operation of liquid rocket engines in particular, and research in this area is growing rapidly. The paper describes current machine learning applications at the DLR Institute of Space Propulsion. Not only applications in the field of modeling are presented, but also convincing results that prove the capabilities of machine learning methods for control and condition monitoring are described in detail. Furthermore, the advantages and disadvantages of the presented methods as well as current and future research directions are discussed.
What is Flagged in Uncertainty Quantification? Latent Density Models for Uncertainty Categorization
Uncertainty Quantification (UQ) is essential for creating trustworthy machine learning models. Recent years have seen a steep rise in UQ methods that can flag suspicious examples, however, it is often unclear what exactly these methods identify. In this work, we propose a framework for categorizing uncertain examples flagged by UQ methods in classification tasks. We introduce the confusion density matrix -- a kernel-based approximation of the misclassification density -- and use this to categorize suspicious examples identified by a given uncertainty method into three classes: out-of-distribution (OOD) examples, boundary (Bnd) examples, and examples in regions of high in-distribution misclassification (IDM). Through extensive experiments, we show that our framework provides a new and distinct perspective for assessing differences between uncertainty quantification methods, thereby forming a valuable assessment benchmark.
Adaptive Margin Global Classifier for Exemplar-Free Class-Incremental Learning
Exemplar-free class-incremental learning (EFCIL) presents a significant challenge as the old class samples are absent for new task learning. Due to the severe imbalance between old and new class samples, the learned classifiers can be easily biased toward the new ones. Moreover, continually updating the feature extractor under EFCIL can compromise the discriminative power of old class features, e.g., leading to less compact and more overlapping distributions across classes. Existing methods mainly focus on handling biased classifier learning. In this work, both cases are considered using the proposed method. Specifically, we first introduce a Distribution-Based Global Classifier (DBGC) to avoid bias factors in existing methods, such as data imbalance and sampling. More importantly, the compromised distributions of old classes are simulated via a simple operation, variance enlarging (VE). Incorporating VE based on DBGC results in a novel classification loss for EFCIL. This loss is proven equivalent to an Adaptive Margin Softmax Cross Entropy (AMarX). The proposed method is thus called Adaptive Margin Global Classifier (AMGC). AMGC is simple yet effective. Extensive experiments show that AMGC achieves superior image classification results on its own under a challenging EFCIL setting. Detailed analysis is also provided for further demonstration.
Kolmogorov-Arnold Neural Networks for High-Entropy Alloys Design
A wide range of deep learning-based machine learning techniques are extensively applied to the design of high-entropy alloys (HEAs), yielding numerous valuable insights. Kolmogorov-Arnold Networks (KAN) is a recently developed architecture that aims to improve both the accuracy and interpretability of input features. In this work, we explore three different datasets for HEA design and demonstrate the application of KAN for both classification and regression models. In the first example, we use a KAN classification model to predict the probability of single-phase formation in high-entropy carbide ceramics based on various properties such as mixing enthalpy and valence electron concentration. In the second example, we employ a KAN regression model to predict the yield strength and ultimate tensile strength of HEAs based on their chemical composition and process conditions including annealing time, cold rolling percentage, and homogenization temperature. The third example involves a KAN classification model to determine whether a certain composition is an HEA or non-HEA, followed by a KAN regressor model to predict the bulk modulus of the identified HEA, aiming to identify HEAs with high bulk modulus. In all three examples, KAN either outperform or match the performance in terms of accuracy such as F1 score for classification and Mean Square Error (MSE), and coefficient of determination (R2) for regression of the multilayer perceptron (MLP) by demonstrating the efficacy of KAN in handling both classification and regression tasks. We provide a promising direction for future research to explore advanced machine learning techniques, which lead to more accurate predictions and better interpretability of complex materials, ultimately accelerating the discovery and optimization of HEAs with desirable properties.
Heart Disease Detection using Vision-Based Transformer Models from ECG Images
Heart disease, also known as cardiovascular disease, is a prevalent and critical medical condition characterized by the impairment of the heart and blood vessels, leading to various complications such as coronary artery disease, heart failure, and myocardial infarction. The timely and accurate detection of heart disease is of paramount importance in clinical practice. Early identification of individuals at risk enables proactive interventions, preventive measures, and personalized treatment strategies to mitigate the progression of the disease and reduce adverse outcomes. In recent years, the field of heart disease detection has witnessed notable advancements due to the integration of sophisticated technologies and computational approaches. These include machine learning algorithms, data mining techniques, and predictive modeling frameworks that leverage vast amounts of clinical and physiological data to improve diagnostic accuracy and risk stratification. In this work, we propose to detect heart disease from ECG images using cutting-edge technologies, namely vision transformer models. These models are Google-Vit, Microsoft-Beit, and Swin-Tiny. To the best of our knowledge, this is the initial endeavor concentrating on the detection of heart diseases through image-based ECG data by employing cuttingedge technologies namely, transformer models. To demonstrate the contribution of the proposed framework, the performance of vision transformer models are compared with state-of-the-art studies. Experiment results show that the proposed framework exhibits remarkable classification results.
Credit card fraud detection - Classifier selection strategy
Machine learning has opened up new tools for financial fraud detection. Using a sample of annotated transactions, a machine learning classification algorithm learns to detect frauds. With growing credit card transaction volumes and rising fraud percentages there is growing interest in finding appropriate machine learning classifiers for detection. However, fraud data sets are diverse and exhibit inconsistent characteristics. As a result, a model effective on a given data set is not guaranteed to perform on another. Further, the possibility of temporal drift in data patterns and characteristics over time is high. Additionally, fraud data has massive and varying imbalance. In this work, we evaluate sampling methods as a viable pre-processing mechanism to handle imbalance and propose a data-driven classifier selection strategy for characteristic highly imbalanced fraud detection data sets. The model derived based on our selection strategy surpasses peer models, whilst working in more realistic conditions, establishing the effectiveness of the strategy.
Statistical Learning under Heterogenous Distribution Shift
This paper studies the prediction of a target z from a pair of random variables (x,y), where the ground-truth predictor is additive E[z mid x,y] = f_star(x) +g_{star}(y). We study the performance of empirical risk minimization (ERM) over functions f+g, f in F and g in G, fit on a given training distribution, but evaluated on a test distribution which exhibits covariate shift. We show that, when the class F is "simpler" than G (measured, e.g., in terms of its metric entropy), our predictor is more resilient to heterogenous covariate shifts in which the shift in x is much greater than that in y. These results rely on a novel H\"older style inequality for the Dudley integral which may be of independent interest. Moreover, we corroborate our theoretical findings with experiments demonstrating improved resilience to shifts in "simpler" features across numerous domains.
FABLE : Fabric Anomaly Detection Automation Process
Unsupervised anomaly in industry has been a concerning topic and a stepping stone for high performance industrial automation process. The vast majority of industry-oriented methods focus on learning from good samples to detect anomaly notwithstanding some specific industrial scenario requiring even less specific training and therefore a generalization for anomaly detection. The obvious use case is the fabric anomaly detection, where we have to deal with a really wide range of colors and types of textile and a stoppage of the production line for training could not be considered. In this paper, we propose an automation process for industrial fabric texture defect detection with a specificity-learning process during the domain-generalized anomaly detection. Combining the ability to generalize and the learning process offer a fast and precise anomaly detection and segmentation. The main contributions of this paper are the following: A domain-generalization texture anomaly detection method achieving the state-of-the-art performances, a fast specific training on good samples extracted by the proposed method, a self-evaluation method based on custom defect creation and an automatic detection of already seen fabric to prevent re-training.
ReTaSA: A Nonparametric Functional Estimation Approach for Addressing Continuous Target Shift
The presence of distribution shifts poses a significant challenge for deploying modern machine learning models in real-world applications. This work focuses on the target shift problem in a regression setting (Zhang et al., 2013; Nguyen et al., 2016). More specifically, the target variable y (also known as the response variable), which is continuous, has different marginal distributions in the training source and testing domain, while the conditional distribution of features x given y remains the same. While most literature focuses on classification tasks with finite target space, the regression problem has an infinite dimensional target space, which makes many of the existing methods inapplicable. In this work, we show that the continuous target shift problem can be addressed by estimating the importance weight function from an ill-posed integral equation. We propose a nonparametric regularized approach named ReTaSA to solve the ill-posed integral equation and provide theoretical justification for the estimated importance weight function. The effectiveness of the proposed method has been demonstrated with extensive numerical studies on synthetic and real-world datasets.
Generalization of Change-Point Detection in Time Series Data Based on Direct Density Ratio Estimation
The goal of the change-point detection is to discover changes of time series distribution. One of the state of the art approaches of the change-point detection are based on direct density ratio estimation. In this work we show how existing algorithms can be generalized using various binary classification and regression models. In particular, we show that the Gradient Boosting over Decision Trees and Neural Networks can be used for this purpose. The algorithms are tested on several synthetic and real-world datasets. The results show that the proposed methods outperform classical RuLSIF algorithm. Discussion of cases where the proposed algorithms have advantages over existing methods are also provided.
Learning Support and Trivial Prototypes for Interpretable Image Classification
Prototypical part network (ProtoPNet) methods have been designed to achieve interpretable classification by associating predictions with a set of training prototypes, which we refer to as trivial prototypes because they are trained to lie far from the classification boundary in the feature space. Note that it is possible to make an analogy between ProtoPNet and support vector machine (SVM) given that the classification from both methods relies on computing similarity with a set of training points (i.e., trivial prototypes in ProtoPNet, and support vectors in SVM). However, while trivial prototypes are located far from the classification boundary, support vectors are located close to this boundary, and we argue that this discrepancy with the well-established SVM theory can result in ProtoPNet models with inferior classification accuracy. In this paper, we aim to improve the classification of ProtoPNet with a new method to learn support prototypes that lie near the classification boundary in the feature space, as suggested by the SVM theory. In addition, we target the improvement of classification results with a new model, named ST-ProtoPNet, which exploits our support prototypes and the trivial prototypes to provide more effective classification. Experimental results on CUB-200-2011, Stanford Cars, and Stanford Dogs datasets demonstrate that ST-ProtoPNet achieves state-of-the-art classification accuracy and interpretability results. We also show that the proposed support prototypes tend to be better localised in the object of interest rather than in the background region.
Taxonomy of Machine Learning Safety: A Survey and Primer
The open-world deployment of Machine Learning (ML) algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities such as interpretability, verifiability, and performance limitations. Research explores different approaches to improve ML dependability by proposing new models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks. However, there is a missing connection between ongoing ML research and well-established safety principles. In this paper, we present a structured and comprehensive review of ML techniques to improve the dependability of ML algorithms in uncontrolled open-world settings. From this review, we propose the Taxonomy of ML Safety that maps state-of-the-art ML techniques to key engineering safety strategies. Our taxonomy of ML safety presents a safety-oriented categorization of ML techniques to provide guidance for improving dependability of the ML design and development. The proposed taxonomy can serve as a safety checklist to aid designers in improving coverage and diversity of safety strategies employed in any given ML system.
