Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAg2Manip: Learning Novel Manipulation Skills with Agent-Agnostic Visual and Action Representations
Autonomous robotic systems capable of learning novel manipulation tasks are poised to transform industries from manufacturing to service automation. However, modern methods (e.g., VIP and R3M) still face significant hurdles, notably the domain gap among robotic embodiments and the sparsity of successful task executions within specific action spaces, resulting in misaligned and ambiguous task representations. We introduce Ag2Manip (Agent-Agnostic representations for Manipulation), a framework aimed at surmounting these challenges through two key innovations: a novel agent-agnostic visual representation derived from human manipulation videos, with the specifics of embodiments obscured to enhance generalizability; and an agent-agnostic action representation abstracting a robot's kinematics to a universal agent proxy, emphasizing crucial interactions between end-effector and object. Ag2Manip's empirical validation across simulated benchmarks like FrankaKitchen, ManiSkill, and PartManip shows a 325% increase in performance, achieved without domain-specific demonstrations. Ablation studies underline the essential contributions of the visual and action representations to this success. Extending our evaluations to the real world, Ag2Manip significantly improves imitation learning success rates from 50% to 77.5%, demonstrating its effectiveness and generalizability across both simulated and physical environments.
MMAD: Multi-label Micro-Action Detection in Videos
Human body actions are an important form of non-verbal communication in social interactions. This paper focuses on a specific subset of body actions known as micro-actions, which are subtle, low-intensity body movements that provide a deeper understanding of inner human feelings. In real-world scenarios, human micro-actions often co-occur, with multiple micro-actions overlapping in time, such as simultaneous head and hand movements. However, current research primarily focuses on recognizing individual micro-actions while overlooking their co-occurring nature. To narrow this gap, we propose a new task named Multi-label Micro-Action Detection (MMAD), which involves identifying all micro-actions in a given short video, determining their start and end times, and categorizing them. Achieving this requires a model capable of accurately capturing both long-term and short-term action relationships to locate and classify multiple micro-actions. To support the MMAD task, we introduce a new dataset named Multi-label Micro-Action-52 (MMA-52), specifically designed to facilitate the detailed analysis and exploration of complex human micro-actions. The proposed MMA-52 dataset is available at: https://github.com/VUT-HFUT/Micro-Action.
Being-H0: Vision-Language-Action Pretraining from Large-Scale Human Videos
We introduce Being-H0, a dexterous Vision-Language-Action model (VLA) trained on large-scale human videos. Existing VLAs struggle with complex manipulation tasks requiring high dexterity and generalize poorly to novel scenarios and tasks, primarily due to their reliance on synthetic data with significant sim-to-real gaps or teleoperated demonstrations lacking scale and diversity. To address this data bottleneck, we propose leveraging human hands as a foundation manipulator, capitalizing on the rich dexterity and scalability present in web data. Our approach centers on physical instruction tuning, a novel training paradigm that combines large-scale VLA pretraining from human videos, physical space alignment for 3D reasoning, and post-training adaptation for robotic tasks. Additionally, we introduce a part-level motion tokenization method which achieves millimeter-level reconstruction accuracy to model precise hand trajectories for action learning. To support our proposed paradigm, we further develop a comprehensive data curation pipeline that integrates heterogeneous sources -- including motion capture, VR, and RGB-only videos -- into a large-scale dataset with millions of motion-based instructional instances. We empirically show the excellence of Being-H0 in hand motion generation and instruction following, and it also scales well with model and data sizes. Importantly, we observe the expected gains of Being-H0 in real-world robotic manipulation as physical instruction tuning is applied. More details are available at https://beingbeyond.github.io/Being-H0.
HAMSTER: Hierarchical Action Models For Open-World Robot Manipulation
Large foundation models have shown strong open-world generalization to complex problems in vision and language, but similar levels of generalization have yet to be achieved in robotics. One fundamental challenge is the lack of robotic data, which are typically obtained through expensive on-robot operation. A promising remedy is to leverage cheaper, off-domain data such as action-free videos, hand-drawn sketches or simulation data. In this work, we posit that hierarchical vision-language-action (VLA) models can be more effective in utilizing off-domain data than standard monolithic VLA models that directly finetune vision-language models (VLMs) to predict actions. In particular, we study a class of hierarchical VLA models, where the high-level VLM is finetuned to produce a coarse 2D path indicating the desired robot end-effector trajectory given an RGB image and a task description. The intermediate 2D path prediction is then served as guidance to the low-level, 3D-aware control policy capable of precise manipulation. Doing so alleviates the high-level VLM from fine-grained action prediction, while reducing the low-level policy's burden on complex task-level reasoning. We show that, with the hierarchical design, the high-level VLM can transfer across significant domain gaps between the off-domain finetuning data and real-robot testing scenarios, including differences on embodiments, dynamics, visual appearances and task semantics, etc. In the real-robot experiments, we observe an average of 20% improvement in success rate across seven different axes of generalization over OpenVLA, representing a 50% relative gain. Visual results, code, and dataset are provided at: https://hamster-robot.github.io/
GAIA: Rethinking Action Quality Assessment for AI-Generated Videos
Assessing action quality is both imperative and challenging due to its significant impact on the quality of AI-generated videos, further complicated by the inherently ambiguous nature of actions within AI-generated video (AIGV). Current action quality assessment (AQA) algorithms predominantly focus on actions from real specific scenarios and are pre-trained with normative action features, thus rendering them inapplicable in AIGVs. To address these problems, we construct GAIA, a Generic AI-generated Action dataset, by conducting a large-scale subjective evaluation from a novel causal reasoning-based perspective, resulting in 971,244 ratings among 9,180 video-action pairs. Based on GAIA, we evaluate a suite of popular text-to-video (T2V) models on their ability to generate visually rational actions, revealing their pros and cons on different categories of actions. We also extend GAIA as a testbed to benchmark the AQA capacity of existing automatic evaluation methods. Results show that traditional AQA methods, action-related metrics in recent T2V benchmarks, and mainstream video quality methods perform poorly with an average SRCC of 0.454, 0.191, and 0.519, respectively, indicating a sizable gap between current models and human action perception patterns in AIGVs. Our findings underscore the significance of action quality as a unique perspective for studying AIGVs and can catalyze progress towards methods with enhanced capacities for AQA in AIGVs.
