- Machine Learning to Detect Anxiety Disorders from Error-Related Negativity and EEG Signals Anxiety is a common mental health condition characterised by excessive worry, fear and apprehension about everyday situations. Even with significant progress over the past few years, predicting anxiety from electroencephalographic (EEG) signals, specifically using error-related negativity (ERN), still remains challenging. Following the PRISMA protocol, this paper systematically reviews 54 research papers on using EEG and ERN markers for anxiety detection published in the last 10 years (2013 -- 2023). Our analysis highlights the wide usage of traditional machine learning, such as support vector machines and random forests, as well as deep learning models, such as convolutional neural networks and recurrent neural networks across different data types. Our analysis reveals that the development of a robust and generic anxiety prediction method still needs to address real-world challenges, such as task-specific setup, feature selection and computational modelling. We conclude this review by offering potential future direction for non-invasive, objective anxiety diagnostics, deployed across diverse populations and anxiety sub-types. 5 authors · Sep 16, 2024
1 Range Anxiety Among Battery Electric Vehicle Users: Both Distance and Waiting Time Matter Range anxiety is a major concern of battery electric vehicles (BEVs) users or potential users. Previous work has explored the influential factors of distance-related range anxiety. However, time-related range anxiety has rarely been explored. The time cost when charging or waiting to charge the BEVs can negatively impact BEV users' experience. As a preliminary attempt, this survey study investigated time-related anxiety by observing BEV users' charging decisions in scenarios when both battery level and time cost are of concern. We collected and analyzed responses from 217 BEV users in mainland China. The results revealed that time-related anxiety exists and could affect users' charging decisions. Further, users' charging decisions can be a result of the trade-off between distance-related and time-related anxiety, and can be moderated by several external factors (e.g., regions and individual differences). The findings can support the optimization of charge station distribution and EV charge recommendation algorithms. 4 authors · Jun 9, 2023
- Enhanced Large Language Models for Effective Screening of Depression and Anxiety Depressive and anxiety disorders are widespread, necessitating timely identification and management. Recent advances in Large Language Models (LLMs) offer potential solutions, yet high costs and ethical concerns about training data remain challenges. This paper introduces a pipeline for synthesizing clinical interviews, resulting in 1,157 interactive dialogues (PsyInterview), and presents EmoScan, an LLM-based emotional disorder screening system. EmoScan distinguishes between coarse (e.g., anxiety or depressive disorders) and fine disorders (e.g., major depressive disorders) and conducts high-quality interviews. Evaluations showed that EmoScan exceeded the performance of base models and other LLMs like GPT-4 in screening emotional disorders (F1-score=0.7467). It also delivers superior explanations (BERTScore=0.9408) and demonstrates robust generalizability (F1-score of 0.67 on an external dataset). Furthermore, EmoScan outperforms baselines in interviewing skills, as validated by automated ratings and human evaluations. This work highlights the importance of scalable data-generative pipelines for developing effective mental health LLM tools. 6 authors · Jan 15
1 Evaluating Large Language Models for Anxiety and Depression Classification using Counseling and Psychotherapy Transcripts We aim to evaluate the efficacy of traditional machine learning and large language models (LLMs) in classifying anxiety and depression from long conversational transcripts. We fine-tune both established transformer models (BERT, RoBERTa, Longformer) and more recent large models (Mistral-7B), trained a Support Vector Machine with feature engineering, and assessed GPT models through prompting. We observe that state-of-the-art models fail to enhance classification outcomes compared to traditional machine learning methods. 4 authors · Jul 18, 2024
- DEPAC: a Corpus for Depression and Anxiety Detection from Speech Mental distress like depression and anxiety contribute to the largest proportion of the global burden of diseases. Automated diagnosis systems of such disorders, empowered by recent innovations in Artificial Intelligence, can pave the way to reduce the sufferings of the affected individuals. Development of such systems requires information-rich and balanced corpora. In this work, we introduce a novel mental distress analysis audio dataset DEPAC, labeled based on established thresholds on depression and anxiety standard screening tools. This large dataset comprises multiple speech tasks per individual, as well as relevant demographic information. Alongside, we present a feature set consisting of hand-curated acoustic and linguistic features, which were found effective in identifying signs of mental illnesses in human speech. Finally, we justify the quality and effectiveness of our proposed audio corpus and feature set in predicting depression severity by comparing the performance of baseline machine learning models built on this dataset with baseline models trained on other well-known depression corpora. 4 authors · Jun 20, 2023