When Noisy Labels Meet Long Tail Dilemmas: A Representation Calibration Method
Real-world large-scale datasets are both noisily labeled and class-imbalanced. The issues seriously hurt the generalization of trained models. It is hence significant to address the simultaneous incorrect labeling and class-imbalance, i.e., the problem of learning with noisy labels on long-tailed data. Previous works develop several methods for the problem. However, they always rely on strong assumptions that are invalid or hard to be checked in practice. In this paper, to handle the problem and address the limitations of prior works, we propose a representation calibration method RCAL. Specifically, RCAL works with the representations extracted by unsupervised contrastive learning. We assume that without incorrect labeling and class imbalance, the representations of instances in each class conform to a multivariate Gaussian distribution, which is much milder and easier to be checked. Based on the assumption, we recover underlying representation distributions from polluted ones resulting from mislabeled and class-imbalanced data. Additional data points are then sampled from the recovered distributions to help generalization. Moreover, during classifier training, representation learning takes advantage of representation robustness brought by contrastive learning, which further improves the classifier performance. We derive theoretical results to discuss the effectiveness of our representation calibration. Experiments on multiple benchmarks justify our claims and confirm the superiority of the proposed method.
When to Accept Automated Predictions and When to Defer to Human Judgment?
Ensuring the reliability and safety of automated decision-making is crucial. It is well-known that data distribution shifts in machine learning can produce unreliable outcomes. This paper proposes a new approach for measuring the reliability of predictions under distribution shifts. We analyze how the outputs of a trained neural network change using clustering to measure distances between outputs and class centroids. We propose this distance as a metric to evaluate the confidence of predictions under distribution shifts. We assign each prediction to a cluster with centroid representing the mean softmax output for all correct predictions of a given class. We then define a safety threshold for a class as the smallest distance from an incorrect prediction to the given class centroid. We evaluate the approach on the MNIST and CIFAR-10 datasets using a Convolutional Neural Network and a Vision Transformer, respectively. The results show that our approach is consistent across these data sets and network models, and indicate that the proposed metric can offer an efficient way of determining when automated predictions are acceptable and when they should be deferred to human operators given a distribution shift.
Making Reliable and Flexible Decisions in Long-tailed Classification
Long-tailed classification is challenging due to its heavy imbalance in class probabilities. While existing methods often focus on overall accuracy or accuracy for tail classes, they overlook a critical aspect: certain types of errors can carry greater risks than others in real-world long-tailed problems. For example, misclassifying patients (a tail class) as healthy individuals (a head class) entails far more serious consequences than the reverse scenario. To address this critical issue, we introduce Making Reliable and Flexible Decisions in Long-tailed Classification (RF-DLC), a novel framework aimed at reliable predictions in long-tailed problems. Leveraging Bayesian Decision Theory, we introduce an integrated gain to seamlessly combine long-tailed data distributions and the decision-making procedure. We further propose an efficient variational optimization strategy for the decision risk objective. Our method adapts readily to diverse utility matrices, which can be designed for specific tasks, ensuring its flexibility for different problem settings. In empirical evaluation, we design a new metric, False Head Rate, to quantify tail-sensitivity risk, along with comprehensive experiments on multiple real-world tasks, including large-scale image classification and uncertainty quantification, to demonstrate the reliability and flexibility of our method.
MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection
Recent advancements in anomaly detection have seen the efficacy of CNN- and transformer-based approaches. However, CNNs struggle with long-range dependencies, while transformers are burdened by quadratic computational complexity. Mamba-based models, with their superior long-range modeling and linear efficiency, have garnered substantial attention. This study pioneers the application of Mamba to multi-class unsupervised anomaly detection, presenting MambaAD, which consists of a pre-trained encoder and a Mamba decoder featuring (Locality-Enhanced State Space) LSS modules at multi-scales. The proposed LSS module, integrating parallel cascaded (Hybrid State Space) HSS blocks and multi-kernel convolutions operations, effectively captures both long-range and local information. The HSS block, utilizing (Hybrid Scanning) HS encoders, encodes feature maps into five scanning methods and eight directions, thereby strengthening global connections through the (State Space Model) SSM. The use of Hilbert scanning and eight directions significantly improves feature sequence modeling. Comprehensive experiments on six diverse anomaly detection datasets and seven metrics demonstrate state-of-the-art performance, substantiating the method's effectiveness. The code and models are available at https://lewandofskee.github.io/projects/MambaAD.
Tight Rates in Supervised Outlier Transfer Learning
A critical barrier to learning an accurate decision rule for outlier detection is the scarcity of outlier data. As such, practitioners often turn to the use of similar but imperfect outlier data from which they might transfer information to the target outlier detection task. Despite the recent empirical success of transfer learning approaches in outlier detection, a fundamental understanding of when and how knowledge can be transferred from a source to a target outlier detection task remains elusive. In this work, we adopt the traditional framework of Neyman-Pearson classification -- which formalizes supervised outlier detection -- with the added assumption that one has access to some related but imperfect outlier data. Our main results are as follows: We first determine the information-theoretic limits of the problem under a measure of discrepancy that extends some existing notions from traditional balanced classification; interestingly, unlike in balanced classification, seemingly very dissimilar sources can provide much information about a target, thus resulting in fast transfer. We then show that, in principle, these information-theoretic limits are achievable by adaptive procedures, i.e., procedures with no a priori information on the discrepancy between source and target outlier distributions.
Planing It by Ear: Convolutional Neural Networks for Acoustic Anomaly Detection in Industrial Wood Planers
In recent years, the wood product industry has been facing a skilled labor shortage. The result is more frequent sudden failures, resulting in additional costs for these companies already operating in a very competitive market. Moreover, sawmills are challenging environments for machinery and sensors. Given that experienced machine operators may be able to diagnose defects or malfunctions, one possible way of assisting novice operators is through acoustic monitoring. As a step towards the automation of wood-processing equipment and decision support systems for machine operators, in this paper, we explore using a deep convolutional autoencoder for acoustic anomaly detection of wood planers on a new real-life dataset. Specifically, our convolutional autoencoder with skip connections (Skip-CAE) and our Skip-CAE transformer outperform the DCASE autoencoder baseline, one-class SVM, isolation forest and a published convolutional autoencoder architecture, respectively obtaining an area under the ROC curve of 0.846 and 0.875 on a dataset of real-factory planer sounds. Moreover, we show that adding skip connections and attention mechanism under the form of a transformer encoder-decoder helps to further improve the anomaly detection capabilities.
Raw Data Is All You Need: Virtual Axle Detector with Enhanced Receptive Field
Rising maintenance costs of ageing infrastructure necessitate innovative monitoring techniques. This paper presents a new approach for axle detection, enabling real-time application of Bridge Weigh-In-Motion (BWIM) systems without dedicated axle detectors. The proposed method adapts the Virtual Axle Detector (VAD) model to handle raw acceleration data, which allows the receptive field to be increased. The proposed Virtual Axle Detector with Enhanced Receptive field (VADER) improves the \(F_1\) score by 73\% and spatial accuracy by 39\%, while cutting computational and memory costs by 99\% compared to the state-of-the-art VAD. VADER reaches a \(F_1\) score of 99.4\% and a spatial error of 4.13~cm when using a representative training set and functional sensors. We also introduce a novel receptive field (RF) rule for an object-size driven design of Convolutional Neural Network (CNN) architectures. Based on this rule, our results suggest that models using raw data could achieve better performance than those using spectrograms, offering a compelling reason to consider raw data as input.
Real-IAD: A Real-World Multi-View Dataset for Benchmarking Versatile Industrial Anomaly Detection
Industrial anomaly detection (IAD) has garnered significant attention and experienced rapid development. However, the recent development of IAD approach has encountered certain difficulties due to dataset limitations. On the one hand, most of the state-of-the-art methods have achieved saturation (over 99% in AUROC) on mainstream datasets such as MVTec, and the differences of methods cannot be well distinguished, leading to a significant gap between public datasets and actual application scenarios. On the other hand, the research on various new practical anomaly detection settings is limited by the scale of the dataset, posing a risk of overfitting in evaluation results. Therefore, we propose a large-scale, Real-world, and multi-view Industrial Anomaly Detection dataset, named Real-IAD, which contains 150K high-resolution images of 30 different objects, an order of magnitude larger than existing datasets. It has a larger range of defect area and ratio proportions, making it more challenging than previous datasets. To make the dataset closer to real application scenarios, we adopted a multi-view shooting method and proposed sample-level evaluation metrics. In addition, beyond the general unsupervised anomaly detection setting, we propose a new setting for Fully Unsupervised Industrial Anomaly Detection (FUIAD) based on the observation that the yield rate in industrial production is usually greater than 60%, which has more practical application value. Finally, we report the results of popular IAD methods on the Real-IAD dataset, providing a highly challenging benchmark to promote the development of the IAD field.
Deep Open-Set Recognition for Silicon Wafer Production Monitoring
The chips contained in any electronic device are manufactured over circular silicon wafers, which are monitored by inspection machines at different production stages. Inspection machines detect and locate any defect within the wafer and return a Wafer Defect Map (WDM), i.e., a list of the coordinates where defects lie, which can be considered a huge, sparse, and binary image. In normal conditions, wafers exhibit a small number of randomly distributed defects, while defects grouped in specific patterns might indicate known or novel categories of failures in the production line. Needless to say, a primary concern of semiconductor industries is to identify these patterns and intervene as soon as possible to restore normal production conditions. Here we address WDM monitoring as an open-set recognition problem to accurately classify WDM in known categories and promptly detect novel patterns. In particular, we propose a comprehensive pipeline for wafer monitoring based on a Submanifold Sparse Convolutional Network, a deep architecture designed to process sparse data at an arbitrary resolution, which is trained on the known classes. To detect novelties, we define an outlier detector based on a Gaussian Mixture Model fitted on the latent representation of the classifier. Our experiments on a real dataset of WDMs show that directly processing full-resolution WDMs by Submanifold Sparse Convolutions yields superior classification performance on known classes than traditional Convolutional Neural Networks, which require a preliminary binning to reduce the size of the binary images representing WDMs. Moreover, our solution outperforms state-of-the-art open-set recognition solutions in detecting novelties.
Early Time Classification with Accumulated Accuracy Gap Control
Early time classification algorithms aim to label a stream of features without processing the full input stream, while maintaining accuracy comparable to that achieved by applying the classifier to the entire input. In this paper, we introduce a statistical framework that can be applied to any sequential classifier, formulating a calibrated stopping rule. This data-driven rule attains finite-sample, distribution-free control of the accuracy gap between full and early-time classification. We start by presenting a novel method that builds on the Learn-then-Test calibration framework to control this gap marginally, on average over i.i.d. instances. As this algorithm tends to yield an excessively high accuracy gap for early halt times, our main contribution is the proposal of a framework that controls a stronger notion of error, where the accuracy gap is controlled conditionally on the accumulated halt times. Numerical experiments demonstrate the effectiveness, applicability, and usefulness of our method. We show that our proposed early stopping mechanism reduces up to 94% of timesteps used for classification while achieving rigorous accuracy gap control.
Second-Order Uncertainty Quantification: A Distance-Based Approach
In the past couple of years, various approaches to representing and quantifying different types of predictive uncertainty in machine learning, notably in the setting of classification, have been proposed on the basis of second-order probability distributions, i.e., predictions in the form of distributions on probability distributions. A completely conclusive solution has not yet been found, however, as shown by recent criticisms of commonly used uncertainty measures associated with second-order distributions, identifying undesirable theoretical properties of these measures. In light of these criticisms, we propose a set of formal criteria that meaningful uncertainty measures for predictive uncertainty based on second-order distributions should obey. Moreover, we provide a general framework for developing uncertainty measures to account for these criteria, and offer an instantiation based on the Wasserstein distance, for which we prove that all criteria are satisfied.