CHASE: Learning Convex Hull Adaptive Shift for Skeleton-based Multi-Entity Action Recognition
Skeleton-based multi-entity action recognition is a challenging task aiming to identify interactive actions or group activities involving multiple diverse entities. Existing models for individuals often fall short in this task due to the inherent distribution discrepancies among entity skeletons, leading to suboptimal backbone optimization. To this end, we introduce a Convex Hull Adaptive Shift based multi-Entity action recognition method (CHASE), which mitigates inter-entity distribution gaps and unbiases subsequent backbones. Specifically, CHASE comprises a learnable parameterized network and an auxiliary objective. The parameterized network achieves plausible, sample-adaptive repositioning of skeleton sequences through two key components. First, the Implicit Convex Hull Constrained Adaptive Shift ensures that the new origin of the coordinate system is within the skeleton convex hull. Second, the Coefficient Learning Block provides a lightweight parameterization of the mapping from skeleton sequences to their specific coefficients in convex combinations. Moreover, to guide the optimization of this network for discrepancy minimization, we propose the Mini-batch Pair-wise Maximum Mean Discrepancy as the additional objective. CHASE operates as a sample-adaptive normalization method to mitigate inter-entity distribution discrepancies, thereby reducing data bias and improving the subsequent classifier's multi-entity action recognition performance. Extensive experiments on six datasets, including NTU Mutual 11/26, H2O, Assembly101, Collective Activity and Volleyball, consistently verify our approach by seamlessly adapting to single-entity backbones and boosting their performance in multi-entity scenarios. Our code is publicly available at https://github.com/Necolizer/CHASE .
ToonCrafter: Generative Cartoon Interpolation
We introduce ToonCrafter, a novel approach that transcends traditional correspondence-based cartoon video interpolation, paving the way for generative interpolation. Traditional methods, that implicitly assume linear motion and the absence of complicated phenomena like dis-occlusion, often struggle with the exaggerated non-linear and large motions with occlusion commonly found in cartoons, resulting in implausible or even failed interpolation results. To overcome these limitations, we explore the potential of adapting live-action video priors to better suit cartoon interpolation within a generative framework. ToonCrafter effectively addresses the challenges faced when applying live-action video motion priors to generative cartoon interpolation. First, we design a toon rectification learning strategy that seamlessly adapts live-action video priors to the cartoon domain, resolving the domain gap and content leakage issues. Next, we introduce a dual-reference-based 3D decoder to compensate for lost details due to the highly compressed latent prior spaces, ensuring the preservation of fine details in interpolation results. Finally, we design a flexible sketch encoder that empowers users with interactive control over the interpolation results. Experimental results demonstrate that our proposed method not only produces visually convincing and more natural dynamics, but also effectively handles dis-occlusion. The comparative evaluation demonstrates the notable superiority of our approach over existing competitors.
NExT-QA:Next Phase of Question-Answering to Explaining Temporal Actions
We introduce NExT-QA, a rigorously designed video question answering (VideoQA) benchmark to advance video understanding from describing to explaining the temporal actions. Based on the dataset, we set up multi-choice and open-ended QA tasks targeting causal action reasoning, temporal action reasoning, and common scene comprehension. Through extensive analysis of baselines and established VideoQA techniques, we find that top-performing methods excel at shallow scene descriptions but are weak in causal and temporal action reasoning. Furthermore, the models that are effective on multi-choice QA, when adapted to open-ended QA, still struggle in generalizing the answers. This raises doubt on the ability of these models to reason and highlights possibilities for improvement. With detailed results for different question types and heuristic observations for future works, we hope NExT-QA will guide the next generation of VQA research to go beyond superficial scene description towards a deeper understanding of videos. (The dataset and related resources are available at https://github.com/doc-doc/NExT-QA.git)
HuMMan: Multi-Modal 4D Human Dataset for Versatile Sensing and Modeling
4D human sensing and modeling are fundamental tasks in vision and graphics with numerous applications. With the advances of new sensors and algorithms, there is an increasing demand for more versatile datasets. In this work, we contribute HuMMan, a large-scale multi-modal 4D human dataset with 1000 human subjects, 400k sequences and 60M frames. HuMMan has several appealing properties: 1) multi-modal data and annotations including color images, point clouds, keypoints, SMPL parameters, and textured meshes; 2) popular mobile device is included in the sensor suite; 3) a set of 500 actions, designed to cover fundamental movements; 4) multiple tasks such as action recognition, pose estimation, parametric human recovery, and textured mesh reconstruction are supported and evaluated. Extensive experiments on HuMMan voice the need for further study on challenges such as fine-grained action recognition, dynamic human mesh reconstruction, point cloud-based parametric human recovery, and cross-device domain gaps.
Do We Really Need a Complex Agent System? Distill Embodied Agent into a Single Model
With the power of large language models (LLMs), open-ended embodied agents can flexibly understand human instructions, generate interpretable guidance strategies, and output executable actions. Nowadays, Multi-modal Language Models~(MLMs) integrate multi-modal signals into LLMs, further bringing richer perception to entity agents and allowing embodied agents to perceive world-understanding tasks more delicately. However, existing works: 1) operate independently by agents, each containing multiple LLMs, from perception to action, resulting in gaps between complex tasks and execution; 2) train MLMs on static data, struggling with dynamics in open-ended scenarios; 3) input prior knowledge directly as prompts, suppressing application flexibility. We propose STEVE-2, a hierarchical knowledge distillation framework for open-ended embodied tasks, characterized by 1) a hierarchical system for multi-granular task division, 2) a mirrored distillation method for parallel simulation data, and 3) an extra expert model for bringing additional knowledge into parallel simulation. After distillation, embodied agents can complete complex, open-ended tasks without additional expert guidance, utilizing the performance and knowledge of a versatile MLM. Extensive evaluations on navigation and creation tasks highlight the superior performance of STEVE-2 in open-ended tasks, with 1.4 times - 7.3 times in performance.
When to Trust Your Simulator: Dynamics-Aware Hybrid Offline-and-Online Reinforcement Learning
Learning effective reinforcement learning (RL) policies to solve real-world complex tasks can be quite challenging without a high-fidelity simulation environment. In most cases, we are only given imperfect simulators with simplified dynamics, which inevitably lead to severe sim-to-real gaps in RL policy learning. The recently emerged field of offline RL provides another possibility to learn policies directly from pre-collected historical data. However, to achieve reasonable performance, existing offline RL algorithms need impractically large offline data with sufficient state-action space coverage for training. This brings up a new question: is it possible to combine learning from limited real data in offline RL and unrestricted exploration through imperfect simulators in online RL to address the drawbacks of both approaches? In this study, we propose the Dynamics-Aware Hybrid Offline-and-Online Reinforcement Learning (H2O) framework to provide an affirmative answer to this question. H2O introduces a dynamics-aware policy evaluation scheme, which adaptively penalizes the Q function learning on simulated state-action pairs with large dynamics gaps, while also simultaneously allowing learning from a fixed real-world dataset. Through extensive simulation and real-world tasks, as well as theoretical analysis, we demonstrate the superior performance of H2O against other cross-domain online and offline RL algorithms. H2O provides a brand new hybrid offline-and-online RL paradigm, which can potentially shed light on future RL algorithm design for solving practical real-world tasks.
Generative Action Description Prompts for Skeleton-based Action Recognition
Skeleton-based action recognition has recently received considerable attention. Current approaches to skeleton-based action recognition are typically formulated as one-hot classification tasks and do not fully exploit the semantic relations between actions. For example, "make victory sign" and "thumb up" are two actions of hand gestures, whose major difference lies in the movement of hands. This information is agnostic from the categorical one-hot encoding of action classes but could be unveiled from the action description. Therefore, utilizing action description in training could potentially benefit representation learning. In this work, we propose a Generative Action-description Prompts (GAP) approach for skeleton-based action recognition. More specifically, we employ a pre-trained large-scale language model as the knowledge engine to automatically generate text descriptions for body parts movements of actions, and propose a multi-modal training scheme by utilizing the text encoder to generate feature vectors for different body parts and supervise the skeleton encoder for action representation learning. Experiments show that our proposed GAP method achieves noticeable improvements over various baseline models without extra computation cost at inference. GAP achieves new state-of-the-arts on popular skeleton-based action recognition benchmarks, including NTU RGB+D, NTU RGB+D 120 and NW-UCLA. The source code is available at https://github.com/MartinXM/GAP.
Charting the Sociotechnical Gap in Explainable AI: A Framework to Address the Gap in XAI
Explainable AI (XAI) systems are sociotechnical in nature; thus, they are subject to the sociotechnical gap--divide between the technical affordances and the social needs. However, charting this gap is challenging. In the context of XAI, we argue that charting the gap improves our problem understanding, which can reflexively provide actionable insights to improve explainability. Utilizing two case studies in distinct domains, we empirically derive a framework that facilitates systematic charting of the sociotechnical gap by connecting AI guidelines in the context of XAI and elucidating how to use them to address the gap. We apply the framework to a third case in a new domain, showcasing its affordances. Finally, we discuss conceptual implications of the framework, share practical considerations in its operationalization, and offer guidance on transferring it to new contexts. By making conceptual and practical contributions to understanding the sociotechnical gap in XAI, the framework expands the XAI design space.
Reinforcing Language Agents via Policy Optimization with Action Decomposition
Language models as intelligent agents push the boundaries of sequential decision-making agents but struggle with limited knowledge of environmental dynamics and exponentially huge action space. Recent efforts like GLAM and TWOSOME manually constrain the action space to a restricted subset and employ reinforcement learning to align agents' knowledge with specific environments. However, they overlook fine-grained credit assignments for intra-action tokens, which is essential for efficient language agent optimization, and rely on human's prior knowledge to restrict action space. This paper proposes decomposing language agent optimization from the action level to the token level, offering finer supervision for each intra-action token and manageable optimization complexity in environments with unrestricted action spaces. Beginning with the simplification of flattening all actions, we theoretically explore the discrepancies between action-level optimization and this naive token-level optimization. We then derive the Bellman backup with Action Decomposition (BAD) to integrate credit assignments for both intra-action and inter-action tokens, effectively eliminating the discrepancies. Implementing BAD within the PPO algorithm, we introduce Policy Optimization with Action Decomposition (POAD). POAD benefits from a finer-grained credit assignment process and lower optimization complexity, leading to enhanced learning efficiency and generalization abilities in aligning language agents with interactive environments. We validate POAD across diverse testbeds, with results affirming the advantages of our approach and the correctness of our theoretical analysis.