LegendreTron: Uprising Proper Multiclass Loss Learning
Loss functions serve as the foundation of supervised learning and are often chosen prior to model development. To avoid potentially ad hoc choices of losses, statistical decision theory describes a desirable property for losses known as properness, which asserts that Bayes' rule is optimal. Recent works have sought to learn losses and models jointly. Existing methods do this by fitting an inverse canonical link function which monotonically maps R to [0,1] to estimate probabilities for binary problems. In this paper, we extend monotonicity to maps between R^{C-1} and the projected probability simplex Delta^{C-1} by using monotonicity of gradients of convex functions. We present {\sc LegendreTron} as a novel and practical method that jointly learns proper canonical losses and probabilities for multiclass problems. Tested on a benchmark of domains with up to 1,000 classes, our experimental results show that our method consistently outperforms the natural multiclass baseline under a t-test at 99% significance on all datasets with greater than 10 classes.
70 years of machine learning in geoscience in review
This review gives an overview of the development of machine learning in geoscience. A thorough analysis of the co-developments of machine learning applications throughout the last 70 years relates the recent enthusiasm for machine learning to developments in geoscience. I explore the shift of kriging towards a mainstream machine learning method and the historic application of neural networks in geoscience, following the general trend of machine learning enthusiasm through the decades. Furthermore, this chapter explores the shift from mathematical fundamentals and knowledge in software development towards skills in model validation, applied statistics, and integrated subject matter expertise. The review is interspersed with code examples to complement the theoretical foundations and illustrate model validation and machine learning explainability for science. The scope of this review includes various shallow machine learning methods, e.g. Decision Trees, Random Forests, Support-Vector Machines, and Gaussian Processes, as well as, deep neural networks, including feed-forward neural networks, convolutional neural networks, recurrent neural networks and generative adversarial networks. Regarding geoscience, the review has a bias towards geophysics but aims to strike a balance with geochemistry, geostatistics, and geology, however excludes remote sensing, as this would exceed the scope. In general, I aim to provide context for the recent enthusiasm surrounding deep learning with respect to research, hardware, and software developments that enable successful application of shallow and deep machine learning in all disciplines of Earth science.
Towards Total Recall in Industrial Anomaly Detection
Being able to spot defective parts is a critical component in large-scale industrial manufacturing. A particular challenge that we address in this work is the cold-start problem: fit a model using nominal (non-defective) example images only. While handcrafted solutions per class are possible, the goal is to build systems that work well simultaneously on many different tasks automatically. The best performing approaches combine embeddings from ImageNet models with an outlier detection model. In this paper, we extend on this line of work and propose PatchCore, which uses a maximally representative memory bank of nominal patch-features. PatchCore offers competitive inference times while achieving state-of-the-art performance for both detection and localization. On the challenging, widely used MVTec AD benchmark PatchCore achieves an image-level anomaly detection AUROC score of up to 99.6%, more than halving the error compared to the next best competitor. We further report competitive results on two additional datasets and also find competitive results in the few samples regime.^* Work done during a research internship at Amazon AWS. Code: github.com/amazon-research/patchcore-inspection.
On the Calibration of Probabilistic Classifier Sets
Multi-class classification methods that produce sets of probabilistic classifiers, such as ensemble learning methods, are able to model aleatoric and epistemic uncertainty. Aleatoric uncertainty is then typically quantified via the Bayes error, and epistemic uncertainty via the size of the set. In this paper, we extend the notion of calibration, which is commonly used to evaluate the validity of the aleatoric uncertainty representation of a single probabilistic classifier, to assess the validity of an epistemic uncertainty representation obtained by sets of probabilistic classifiers. Broadly speaking, we call a set of probabilistic classifiers calibrated if one can find a calibrated convex combination of these classifiers. To evaluate this notion of calibration, we propose a novel nonparametric calibration test that generalizes an existing test for single probabilistic classifiers to the case of sets of probabilistic classifiers. Making use of this test, we empirically show that ensembles of deep neural networks are often not well calibrated.
TimeMIL: Advancing Multivariate Time Series Classification via a Time-aware Multiple Instance Learning
Deep neural networks, including transformers and convolutional neural networks, have significantly improved multivariate time series classification (MTSC). However, these methods often rely on supervised learning, which does not fully account for the sparsity and locality of patterns in time series data (e.g., diseases-related anomalous points in ECG). To address this challenge, we formally reformulate MTSC as a weakly supervised problem, introducing a novel multiple-instance learning (MIL) framework for better localization of patterns of interest and modeling time dependencies within time series. Our novel approach, TimeMIL, formulates the temporal correlation and ordering within a time-aware MIL pooling, leveraging a tokenized transformer with a specialized learnable wavelet positional token. The proposed method surpassed 26 recent state-of-the-art methods, underscoring the effectiveness of the weakly supervised TimeMIL in MTSC. The code will be available at https://github.com/xiwenc1/TimeMIL.
Beyond Log-Concavity: Theory and Algorithm for Sum-Log-Concave Optimization
This paper extends the classic theory of convex optimization to the minimization of functions that are equal to the negated logarithm of what we term as a sum-log-concave function, i.e., a sum of log-concave functions. In particular, we show that such functions are in general not convex but still satisfy generalized convexity inequalities. These inequalities unveil the key importance of a certain vector that we call the cross-gradient and that is, in general, distinct from the usual gradient. Thus, we propose the Cross Gradient Descent (XGD) algorithm moving in the opposite direction of the cross-gradient and derive a convergence analysis. As an application of our sum-log-concave framework, we introduce the so-called checkered regression method relying on a sum-log-concave function. This classifier extends (multiclass) logistic regression to non-linearly separable problems since it is capable of tessellating the feature space by using any given number of hyperplanes, creating a checkerboard-like pattern of decision regions.
Predictive Multiplicity in Probabilistic Classification
Machine learning models are often used to inform real world risk assessment tasks: predicting consumer default risk, predicting whether a person suffers from a serious illness, or predicting a person's risk to appear in court. Given multiple models that perform almost equally well for a prediction task, to what extent do predictions vary across these models? If predictions are relatively consistent for similar models, then the standard approach of choosing the model that optimizes a penalized loss suffices. But what if predictions vary significantly for similar models? In machine learning, this is referred to as predictive multiplicity i.e. the prevalence of conflicting predictions assigned by near-optimal competing models. In this paper, we present a framework for measuring predictive multiplicity in probabilistic classification (predicting the probability of a positive outcome). We introduce measures that capture the variation in risk estimates over the set of competing models, and develop optimization-based methods to compute these measures efficiently and reliably for convex empirical risk minimization problems. We demonstrate the incidence and prevalence of predictive multiplicity in real-world tasks. Further, we provide insight into how predictive multiplicity arises by analyzing the relationship between predictive multiplicity and data set characteristics (outliers, separability, and majority-minority structure). Our results emphasize the need to report predictive multiplicity more widely.
Learning Optimal Predictive Checklists
Checklists are simple decision aids that are often used to promote safety and reliability in clinical applications. In this paper, we present a method to learn checklists for clinical decision support. We represent predictive checklists as discrete linear classifiers with binary features and unit weights. We then learn globally optimal predictive checklists from data by solving an integer programming problem. Our method allows users to customize checklists to obey complex constraints, including constraints to enforce group fairness and to binarize real-valued features at training time. In addition, it pairs models with an optimality gap that can inform model development and determine the feasibility of learning sufficiently accurate checklists on a given dataset. We pair our method with specialized techniques that speed up its ability to train a predictive checklist that performs well and has a small optimality gap. We benchmark the performance of our method on seven clinical classification problems, and demonstrate its practical benefits by training a short-form checklist for PTSD screening. Our results show that our method can fit simple predictive checklists that perform well and that can easily be customized to obey a rich class of custom constraints.
Classification of Geological Borehole Descriptions Using a Domain Adapted Large Language Model
Geological borehole descriptions contain detailed textual information about the composition of the subsurface. However, their unstructured format presents significant challenges for extracting relevant features into a structured format. This paper introduces GEOBERTje: a domain adapted large language model trained on geological borehole descriptions from Flanders (Belgium) in the Dutch language. This model effectively extracts relevant information from the borehole descriptions and represents it into a numeric vector space. Showcasing just one potential application of GEOBERTje, we finetune a classifier model on a limited number of manually labeled observations. This classifier categorizes borehole descriptions into a main, second and third lithology class. We show that our classifier outperforms both a rule-based approach and GPT-4 of OpenAI. This study exemplifies how domain adapted large language models enhance the efficiency and accuracy of extracting information from complex, unstructured geological descriptions. This offers new opportunities for geological analysis and modeling using vast amounts of data.
Inducing Neural Collapse in Deep Long-tailed Learning
Although deep neural networks achieve tremendous success on various classification tasks, the generalization ability drops sheer when training datasets exhibit long-tailed distributions. One of the reasons is that the learned representations (i.e. features) from the imbalanced datasets are less effective than those from balanced datasets. Specifically, the learned representation under class-balanced distribution will present the Neural Collapse (NC) phenomena. NC indicates the features from the same category are close to each other and from different categories are maximally distant, showing an optimal linear separable state of classification. However, the pattern differs on imbalanced datasets and is partially responsible for the reduced performance of the model. In this work, we propose two explicit feature regularization terms to learn high-quality representation for class-imbalanced data. With the proposed regularization, NC phenomena will appear under the class-imbalanced distribution, and the generalization ability can be significantly improved. Our method is easily implemented, highly effective, and can be plugged into most existing methods. The extensive experimental results on widely-used benchmarks show the effectiveness of our method
Machine Learning with a Reject Option: A survey
Machine learning models always make a prediction, even when it is likely to be inaccurate. This behavior should be avoided in many decision support applications, where mistakes can have severe consequences. Albeit already studied in 1970, machine learning with rejection recently gained interest. This machine learning subfield enables machine learning models to abstain from making a prediction when likely to make a mistake. This survey aims to provide an overview on machine learning with rejection. We introduce the conditions leading to two types of rejection, ambiguity and novelty rejection, which we carefully formalize. Moreover, we review and categorize strategies to evaluate a model's predictive and rejective quality. Additionally, we define the existing architectures for models with rejection and describe the standard techniques for learning such models. Finally, we provide examples of relevant application domains and show how machine learning with rejection relates to other machine learning research areas.
Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off
Machine learning models have recently found tremendous success in data-driven control systems. However, standard learning models often suffer from an accuracy-robustness trade-off, which is a limitation that must be overcome in the control of safety-critical systems that require both high performance and rigorous robustness guarantees. In this work, we build upon the recent "locally biased smoothing" method to develop classifiers that simultaneously inherit high accuracy from standard models and high robustness from robust models. Specifically, we extend locally biased smoothing to the multi-class setting, and then overcome its performance bottleneck by generalizing the formulation to "mix" the outputs of a standard neural network and a robust neural network. We prove that when the robustness of the robust base model is certifiable, within a closed-form ell_p radius, no alteration or attack on an input can result in misclassification of the mixed classifier; the proposed model inherits the certified robustness. Moreover, we use numerical experiments on the CIFAR-10 benchmark dataset to verify that the mixed model noticeably improves the accuracy-robustness trade-off.