Learning Optimal Contracts: How to Exploit Small Action Spaces
We study principal-agent problems in which a principal commits to an outcome-dependent payment scheme -- called contract -- in order to induce an agent to take a costly, unobservable action leading to favorable outcomes. We consider a generalization of the classical (single-round) version of the problem in which the principal interacts with the agent by committing to contracts over multiple rounds. The principal has no information about the agent, and they have to learn an optimal contract by only observing the outcome realized at each round. We focus on settings in which the size of the agent's action space is small. We design an algorithm that learns an approximately-optimal contract with high probability in a number of rounds polynomial in the size of the outcome space, when the number of actions is constant. Our algorithm solves an open problem by Zhu et al.[2022]. Moreover, it can also be employed to provide a mathcal{O}(T^{4/5}) regret bound in the related online learning setting in which the principal aims at maximizing their cumulative utility, thus considerably improving previously-known regret bounds.
Dynamic Neighborhood Construction for Structured Large Discrete Action Spaces
Large discrete action spaces (LDAS) remain a central challenge in reinforcement learning. Existing solution approaches can handle unstructured LDAS with up to a few million actions. However, many real-world applications in logistics, production, and transportation systems have combinatorial action spaces, whose size grows well beyond millions of actions, even on small instances. Fortunately, such action spaces exhibit structure, e.g., equally spaced discrete resource units. With this work, we focus on handling structured LDAS (SLDAS) with sizes that cannot be handled by current benchmarks: we propose Dynamic Neighborhood Construction (DNC), a novel exploitation paradigm for SLDAS. We present a scalable neighborhood exploration heuristic that utilizes this paradigm and efficiently explores the discrete neighborhood around the continuous proxy action in structured action spaces with up to 10^{73} actions. We demonstrate the performance of our method by benchmarking it against three state-of-the-art approaches designed for large discrete action spaces across two distinct environments. Our results show that DNC matches or outperforms state-of-the-art approaches while being computationally more efficient. Furthermore, our method scales to action spaces that so far remained computationally intractable for existing methodologies.
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms
In recent years, Deep Reinforcement Learning (DRL) algorithms have achieved state-of-the-art performance in many challenging strategy games. Because these games have complicated rules, an action sampled from the full discrete action distribution predicted by the learned policy is likely to be invalid according to the game rules (e.g., walking into a wall). The usual approach to deal with this problem in policy gradient algorithms is to "mask out" invalid actions and just sample from the set of valid actions. The implications of this process, however, remain under-investigated. In this paper, we 1) show theoretical justification for such a practice, 2) empirically demonstrate its importance as the space of invalid actions grows, and 3) provide further insights by evaluating different action masking regimes, such as removing masking after an agent has been trained using masking. The source code can be found at https://github.com/vwxyzjn/invalid-action-masking
Adaptive Advantage-Guided Policy Regularization for Offline Reinforcement Learning
In offline reinforcement learning, the challenge of out-of-distribution (OOD) is pronounced. To address this, existing methods often constrain the learned policy through policy regularization. However, these methods often suffer from the issue of unnecessary conservativeness, hampering policy improvement. This occurs due to the indiscriminate use of all actions from the behavior policy that generates the offline dataset as constraints. The problem becomes particularly noticeable when the quality of the dataset is suboptimal. Thus, we propose Adaptive Advantage-guided Policy Regularization (A2PR), obtaining high-advantage actions from an augmented behavior policy combined with VAE to guide the learned policy. A2PR can select high-advantage actions that differ from those present in the dataset, while still effectively maintaining conservatism from OOD actions. This is achieved by harnessing the VAE capacity to generate samples matching the distribution of the data points. We theoretically prove that the improvement of the behavior policy is guaranteed. Besides, it effectively mitigates value overestimation with a bounded performance gap. Empirically, we conduct a series of experiments on the D4RL benchmark, where A2PR demonstrates state-of-the-art performance. Furthermore, experimental results on additional suboptimal mixed datasets reveal that A2PR exhibits superior performance. Code is available at https://github.com/ltlhuuu/A2PR.
VQ-VLA: Improving Vision-Language-Action Models via Scaling Vector-Quantized Action Tokenizers
In this paper, we introduce an innovative vector quantization based action tokenizer built upon the largest-scale action trajectory dataset to date, leveraging over 100 times more data than previous approaches. This extensive dataset enables our tokenizer to capture rich spatiotemporal dynamics, resulting in a model that not only accelerates inference but also generates smoother and more coherent action outputs. Once trained, the tokenizer can be seamlessly adapted to a wide range of downstream tasks in a zero-shot manner, from short-horizon reactive behaviors to long-horizon planning. A key finding of our work is that the domain gap between synthetic and real action trajectories is marginal, allowing us to effectively utilize a vast amount of synthetic data during training without compromising real-world performance. To validate our approach, we conducted extensive experiments in both simulated environments and on real robotic platforms. The results demonstrate that as the volume of synthetic trajectory data increases, the performance of our tokenizer on downstream tasks improves significantly-most notably, achieving up to a 30% higher success rate on two real-world tasks in long-horizon scenarios. These findings highlight the potential of our action tokenizer as a robust and scalable solution for real-time embodied intelligence systems, paving the way for more efficient and reliable robotic control in diverse application domains.Project website: https://xiaoxiao0406.github.io/vqvla.github.io
Planning-Guided Diffusion Policy Learning for Generalizable Contact-Rich Bimanual Manipulation