Intelligent Operation and Maintenance and Prediction Model Optimization for Improving Wind Power Generation Efficiency
This study explores the effectiveness of predictive maintenance models and the optimization of intelligent Operation and Maintenance (O&M) systems in improving wind power generation efficiency. Through qualitative research, structured interviews were conducted with five wind farm engineers and maintenance managers, each with extensive experience in turbine operations. Using thematic analysis, the study revealed that while predictive maintenance models effectively reduce downtime by identifying major faults, they often struggle with detecting smaller, gradual failures. Key challenges identified include false positives, sensor malfunctions, and difficulties in integrating new models with older turbine systems. Advanced technologies such as digital twins, SCADA systems, and condition monitoring have significantly enhanced turbine maintenance practices. However, these technologies still require improvements, particularly in AI refinement and real-time data integration. The findings emphasize the need for continuous development to fully optimize wind turbine performance and support the broader adoption of renewable energy.
Dynamic Residual Classifier for Class Incremental Learning
The rehearsal strategy is widely used to alleviate the catastrophic forgetting problem in class incremental learning (CIL) by preserving limited exemplars from previous tasks. With imbalanced sample numbers between old and new classes, the classifier learning can be biased. Existing CIL methods exploit the long-tailed (LT) recognition techniques, e.g., the adjusted losses and the data re-sampling methods, to handle the data imbalance issue within each increment task. In this work, the dynamic nature of data imbalance in CIL is shown and a novel Dynamic Residual Classifier (DRC) is proposed to handle this challenging scenario. Specifically, DRC is built upon a recent advance residual classifier with the branch layer merging to handle the model-growing problem. Moreover, DRC is compatible with different CIL pipelines and substantially improves them. Combining DRC with the model adaptation and fusion (MAF) pipeline, this method achieves state-of-the-art results on both the conventional CIL and the LT-CIL benchmarks. Extensive experiments are also conducted for a detailed analysis. The code is publicly available.
Beyond the Selected Completely At Random Assumption for Learning from Positive and Unlabeled Data
Most positive and unlabeled data is subject to selection biases. The labeled examples can, for example, be selected from the positive set because they are easier to obtain or more obviously positive. This paper investigates how learning can be ena BHbled in this setting. We propose and theoretically analyze an empirical-risk-based method for incorporating the labeling mechanism. Additionally, we investigate under which assumptions learning is possible when the labeling mechanism is not fully understood and propose a practical method to enable this. Our empirical analysis supports the theoretical results and shows that taking into account the possibility of a selection bias, even when the labeling mechanism is unknown, improves the trained classifiers.
Can Score-Based Generative Modeling Effectively Handle Medical Image Classification?
The remarkable success of deep learning in recent years has prompted applications in medical image classification and diagnosis tasks. While classification models have demonstrated robustness in classifying simpler datasets like MNIST or natural images such as ImageNet, this resilience is not consistently observed in complex medical image datasets where data is more scarce and lacks diversity. Moreover, previous findings on natural image datasets have indicated a potential trade-off between data likelihood and classification accuracy. In this study, we explore the use of score-based generative models as classifiers for medical images, specifically mammographic images. Our findings suggest that our proposed generative classifier model not only achieves superior classification results on CBIS-DDSM, INbreast and Vin-Dr Mammo datasets, but also introduces a novel approach to image classification in a broader context. Our code is publicly available at https://github.com/sushmitasarker/sgc_for_medical_image_classification
3CAD: A Large-Scale Real-World 3C Product Dataset for Unsupervised Anomaly
Industrial anomaly detection achieves progress thanks to datasets such as MVTec-AD and VisA. However, they suf- fer from limitations in terms of the number of defect sam- ples, types of defects, and availability of real-world scenes. These constraints inhibit researchers from further exploring the performance of industrial detection with higher accuracy. To this end, we propose a new large-scale anomaly detection dataset called 3CAD, which is derived from real 3C produc- tion lines. Specifically, the proposed 3CAD includes eight different types of manufactured parts, totaling 27,039 high- resolution images labeled with pixel-level anomalies. The key features of 3CAD are that it covers anomalous regions of different sizes, multiple anomaly types, and the possibility of multiple anomalous regions and multiple anomaly types per anomaly image. This is the largest and first anomaly de- tection dataset dedicated to 3C product quality control for community exploration and development. Meanwhile, we in- troduce a simple yet effective framework for unsupervised anomaly detection: a Coarse-to-Fine detection paradigm with Recovery Guidance (CFRG). To detect small defect anoma- lies, the proposed CFRG utilizes a coarse-to-fine detection paradigm. Specifically, we utilize a heterogeneous distilla- tion model for coarse localization and then fine localiza- tion through a segmentation model. In addition, to better capture normal patterns, we introduce recovery features as guidance. Finally, we report the results of our CFRG frame- work and popular anomaly detection methods on the 3CAD dataset, demonstrating strong competitiveness and providing a highly challenging benchmark to promote the development of the anomaly detection field. Data and code are available: https://github.com/EnquanYang2022/3CAD.
Applying Dimensionality Reduction as Precursor to LSTM-CNN Models for Classifying Imagery and Motor Signals in ECoG-Based BCIs
Motor impairments, frequently caused by neurological incidents like strokes or traumatic brain injuries, present substantial obstacles in rehabilitation therapy. This research aims to elevate the field by optimizing motor imagery classification algorithms within Brain-Computer Interfaces (BCIs). By improving the efficiency of BCIs, we offer a novel approach that holds significant promise for enhancing motor rehabilitation outcomes. Utilizing unsupervised techniques for dimensionality reduction, namely Uniform Manifold Approximation and Projection (UMAP) coupled with K-Nearest Neighbors (KNN), we evaluate the necessity of employing supervised methods such as Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNNs) for classification tasks. Importantly, participants who exhibited high KNN scores following UMAP dimensionality reduction also achieved high accuracy in supervised deep learning (DL) models. Due to individualized model requirements and massive neural training data, dimensionality reduction becomes an effective preprocessing step that minimizes the need for extensive data labeling and supervised deep learning techniques. This approach has significant implications not only for targeted therapies in motor dysfunction but also for addressing regulatory, safety, and reliability concerns in the rapidly evolving BCI field.
Medical Concept Representation Learning from Electronic Health Records and its Application on Heart Failure Prediction
Objective: To transform heterogeneous clinical data from electronic health records into clinically meaningful constructed features using data driven method that rely, in part, on temporal relations among data. Materials and Methods: The clinically meaningful representations of medical concepts and patients are the key for health analytic applications. Most of existing approaches directly construct features mapped to raw data (e.g., ICD or CPT codes), or utilize some ontology mapping such as SNOMED codes. However, none of the existing approaches leverage EHR data directly for learning such concept representation. We propose a new way to represent heterogeneous medical concepts (e.g., diagnoses, medications and procedures) based on co-occurrence patterns in longitudinal electronic health records. The intuition behind the method is to map medical concepts that are co-occuring closely in time to similar concept vectors so that their distance will be small. We also derive a simple method to construct patient vectors from the related medical concept vectors. Results: For qualitative evaluation, we study similar medical concepts across diagnosis, medication and procedure. In quantitative evaluation, our proposed representation significantly improves the predictive modeling performance for onset of heart failure (HF), where classification methods (e.g. logistic regression, neural network, support vector machine and K-nearest neighbors) achieve up to 23% improvement in area under the ROC curve (AUC) using this proposed representation. Conclusion: We proposed an effective method for patient and medical concept representation learning. The resulting representation can map relevant concepts together and also improves predictive modeling performance.
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels
Most methods for time series classification that attain state-of-the-art accuracy have high computational complexity, requiring significant training time even for smaller datasets, and are intractable for larger datasets. Additionally, many existing methods focus on a single type of feature such as shape or frequency. Building on the recent success of convolutional neural networks for time series classification, we show that simple linear classifiers using random convolutional kernels achieve state-of-the-art accuracy with a fraction of the computational expense of existing methods.
Classification-based detection and quantification of cross-domain data bias in materials discovery
It stands to reason that the amount and the quality of data is of key importance for setting up accurate AI-driven models. Among others, a fundamental aspect to consider is the bias introduced during sample selection in database generation. This is particularly relevant when a model is trained on a specialized dataset to predict a property of interest, and then applied to forecast the same property over samples having a completely different genesis. Indeed, the resulting biased model will likely produce unreliable predictions for many of those out-of-the-box samples. Neglecting such an aspect may hinder the AI-based discovery process, even when high quality, sufficiently large and highly reputable data sources are available. In this regard, with superconducting and thermoelectric materials as two prototypical case studies in the field of energy material discovery, we present and validate a new method (based on a classification strategy) capable of detecting, quantifying and circumventing the presence of cross-domain data bias.
An Empirical Analysis of Feature Engineering for Predictive Modeling
Machine learning models, such as neural networks, decision trees, random forests, and gradient boosting machines, accept a feature vector, and provide a prediction. These models learn in a supervised fashion where we provide feature vectors mapped to the expected output. It is common practice to engineer new features from the provided feature set. Such engineered features will either augment or replace portions of the existing feature vector. These engineered features are essentially calculated fields based on the values of the other features. Engineering such features is primarily a manual, time-consuming task. Additionally, each type of model will respond differently to different kinds of engineered features. This paper reports empirical research to demonstrate what kinds of engineered features are best suited to various machine learning model types. We provide this recommendation by generating several datasets that we designed to benefit from a particular type of engineered feature. The experiment demonstrates to what degree the machine learning model can synthesize the needed feature on its own. If a model can synthesize a planned feature, it is not necessary to provide that feature. The research demonstrated that the studied models do indeed perform differently with various types of engineered features.
Comparative Evaluation of Anomaly Detection Methods for Fraud Detection in Online Credit Card Payments
This study explores the application of anomaly detection (AD) methods in imbalanced learning tasks, focusing on fraud detection using real online credit card payment data. We assess the performance of several recent AD methods and compare their effectiveness against standard supervised learning methods. Offering evidence of distribution shift within our dataset, we analyze its impact on the tested models' performances. Our findings reveal that LightGBM exhibits significantly superior performance across all evaluated metrics but suffers more from distribution shifts than AD methods. Furthermore, our investigation reveals that LightGBM also captures the majority of frauds detected by AD methods. This observation challenges the potential benefits of ensemble methods to combine supervised, and AD approaches to enhance performance. In summary, this research provides practical insights into the utility of these techniques in real-world scenarios, showing LightGBM's superiority in fraud detection while highlighting challenges related to distribution shifts.
Hierarchical State Space Models for Continuous Sequence-to-Sequence Modeling
Reasoning from sequences of raw sensory data is a ubiquitous problem across fields ranging from medical devices to robotics. These problems often involve using long sequences of raw sensor data (e.g. magnetometers, piezoresistors) to predict sequences of desirable physical quantities (e.g. force, inertial measurements). While classical approaches are powerful for locally-linear prediction problems, they often fall short when using real-world sensors. These sensors are typically non-linear, are affected by extraneous variables (e.g. vibration), and exhibit data-dependent drift. For many problems, the prediction task is exacerbated by small labeled datasets since obtaining ground-truth labels requires expensive equipment. In this work, we present Hierarchical State-Space Models (HiSS), a conceptually simple, new technique for continuous sequential prediction. HiSS stacks structured state-space models on top of each other to create a temporal hierarchy. Across six real-world sensor datasets, from tactile-based state prediction to accelerometer-based inertial measurement, HiSS outperforms state-of-the-art sequence models such as causal Transformers, LSTMs, S4, and Mamba by at least 23% on MSE. Our experiments further indicate that HiSS demonstrates efficient scaling to smaller datasets and is compatible with existing data-filtering techniques. Code, datasets and videos can be found on https://hiss-csp.github.io.
Foundation Models for Time Series Analysis: A Tutorial and Survey
Time series analysis stands as a focal point within the data mining community, serving as a cornerstone for extracting valuable insights crucial to a myriad of real-world applications. Recent advances in Foundation Models (FMs) have fundamentally reshaped the paradigm of model design for time series analysis, boosting various downstream tasks in practice. These innovative approaches often leverage pre-trained or fine-tuned FMs to harness generalized knowledge tailored for time series analysis. This survey aims to furnish a comprehensive and up-to-date overview of FMs for time series analysis. While prior surveys have predominantly focused on either application or pipeline aspects of FMs in time series analysis, they have often lacked an in-depth understanding of the underlying mechanisms that elucidate why and how FMs benefit time series analysis. To address this gap, our survey adopts a methodology-centric classification, delineating various pivotal elements of time-series FMs, including model architectures, pre-training techniques, adaptation methods, and data modalities. Overall, this survey serves to consolidate the latest advancements in FMs pertinent to time series analysis, accentuating their theoretical underpinnings, recent strides in development, and avenues for future exploration.
Detecting Manufacturing Defects in PCBs via Data-Centric Machine Learning on Solder Paste Inspection Features
Automated detection of defects in Printed Circuit Board (PCB) manufacturing using Solder Paste Inspection (SPI) and Automated Optical Inspection (AOI) machines can help improve operational efficiency and significantly reduce the need for manual intervention. In this paper, using SPI-extracted features of 6 million pins, we demonstrate a data-centric approach to train Machine Learning (ML) models to detect PCB defects at three stages of PCB manufacturing. The 6 million PCB pins correspond to 2 million components that belong to 15,387 PCBs. Using a base extreme gradient boosting (XGBoost) ML model, we iterate on the data pre-processing step to improve detection performance. Combining pin-level SPI features using component and PCB IDs, we developed training instances also at the component and PCB level. This allows the ML model to capture any inter-pin, inter-component, or spatial effects that may not be apparent at the pin level. Models are trained at the pin, component, and PCB levels, and the detection results from the different models are combined to identify defective components.
MIMII DG: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection for Domain Generalization Task
We present a machine sound dataset to benchmark domain generalization techniques for anomalous sound detection (ASD). Domain shifts are differences in data distributions that can degrade the detection performance, and handling them is a major issue for the application of ASD systems. While currently available datasets for ASD tasks assume that occurrences of domain shifts are known, in practice, they can be difficult to detect. To handle such domain shifts, domain generalization techniques that perform well regardless of the domains should be investigated. In this paper, we present the first ASD dataset for the domain generalization techniques, called MIMII DG. The dataset consists of five machine types and three domain shift scenarios for each machine type. The dataset is dedicated to the domain generalization task with features such as multiple different values for parameters that cause domain shifts and introduction of domain shifts that can be difficult to detect, such as shifts in the background noise. Experimental results using two baseline systems indicate that the dataset reproduces domain shift scenarios and is useful for benchmarking domain generalization techniques.
Deep Probability Estimation
Reliable probability estimation is of crucial importance in many real-world applications where there is inherent (aleatoric) uncertainty. Probability-estimation models are trained on observed outcomes (e.g. whether it has rained or not, or whether a patient has died or not), because the ground-truth probabilities of the events of interest are typically unknown. The problem is therefore analogous to binary classification, with the difference that the objective is to estimate probabilities rather than predicting the specific outcome. This work investigates probability estimation from high-dimensional data using deep neural networks. There exist several methods to improve the probabilities generated by these models but they mostly focus on model (epistemic) uncertainty. For problems with inherent uncertainty, it is challenging to evaluate performance without access to ground-truth probabilities. To address this, we build a synthetic dataset to study and compare different computable metrics. We evaluate existing methods on the synthetic data as well as on three real-world probability estimation tasks, all of which involve inherent uncertainty: precipitation forecasting from radar images, predicting cancer patient survival from histopathology images, and predicting car crashes from dashcam videos. We also give a theoretical analysis of a model for high-dimensional probability estimation which reproduces several of the phenomena evinced in our experiments. Finally, we propose a new method for probability estimation using neural networks, which modifies the training process to promote output probabilities that are consistent with empirical probabilities computed from the data. The method outperforms existing approaches on most metrics on the simulated as well as real-world data.
Wide and Deep Neural Networks Achieve Optimality for Classification
While neural networks are used for classification tasks across domains, a long-standing open problem in machine learning is determining whether neural networks trained using standard procedures are optimal for classification, i.e., whether such models minimize the probability of misclassification for arbitrary data distributions. In this work, we identify and construct an explicit set of neural network classifiers that achieve optimality. Since effective neural networks in practice are typically both wide and deep, we analyze infinitely wide networks that are also infinitely deep. In particular, using the recent connection between infinitely wide neural networks and Neural Tangent Kernels, we provide explicit activation functions that can be used to construct networks that achieve optimality. Interestingly, these activation functions are simple and easy to implement, yet differ from commonly used activations such as ReLU or sigmoid. More generally, we create a taxonomy of infinitely wide and deep networks and show that these models implement one of three well-known classifiers depending on the activation function used: (1) 1-nearest neighbor (model predictions are given by the label of the nearest training example); (2) majority vote (model predictions are given by the label of the class with greatest representation in the training set); or (3) singular kernel classifiers (a set of classifiers containing those that achieve optimality). Our results highlight the benefit of using deep networks for classification tasks, in contrast to regression tasks, where excessive depth is harmful.
Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports
Medical images and radiology reports are crucial for diagnosing medical conditions, highlighting the importance of quantitative analysis for clinical decision-making. However, the diversity and cross-source heterogeneity of these data challenge the generalizability of current data-mining methods. Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence (AGI) for computer vision, showcasing their potential in the biomedical domain. In this study, we evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets, including 5 medical imaging categories (dermatology, radiology, dentistry, ophthalmology, and endoscopy), and 3 radiology report datasets. The investigated tasks encompass disease classification, lesion segmentation, anatomical localization, disease diagnosis, report generation, and lesion detection. Our experimental results demonstrated that Gemini-series models excelled in report generation and lesion detection but faces challenges in disease classification and anatomical localization. Conversely, GPT-series models exhibited proficiency in lesion segmentation and anatomical localization but encountered difficulties in disease diagnosis and lesion detection. Additionally, both the Gemini series and GPT series contain models that have demonstrated commendable generation efficiency. While both models hold promise in reducing physician workload, alleviating pressure on limited healthcare resources, and fostering collaboration between clinical practitioners and artificial intelligence technologies, substantial enhancements and comprehensive validations remain imperative before clinical deployment.
Condensed Gradient Boosting
This paper presents a computationally efficient variant of gradient boosting for multi-class classification and multi-output regression tasks. Standard gradient boosting uses a 1-vs-all strategy for classifications tasks with more than two classes. This strategy translates in that one tree per class and iteration has to be trained. In this work, we propose the use of multi-output regressors as base models to handle the multi-class problem as a single task. In addition, the proposed modification allows the model to learn multi-output regression problems. An extensive comparison with other multi-ouptut based gradient boosting methods is carried out in terms of generalization and computational efficiency. The proposed method showed the best trade-off between generalization ability and training and predictions speeds.
ShapeFormer: Shapelet Transformer for Multivariate Time Series Classification
Multivariate time series classification (MTSC) has attracted significant research attention due to its diverse real-world applications. Recently, exploiting transformers for MTSC has achieved state-of-the-art performance. However, existing methods focus on generic features, providing a comprehensive understanding of data, but they ignore class-specific features crucial for learning the representative characteristics of each class. This leads to poor performance in the case of imbalanced datasets or datasets with similar overall patterns but differing in minor class-specific details. In this paper, we propose a novel Shapelet Transformer (ShapeFormer), which comprises class-specific and generic transformer modules to capture both of these features. In the class-specific module, we introduce the discovery method to extract the discriminative subsequences of each class (i.e. shapelets) from the training set. We then propose a Shapelet Filter to learn the difference features between these shapelets and the input time series. We found that the difference feature for each shapelet contains important class-specific features, as it shows a significant distinction between its class and others. In the generic module, convolution filters are used to extract generic features that contain information to distinguish among all classes. For each module, we employ the transformer encoder to capture the correlation between their features. As a result, the combination of two transformer modules allows our model to exploit the power of both types of features, thereby enhancing the classification performance. Our experiments on 30 UEA MTSC datasets demonstrate that ShapeFormer has achieved the highest accuracy ranking compared to state-of-the-art methods. The code is available at https://github.com/xuanmay2701/shapeformer.
Plugin estimators for selective classification with out-of-distribution detection
Real-world classifiers can benefit from the option of abstaining from predicting on samples where they have low confidence. Such abstention is particularly useful on samples which are close to the learned decision boundary, or which are outliers with respect to the training sample. These settings have been the subject of extensive but disjoint study in the selective classification (SC) and out-of-distribution (OOD) detection literature. Recent work on selective classification with OOD detection (SCOD) has argued for the unified study of these problems; however, the formal underpinnings of this problem are still nascent, and existing techniques are heuristic in nature. In this paper, we propose new plugin estimators for SCOD that are theoretically grounded, effective, and generalise existing approaches from the SC and OOD detection literature. In the course of our analysis, we formally explicate how na\"{i}ve use of existing SC and OOD detection baselines may be inadequate for SCOD. We empirically demonstrate that our approaches yields competitive SC and OOD detection performance compared to baselines from both literatures.
Fast kernel methods for Data Quality Monitoring as a goodness-of-fit test
We here propose a machine learning approach for monitoring particle detectors in real-time. The goal is to assess the compatibility of incoming experimental data with a reference dataset, characterising the data behaviour under normal circumstances, via a likelihood-ratio hypothesis test. The model is based on a modern implementation of kernel methods, nonparametric algorithms that can learn any continuous function given enough data. The resulting approach is efficient and agnostic to the type of anomaly that may be present in the data. Our study demonstrates the effectiveness of this strategy on multivariate data from drift tube chamber muon detectors.
A Data-Driven Measure of Relative Uncertainty for Misclassification Detection
Misclassification detection is an important problem in machine learning, as it allows for the identification of instances where the model's predictions are unreliable. However, conventional uncertainty measures such as Shannon entropy do not provide an effective way to infer the real uncertainty associated with the model's predictions. In this paper, we introduce a novel data-driven measure of uncertainty relative to an observer for misclassification detection. By learning patterns in the distribution of soft-predictions, our uncertainty measure can identify misclassified samples based on the predicted class probabilities. Interestingly, according to the proposed measure, soft-predictions corresponding to misclassified instances can carry a large amount of uncertainty, even though they may have low Shannon entropy. We demonstrate empirical improvements over multiple image classification tasks, outperforming state-of-the-art misclassification detection methods.