Contact-rich bimanual manipulation involves precise coordination of two arms to change object states through strategically selected contacts and motions. Due to the inherent complexity of these tasks, acquiring sufficient demonstration data and training policies that generalize to unseen scenarios remain a largely unresolved challenge. Building on recent advances in planning through contacts, we introduce Generalizable Planning-Guided Diffusion Policy Learning (GLIDE), an approach that effectively learns to solve contact-rich bimanual manipulation tasks by leveraging model-based motion planners to generate demonstration data in high-fidelity physics simulation. Through efficient planning in randomized environments, our approach generates large-scale and high-quality synthetic motion trajectories for tasks involving diverse objects and transformations. We then train a task-conditioned diffusion policy via behavior cloning using these demonstrations. To tackle the sim-to-real gap, we propose a set of essential design options in feature extraction, task representation, action prediction, and data augmentation that enable learning robust prediction of smooth action sequences and generalization to unseen scenarios. Through experiments in both simulation and the real world, we demonstrate that our approach can enable a bimanual robotic system to effectively manipulate objects of diverse geometries, dimensions, and physical properties. Website: https://glide-manip.github.io/
Masked Temporal Interpolation Diffusion for Procedure Planning in Instructional Videos
In this paper, we address the challenge of procedure planning in instructional videos, aiming to generate coherent and task-aligned action sequences from start and end visual observations. Previous work has mainly relied on text-level supervision to bridge the gap between observed states and unobserved actions, but it struggles with capturing intricate temporal relationships among actions. Building on these efforts, we propose the Masked Temporal Interpolation Diffusion (MTID) model that introduces a latent space temporal interpolation module within the diffusion model. This module leverages a learnable interpolation matrix to generate intermediate latent features, thereby augmenting visual supervision with richer mid-state details. By integrating this enriched supervision into the model, we enable end-to-end training tailored to task-specific requirements, significantly enhancing the model's capacity to predict temporally coherent action sequences. Additionally, we introduce an action-aware mask projection mechanism to restrict the action generation space, combined with a task-adaptive masked proximity loss to prioritize more accurate reasoning results close to the given start and end states over those in intermediate steps. Simultaneously, it filters out task-irrelevant action predictions, leading to contextually aware action sequences. Experimental results across three widely used benchmark datasets demonstrate that our MTID achieves promising action planning performance on most metrics. The code is available at https://github.com/WiserZhou/MTID.
Efficient Planning with Latent Diffusion
Temporal abstraction and efficient planning pose significant challenges in offline reinforcement learning, mainly when dealing with domains that involve temporally extended tasks and delayed sparse rewards. Existing methods typically plan in the raw action space and can be inefficient and inflexible. Latent action spaces offer a more flexible paradigm, capturing only possible actions within the behavior policy support and decoupling the temporal structure between planning and modeling. However, current latent-action-based methods are limited to discrete spaces and require expensive planning. This paper presents a unified framework for continuous latent action space representation learning and planning by leveraging latent, score-based diffusion models. We establish the theoretical equivalence between planning in the latent action space and energy-guided sampling with a pretrained diffusion model and incorporate a novel sequence-level exact sampling method. Our proposed method, LatentDiffuser, demonstrates competitive performance on low-dimensional locomotion control tasks and surpasses existing methods in higher-dimensional tasks.
Improving Generalization in Task-oriented Dialogues with Workflows and Action Plans
Task-oriented dialogue is difficult in part because it involves understanding user intent, collecting information from the user, executing API calls, and generating helpful and fluent responses. However, for complex tasks one must also correctly do all of these things over multiple steps, and in a specific order. While large pre-trained language models can be fine-tuned end-to-end to create multi-step task-oriented dialogue agents that generate fluent text, our experiments confirm that this approach alone cannot reliably perform new multi-step tasks that are unseen during training. To address these limitations, we augment the dialogue contexts given to text2text transformers with known valid workflow names and action plans. Action plans consist of sequences of actions required to accomplish a task, and are encoded as simple sequences of keywords (e.g. verify-identity, pull-up-account, reset-password, etc.). We perform extensive experiments on the Action-Based Conversations Dataset (ABCD) with T5-small, base and large models, and show that such models: a) are able to more readily generalize to unseen workflows by following the provided plan, and b) are able to generalize to executing unseen actions if they are provided in the plan. In contrast, models are unable to fully accomplish new multi-step tasks when they are not provided action plan information, even when given new valid workflow names.
Sample-Efficient Neural Architecture Search by Learning Action Space
Neural Architecture Search (NAS) has emerged as a promising technique for automatic neural network design. However, existing MCTS based NAS approaches often utilize manually designed action space, which is not directly related to the performance metric to be optimized (e.g., accuracy), leading to sample-inefficient explorations of architectures. To improve the sample efficiency, this paper proposes Latent Action Neural Architecture Search (LaNAS), which learns actions to recursively partition the search space into good or bad regions that contain networks with similar performance metrics. During the search phase, as different action sequences lead to regions with different performance, the search efficiency can be significantly improved by biasing towards the good regions. On three NAS tasks, empirical results demonstrate that LaNAS is at least an order more sample efficient than baseline methods including evolutionary algorithms, Bayesian optimizations, and random search. When applied in practice, both one-shot and regular LaNAS consistently outperform existing results. Particularly, LaNAS achieves 99.0% accuracy on CIFAR-10 and 80.8% top1 accuracy at 600 MFLOPS on ImageNet in only 800 samples, significantly outperforming AmoebaNet with 33x fewer samples. Our code is publicly available at https://github.com/facebookresearch/LaMCTS.
On Many-Actions Policy Gradient
We study the variance of stochastic policy gradients (SPGs) with many action samples per state. We derive a many-actions optimality condition, which determines when many-actions SPG yields lower variance as compared to a single-action agent with proportionally extended trajectory. We propose Model-Based Many-Actions (MBMA), an approach leveraging dynamics models for many-actions sampling in the context of SPG. MBMA addresses issues associated with existing implementations of many-actions SPG and yields lower bias and comparable variance to SPG estimated from states in model-simulated rollouts. We find that MBMA bias and variance structure matches that predicted by theory. As a result, MBMA achieves improved sample efficiency and higher returns on a range of continuous action environments as compared to model-free, many-actions, and model-based on-policy SPG baselines.
In-Context Reinforcement Learning for Variable Action Spaces
Recently, it has been shown that transformers pre-trained on diverse datasets with multi-episode contexts can generalize to new reinforcement learning tasks in-context. A key limitation of previously proposed models is their reliance on a predefined action space size and structure. The introduction of a new action space often requires data re-collection and model re-training, which can be costly for some applications. In our work, we show that it is possible to mitigate this issue by proposing the Headless-AD model that, despite being trained only once, is capable of generalizing to discrete action spaces of variable size, semantic content and order. By experimenting with Bernoulli and contextual bandits, as well as a gridworld environment, we show that Headless-AD exhibits significant capability to generalize to action spaces it has never encountered, even outperforming specialized models trained for a specific set of actions on several environment configurations.
A Different Approach to AI Safety: Proceedings from the Columbia Convening on Openness in Artificial Intelligence and AI Safety
The rapid rise of open-weight and open-source foundation models is intensifying the obligation and reshaping the opportunity to make AI systems safe. This paper reports outcomes from the Columbia Convening on AI Openness and Safety (San Francisco, 19 Nov 2024) and its six-week preparatory programme involving more than forty-five researchers, engineers, and policy leaders from academia, industry, civil society, and government. Using a participatory, solutions-oriented process, the working groups produced (i) a research agenda at the intersection of safety and open source AI; (ii) a mapping of existing and needed technical interventions and open source tools to safely and responsibly deploy open foundation models across the AI development workflow; and (iii) a mapping of the content safety filter ecosystem with a proposed roadmap for future research and development. We find that openness -- understood as transparent weights, interoperable tooling, and public governance -- can enhance safety by enabling independent scrutiny, decentralized mitigation, and culturally plural oversight. However, significant gaps persist: scarce multimodal and multilingual benchmarks, limited defenses against prompt-injection and compositional attacks in agentic systems, and insufficient participatory mechanisms for communities most affected by AI harms. The paper concludes with a roadmap of five priority research directions, emphasizing participatory inputs, future-proof content filters, ecosystem-wide safety infrastructure, rigorous agentic safeguards, and expanded harm taxonomies. These recommendations informed the February 2025 French AI Action Summit and lay groundwork for an open, plural, and accountable AI safety discipline.
HYDRA: Hybrid Robot Actions for Imitation Learning
Imitation Learning (IL) is a sample efficient paradigm for robot learning using expert demonstrations. However, policies learned through IL suffer from state distribution shift at test time, due to compounding errors in action prediction which lead to previously unseen states. Choosing an action representation for the policy that minimizes this distribution shift is critical in imitation learning. Prior work propose using temporal action abstractions to reduce compounding errors, but they often sacrifice policy dexterity or require domain-specific knowledge. To address these trade-offs, we introduce HYDRA, a method that leverages a hybrid action space with two levels of action abstractions: sparse high-level waypoints and dense low-level actions. HYDRA dynamically switches between action abstractions at test time to enable both coarse and fine-grained control of a robot. In addition, HYDRA employs action relabeling to increase the consistency of actions in the dataset, further reducing distribution shift. HYDRA outperforms prior imitation learning methods by 30-40% on seven challenging simulation and real world environments, involving long-horizon tasks in the real world like making coffee and toasting bread. Videos are found on our website: https://tinyurl.com/3mc6793z
Designing Multi-Step Action Models for Enterprise AI Adoption
This paper introduces the Multi-Step Action Model (MSAM), a closed-source AI model designed by Empsing to address challenges hindering AI adoption in enterprises. Through a holistic examination, this paper explores MSAM's foundational principles, design architecture, and future trajectory. It evaluates MSAM's performance via rigorous testing methodologies and envisions its potential impact on advancing AI adoption within organizations.
Random Network Distillation Based Deep Reinforcement Learning for AGV Path Planning
With the flourishing development of intelligent warehousing systems, the technology of Automated Guided Vehicle (AGV) has experienced rapid growth. Within intelligent warehousing environments, AGV is required to safely and rapidly plan an optimal path in complex and dynamic environments. Most research has studied deep reinforcement learning to address this challenge. However, in the environments with sparse extrinsic rewards, these algorithms often converge slowly, learn inefficiently or fail to reach the target. Random Network Distillation (RND), as an exploration enhancement, can effectively improve the performance of proximal policy optimization, especially enhancing the additional intrinsic rewards of the AGV agent which is in sparse reward environments. Moreover, most of the current research continues to use 2D grid mazes as experimental environments. These environments have insufficient complexity and limited action sets. To solve this limitation, we present simulation environments of AGV path planning with continuous actions and positions for AGVs, so that it can be close to realistic physical scenarios. Based on our experiments and comprehensive analysis of the proposed method, the results demonstrate that our proposed method enables AGV to more rapidly complete path planning tasks with continuous actions in our environments. A video of part of our experiments can be found at https://youtu.be/lwrY9YesGmw.