Apuntes de Redes Neuronales Artificiales
These handouts are designed for people who is just starting involved with the topic artificial neural networks. We show how it works a single artificial neuron (McCulloch & Pitt model), mathematically and graphically. We do explain the delta rule, a learning algorithm to find the neuron weights. We also present some examples in MATLAB/Octave. There are examples for classification task for lineal and non-lineal problems. At the end, we present an artificial neural network, a feed-forward neural network along its learning algorithm backpropagation. ----- Estos apuntes est\'an dise\~nados para personas que por primera vez se introducen en el tema de las redes neuronales artificiales. Se muestra el funcionamiento b\'asico de una neurona, matem\'aticamente y gr\'aficamente. Se explica la Regla Delta, algoritmo deaprendizaje para encontrar los pesos de una neurona. Tambi\'en se muestran ejemplos en MATLAB/Octave. Hay ejemplos para problemas de clasificaci\'on, para problemas lineales y no-lineales. En la parte final se muestra la arquitectura de red neuronal artificial conocida como backpropagation.
Exploiting the Matching Information in the Support Set for Few Shot Event Classification
The existing event classification (EC) work primarily focuseson the traditional supervised learning setting in which models are unableto extract event mentions of new/unseen event types. Few-shot learninghas not been investigated in this area although it enables EC models toextend their operation to unobserved event types. To fill in this gap, inthis work, we investigate event classification under the few-shot learningsetting. We propose a novel training method for this problem that exten-sively exploit the support set during the training process of a few-shotlearning model. In particular, in addition to matching the query exam-ple with those in the support set for training, we seek to further matchthe examples within the support set themselves. This method providesmore training signals for the models and can be applied to every metric-learning-based few-shot learning methods. Our extensive experiments ontwo benchmark EC datasets show that the proposed method can improvethe best reported few-shot learning models by up to 10% on accuracyfor event classification
Texture-AD: An Anomaly Detection Dataset and Benchmark for Real Algorithm Development
Anomaly detection is a crucial process in industrial manufacturing and has made significant advancements recently. However, there is a large variance between the data used in the development and the data collected by the production environment. Therefore, we present the Texture-AD benchmark based on representative texture-based anomaly detection to evaluate the effectiveness of unsupervised anomaly detection algorithms in real-world applications. This dataset includes images of 15 different cloth, 14 semiconductor wafers and 10 metal plates acquired under different optical schemes. In addition, it includes more than 10 different types of defects produced during real manufacturing processes, such as scratches, wrinkles, color variations and point defects, which are often more difficult to detect than existing datasets. All anomalous areas are provided with pixel-level annotations to facilitate comprehensive evaluation using anomaly detection models. Specifically, to adapt to diverse products in automated pipelines, we present a new evaluation method and results of baseline algorithms. The experimental results show that Texture-AD is a difficult challenge for state-of-the-art algorithms. To our knowledge, Texture-AD is the first dataset to be devoted to evaluating industrial defect detection algorithms in the real world. The dataset is available at https://XXX.
A Machine Learning-based Framework for Predictive Maintenance of Semiconductor Laser for Optical Communication
Semiconductor lasers, one of the key components for optical communication systems, have been rapidly evolving to meet the requirements of next generation optical networks with respect to high speed, low power consumption, small form factor etc. However, these demands have brought severe challenges to the semiconductor laser reliability. Therefore, a great deal of attention has been devoted to improving it and thereby ensuring reliable transmission. In this paper, a predictive maintenance framework using machine learning techniques is proposed for real-time heath monitoring and prognosis of semiconductor laser and thus enhancing its reliability. The proposed approach is composed of three stages: i) real-time performance degradation prediction, ii) degradation detection, and iii) remaining useful life (RUL) prediction. First of all, an attention based gated recurrent unit (GRU) model is adopted for real-time prediction of performance degradation. Then, a convolutional autoencoder is used to detect the degradation or abnormal behavior of a laser, given the predicted degradation performance values. Once an abnormal state is detected, a RUL prediction model based on attention-based deep learning is utilized. Afterwards, the estimated RUL is input for decision making and maintenance planning. The proposed framework is validated using experimental data derived from accelerated aging tests conducted for semiconductor tunable lasers. The proposed approach achieves a very good degradation performance prediction capability with a small root mean square error (RMSE) of 0.01, a good anomaly detection accuracy of 94.24% and a better RUL estimation capability compared to the existing ML-based laser RUL prediction models.
Feature Shift Detection: Localizing Which Features Have Shifted via Conditional Distribution Tests
While previous distribution shift detection approaches can identify if a shift has occurred, these approaches cannot localize which specific features have caused a distribution shift -- a critical step in diagnosing or fixing any underlying issue. For example, in military sensor networks, users will want to detect when one or more of the sensors has been compromised, and critically, they will want to know which specific sensors might be compromised. Thus, we first define a formalization of this problem as multiple conditional distribution hypothesis tests and propose both non-parametric and parametric statistical tests. For both efficiency and flexibility, we then propose to use a test statistic based on the density model score function (i.e. gradient with respect to the input) -- which can easily compute test statistics for all dimensions in a single forward and backward pass. Any density model could be used for computing the necessary statistics including deep density models such as normalizing flows or autoregressive models. We additionally develop methods for identifying when and where a shift occurs in multivariate time-series data and show results for multiple scenarios using realistic attack models on both simulated and real world data.
AURSAD: Universal Robot Screwdriving Anomaly Detection Dataset
Screwdriving is one of the most popular industrial processes. As such, it is increasingly common to automate that procedure by using various robots. Even though the automation increases the efficiency of the screwdriving process, if the process is not monitored correctly, faults may occur during operation, which can impact the effectiveness and quality of assembly. Machine Learning (ML) has the potential to detect those undesirable events and limit their impact. In order to do so, first a dataset that fully describes the operation of an industrial robot performing automated screwdriving must be available. This report describes a dataset created using a UR3e series robot and OnRobot Screwdriver. We create different scenarios and introduce 4 types of anomalies to the process while all available robot and screwdriver sensors are continuously recorded. The resulting data contains 2042 samples of normal and anomalous robot operation. Brief ML benchmarks using this data are also provided, showcasing the data's suitability and potential for further analysis and experimentation.
Building Information Modeling and Classification by Visual Learning At A City Scale
In this paper, we provide two case studies to demonstrate how artificial intelligence can empower civil engineering. In the first case, a machine learning-assisted framework, BRAILS, is proposed for city-scale building information modeling. Building information modeling (BIM) is an efficient way of describing buildings, which is essential to architecture, engineering, and construction. Our proposed framework employs deep learning technique to extract visual information of buildings from satellite/street view images. Further, a novel machine learning (ML)-based statistical tool, SURF, is proposed to discover the spatial patterns in building metadata. The second case focuses on the task of soft-story building classification. Soft-story buildings are a type of buildings prone to collapse during a moderate or severe earthquake. Hence, identifying and retrofitting such buildings is vital in the current earthquake preparedness efforts. For this task, we propose an automated deep learning-based procedure for identifying soft-story buildings from street view images at a regional scale. We also create a large-scale building image database and a semi-automated image labeling approach that effectively annotates new database entries. Through extensive computational experiments, we demonstrate the effectiveness of the proposed method.
A PCB Dataset for Defects Detection and Classification
To coupe with the difficulties in the process of inspection and classification of defects in Printed Circuit Board (PCB), other researchers have proposed many methods. However, few of them published their dataset before, which hindered the introduction and comparison of new methods. In this paper, we published a synthesized PCB dataset containing 1386 images with 6 kinds of defects for the use of detection, classification and registration tasks. Besides, we proposed a reference based method to inspect and trained an end-to-end convolutional neural network to classify the defects. Unlike conventional approaches that require pixel-by-pixel processing, our method firstly locate the defects and then classify them by neural networks, which shows superior performance on our dataset.
Memory-Assisted Sub-Prototype Mining for Universal Domain Adaptation
Universal domain adaptation aims to align the classes and reduce the feature gap between the same category of the source and target domains. The target private category is set as the unknown class during the adaptation process, as it is not included in the source domain. However, most existing methods overlook the intra-class structure within a category, especially in cases where there exists significant concept shift between the samples belonging to the same category. When samples with large concept shift are forced to be pushed together, it may negatively affect the adaptation performance. Moreover, from the interpretability aspect, it is unreasonable to align visual features with significant differences, such as fighter jets and civil aircraft, into the same category. Unfortunately, due to such semantic ambiguity and annotation cost, categories are not always classified in detail, making it difficult for the model to perform precise adaptation. To address these issues, we propose a novel Memory-Assisted Sub-Prototype Mining (MemSPM) method that can learn the differences between samples belonging to the same category and mine sub-classes when there exists significant concept shift between them. By doing so, our model learns a more reasonable feature space that enhances the transferability and reflects the inherent differences among samples annotated as the same category. We evaluate the effectiveness of our MemSPM method over multiple scenarios, including UniDA, OSDA, and PDA. Our method achieves state-of-the-art performance on four benchmarks in most cases.
ANN-based position and speed sensorless estimation for BLDC motors
BLDC motor applications require precise position and speed measurements, traditionally obtained with sensors. This article presents a method for estimating those measurements without position sensors using terminal phase voltages with attenuated spurious, acquired with a FPGA that also operates a PWM-controlled inverter. Voltages are labelled with electrical and virtual rotor states using an encoder that provides training and testing data for two three-layer ANNs with perceptron-based cascade topology. The first ANN estimates the position from features of voltages with incremental timestamps, and the second ANN estimates the speed from features of position differentials considering timestamps in an acquisition window. Sensor-based training and sensorless testing at 125 to 1,500 rpm with a loaded 8-pole-pair motor obtained absolute errors of 0.8 electrical degrees and 22 rpm. Results conclude that the overall position estimation significantly improved conventional and advanced methods, and the speed estimation slightly improved conventional methods, but was worse than in advanced ones.
PRIME: Prioritizing Interpretability in Failure Mode Extraction
In this work, we study the challenge of providing human-understandable descriptions for failure modes in trained image classification models. Existing works address this problem by first identifying clusters (or directions) of incorrectly classified samples in a latent space and then aiming to provide human-understandable text descriptions for them. We observe that in some cases, describing text does not match well with identified failure modes, partially owing to the fact that shared interpretable attributes of failure modes may not be captured using clustering in the feature space. To improve on these shortcomings, we propose a novel approach that prioritizes interpretability in this problem: we start by obtaining human-understandable concepts (tags) of images in the dataset and then analyze the model's behavior based on the presence or absence of combinations of these tags. Our method also ensures that the tags describing a failure mode form a minimal set, avoiding redundant and noisy descriptions. Through several experiments on different datasets, we show that our method successfully identifies failure modes and generates high-quality text descriptions associated with them. These results highlight the importance of prioritizing interpretability in understanding model failures.