ReAct: Synergizing Reasoning and Acting in Language Models
While large language models (LLMs) have demonstrated impressive capabilities across tasks in language understanding and interactive decision making, their abilities for reasoning (e.g. chain-of-thought prompting) and acting (e.g. action plan generation) have primarily been studied as separate topics. In this paper, we explore the use of LLMs to generate both reasoning traces and task-specific actions in an interleaved manner, allowing for greater synergy between the two: reasoning traces help the model induce, track, and update action plans as well as handle exceptions, while actions allow it to interface with external sources, such as knowledge bases or environments, to gather additional information. We apply our approach, named ReAct, to a diverse set of language and decision making tasks and demonstrate its effectiveness over state-of-the-art baselines, as well as improved human interpretability and trustworthiness over methods without reasoning or acting components. Concretely, on question answering (HotpotQA) and fact verification (Fever), ReAct overcomes issues of hallucination and error propagation prevalent in chain-of-thought reasoning by interacting with a simple Wikipedia API, and generates human-like task-solving trajectories that are more interpretable than baselines without reasoning traces. On two interactive decision making benchmarks (ALFWorld and WebShop), ReAct outperforms imitation and reinforcement learning methods by an absolute success rate of 34% and 10% respectively, while being prompted with only one or two in-context examples. Project site with code: https://react-lm.github.io
DynaSaur: Large Language Agents Beyond Predefined Actions
Existing LLM agent systems typically select actions from a fixed and predefined set at every step. While this approach is effective in closed, narrowly-scoped environments, we argue that it presents two major challenges when deploying LLM agents in real-world scenarios: (1) selecting from a fixed set of actions significantly restricts the planning and acting capabilities of LLM agents, and (2) this approach requires substantial human effort to enumerate and implement all possible actions, which becomes impractical in complex environments with a vast number of potential actions. In this work, we propose an LLM agent framework that enables the dynamic creation and composition of actions in an online manner. In this framework, the agent interacts with the environment by generating and executing programs written in a general-purpose programming language at each step. Furthermore, generated actions are accumulated over time for future reuse. Our extensive experiments on the GAIA benchmark demonstrate that this framework offers significantly greater flexibility and outperforms previous methods. Notably, it allows an LLM agent to recover in scenarios where no relevant action exists in the predefined set or when existing actions fail due to unforeseen edge cases. At the time of writing, we hold the top position on the GAIA public leaderboard. Our code can be found in https://github.com/adobe-research/dynasaur{https://github.com/adobe-research/dynasaur}.
Train a Multi-Task Diffusion Policy on RLBench-18 in One Day with One GPU
We present a method for training multi-task vision-language robotic diffusion policies that reduces training time and memory usage by an order of magnitude. This improvement arises from a previously underexplored distinction between action diffusion and the image diffusion techniques that inspired it: image generation targets are high-dimensional, while robot actions lie in a much lower-dimensional space. Meanwhile, the vision-language conditions for action generation remain high-dimensional. Our approach, Mini-Diffuser, exploits this asymmetry by introducing Level-2 minibatching, which pairs multiple noised action samples with each vision-language condition, instead of the conventional one-to-one sampling strategy. To support this batching scheme, we introduce architectural adaptations to the diffusion transformer that prevent information leakage across samples while maintaining full conditioning access. In RLBench simulations, Mini-Diffuser achieves 95\% of the performance of state-of-the-art multi-task diffusion policies, while using only 5\% of the training time and 7\% of the memory. Real-world experiments further validate that Mini-Diffuser preserves the key strengths of diffusion-based policies, including the ability to model multimodal action distributions and produce behavior conditioned on diverse perceptual inputs. Code available at github.com/utomm/mini-diffuse-actor.
REValueD: Regularised Ensemble Value-Decomposition for Factorisable Markov Decision Processes
Discrete-action reinforcement learning algorithms often falter in tasks with high-dimensional discrete action spaces due to the vast number of possible actions. A recent advancement leverages value-decomposition, a concept from multi-agent reinforcement learning, to tackle this challenge. This study delves deep into the effects of this value-decomposition, revealing that whilst it curtails the over-estimation bias inherent to Q-learning algorithms, it amplifies target variance. To counteract this, we present an ensemble of critics to mitigate target variance. Moreover, we introduce a regularisation loss that helps to mitigate the effects that exploratory actions in one dimension can have on the value of optimal actions in other dimensions. Our novel algorithm, REValueD, tested on discretised versions of the DeepMind Control Suite tasks, showcases superior performance, especially in the challenging humanoid and dog tasks. We further dissect the factors influencing REValueD's performance, evaluating the significance of the regularisation loss and the scalability of REValueD with increasing sub-actions per dimension.
Diffusion Transformer Policy
Recent large visual-language action models pretrained on diverse robot datasets have demonstrated the potential for generalizing to new environments with a few in-domain data. However, those approaches usually predict discretized or continuous actions by a small action head, which limits the ability in handling diverse action spaces. In contrast, we model the continuous action with a large multi-modal diffusion transformer, dubbed as Diffusion Transformer Policy, in which we directly denoise action chunks by a large transformer model rather than a small action head. By leveraging the scaling capability of transformers, the proposed approach can effectively model continuous end-effector actions across large diverse robot datasets, and achieve better generalization performance. Extensive experiments demonstrate Diffusion Transformer Policy pretrained on diverse robot data can generalize to different embodiments, including simulation environments like Maniskill2 and Calvin, as well as the real-world Franka arm. Specifically, without bells and whistles, the proposed approach achieves state-of-the-art performance with only a single third-view camera stream in the Calvin novel task setting (ABC->D), improving the average number of tasks completed in a row of 5 to 3.6, and the pretraining stage significantly facilitates the success sequence length on the Calvin by over 1.2. The code will be publicly available.
Pretrained Language Models as Visual Planners for Human Assistance
In our pursuit of advancing multi-modal AI assistants capable of guiding users to achieve complex multi-step goals, we propose the task of "Visual Planning for Assistance (VPA)". Given a succinct natural language goal, e.g., "make a shelf", and a video of the user's progress so far, the aim of VPA is to devise a plan, i.e., a sequence of actions such as "sand shelf", "paint shelf", etc. to realize the specified goal. This requires assessing the user's progress from the (untrimmed) video, and relating it to the requirements of natural language goal, i.e., which actions to select and in what order? Consequently, this requires handling long video history and arbitrarily complex action dependencies. To address these challenges, we decompose VPA into video action segmentation and forecasting. Importantly, we experiment by formulating the forecasting step as a multi-modal sequence modeling problem, allowing us to leverage the strength of pre-trained LMs (as the sequence model). This novel approach, which we call Visual Language Model based Planner (VLaMP), outperforms baselines across a suite of metrics that gauge the quality of the generated plans. Furthermore, through comprehensive ablations, we also isolate the value of each component--language pre-training, visual observations, and goal information. We have open-sourced all the data, model checkpoints, and training code.
Reinforcement Learning on Web Interfaces Using Workflow-Guided Exploration
Reinforcement learning (RL) agents improve through trial-and-error, but when reward is sparse and the agent cannot discover successful action sequences, learning stagnates. This has been a notable problem in training deep RL agents to perform web-based tasks, such as booking flights or replying to emails, where a single mistake can ruin the entire sequence of actions. A common remedy is to "warm-start" the agent by pre-training it to mimic expert demonstrations, but this is prone to overfitting. Instead, we propose to constrain exploration using demonstrations. From each demonstration, we induce high-level "workflows" which constrain the allowable actions at each time step to be similar to those in the demonstration (e.g., "Step 1: click on a textbox; Step 2: enter some text"). Our exploration policy then learns to identify successful workflows and samples actions that satisfy these workflows. Workflows prune out bad exploration directions and accelerate the agent's ability to discover rewards. We use our approach to train a novel neural policy designed to handle the semi-structured nature of websites, and evaluate on a suite of web tasks, including the recent World of Bits benchmark. We achieve new state-of-the-art results, and show that workflow-guided exploration improves sample efficiency over behavioral cloning by more than 100x.
Masked Diffusion with Task-awareness for Procedure Planning in Instructional Videos
A key challenge with procedure planning in instructional videos lies in how to handle a large decision space consisting of a multitude of action types that belong to various tasks. To understand real-world video content, an AI agent must proficiently discern these action types (e.g., pour milk, pour water, open lid, close lid, etc.) based on brief visual observation. Moreover, it must adeptly capture the intricate semantic relation of the action types and task goals, along with the variable action sequences. Recently, notable progress has been made via the integration of diffusion models and visual representation learning to address the challenge. However, existing models employ rudimentary mechanisms to utilize task information to manage the decision space. To overcome this limitation, we introduce a simple yet effective enhancement - a masked diffusion model. The introduced mask acts akin to a task-oriented attention filter, enabling the diffusion/denoising process to concentrate on a subset of action types. Furthermore, to bolster the accuracy of task classification, we harness more potent visual representation learning techniques. In particular, we learn a joint visual-text embedding, where a text embedding is generated by prompting a pre-trained vision-language model to focus on human actions. We evaluate the method on three public datasets and achieve state-of-the-art performance on multiple metrics. Code is available at https://github.com/ffzzy840304/Masked-PDPP.
Language-guided Human Motion Synthesis with Atomic Actions
Language-guided human motion synthesis has been a challenging task due to the inherent complexity and diversity of human behaviors. Previous methods face limitations in generalization to novel actions, often resulting in unrealistic or incoherent motion sequences. In this paper, we propose ATOM (ATomic mOtion Modeling) to mitigate this problem, by decomposing actions into atomic actions, and employing a curriculum learning strategy to learn atomic action composition. First, we disentangle complex human motions into a set of atomic actions during learning, and then assemble novel actions using the learned atomic actions, which offers better adaptability to new actions. Moreover, we introduce a curriculum learning training strategy that leverages masked motion modeling with a gradual increase in the mask ratio, and thus facilitates atomic action assembly. This approach mitigates the overfitting problem commonly encountered in previous methods while enforcing the model to learn better motion representations. We demonstrate the effectiveness of ATOM through extensive experiments, including text-to-motion and action-to-motion synthesis tasks. We further illustrate its superiority in synthesizing plausible and coherent text-guided human motion sequences.
Sociotechnical Safety Evaluation of Generative AI Systems
Generative AI systems produce a range of risks. To ensure the safety of generative AI systems, these risks must be evaluated. In this paper, we make two main contributions toward establishing such evaluations. First, we propose a three-layered framework that takes a structured, sociotechnical approach to evaluating these risks. This framework encompasses capability evaluations, which are the main current approach to safety evaluation. It then reaches further by building on system safety principles, particularly the insight that context determines whether a given capability may cause harm. To account for relevant context, our framework adds human interaction and systemic impacts as additional layers of evaluation. Second, we survey the current state of safety evaluation of generative AI systems and create a repository of existing evaluations. Three salient evaluation gaps emerge from this analysis. We propose ways forward to closing these gaps, outlining practical steps as well as roles and responsibilities for different actors. Sociotechnical safety evaluation is a tractable approach to the robust and comprehensive safety evaluation of generative AI systems.
Event-Guided Procedure Planning from Instructional Videos with Text Supervision
In this work, we focus on the task of procedure planning from instructional videos with text supervision, where a model aims to predict an action sequence to transform the initial visual state into the goal visual state. A critical challenge of this task is the large semantic gap between observed visual states and unobserved intermediate actions, which is ignored by previous works. Specifically, this semantic gap refers to that the contents in the observed visual states are semantically different from the elements of some action text labels in a procedure. To bridge this semantic gap, we propose a novel event-guided paradigm, which first infers events from the observed states and then plans out actions based on both the states and predicted events. Our inspiration comes from that planning a procedure from an instructional video is to complete a specific event and a specific event usually involves specific actions. Based on the proposed paradigm, we contribute an Event-guided Prompting-based Procedure Planning (E3P) model, which encodes event information into the sequential modeling process to support procedure planning. To further consider the strong action associations within each event, our E3P adopts a mask-and-predict approach for relation mining, incorporating a probabilistic masking scheme for regularization. Extensive experiments on three datasets demonstrate the effectiveness of our proposed model.