Demystifying Disagreement-on-the-Line in High Dimensions
Evaluating the performance of machine learning models under distribution shift is challenging, especially when we only have unlabeled data from the shifted (target) domain, along with labeled data from the original (source) domain. Recent work suggests that the notion of disagreement, the degree to which two models trained with different randomness differ on the same input, is a key to tackle this problem. Experimentally, disagreement and prediction error have been shown to be strongly connected, which has been used to estimate model performance. Experiments have led to the discovery of the disagreement-on-the-line phenomenon, whereby the classification error under the target domain is often a linear function of the classification error under the source domain; and whenever this property holds, disagreement under the source and target domain follow the same linear relation. In this work, we develop a theoretical foundation for analyzing disagreement in high-dimensional random features regression; and study under what conditions the disagreement-on-the-line phenomenon occurs in our setting. Experiments on CIFAR-10-C, Tiny ImageNet-C, and Camelyon17 are consistent with our theory and support the universality of the theoretical findings.
Automatic Classification of Object Code Using Machine Learning
Recent research has repeatedly shown that machine learning techniques can be applied to either whole files or file fragments to classify them for analysis. We build upon these techniques to show that for samples of un-labeled compiled computer object code, one can apply the same type of analysis to classify important aspects of the code, such as its target architecture and endianess. We show that using simple byte-value histograms we retain enough information about the opcodes within a sample to classify the target architecture with high accuracy, and then discuss heuristic-based features that exploit information within the operands to determine endianess. We introduce a dataset with over 16000 code samples from 20 architectures and experimentally show that by using our features, classifiers can achieve very high accuracy with relatively small sample sizes.
Degradation Prediction of Semiconductor Lasers using Conditional Variational Autoencoder
Semiconductor lasers have been rapidly evolving to meet the demands of next-generation optical networks. This imposes much more stringent requirements on the laser reliability, which are dominated by degradation mechanisms (e.g., sudden degradation) limiting the semiconductor laser lifetime. Physics-based approaches are often used to characterize the degradation behavior analytically, yet explicit domain knowledge and accurate mathematical models are required. Building such models can be very challenging due to a lack of a full understanding of the complex physical processes inducing the degradation under various operating conditions. To overcome the aforementioned limitations, we propose a new data-driven approach, extracting useful insights from the operational monitored data to predict the degradation trend without requiring any specific knowledge or using any physical model. The proposed approach is based on an unsupervised technique, a conditional variational autoencoder, and validated using vertical-cavity surface-emitting laser (VCSEL) and tunable edge emitting laser reliability data. The experimental results confirm that our model (i) achieves a good degradation prediction and generalization performance by yielding an F1 score of 95.3%, (ii) outperforms several baseline ML based anomaly detection techniques, and (iii) helps to shorten the aging tests by early predicting the failed devices before the end of the test and thereby saving costs
Neural Network Training Strategy to Enhance Anomaly Detection Performance: A Perspective on Reconstruction Loss Amplification
Unsupervised anomaly detection (UAD) is a widely adopted approach in industry due to rare anomaly occurrences and data imbalance. A desirable characteristic of an UAD model is contained generalization ability which excels in the reconstruction of seen normal patterns but struggles with unseen anomalies. Recent studies have pursued to contain the generalization capability of their UAD models in reconstruction from different perspectives, such as design of neural network (NN) structure and training strategy. In contrast, we note that containing of generalization ability in reconstruction can also be obtained simply from steep-shaped loss landscape. Motivated by this, we propose a loss landscape sharpening method by amplifying the reconstruction loss, dubbed Loss AMPlification (LAMP). LAMP deforms the loss landscape into a steep shape so the reconstruction error on unseen anomalies becomes greater. Accordingly, the anomaly detection performance is improved without any change of the NN architecture. Our findings suggest that LAMP can be easily applied to any reconstruction error metrics in UAD settings where the reconstruction model is trained with anomaly-free samples only.
Towards Enhancing Time Series Contrastive Learning: A Dynamic Bad Pair Mining Approach
Not all positive pairs are beneficial to time series contrastive learning. In this paper, we study two types of bad positive pairs that can impair the quality of time series representation learned through contrastive learning: the noisy positive pair and the faulty positive pair. We observe that, with the presence of noisy positive pairs, the model tends to simply learn the pattern of noise (Noisy Alignment). Meanwhile, when faulty positive pairs arise, the model wastes considerable amount of effort aligning non-representative patterns (Faulty Alignment). To address this problem, we propose a Dynamic Bad Pair Mining (DBPM) algorithm, which reliably identifies and suppresses bad positive pairs in time series contrastive learning. Specifically, DBPM utilizes a memory module to dynamically track the training behavior of each positive pair along training process. This allows us to identify potential bad positive pairs at each epoch based on their historical training behaviors. The identified bad pairs are subsequently down-weighted through a transformation module, thereby mitigating their negative impact on the representation learning process. DBPM is a simple algorithm designed as a lightweight plug-in without learnable parameters to enhance the performance of existing state-of-the-art methods. Through extensive experiments conducted on four large-scale, real-world time series datasets, we demonstrate DBPM's efficacy in mitigating the adverse effects of bad positive pairs.
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
This work introduces the Efficient Transformed Gaussian Process (ETGP), a new way of creating C stochastic processes characterized by: 1) the C processes are non-stationary, 2) the C processes are dependent by construction without needing a mixing matrix, 3) training and making predictions is very efficient since the number of Gaussian Processes (GP) operations (e.g. inverting the inducing point's covariance matrix) do not depend on the number of processes. This makes the ETGP particularly suited for multi-class problems with a very large number of classes, which are the problems studied in this work. ETGPs exploit the recently proposed Transformed Gaussian Process (TGP), a stochastic process specified by transforming a Gaussian Process using an invertible transformation. However, unlike TGPs, ETGPs are constructed by transforming a single sample from a GP using C invertible transformations. We derive an efficient sparse variational inference algorithm for the proposed model and demonstrate its utility in 5 classification tasks which include low/medium/large datasets and a different number of classes, ranging from just a few to hundreds. Our results show that ETGPs, in general, outperform state-of-the-art methods for multi-class classification based on GPs, and have a lower computational cost (around one order of magnitude smaller).
QuakeSet: A Dataset and Low-Resource Models to Monitor Earthquakes through Sentinel-1
Earthquake monitoring is necessary to promptly identify the affected areas, the severity of the events, and, finally, to estimate damages and plan the actions needed for the restoration process. The use of seismic stations to monitor the strength and origin of earthquakes is limited when dealing with remote areas (we cannot have global capillary coverage). Identification and analysis of all affected areas is mandatory to support areas not monitored by traditional stations. Using social media images in crisis management has proven effective in various situations. However, they are still limited by the possibility of using communication infrastructures in case of an earthquake and by the presence of people in the area. Moreover, social media images and messages cannot be used to estimate the actual severity of earthquakes and their characteristics effectively. The employment of satellites to monitor changes around the globe grants the possibility of exploiting instrumentation that is not limited by the visible spectrum, the presence of land infrastructures, and people in the affected areas. In this work, we propose a new dataset composed of images taken from Sentinel-1 and a new series of tasks to help monitor earthquakes from a new detailed view. Coupled with the data, we provide a series of traditional machine learning and deep learning models as baselines to assess the effectiveness of ML-based models in earthquake analysis.
Using Machine Learning for Anomaly Detection on a System-on-Chip under Gamma Radiation
The emergence of new nanoscale technologies has imposed significant challenges to designing reliable electronic systems in radiation environments. A few types of radiation like Total Ionizing Dose (TID) effects often cause permanent damages on such nanoscale electronic devices, and current state-of-the-art technologies to tackle TID make use of expensive radiation-hardened devices. This paper focuses on a novel and different approach: using machine learning algorithms on consumer electronic level Field Programmable Gate Arrays (FPGAs) to tackle TID effects and monitor them to replace before they stop working. This condition has a research challenge to anticipate when the board results in a total failure due to TID effects. We observed internal measurements of the FPGA boards under gamma radiation and used three different anomaly detection machine learning (ML) algorithms to detect anomalies in the sensor measurements in a gamma-radiated environment. The statistical results show a highly significant relationship between the gamma radiation exposure levels and the board measurements. Moreover, our anomaly detection results have shown that a One-Class Support Vector Machine with Radial Basis Function Kernel has an average Recall score of 0.95. Also, all anomalies can be detected before the boards stop working.
A Hybrid MLP-SVM Model for Classification using Spatial-Spectral Features on Hyper-Spectral Images
There are many challenges in the classification of hyper spectral images such as large dimensionality, scarcity of labeled data and spatial variability of spectral signatures. In this proposed method, we make a hybrid classifier (MLP-SVM) using multilayer perceptron (MLP) and support vector machine (SVM) which aimed to improve the various classification parameters such as accuracy, precision, recall, f-score and to predict the region without ground truth. In proposed method, outputs from the last hidden layer of the neural net-ork become the input to the SVM, which finally classifies into various desired classes. In the present study, we worked on Indian Pines, U. Pavia and Salinas dataset with 16, 9, 16 classes and 200, 103 and 204 reflectance bands respectively, which is provided by AVIRIS and ROSIS sensor of NASA Jet propulsion laboratory. The proposed method significantly increases the accuracy on testing dataset to 93.22%, 96.87%, 93.81% as compare to 86.97%, 88.58%, 88.85% and 91.61%, 96.20%, 90.68% based on individual classifiers SVM and MLP on Indian Pines, U. Pavia and Salinas datasets respectively.
Assessment of the Reliablity of a Model's Decision by Generalizing Attribution to the Wavelet Domain
Neural networks have shown remarkable performance in computer vision, but their deployment in numerous scientific and technical fields is challenging due to their black-box nature. Scientists and practitioners need to evaluate the reliability of a decision, i.e., to know simultaneously if a model relies on the relevant features and whether these features are robust to image corruptions. Existing attribution methods aim to provide human-understandable explanations by highlighting important regions in the image domain, but fail to fully characterize a decision process's reliability. To bridge this gap, we introduce the Wavelet sCale Attribution Method (WCAM), a generalization of attribution from the pixel domain to the space-scale domain using wavelet transforms. Attribution in the wavelet domain reveals where {\it and} on what scales the model focuses, thus enabling us to assess whether a decision is reliable.
How Does Unlabeled Data Provably Help Out-of-Distribution Detection?
Using unlabeled data to regularize the machine learning models has demonstrated promise for improving safety and reliability in detecting out-of-distribution (OOD) data. Harnessing the power of unlabeled in-the-wild data is non-trivial due to the heterogeneity of both in-distribution (ID) and OOD data. This lack of a clean set of OOD samples poses significant challenges in learning an optimal OOD classifier. Currently, there is a lack of research on formally understanding how unlabeled data helps OOD detection. This paper bridges the gap by introducing a new learning framework SAL (Separate And Learn) that offers both strong theoretical guarantees and empirical effectiveness. The framework separates candidate outliers from the unlabeled data and then trains an OOD classifier using the candidate outliers and the labeled ID data. Theoretically, we provide rigorous error bounds from the lens of separability and learnability, formally justifying the two components in our algorithm. Our theory shows that SAL can separate the candidate outliers with small error rates, which leads to a generalization guarantee for the learned OOD classifier. Empirically, SAL achieves state-of-the-art performance on common benchmarks, reinforcing our theoretical insights. Code is publicly available at https://github.com/deeplearning-wisc/sal.
Detecting Road Surface Wetness from Audio: A Deep Learning Approach
We introduce a recurrent neural network architecture for automated road surface wetness detection from audio of tire-surface interaction. The robustness of our approach is evaluated on 785,826 bins of audio that span an extensive range of vehicle speeds, noises from the environment, road surface types, and pavement conditions including international roughness index (IRI) values from 25 in/mi to 1400 in/mi. The training and evaluation of the model are performed on different roads to minimize the impact of environmental and other external factors on the accuracy of the classification. We achieve an unweighted average recall (UAR) of 93.2% across all vehicle speeds including 0 mph. The classifier still works at 0 mph because the discriminating signal is present in the sound of other vehicles driving by.
Penalizing Unfairness in Binary Classification
We present a new approach for mitigating unfairness in learned classifiers. In particular, we focus on binary classification tasks over individuals from two populations, where, as our criterion for fairness, we wish to achieve similar false positive rates in both populations, and similar false negative rates in both populations. As a proof of concept, we implement our approach and empirically evaluate its ability to achieve both fairness and accuracy, using datasets from the fields of criminal risk assessment, credit, lending, and college admissions.
Backward Compatibility During Data Updates by Weight Interpolation
Backward compatibility of model predictions is a desired property when updating a machine learning driven application. It allows to seamlessly improve the underlying model without introducing regression bugs. In classification tasks these bugs occur in the form of negative flips. This means an instance that was correctly classified by the old model is now classified incorrectly by the updated model. This has direct negative impact on the user experience of such systems e.g. a frequently used voice assistant query is suddenly misclassified. A common reason to update the model is when new training data becomes available and needs to be incorporated. Simply retraining the model with the updated data introduces the unwanted negative flips. We study the problem of regression during data updates and propose Backward Compatible Weight Interpolation (BCWI). This method interpolates between the weights of the old and new model and we show in extensive experiments that it reduces negative flips without sacrificing the improved accuracy of the new model. BCWI is straight forward to implement and does not increase inference cost. We also explore the use of importance weighting during interpolation and averaging the weights of multiple new models in order to further reduce negative flips.
Graph Neural Networks for Topological Feature Extraction in ECG Classification
The electrocardiogram (ECG) is a dependable instrument for assessing the function of the cardiovascular system. There has recently been much emphasis on precisely classifying ECGs. While ECG situations have numerous similarities, little attention has been paid to categorizing ECGs using graph neural networks. In this study, we offer three distinct techniques for classifying heartbeats using deep graph neural networks to classify the ECG signals accurately. We suggest using different methods to extract topological features from the ECG signal and then using a branch of the graph neural network named graph isomorphism network for classifying the ECGs. On the PTB Diagnostics data set, we tested the three proposed techniques. According to the findings, the three proposed techniques are capable of making arrhythmia classification predictions with the accuracy of 99.38, 98.76, and 91.93 percent, respectively.
Novel Class Discovery: an Introduction and Key Concepts
Novel Class Discovery (NCD) is a growing field where we are given during training a labeled set of known classes and an unlabeled set of different classes that must be discovered. In recent years, many methods have been proposed to address this problem, and the field has begun to mature. In this paper, we provide a comprehensive survey of the state-of-the-art NCD methods. We start by formally defining the NCD problem and introducing important notions. We then give an overview of the different families of approaches, organized by the way they transfer knowledge from the labeled set to the unlabeled set. We find that they either learn in two stages, by first extracting knowledge from the labeled data only and then applying it to the unlabeled data, or in one stage by conjointly learning on both sets. For each family, we describe their general principle and detail a few representative methods. Then, we briefly introduce some new related tasks inspired by the increasing number of NCD works. We also present some common tools and techniques used in NCD, such as pseudo labeling, self-supervised learning and contrastive learning. Finally, to help readers unfamiliar with the NCD problem differentiate it from other closely related domains, we summarize some of the closest areas of research and discuss their main differences.
Toward Interpretable Sleep Stage Classification Using Cross-Modal Transformers
Accurate sleep stage classification is significant for sleep health assessment. In recent years, several machine-learning based sleep staging algorithms have been developed , and in particular, deep-learning based algorithms have achieved performance on par with human annotation. Despite improved performance, a limitation of most deep-learning based algorithms is their black-box behavior, which have limited their use in clinical settings. Here, we propose a cross-modal transformer, which is a transformer-based method for sleep stage classification. The proposed cross-modal transformer consists of a novel cross-modal transformer encoder architecture along with a multi-scale one-dimensional convolutional neural network for automatic representation learning. Our method outperforms the state-of-the-art methods and eliminates the black-box behavior of deep-learning models by utilizing the interpretability aspect of the attention modules. Furthermore, our method provides considerable reductions in the number of parameters and training time compared to the state-of-the-art methods. Our code is available at https://github.com/Jathurshan0330/Cross-Modal-Transformer. A demo of our work can be found at https://bit.ly/Cross_modal_transformer_demo.
Numerical Claim Detection in Finance: A New Financial Dataset, Weak-Supervision Model, and Market Analysis
In this paper, we investigate the influence of claims in analyst reports and earnings calls on financial market returns, considering them as significant quarterly events for publicly traded companies. To facilitate a comprehensive analysis, we construct a new financial dataset for the claim detection task in the financial domain. We benchmark various language models on this dataset and propose a novel weak-supervision model that incorporates the knowledge of subject matter experts (SMEs) in the aggregation function, outperforming existing approaches. We also demonstrate the practical utility of our proposed model by constructing a novel measure of optimism. Here, we observe the dependence of earnings surprise and return on our optimism measure. Our dataset, models, and code are publicly (under CC BY 4.0 license) available on GitHub.
Temporal Label Smoothing for Early Event Prediction
Models that can predict the occurrence of events ahead of time with low false-alarm rates are critical to the acceptance of decision support systems in the medical community. This challenging task is typically treated as a simple binary classification, ignoring temporal dependencies between samples, whereas we propose to exploit this structure. We first introduce a common theoretical framework unifying dynamic survival analysis and early event prediction. Following an analysis of objectives from both fields, we propose Temporal Label Smoothing (TLS), a simpler, yet best-performing method that preserves prediction monotonicity over time. By focusing the objective on areas with a stronger predictive signal, TLS improves performance over all baselines on two large-scale benchmark tasks. Gains are particularly notable along clinically relevant measures, such as event recall at low false-alarm rates. TLS reduces the number of missed events by up to a factor of two over previously used approaches in early event prediction.
Galileo: Learning Global and Local Features in Pretrained Remote Sensing Models
From crop mapping to flood detection, machine learning in remote sensing has a wide range of societally beneficial applications. The commonalities between remote sensing data in these applications present an opportunity for pretrained machine learning models tailored to remote sensing to reduce the labeled data and effort required to solve individual tasks. However, such models must be: (i) flexible enough to ingest input data of varying sensor modalities and shapes (i.e., of varying spatial and temporal dimensions), and (ii) able to model Earth surface phenomena of varying scales and types. To solve this gap, we present Galileo, a family of pretrained remote sensing models designed to flexibly process multimodal remote sensing data. We also introduce a novel and highly effective self-supervised learning approach to learn both large- and small-scale features, a challenge not addressed by previous models. Our Galileo models obtain state-of-the-art results across diverse remote sensing tasks.
Improved Neural Network based Plant Diseases Identification
The agriculture sector is essential for every country because it provides a basic income to a large number of people and food as well, which is a fundamental requirement to survive on this planet. We see as time passes, significant changes come in the present era, which begins with Green Revolution. Due to improper knowledge of plant diseases, farmers use fertilizers in excess, which ultimately degrade the quality of food. Earlier farmers use experts to determine the type of plant disease, which was expensive and time-consuming. In today time, Image processing is used to recognize and catalog plant diseases using the lesion region of plant leaf, and there are different modus-operandi for plant disease scent from leaf using Neural Networks (NN), Support Vector Machine (SVM), and others. In this paper, we improving the architecture of the Neural Networking by working on ten different types of training algorithms and the proper choice of neurons in the concealed layer. Our proposed approach gives 98.30% accuracy on general plant leaf disease and 100% accuracy on specific plant leaf disease based on Bayesian regularization, automation of cluster and without over-fitting on considered plant diseases over various other implemented methods.
Building and Interpreting Deep Similarity Models
Many learning algorithms such as kernel machines, nearest neighbors, clustering, or anomaly detection, are based on the concept of 'distance' or 'similarity'. Before similarities are used for training an actual machine learning model, we would like to verify that they are bound to meaningful patterns in the data. In this paper, we propose to make similarities interpretable by augmenting them with an explanation in terms of input features. We develop BiLRP, a scalable and theoretically founded method to systematically decompose similarity scores on pairs of input features. Our method can be expressed as a composition of LRP explanations, which were shown in previous works to scale to highly nonlinear functions. Through an extensive set of experiments, we demonstrate that BiLRP robustly explains complex similarity models, e.g. built on VGG-16 deep neural network features. Additionally, we apply our method to an open problem in digital humanities: detailed assessment of similarity between historical documents such as astronomical tables. Here again, BiLRP provides insight and brings verifiability into a highly engineered and problem-specific similarity model.
Diagnosis of diabetic retinopathy using machine learning & deep learning technique
Fundus images are widely used for diagnosing various eye diseases, such as diabetic retinopathy, glaucoma, and age-related macular degeneration. However, manual analysis of fundus images is time-consuming and prone to errors. In this report, we propose a novel method for fundus detection using object detection and machine learning classification techniques. We use a YOLO_V8 to perform object detection on fundus images and locate the regions of interest (ROIs) such as optic disc, optic cup and lesions. We then use machine learning SVM classification algorithms to classify the ROIs into different DR stages based on the presence or absence of pathological signs such as exudates, microaneurysms, and haemorrhages etc. Our method achieves 84% accuracy and efficiency for fundus detection and can be applied for retinal fundus disease triage, especially in remote areas around the world.
A Machine Learning Approach for Identifying Anatomical Biomarkers of Early Mild Cognitive Impairment
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that primarily affects the aging population by impairing cognitive and motor functions. Early detection of AD through accessible methodologies like magnetic resonance imaging (MRI) is vital for developing effective interventions to halt or slow the disease's progression. This study aims to perform a comprehensive analysis of machine learning techniques for selecting MRI-based biomarkers and classifying individuals into healthy controls (HC) and unstable controls (uHC) who later show mild cognitive impairment within five years. The research utilizes MRI data from the Alzheimer's Disease Neuroinformatics Initiative (ADNI) and the Open Access Series of Imaging Studies 3 (OASIS-3), focusing on both HC and uHC participants. The study addresses the challenges of imbalanced data by testing classification methods on balanced and unbalanced datasets, and harmonizes data using polynomial regression to mitigate nuisance variables like age, gender, and intracranial volume. Results indicate that Gaussian Naive Bayes and RusBoost classifiers shows an optimal performance, achieving accuracies of up to 76.46% and 72.48% respectively on the ADNI dataset. For the OASIS-3 dataset, Kernel Naive Bayes and RusBoost yield accuracies ranging from 64.66% to 75.71%, improving further in age-matched datasets. Brain regions like the entorhinal cortex, hippocampus, lateral ventricle, and lateral orbitofrontal cortex are identified as significantly impacted during early cognitive decline. Despite limitations such as small sample sizes, the study's harmonization approach enhances the robustness of biomarker selection, suggesting the potential of this semi-automatic machine learning pipeline for early AD detection using MRI.